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ABSTRACT: Current-topography interactions in the ocean give rise to eddies spanning a wide range of spatial and
temporal scales. The latest modeling efforts indicate that coastal and underwater topography are important generation sites
for submesoscale coherent vortices (SCVs), characterized by horizontal scales of 7(0.1 — 10) km. Using idealized, sub-
mesoscale and bottom boundary layer (BBL)-resolving simulations and adopting an integrated vorticity balance formu-
lation, we quantify precisely the role of BBLs in the vorticity generation process. In particular, we show that vorticity
generation on topographic slopes is attributable primarily to the torque exerted by the vertical divergence of stress at the
bottom. We refer to this as the bottom stress divergence torque (BSDT). BSDT is a fundamentally nonconservative torque
that appears as a source term in the integrated vorticity budget and is to be distinguished from the more familiar bottom
stress curl (BSC). It is closely connected to the bottom pressure torque (BPT) via the horizontal momentum balance at the
bottom and is in fact shown to be the dominant component of BPT in solutions with a well-resolved BBL. This suggests an
interpretation of BPT as the sum of a viscous, vorticity-generating component (BSDT) and an inviscid, ‘‘flow-turning”
component. Companion simulations without bottom drag illustrate that although vorticity generation can still occur through
the inviscid mechanisms of vortex stretching and tilting, the wake eddies tend to have weaker circulation, be substantially
less energetic, and have smaller spatial scales.
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1. Introduction The phenomenology underlying vertical vorticity generation
in flow past topography is still being unraveled. D’ Asaro (1988)
proposed, on the basis of observations of potential vorticity
(PV) anomalies in the Beaufort Sea SCVs, that frictional tor-
ques which arise during flow—topography interactions have an
important role in the generation process. Molemaker et al.
(2015) provide a geometric argument, subsequently verified in
Srinivasan et al. (2019), to describe how bottom drag acting on
slope currents produces a horizontal shear, i.e., vertical vor-
ticity. Employing the framework of the barotropic vorticity
equation, defined as the curl of the vertically integrated hori-
zontal momentum equations, Molemaker et al. (2015) and
Gula et al. (2015) further show that barotropic vorticity is
generated primarily through the action of the bottom pressure
torque (BPT) (see also Hughes and De Cuevas 2001; Jackson
et al. 2006), with the bottom stress curl not contributing sig-
nificantly in an integral sense. The apparently contradictory
roles of bottom friction and BPT in generating vertical vorticity
over slopes remains to be reconciled and will be examined in
this study.

In developing a mechanistic understanding of vorticity
generation on topographic slopes, we seek to elucidate and
quantify how the bottom stress mediates this process. A pu-
tative role for the bottom stress needs to in turn be reconciled
with the expected occurrence of Ekman arrest on slopes, fol-
lowing boundary stress collapse (MacCready and Rhines
1991). Pursuing an integrated vorticity balance analysis, we
explore the dynamics of vorticity generation in flow past an
elongated ridge using solutions from idealized, fully three-
dimensional ROMS simulations. ROMS is the Regional

Corresponding author: Arjun Jagannathan, ajagannathan@ Oceanic Modeling System. The model setup is detailed in
atmos.ucla.edu section 2. Figure 1 provides a glimpse of the essential dynamics.

An emerging body of evidence from realistic modeling
studies suggests that topographic interactions are a significant
source of vertical vorticity generation in the ocean. Among
regions where this is seen are the Gulf Stream (Gula et al.
2015), California Undercurrent (Molemaker et al. 2015),
Solomon Sea in the southwestern Pacific (Srinivasan et al.
2017), the Gulf of Oman (Vic et al. 2015), and the Alboran Sea
region of the western Mediterranean (Cap6 et al. 2021). In all
these studies, the vorticity generated on the topographic slopes
evolves, through current separation and shear, centrifugal, or
symmetric instability mechanisms, to form a turbulent wake
populated by submesoscale coherent vortices (SCVs). Oceanic
observations of SCVs with a putative topographic origin
include, the Beaufort Sea anticyclones (D’Asaro 1988), the
eddying wake past the northern end of Palau (MacKinnon
et al. 2019), and most recently, a deep, intense cyclonic SCV
in the Arabian Sea (De Marez et al. 2020). SCVs are dy-
namically important because they can transport mass and
dissolved materials over long distances in the ocean (Armi
and Stommel 1983; Armi and Zenk 1984; McWilliams 1985;
Riser et al. 1986; McCoy et al. 2020) and enhance rates of
diapycnal mixing in the thermocline (Dewar et al. 2015;
Zhang et al. 2019).
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FIG. 1. Snapshots of vertically integrated vorticity, normalized by fh,, for barotropically forced flow past an
elongated ridge. The green lines are bathymetry contours at z = 0.14A,,, z = 0.37h,,, and z = 0.9h,,. The geo-
strophically balanced background flow is from south to north. Values of the parameter / are indicated inside each
panel. Note that the panel aspect ratio (height-to-width) is smaller than the true aspect ratio.

Barotropically forced flow past an elongated ridge leads to
vorticity generation along the slopes, culminating in the
shedding of vertically coherent vortices into the wake. In
section 3, we derive an integral formulation of the vertical
vorticity equation that explicitly connects BPT with bottom
frictional effects, allowing for a quantification of the quasi-
Lagrangian vorticity evolution along barotropic streamlines.
We shall demonstrate in section 4 that while the stress does
weaken substantially on the slopes as the flow evolves down-
stream, significant vorticity generation (e.g., Fig. 1) occurs
during the early flow encounter with the ridge, as a result of the
bottom stress divergence torque (BSDT), a source term in the
integrated vorticity equation.

The central role of BSDT raises questions about previous
studies that have demonstrated vorticity generation without
bottom drag. Among the earliest such studies are the numerical
experiments of Smolarkiewicz and Rotunno (1989). In their
free-slip simulations of for nonrotating, low-Froude-number
flows past topography, a symmetric pair of vertically oriented
lee vortices was observed to form in the wake. Using asymp-
totic arguments, the authors demonstrated that the vertical
vorticity was created purely through the tilting of baroclinically
generated horizontal vorticity. Since then, lee vortices have
been reported in several other studies of nonrotating flows
employing zero-stress or free-slip bottom boundary conditions
(e.g., Olafsson and Bougeault 1996; Jagannathan et al. 2019;
Puthan et al. 2020). However, to our knowledge there are no
studies documenting vorticity generation without bottom drag
using ROMS or other realistic ocean models that include the

effect of rotation, nor are there any studies making a quanti-
tative comparison between drag and no-drag solutions. These
questions will be addressed in section 5, both theoretically and
numerically, with a bottom-drag-free ROMS configuration.

2. Model setup

The simulations are performed using ROMS (Shchepetkin
and McWilliams 2005), a split-explicit, terrain-following
(o coordinate) ocean model that solves the primitive, hydro-
static equations of motion, with a nonlinear equation of state
for seawater (Jackett and McDougall 1995).

