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Abstract
Asymmetric lemon billiards was introduced in Chen er al (2013 Chaos 23
043137), where the billiard table Q(r, b, R) is the intersection of two round disks
with radii < R, respectively, and b measures the distance between the two
centres. It is conjectured Bunimovich et al (2016 Commun. Math. Phys. 341
781-803) that the asymmetric lemon billiards is hyperbolic when the arc T', is
a major arc and R is large. In this paper we prove this conjecture for sufficiently
large R.
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1. Introduction

Dynamical billiards is a special class of dynamical systems, in which a point particle alternates
between moving freely inside a bounded domain Q and elastic reflections upon hitting the
boundary I' = Q. The domain Q is called the billiard table. The dynamical properties of
billiards are determined completely by the geometric shape of the billiard table. For example,
Jacobi proved the dynamical billiards on an elliptic table is completely integrable.

The study of chaotic billiards was pioneered by Sinai. In his seminal paper [15], Sinai dis-
covered the dispersing mechanism and proved the hyperbolicity and ergodicity of dispersing
billiards. The dispersing mechanism states that any parallel (divergent) beam of trajectories
becomes (more) divergent after reflection from a dispersing boundary. See figure 1. Buni-
movich [1] constructed a family of chaotic billiard systems with a mixture of dispersing and
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Figure 1. Reflections of a parallel beam on a dispersing boundary (left) and on a focusing
boundary (right), respectively.

Figure 2. An asymmetric lemon table Q(r, b, R).

focusing components. In [2] he constructed a family of chaotic billiard systems with focusing
and neutral components only, and formulated the first version of defocusing mechanism for
chaotic billiards. The defocusing mechanism have been greatly extended by Wojtkowski [17],
Markarian [11], Donnay [9] and Bunimovich [4]. Generally speaking, defocusing mechanism
applies if all free paths are long enough such that parallel beams of trajectories, becoming
convergent after reflection from a focusing boundary, pass the convergent points and become
divergent.

In [10] Heller and Tomsovic studied some lemon-shaped billiard systems, where the bil-
liard table Q(b) is the intersection of two unit disks whose centres are separated by b units,
0 < b < 2. Numerical studies have been done extensively for the lemon billiards in relation
to the problems of quantum chaos (see [12, 14]). Recently, the existence of elliptic islands for
lemon billiards has been proved in [13]. In [6] we considered the asymmetric lemon-shaped
billiards, where the billiard table Q(r, b, R) is the intersection of two round disks of radii r < R,
respectively, whose centres O, and O are separated by b units, R — r < b < R + r. See figure 2
for an example of the asymmetric lemon billiard table. One can assume r = 1 without losing
any generality. We will keep using r to emphasize the role of the radius r, although » = 1.

Given an asymmetric lemon table Q(r, b, R), let A, B be the two corners where the two cir-
cular arcs I', and 'k meet at, ¢, and @, be the position angle of the point A with respect to O,
and Og, respectively. Then the three parameters r, b, R are related in the following way:

R sin &, =r sin ¢., R cos &, =b+r cos ¢.. (1.1)
To make the corners of the table Q(r, b, R) fixed at the given points A and B on dD,, we have

b=R cos &, —r cos ¢, = (R* — r* sin® ¢.)"/> — r cos &,. (1.2)
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Given ¢, € (0,7%), let O(¢,,R):=0(,b(¢,,R),R) be the family of asymmetric lemon
tables with corners fixed at the two points A and B, where b = b(¢,,R) is given by
(1.2).

Note that when R — oo, the table Q(¢,, o0) turns out to be a flower table with one petal
constructed by Bunimovich [2, 3]. It is proved that the one-petal billiards Q(¢,, co) is hyper-
bolic and ergodic. The asymmetric lemon billiards Q(¢,, R), especially when R > r, may be
viewed as a small geometric deformation of Q(¢,,o0). However, a geometric deformation of
the configuration space of a Hamiltonian system, no matter how small it is, leads to a global
change of the billiard map on the phase space. It has been observed numerically in [6] that
there is an infinite strip in the parameter space {(b,R) : 1 < b < R} such that the asymmetric
lemon billiards in that strip is ergodic. In [5] we conjectured that if I', is a major arc (in the
sense that the arc-length |T',| > 7), then the asymmetric lemon billiards Q(¢,, R) is hyperbolic
for large R. In [5] we have proved the hyperbolicity under the assumption that ¢, € (0, 7/6).
We can remove this assumption now:

Theorem 1.1. Ler ¢, € (0,7/2), and Q(¢,,R) be an asymmetric lemon table. Then for

any R > R(¢.) = max { min(g zli'?r} o L 1773.7r}, the asymmetric lemon billiards
) Dy f+SIN Py~ SIN Ox

0(o,, R) is hyperbolic.

For example, when ¢, € [%,% — 0.0083], the asymmetric lemon billiards Q(¢,,R) is
hyperbolic for R > 1773.7r.

The strategy of our proof of theorem 1.1 is to construct a measurable cone field on the
phase space that is invariant and eventually strictly invariant under the billiard map