We consider a ridge of height 4,,, and Gaussian half-width a,
elongated in the flow direction y. Mathematically the ridge
elevation is given by

1 + tanh Yoh 1 + tanh 7Y
—x2la? 0’," O-Y
h=h,e 5 3 > (D

where o, represents the extent of the initial encounter region
over which the ridge height changes rapidly. One of the mo-
tivations for considering an elongated ridge is that it allows for
longer downstream development of the cross-slope Ekman
dynamics and is thus well suited for studying the departure
from one-dimensional and doubly periodic models of slope
BBLs and Ekman arrest. The Ekman adjustment problem will
be separately considered in a forthcoming study.
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In all our simulations, we set 4,,, = 400 m, the half-width a =
3.5km, length b = y, — y; = 144km, and the encounter length
o, = 12km. Note that these choices imply b > a and
oy, =(7(a), so that the bathymetry contours are in the shape
of aracetrack with a long straight section. The ridge is centered
in a computational domain that is 240 km long and 90 km wide.

The simulations have a horizontal resolution of 300 m and
110 o levels. To resolve BBL dynamics, the ROMS grid is
stretched at the bottom so that the vertical resolution ranges
from 1.1 m over the flat bottom to 0.9 m at the ridge crest. The
turbulent bottom drag is parameterized using a quadratic
drag law,

Tp =p0CdlleubH, (2)

In Eq. (2), po is a constant reference density, and C, is the drag
constant given by

C, = [kNlog(Az,/z,,)I 3)

where k = 0.4 is the von Karman constant, Az, is the thickness
of the bottommost o layer and z,y, is the roughness length, set
to 1cm. Vertical mixing in the BBL is parameterized using
KPP (Large et al. 1994; McWilliams et al. 2009). It is pertinent
to note that, in addition to parameterized vertical mixing, both
in the BBL and interior, the third-order upwind-biased scheme
used for computing the nonlinear advective terms additionally
introduces horizontal hyperdiffusive terms (Shchepetkin and
McWilliams 2003, 2005).

The solutions are initialized with a uniform barotropic in-
flow of speed V, = 0.1 ms™!, geostrophically balanced by a
zonal gradient in the sea surface elevation, along with a linear
vertical profile of potential temperature 6. With the nonlinear
equation of state, this produces an approximately uniform
background stratification N, permitting the definition of a
nondimensional ridge height

=N )

where fis the Coriolis frequency. Note that / may also be in-
terpreted as a slope Burger number (Brink and Lentz 2010;
Wenegrat and Thomas 2020). For k& < 1, Srinivasan et al.
(2019) observed that solutions remained steady and retained
essential features of the inviscid quasigeostrophic flow (Schar
and Davies 1988; Schar 2002), even with a turbulent bottom
drag parameterization. In the same study, values of h larger
than 1 were found to yield eddying solutions. Here one of our
objectives is to understand the process of vertical vorticity
generation on the ridge slopes; our primary interest is the
eddying regime.

The Coriolis frequency f is fixed at a typical midlatitude
value of 7 X 10™°s ™! and / is varied by changing N alone. The
flow variables are held constant at the inflow, with open, ra-
diative conditions (Marchesiello et al. 2001) applied at the
other boundaries. We consider four values of ﬁ—1.6, 3.2, 6.4,
and 12.8—for which N ranges from 5 X 107*s™' to 4 X
10735 L. In this parameter space /> 1, the dynamics are in-
dependent of the water depth H, provided it is larger than the
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ridge height itself (Srinivasan et al. 2019). Here, H is set to
1000 m. Two sets of solutions are examined—one with, and the
other, without bottom drag. All the simulations are run for four
months of physical time. Flow variables and momentum di-
agnostics are output twice daily and temporal averaging is
performed over the last two months of the model output so as
to exclude the spinup time.

3. Theoretical formulation
a. An integrated vorticity balance

We develop a vertically integrated vorticity formulation to
analyze the vorticity balances in our solutions. The central
question is, what causes vorticity generation when a current
encounters sloping bathymetry. The hitherto overlooked role
of the bottom stress divergence torque (BSDT), which appears
as one of the boundary terms in this formulation, will be
demonstrated in section 4.

The starting point for our analysis are the 2D horizontal
momentum equations in vorticity form, supplemented by the
continuity equation for mass conservation. In the absence of
external forcing, these are

a“+({+f)l}><u+wa“——V er‘“‘2 L Lo (52)
at iz A\p, 2 Py 9z’
aw
Vv, u= 0 (5b)

where u is the horizontal velocity vector, V, is the horizontal
gradient operator, /k = V;; X u is the vertical vorticity, a7/9z is
the vertical stress divergence and other symbols have their usual
meaning. Note that ROMS also has horizontal hyperviscosity
through the third-order upwind biased scheme, but this is a
negligible term in the vorticity balances for our simulations.

After taking the horizontal curl of Eq. (5a), using standard
vector calculus identities and dotting with k, we have the vor-
ticity equation

a A ow Ju °
Loru v iiw® = +n (v, wx ™) k
o u Hg WaZ (g f) 9z ( Hw az)
—
D, é' vortex stretching vortex tilting
Dt
A 107
-Bv+k-V x(——) : 6)
1 \p, 0z (

stress divergence curl

As fis constant in our simulations, we neglect the B effect.
To obtain the integrated vorticity equation, vertically integrate
Eq. (6) from z = —H + h(x,y) to z = m, where H is the constant
water depth away from the topography and 7 is the sea surface
elevation,

n D n

—w+n Dt
K .
—J (VHan—“)-de
—H+h 0z

+ r kv, x (li) dz. ()

—H+h Py 9z
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Further, in the absence of a surface wind stress and taking
the curl outside the integral, the last term in Eq. (7) can be
rewritten using Leibniz’s rule as

n
J k-VH><<187)
—H+h p()az
:4;.<1v xf)ff( Lo
Po Py 92

where the subscript b denotes “‘bottom.” Note that the first
term on the RHS is the familiar bottom stress curl (BSC). The
second term —({d7/0z}|,/po) X Vyh appears as a result of in-
terchanging the curl and integral operators. We refer to this as
the bottom stress divergence torque (BSDT). It is the twisting
force produced due to the vertical divergence of stress in
the direction orthogonal to the topographic gradient Vg h.
Equation (7) now becomes

X VHh> 8)

T D¢ 7 ou\ -
dz—J + —dz —J (V wX—)-kdz
[ +n Dt —H+ ({ P e\ 0z
Vs VT
- 107
k- (—V, X7, | -k-|——| XV, h]| . 9
< o h) <Po ozl, M ) ©
BSC BSDT

Here the acronyms VS, VT, and BSC, respectively, stand for
vortex stretching, vortex tilting, and bottom stress curl.
To see how the bottom pressure torque (BPT), defined as

BPT=-V, (’i> XV, (10)

Py

is connected to BSDT, we apply the horizontal momentum
balance Eq. (5a) at the bottom and take the cross product with
Vh. This yields the relation

1 o7

o P, . Il
XV, h=—bXV h+V, [+ L)XV, h
p()azh H ot H H( H

Py 2
b X V,h.

-, + Ny, -V hk-‘rwba 11)

An interesting limit is that of a no-slip bottom boundary.
Equation (11) then reduces to

107

12
Py 9z, (2

XV, h= V()XVh
Py

meaning that BSDT and BPT balance exactly. Note, how-
ever, that Eq. (11) and not Eq. (12) is the appropriate bal-
ance in discretized ocean models such as ROMS which
employ a turbulent bottom stress parameterization, with
Monin-Obukhov similarity theory assumed to apply within
the bottom grid cell.

Equations (11) and (12) underscore the direct relationship
between BPT and BSDT. As we will further see in section 4d,
this resolves the apparently contradictory explanations for
vorticity generation provided here and in previous studies such
as Molemaker et al. (2015) and Gula et al. (2015).
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b. Quasi-Lagrangian analysis

We now develop a quasi-Lagrangian technique for ana-
lyzing the integrated vorticity equation, Eq. (9). We call it
quasi-Lagrangian as opposed to Lagrangian to emphasize the
fact that we will be tracking the evolution of source terms on
mean barotropic streamlines and not individual particle
trajectories.

Consider again, the integrated vorticity equation, Eq. (9). To
simplify the algebra, we neglect temporal fluctuations of the
sea surface elevation 1. Now, denoting time averages by (-) and
combined depth and time averages by ( ), we can write the
time-averaged equation (9) as

7 n We
[" v, @ | 20
—H+h —H+h 02
n T ow — Ju A
:J ({+f)—dz—J (V an—u>~kdz
—H+ H+h 0z
. 197
kv, xm ok LT XV (13)
Py b Py 9z g

Note that the time derivative term in Eq. (13) has been drop-
ped. Formally, this approximation is valid in a statistically
steady state, and in the limit of a long time average.

Using Leibniz’s rule to interchange the integral and di-
vergence operators on the LHS of the above equation and
invoking boundary conditions of free surface at the top and
no-normal flow at the bottom, uy - Vip = wyand uy, - Vi = wy,
respectively, after cancellation of the boundary terms
we have

Vv, [(w)D] = Jiw(g +f)%dz —J;M(vﬁw X i“) -kdz
N—_— —o

aJz
VS VT
_1ar
—k-—V X7, —k-——| XV, h, (14)
Py Py 92|,
BSC BSDT

where D = (H —

We now decompose the advection term into mean and eddy
components, where the eddy component here represents fluc-
tuations from the combined depth and time average.

h + m) is the local water column depth.

XV, h=V, - [(w)D], (15)

_ Ul
U- J wdz (16)
H+h

is the time-mean barotropic transport. Equation (15) can be
written in characteristic form as
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FIG. 2. Vertical sections of normalized, time-mean along-slope velocity v/V} overlain by isopycnals at successive downstream locations:
(top) &= 1.6 and (bottom) & = 6.4.
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o) =D = DJ:)(”); Jilﬂh

aw m IR L1
+f)— - X —| -kdz —k-—V, X7 —
£+ Bz} dz J_H+h (VHW 61) dz P Vi X7,
S —

where s now denotes the distance along the characteristics,
i.e., barotropic streamlines of the flow. Equation (17) can
then be integrated to determine the evolution of the depth
averaged vorticity ({) and hence also the vertically inte-
grated vorticity @ = ({)D along the barotropic stream-
lines as

Vs

In section 4b we will use Eq. (18) to identify which terms are
responsible for vorticity generation as a current encounters
topography and advects along its slopes.

4. Frictional vorticity generation
a. Vertical structure of the solutions

We briefly discuss the vertical flow structure in our solutions
before proceeding to examine the balances in the integrated
vorticity equation. In the remainder of the paper, we refer to
the side where uphill is to the left (right) of the along-slope flow
as the cyclonic (anticyclonic) side, consistent with a Northern
Hemisphere orientation.

. 197
k-—=| =V, - [(w)D] |ds.
) praz| ~Vu LWZ)D)
vT BSC BSDT eddy advection

(18)

Figure 2 displays vertical sections of the mean flow structure
at successive downstream locations starting from the encounter
region, for /i=1.6 and 6.4. For all /, there is an asymmetry in
the along-slope velocity between the cyclonic and anticyclonic
sides, arising due to the effect of background rotation. As the
flow encounters the ridge, isopycnals deflect upslope (down-
slope) on the cyclonic (anticyclonic) side in response to Ekman
induced upwelling (downwelling) (e.g., Garrett et al. 1993;
Brink and Lentz 2010).

At h=1.6, we note the presence of a circulation around the
ridge, characterized by an accelerated flow along the straight
section of the ridge on the anticyclonic side that is compen-
sated by deceleration above the cyclonic slope. This is
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FIG. 3. Vertical sections of normalized, time-mean vertical vorticity ¢/f overlain by isopycnals at successive downstream locations: (top)
h=1.6 and (bottom) & =6.4.

reminiscent of quasigeostrophic dynamics (e.g., Fig. 2 of
Srinivasan et al. 2019), in which squashing of vortex tubes leads
to the formation of an anticyclone on top of the obstacle. While
quasigeostrophic solutions for most obstacle shapes are for-
mally valid only up to some critical value of /1 < 1 (Schir 2002),
residual circulations can persist for higher ﬁ, as the /i = 1.6 case
in Fig. 2 shows. At 7 =6.4, the circulation becomes much
weaker and the vertical shear on the cyclonic side increases, as
evidenced by the emergence of a baroclinic jet above the up-
slope Ekman flow. The concomitant loss of vertical coherence
in the vorticity structure is visible in Fig. 3 below.

Figure 3 depicts the along-slope evolution of vorticity. The
topographic interaction produces strong vertical vorticity
[I¢/f = (1)] adjacent to the slope on either side of the
ridge. As the flow evolves downstream (y/a = 17, 34), vertical
alignment of the vorticity occurs and a distinct columnar structure
emerges. This is more pronounced on the cyclonic side and at
71 =1.6 and 3.4 (not shown). The genesis of topographically gen-
erated SCVs is a result of the eventual separation of these co-
lumnar vortices from the slopes. Note that the vortices become
increasingly decorrelated vertically at i = 6.4. As we will see, after
the separation of the current from the slopes (y/a = 51), advection
of eddy vorticity, encapsulated by the term EA in Eq. (9), causes
the time-mean vorticity to decrease.

b. The role of the BBL in topographic vorticity generation

The advantage of the integrated vorticity formulation in
Eq. (9) is that BSC and BSDT expressly illuminate the role of
the bottom stress in the vorticity generation process. These

terms represent nonconservative, viscous torques. By contrast,
BPT, as it appears in the barotropic vorticity equation, can be
difficult to interpret in ocean models, which rely on turbulent
BBL parameterizations rather than an explicitly enforced no-
slip condition.

The one-dimensional theory of boundary currents (MacCready
and Rhines 1991) predicts a slow temporal evolution toward
bottom stress collapse and hence boundary layer shutdown on
slopes. However, on realistic topography, Ekman adjustment
is a primarily downstream rather than temporally evolving
process. Moreover, flow separation and secondary instabilities
will alter the leading-order cross-slope momentum balance
and a departure from the steady state one-dimensional pre-
diction is to be expected. Indeed, while the bottom stress
(Fig. 4) on the higher reaches of the ridge exhibits substantial
weakening downstream with increasing h, it is far from a state
of collapse at the lower slopes. BBL mediated vorticity gen-
eration occurs during the early Ekman adjustment process over
the encounter region, as exemplified in Fig. 3. This is consistent
with findings in Benthuysen and Thomas (2012) and Ruan et al.
(2019) that the Ekman adjustment process is itself a means of
generating vorticity.

For finite N, the BBL height A, on a flat bottom follows the
empirical scaling fp ~ u*//Nf (McWilliams et al. 2009),
where u* = /7p/p, is the friction velocity. In Fig. 5 we show the
time-mean /iy, as a function of the cross-slope coordinate x at
two downstream locations, one in the encounter region and the
other roughly halfway along the ridge. The BBL height Ay, as
defined here is the depth over which active shear-driven
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FIG. 4. Normalized, time-averaged boundary stress. Values of the parameter  are indicated inside each panel.

entrainment and mixing occur. It is computed in ROMS using
KPP, which parameterizes the effects of stratified Ekman layer
turbulence. Note that Ay, is different from the mixed layer
depth which is the quantity of interest in the Ekman adjust-
ment problem. The dimensional 4, have been normalized by
3u*/\/Nf (Srinivasan et al. 2019), where u* is taken as the
average value of the friction velocity over the flat bottom, away
from the ridge. For all h, hypy in the encounter region (y/a = 10)
is larger on the anticyclonic side—a consequence of the along-
slope flow being faster there. Downwelling on the anticyclonic
side transports heavier fluid under lighter fluid, making the
flow convectively unstable. Parameterized vertical mixing in
ROMS then leads to the formation of a bottom mixed layer
which continues to deepen moving downstream.

The dominant tendency terms in the vertical vorticity
equation, Eq. (6) are displayed in Fig. 6. The stress divergence

25

curl within the BBL initiates vorticity generation during the
early encounter, with advective processes being a secondary
source in the flow interior. Vortex stretching occurs in response
to Ekman upwelling and downwelling in the BBL. Further
aloft, the oscillatory structure of VS + VT is due to vertical
internal wave modes that are launched when the flow en-
counters the ridge. Assuming rotational effects are small, the
vertical wavelength of these waves is proportional to Vy/N
(e.g., Baines 1998). Hence for fixed V), it scales inversely with
h. Finally, vertical vorticity is also created through tilting of
horizontally oriented vortex tubes. In section 5, we will further
illustrate using simulations and asymptotic arguments how
stretching and tilting effects can generate vorticity even in the
absence of bottom drag.

With a view to quantifying precisely how drag against the
ocean bottom injects vertical vorticity into the flow, we now

— y/a=10
— y/a=34

— y/a=10
— y/a=34

z/a

z/a

z/a

FIG. 5. The time-mean BBL height /., normalized by 3u*/\/Nf at two different locations—one in the encounter region (y/a = 10) and
the other further downstream (y/a = 34). Values of the parameter / are indicated inside each panel. Note that u* here is taken to be the
average friction velocity over the flat bottom, away from the ridge, for the respective / cases. The dimensional 4, are smaller for larger 4.
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FIG. 6. Time-averaged tendency terms in the 3D vertical vorticity equation, Eq. (6), normalized by fVoa ! and overlain by flow iso-
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region y/a = 10 and (right) averaged across the straight section of the ridge.

examine the integrated vorticity balances in our solutions.
Using the momentum diagnostics directly from ROMS, the
various source terms in the integrated vorticity equation, Eq. (9)
are computed to the level of ROMS accuracy. Snapshots and
time averages of the vertically integrated vorticity are displayed
in Figs. 1 and 7 respectively. Also displayed in Fig. 7 are the
streamlines of the mean barotropic transport. The rotation-
induced asymmetry is clearly visible in the streamline patterns.

In a Lagrangian reference frame, water columns on the cy-
clonic (anticyclonic) side acquire positive (negative) vorticity
as they advect downstream along mean transport streamlines.
As the flow separates from the slopes, vorticity generation is
followed by rapid merger events where smaller like-signed
vortices roll up to form larger ones (Srinivasan et al. (2019))
that eventually separate further downstream as submesoscale
coherent vortices. The prominent small-scale structures seen
on the anticyclonic side are manifestations of hybrid
centrifugal/symmetric instability of the flow (e.g., Wenegrat
and Thomas 2020). This aspect of the solutions will be further
explored in a follow up study.

In Fig. 8 we plot each of the tendency terms of the integrated
vorticity equation as they appear on the RHS of Eq. (9).
Interestingly, the BSC is of minor importance, and further, is a
sink rather than a source of vorticity on both sides of the ridge,
regardless of the value of h. Instead, much of the vorticity in-
jection occurs around the early encounter region through the
action of BSDT. On the cyclonic side, the net effect of vortex

stretching and tilting (denoted VSVT) as a sink of vorticity is
evident: however, Fig. 8 is somewhat inconclusive with respect
to its role on the anticyclonic side.

To gain further insight into the interplay of BSDT and
VSVT as a water column advects along a topographic slope, we
take recourse to the quasi-Lagrangian technique described in
section 3b. Partial cumulative integrals of the source terms of @
[as they appear on the RHS of Eq. (18)] are computed along
mean transport streamlines (depicted in Fig. 7). The streamlines
are chosen to pass through the hotspots of BSDT and VSVT in
the encounter region (Fig. 8) and advect downstream along the
straight section of the ridge. Averaging over several such
streamlines, as depicted in Fig. 7, separately on each of the cy-
clonic and anticyclonic sides, Fig. 9 shows that along the cyclonic
slope, BSDT continuously injects vorticity into the flow, while
VSVT acts to deplete it. The eddy advection term EA represents
conversion from mean to eddy vorticity and vice versa. It acts
as a source term on the slopes and a sink after flow separation.

On the anticyclonic side, BSDT is again the dominant gen-
eration term. A notable observation is that, for the h=6.4 case,
there is a reversal in tendencies immediately past the en-
counter region (y/a ~ 16) where VSVT and BSDT switch signs.
A similar reversal is seen for /1 = 12.8 (not shown). Nevertheless,
there is no net generation of vorticity after the reversal, much
of it having already occurred during the early encounter
through BSDT. We have checked that while BSDT continues
to act strictly as a source term along certain individual
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FIG. 7. Time averages of vertically integrated vorticity, normalized by fh,, for the ridge solutions. The black and
green contour lines are, respectively, streamlines of the barotAropic transport U and bathymetry contours at z =
0.144,,, z = 0.37h,,, and z = 0.9h,,,. Values of the parameter / are indicated inside each panel.

streamlines for these solutions, in a streamline-averaged sense,
it nonetheless has the tendency of a sink along the straight
section of the ridge. The sign reversal of BSDT implies a
negative bottom stress divergence. A possible explanation for
this is that it occurs due to the near collapse of bottom stress on
the upper reaches of the straight section past the southern edge
of the ridge (Fig. 4c). Consequently, in an average sense,
parameterized vertical mixing of the convectively unstable
downwelling flow dominates bottom stress-driven mixing
there, resulting in a positive BSDT. Finally, we remark that
the budget for the integrated vorticity in Eq. (18) is closed to
within 5% on both the cyclonic and anticyclonic sides.

Along the straight section of the ridge and prior to flow
separation, the mean value of the integrated vorticity remains
nearly constant. This might be expected, for example, from the
geometric argument of Molemaker et al. (2015) according to
which the vertical vorticity in the BBL is given by { ~ —001/9z,
where |6] < 1 is the slope, so that integrating over the BBL
yields w~ —0V,. The nearly constant value of @ along the
straight section may also be interpreted as being reflective of
Ekman balance, with vortex tilting effects balancing frictional
torques (Wenegrat and Thomas 2017).

c¢. A heuristic explanation for BSC and BSDT patterns

Consider our geometry with a ridge of height A(x, y) and an
inflow Vj, directed northward. Assume, heuristically, that the hor-
izontal circulation around the ridge is weak (i.e., 2 > 1) and that the
main effect of the ridge is to split the flow such that v(x, y) is
accelerated on the flanks of the ridge and decelerated over the ridge
top, with some broadscale return to the inflow V in the x far field.

The bottom stress and its vertical derivative can be ap-
proximated as

Ty dvlz,j, (192)
C 2

9Tl _Ca% . (19b)

9z, Py

The second relation assumes a uniform decrease of the stress
over the boundary layer depth. Then we have the following
approximations for BSC and BSDT,

Jv

BSC=—k-V, X7, ~ —Cup 5t (20a)
) C
BSDT = —k - (ﬂ X th> ~ S (20b)
az|, By 0x

For BSC, the left side of the ridge is positive and the right
side is negative because of the sign of dv,/dx; thus, it is opposite
to the sense of the vorticity generation. For BSDT, the signs are
the opposite due to the opposite sign of dh/dx on the two sides;
thus, this is a generation term. These heuristic predictions are
broadly consistent with what we see in our solutions (Fig. 8).

A scale estimate of the ratio of the magnitudes of the two terms is

& ~ %ﬁ’ (21)
BSDT v, &h

where 6 indicates the size of the changes over the ridge. Further
assuming that dv;, =~ v;, Eq. (21) then implies that BSC is small
relative to BSDT in our solutions simply because Ay, is smaller
than 4.

Unauthenticated | Downloaded 05/10/21 10:51 PM UTC



1766

y/a

y/a

JOURNAL OF PHYSICAL OCEANOGRAPHY

50

40

30

20

10

—_—

60

50

40

30

60

50

40

30

20

10

60

50

40

30

e i

60

50

40

30

20

10

60

50

40

30

20

VOLUME 51

x10~1!

FI1G. 8. Time-averaged generation terms on the RHS of the integrated vorticity equation, Eq. (9). VSVT is
the sum of the vortex stretching (VS) and tilting (VT) terms. Each term has been normalized by fh,,Voa "

(a)h=32and (b) h=6.4.
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FIG. 9. Partial cumulative integrations of source terms on the RHS of Eq. (18) to w averaged separately on each of the cyclonic and
anticyclonic sides across the streamlines depicted in Fig. 7. BSDT is the bottom stress divergence torque, VSVT denotes the net sum of
vortex stretching and tilting terms, and EA is the eddy advection; a is the ridge half-width and s/a is the normalized distance along the
streamline. Values of the parameter h are indicated inside each panel: (a) anticyclonic side and (b) cyclonic side.

d. The connection between BSDT and BPT

An alternate way to formulate the vorticity balance is by taking
the curl of the vertically integrated horizontal momentum equa-
tions, Eq. (5a). This yields the so-called barotropic vorticity
equation (see, e.g., Hughes and De Cuevas 2001; Gula et al. 2015),

1

60=

- —k.(—vabvah) —|%~(lvH><7b) + Ay
or Po Py Ny,
BPT BSC NL terms

(22)

where, borrowing from the notation in Gula et al. (2015), As
encapsulates all the nonlinear terms and

Q=V,xU (23)
is referred to as the barotropic vorticity. It is related to the vertically
integrated vorticity w through the bottom horizontal velocity as

Q

0
J | gdz  w X Vyh, (24)
—H+

2}

Notice that in the no-slip limit, barotropic and vertically inte-
grated vorticity are exactly identical. However, in regional
ocean models with a quadratic bottom drag parameterization

and a well-resolved BBL, one would instead expect that these
are almost identical, which is what we find in our simulations.

Recall from Eq. (11) that BPT can be written as the sum of
BSDT and nonlinear bottom stretching, tilting and advective
contributions. Further, the term Ay in Eq. (22) has embedded
within it the cumulative effects of nonlinear vortex stretching and
tilting in the interior. This implies that, in general, BPT and Ay are
not necessarily mutually independent with respect to the pro-
cesses they represent. A comparison of Figs. 10b and 10c, which
depicts the time-mean BPT distribution over the ridge, with Fig. 8
reveals the similarity in the patterns of BPT and BSDT. However,
the difference of BPT and BSDT, plotted in Figs. 10d—f shows that
BPT additionally has a smaller inviscid part to it. The implication
is that, when the turbulent BBL is well resolved, the dominant
dynamical role of BPT is as a frictional torque, with a smaller
“flow turning”” component that steers the current around the to-
pography. We shall see in section 5 that the interpretation of BPT
changes completely when bottom drag is “‘turned off” or as may
be the case, the BBL resolution is inadequate.

5. Vorticity generation without bottom drag

a. The role of vortex stretching and tilting

We saw in section 4b that, for large h, the diminishing bot-
tom stress on the anticyclonic side (Fig. 4) causes a reversal of
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FIG. 10. (top) Bottom pressure torque (BPT), defined in Eq. (10) and (bottom) difference of BPT and BSDT
[defined in Eq. (9)], both time-averaged and normalized by fh,,Voa '. Values of the parameter / are indicated

inside each panel.

tendencies along the straight section of the ridge whereby
VSVT becomes a source and BSDT a sink of mean vorticity in
the evolution Eq. (9) (see also Fig. 9). Nevertheless, we saw
that this reversal does not lead to net generation of vorticity by
VSVT. To explore the possibility of vorticity generation purely
by vortex stretching and tilting effects, we now examine the
general problem of vorticity generation in the idealized limit of
zero bottom drag, and by implication, no bottom Ekman layer.
From an oceanic perspective, this is an unphysical limit, yet a
quantitative comparison with the drag solution serves to

highlight by contrast the more robust features of BBL medi-
ated vorticity generation.

Snapshots of the vertically integrated vorticity for the no-
drag solutions (Figs. 11a—c) show that, after separation, the
wake vortices have a smaller horizontal scale compared to the
cases with drag at the same h (Fig. 1). As Ekman processes are
absent, there are no submesoscale instabilities over the anti-
cyclonic side of the ridge. The dominant source of vorticity
production in these flows is advective vortex stretching and
tilting. This is depicted in Figs. 12a—c. BSDT is negligibly small,
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FIG. 11. Snapshots of vertically integrated vorticity, normalized by fh,, for solutions with no bottom drag:
(a) h=1.6, (b) h=3.2, and (c) h = 6.4. Compare with the drag solutions in Fig. 1.

so BPT is balanced purely by the inviscid terms in Eq. (11).
Indeed, Fig. 12 reveals regions of partial overlap between
VSVT and BPT. This must be contrasted with the drag cases
(Fig. 10) in which BSDT was noted to be the dominant com-
ponent of BPT. The disparate balances for flows with and
without bottom drag show that, in realistic model solutions, the
relative contributions of BSDT and advective processes to
BPT are sensitive to the details of the drag parameterization
and BBL resolution.

As in the drag solutions, we perform a quasi-Lagrangian
integration of Eq. (18) along barotropic streamlines and av-
erage across many streamlines on either side of the ridge
(Fig. 13a). Here we show the vortex stretching (VS) and tilting
(VT) contributions separately rather than as a sum (VSVT).
Note that while BSC is identically zero, BSDT is also practi-
cally negligible in these no-drag solutions (it is not identically
zero because of the small background viscosity in ROMS).
Figures 13b and 13c reveal that vorticity generation on both sides
is attributable primarily to VT during the early flow encounter
with the ridge. This is to be contrasted with the drag cases (Fig. 9)
where vorticity is primarily generated by BSDT during the early
encounter. An asymptotic analysis of the no-drag problem along
the lines of Smolarkiewicz and Rotunno (1989) (see appendix)
illustrates how a rotating, stratified flow encountering bottom
topography causes tilting of horizontally oriented vortex tubes,
generating vertical vorticity in the process.

On the anticyclonic side, we note an abrupt reversal in the
tendencies of VS and VT just ahead of the straight ridge
section. However, this does not produce any discernible
change in the net vorticity, suggesting it represents merely a
reversible, advective flow adjustment on the slopes rather

than irreversible vorticity generation. Finally, here again, as in
the drag solutions, there is negligible net generation of vorticity
along the straight ridge section, where VS, VT, and eddy ad-
vection are approximately in balance.

That eddying solutions (Fig. 11) are obtained without bot-
tom drag and BBL separation may seem surprising on the face
of it. However, recall that although bottom drag is set to zero,
these solutions are not truly inviscid. This is because of the
biharmonic horizontal dissipation and mixing (Lemarié et al.
2012) implicit in the third-order upwind-biased scheme. As we
shall see below, the eddies in Fig. 11 are in fact associated with
potential vorticity (PV) anomalies.

We define the PV

q=Q,-Vb (25)
where b = —gplpy is the buoyancy and €, is the three-
dimensional absolute vorticity. The PV balance equation
may be written in flux-divergence form as follows (e.g., Thomas
2005; McWilliams 2016),

J
Y= v.| qu +VbxF -7,0 |. (26)
at ~ e ——

L Jy I

Here V is the three-dimensional gradient operator. The terms
Jy and Jp denote viscous and diabatic fluxes of PV, respec-
tively. The nonconservative terms are expressed concisely as

F="24D (u) (27a)
Py
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%,=D (b)+D,(b). (27b)
where D, (b) is vertical divergence of the turbulent buoyancy
flux and Dj,(u) and D (b) represent horizontal momentum and
buoyancy mixing, respectively.

In Fig. 14a, we display the PV, normalized by the back-
ground value fN? on the horizontal plane z = —H + (h,,,/2) for
the case = 3.2. The figure reveals (1) anomalies of PV in the
wake vortices, implying a net flux of PV through the bottom

boundary. As the bottom drag is identically zero by design, it
follows that PV injection at the boundary can happen only due
to the horizontal mixing terms. Indeed, we find that the PV flux
through the topography J-n, where n is the unit outward
surface normal, is almost entirely due to the horizontal buoy-
ancy mixing component D (b) of the diabatic flux J 5 (Fig. 14b),
with both Jy and D,(b) being negligible in comparison. A
possible interpretation is that horizontal buoyancy mixing
leads to vertical shear (horizontal vorticity) generation
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(bottom) As in Fig. 9, but for the no drag solution at # = 3.2 for (b) anticyclonic side and (c) cyclonic side.

through the baroclinic torque, which is then tilted into the eddying flow. Following Srinivasan et al. (2019, 2021), eddy
vertical during the topographic encounter. Hence, although  horizontal and vertical scales are defined as

frictional torques do not contribute directly to vertical vorticity "

ger.leration in these no—d.rag solutions, the source of vorticity is . — [ J {2 dx dz

ultimately nonconservative. = — | d 28
L =257 1, (28a)

1 0 JEKE dxdz
b. Comparison with the drag solutions L -
The qualitative differences between the drag and no-drag , [ J U2 dx dz 1"
solutions are apparent when we compare snapshots like Fig. 1 1 _ 1 lJ ‘ dt. (28b)
with Fig. 11. To make more concrete these intuitive visual H, 2\2T), JEKE dxdz

perspectives, we now examine some integral properties of the L
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Here EKE = 0.5(u? + v?) is the eddy kinetic energy, {? =
(v, — u,)* is the eddy enstrophy, and U’ = 0.5(u? +v?) is the
squared eddy vertical shear. All eddy quantities ( )’ here are
defined as deviations from a time mean (-).

Figure 15 shows that the eddy integral scales in the no-drag
cases do not depend sensitively on /. The separated eddies
have smaller horizontal scales than their drag counterparts. On
the cyclonic side, the no-drag L; are almost 60% smaller
compared to the drag cases. Likewise, for h =32, the vertical
eddy scales are also substantially smaller on either side of
the ridge.

Another integral measure of SCV strength is its circulation,

2w Ly
F=J J o' rdrdd, (29)
$=0Jr=0
where o' is the vertically integrated eddy vorticity, with the
origin taken to be the SCV center. The double integral is
readily evaluated upon identifying the locations corresponding
to the minima min,[min,(®")] and maxima max,[max,(w")] of
o' in the wake region.

Figures 17a and 17b display time averages over 50 inertial
periods, Tac and Tcyc, respectively, of the anticyclonic and
cyclonic SCVs in the wake. These have been normalized by
fh,,ma?, the strength of an axisymmetric columnar vortex of
height #4,, and radius a, with vorticity f at the center and a
Gaussian radial distribution. There is only a weak h depen-
dence of the SCV circulation T in the no-drag cases. Further,
for a given value of h, SCVs of either parity are stronger when
bottom drag is included. For the anticyclonic SCVs, the ratio of
their strengths with and without drag ranges from as large as

3.5 for 1=1.6 to around 1.7 for & = 6.4. The largest strength
discrepancy (a factor greater than 3) in the case of the cyclonic
SCVs is at 4 = 3.2 and hovers around 2 for the other values of /
considered.

To summarize, compared to the no-drag cases, bottom-drag-
mediated vorticity generation spawns SCVs that are stronger
and more energetic, and larger in scale, both horizontal and
vertical.

6. Discussion and summary

Using idealized ROMS solutions and an integrated vorticity
balance analysis, we have demonstrated the role of BBLs in
mediating vorticity generation on ridge slopes when the non-
dimensional ridge height his larger than 1. As a current en-
counters topography, the nonconservative frictional torque
(BSDT), proportional to the vertical stress divergence on the
slopes, injects vorticity into the flow. A quasi-Lagrangian
analysis of the vertically integrated vorticity equation,
Eq. (9) demonstrates that most of the vorticity injection hap-
pens during the early encounter with the ridge. The vorticity is
intensified and redistributed in the interior through vortex
stretching and tilting effects. The upshot of these processes is
the emergence of vertically coherent vortices that eventually
separate from the ridge slopes and roll up to form SCVs in
the wake.

For all values of / considered, vorticity generation transpires
primarily through the action of BSDT during the early en-
counter with the ridge, with the tendency terms largely being
in a balanced state along the straight section of the ridge. For
h ~ 6.4 and higher, the stress reduction on the anticyclonic side
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is significant enough that, in a streamline-averaged sense,
VSVT and BSDT reverse signs along the straight section of the
ridge. However, as seen in Fig. 9, there is no net vorticity
generation after this reversal occurs.

When the barotropic vorticity equation Eq. (22) is employed
to analyze the vorticity balances, BPT is often interpreted as
the inviscid twisting force responsible for steering flow around
bottom topography (e.g., Jackson et al. 2006; Molemaker et al.
2015). However, because pressure is only a Lagrange multi-
plier when the incompressibility constraint is enforced, there is
necessarily some ambiguity in its interpretation, particularly
when viscous processes are involved. In the inviscid quasi-
geostrophic limit, it is easily shown that BPT is exactly equal to
bottom vortex stretching —fw,. More generally, when ex-
pressed as a bottom momentum balance [Eq. (11)], BPT is seen
to be directly related to both frictional (BSDT) and advective
terms that account for the effects of bottom vortex stretching,
tilting, and flow inertia. Indeed, as Fig. 10 demonstrates, in our
solutions with a well-resolved BBL, the viscous torque BSDT is
in fact the dominant component of BPT. These findings show
that when BBLs are present, the apparently contradictory roles
of BPT and BSDT in vorticity generation are only illusory. The
advantage of the integrated vorticity formulation used here is
that it explicitly eliminates the ambiguous pressure gradient

term and partitions the generation into inviscid vortex
stretching and tilting contributions and nonconservative
boundary injection terms associated with the bottom drag.

Visually (e.g., Fig. 1), cyclones are at least as prevalent as
anticyclones in our solutions, if not more so. Moreover, Fig. 17
shows that, by an average integral measure of circulation, cy-
clonic SCVs are in fact stronger than their anticyclonic coun-
terparts. These results appear to contradict the fact that most
observed SCVs in the ocean are anticyclonic—a theoretical
puzzle that remains unresolved (McWilliams 1985, 2016).
Recently, an intense cyclonic SCV has been documented in the
Arabian Sea (De Marez et al. 2020), which the authors hy-
pothesize has its origin at the mouth of the Gulf of Aden, a site
of steep topography. More studies are needed to bridge the
apparent gap between observations and simulations.

The alternating positive and negative patterns along the
cyclonic slope in Figs. 12d and 12e for the no-drag case are
reminiscent of the BPT signals around the Charleston Bump
in the Gulf Stream simulation of Gula et al. (2015, their
Fig. 13). This is consistent with their observation that bot-
tom vortex stretching is locally the leading-order term in
BPT around the Bump, implying a largely inviscid balance
against the seaboard. In light of our results, it would appear
that realistic simulations with higher BBL resolution are
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FIG. 16. Downstream evolution of the normalized, vertically integrated eddy kinetic energy on the anticyclonic
and cyclonic sides for the ridge solutions. The dashed vertical lines mark the approximate locations of the ridge

centerline and northern edge of the straight section.

needed to ascertain if the western boundary current truly
represents an inviscid balance.

The importance of bottom drag in vorticity generation has
been recognized previously, for example by Signell and Geyer
(1991). Using a simple analytical model of flow separation and
2D simulations of the linearized, depth-averaged shallow water
equations, they found that the choice of the drag coefficient
strongly influenced eddy formation in tidally forced flows
around headlands. In their formulation, the depth-averaged
drag manifests through the so-called “‘speed torque” and
“slope torque” terms. These may be considered roughly
analogous to BSC and BSDT, respectively. A key difference is
that while the Signell and Geyer (1991) model is 2D and
moreover, relies on empirical choices for the depth averaged
drag coefficient, here we directly demonstrate the role of
BSDT in vorticity generation using three-dimensional
ROMS simulations that resolve the BBL using the KPP
parameterization.

Vorticity generation can happen even without bottom drag.
The nonrotating, free-slip solutions of Smolarkiewicz and
Rotunno (1989) are the earliest modeling evidence for this
phenomenon. Recent work by Jagannathan et al. (2019) and
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Puthan et al. (2020), again for nonrotating flows, also show lee
vortex formation with a free-slip bottom boundary. The pres-
ent study demonstrates that vorticity generation without drag
is possible in rotating systems as well, through vortex stretching
and tilting mechanisms. However, as seen in Figs. 15-17, the
wake eddies tend to be substantially less robust compared to
the cases with bottom drag. Hence, model simulations that
lack a bottom drag parameterization and/or insufficiently re-
solve the BBL will often tend to underestimate the spatial
scales and strength of the SCVs, and care is needed in inter-
preting such solutions.

There are several outstanding issues. One question is, how
do the dynamics differ for one-sided slopes vis-a-vis isolated
topography, such as considered here? On isolated topography,
it is conceivable that adverse pressure gradients resulting from
the convex topographic curvature and horizontal around-ridge
circulations influence boundary layer separation. This is cer-
tainly suggested by the analytical and two-dimensional model
solutions of Signell and Geyer (1991) for flow around a head-
land, where the onset of flow separation is found to be con-
trolled by a three-way balance between adverse pressure
gradient, curvature, and drag effects. One-sided slopes are

1.4
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FIG. 17. The normalized, time-averaged circulation, defined in Eq. (29), of the wake SCVs for each of the drag and
no-drag solutions: (a) anticyclonic circulation T ac/(fh,,ma?) and (b) cyclonic circulation T cyc/(fh,, ma?).
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more directly relevant to boundary currents, and further un-
derstanding is needed there. Another pertinent question is, to
what extent is Ekman arrest sensitive to ridge curvature and
aspect ratio? Preliminary simulations also indicate that there
is a transition from centrifugal to more strongly dissipative,
hybrid centrifugal/symmetric instability as the ridge aspect
ratio increases, i.e., it becomes more elongated. We will further
explore some of these issues in a forthcoming paper.

Acknowledgments. This work was made possible by the
Office of Naval Research Grant N00014-18-1-2599. Computing
support was provided by the Extreme Science and Engineering
Discovery Environment (XSEDE), which is supported by
National Science Foundation Grant ACI-1548562. ALS was
supported by the National Science Foundation under Grant
OCE-1751386. We wish to thank Jacob Wenegrat for his in-
sightful feedback on an early version of the draft.

APPENDIX

Asymptotic Analysis of the No-Drag Problem

The governing equations under the hydrostatic approxima-
tion are

lap
u-Vout+w——fv= Ea, (Ala)
v 1ap
Vuov+w—+fu=—=— Alb
u-V,vu Waz fu 5oy ( )
ap
P (Alc)
z

Along with this set of equations, we have the continuity
equation

V, u+—=0,

3z (A2)

and the scalar advection equation

% + w—aﬁ(z) =0

. +p()] +
w Y0+ ]+ wil B =0,

(A3)
where p(z) is the background density field, assumed here to be
uniformly stratified. For simplicity we impose rigid lid condi-
tions w = p = 0 at the upper surface. Finally, in the absence of
diapycnal fluxes, we can express the vertical velocity w in terms
of the instantaneous isopycnal displacement field § as

w=u-V,3. (A4)

The boundary condition at the bottom z, = —H + h(x, y) is
that of no flow into the topography

u -V,h=w,. (AS)

We nondimensionalize the various quantities as follows

',y = (x.y)a, (A6)

7 =zl(afN™!), (A7)
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(W', v') = (u,v)/(Nh,), (A8)
p'=pl(pNfh,,a), (A9)
p'=pl(pg'Nh,,), (A10)
8 =8/(afN7"). (A11)

Note that the scaling for p is chosen so that the leading-order
balance is geostrophic. The appropriate choice of scale for the
vertical velocity is constrained through the continuity equation as

w' = wifh, .

The governing equations in dimensionless form are then given
by (dropping primes),

(A12)

u _dp
e<u~VHu+w£> —v=on (A13a)
J 0,
e(u Vvt wi’> tu=-2L (A13b)
a9z ay
ap
—=—p, Al3
Fr (Al3c)
v, u+ oo (A13d)
" az
ap  9p(z)
u-Vypt+tw—+w—>-=0. (Al3e)

Jz Jz

Here e = Nh,,/af = h is the nondimensional ridge height. The
bottom boundary condition is now given by

w,=eu, -V, h. (A14)
Assuming € < 1, we now expand in powers of e,
u=uy+eu, + ezu2 + (), (A15)

and similarly for the other variables. Substituting these ex-
pansions in Eq. (A13), we have geostrophic balance at lead-
ing order,

ap
o = a—xo, (A16a)
ap
uy=-52 (A16b)

The continuity equation and the boundary condition wy = 0 on
the upper surface then leads to

Iwyldz =w,=p, =0. (A17)
Therefore at leading order, the streamlines and hence iso-
pycnals lie on horizontal planes. Geostrophic balance and the
hydrostatic approximation Eq. (A13d) then imply that the
vertical gradients of u, v, and p are all zero and the flow is es-
sentially barotropic.
The 7(¢) balance is given by

au [ )
WMoy Mo P

Al8
0 9x 09y 1 ax’ ( a)
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MO% + ‘UO% u, = —%. (A18b)
ax ay ay

Taking cross derivatives with respect to x and y and subtracting

Eq. (A18a) from (A18b),
u, V., = o, (A19)

0" Vit T T
Equation (A19) tells us that the vertical vorticity at (1),
Lo = dvyldx — duy/dy arises purely as a consequence of linear
vortex stretching at ¢?(e). This is the quasigeostrophic limit
explored by Hogg (1973) and Schir and Davies (1988), among
others, which predicts a conical anticyclone on top of the
seamount.

The 7 (€?) problem

At this order, the horizontal momentum equations are

du ou au, au, o’ )
UL tv—2tu L+ —L+w AL~y = -2
ox ay ax ay a9z ox
(A20a)
v v, )
=y 2y =L+ w, 7Z“ 2——ﬁ
0x s} ax ay (¥4 ay
(A20Db)
Cross differentiating and subtracting as before,
ow aw.
uw, -V, =—u -Vl L+ =2 . (A21)

(¥4 a9z
~—

QLVS linear 7(e?) VS

Thus at 7(¢), a cross term appears that is quasi linear at /7' (e).
This term represents stretching of <7'(1) vorticity by the @'(e)
horizontal divergence.

The @(¢*) problem
u u ou ou ou
e e Ll e e
[0 ay ¥4 x ay
u ou 9
e (A22a)
a ay ax
v v v v, v,
Lt w2y 2
ax ay 9z 0x ay
v, v, )
1y gy, 0 gy = 3 (A22b)
0x ay ay
Cross differentiating and subtracting as before,
uy - Vyl=—u Vg
+§8w1+§ ow, n ow, n §6w1+ aw,
Yoz 0oz 9z Ty ay
—

NLVS linear@(€>) VS tilting of 0(¢) horz. vorticity

(A23)

where &, = dvy/9z and ny = duy/dz are the two components of
@ (e) horizontal vorticity. Thus at ©7(¢?), in addition to linear
and nonlinear vortex stretching, vortex tilting effects start
to become important in determining the vertical vorticity
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evolution. Now under the hydrostatic approximation, the
horizontal vorticity is identical to the vertical shear. At @'(e),
the equations for vertical shear are obtained by taking the
derivatives with respect to z of Egs. (Al8a) and (A18b).
Recalling that (duy/dz) = (dvp/dz) = 0 and using the hydrostatic
pressure equation Eq. (A13d) to eliminate p;, we have,

Jv d (adp ap
=_—_1—___—(Z1)=""1 A24
& az ax< dz ) ax’ (A24a)
a ) )
m:ﬂ:_i WP\ _ %1 (A24b)
9z ay\ 9z ay

The parity of ¢ and 7, can be inferred from consideration of
the 7(e) scalar advection equation, Eq. (A13e),
95
u,-V,p +w Py,

32 (A25)

Using Eq. (A4) wy can be expressed in terms of the isopycnal
displacement field 6, as

w, =u,-V,8,. (A26)
Close to the bottom, we can further use the boundary condition
of no normal flow into the topography [Eq. (A14)] to ap-
proximate wy as wy =~ ug - Vyh. Then, Eq. (A25) can be writ-
ten as

u, -V, (pl +ha—p> =0. (A27)
a9z

Equation (A27) tells us that (p; + hdp/dz) remains constant on
the (1) horizontal streamlines of the flow. Now noting that
ap/az <0 for a stably stratified background, this implies that
the two components of Vyp; near the bottom have the same
parity, respectively, as those of V4. In the context of our ridge
solutions (e.g., Fig. 11), Eq. (A24) shows that as the flow en-
counters the ridge, & < 0 (>0) on the cyclonic (anticyclonic)
side, while 1; > 0 on both sides.

Therefore, when ¢ = Nh,,/(fa) is not asymptotically small,
second-order nonlinear effects are important from the per-
spective of vorticity production. While the perturbation anal-
ysis above does not automatically carry over to the cases h>1
which we consider, it does nevertheless show that nonlinear
vortex stretching and tilting effects can be significant away
from the quasigeostrophic limit. Note that the analysis pre-
sented here differs from the nonrotating case considered by
Smolarkiewicz and Rotunno (1989) in which the appropriate
small parameter is the inverse Froude number Fr~' = Nh,,/V,.
In that case, the (1) and @(Fr™!) contributions are both
uniformly zero and the vertical vorticity, which is generated by
tilting of baroclinically generated ' (Fr™!) horizontal vorticity,
makes an appearance only at @ (Fr~2).
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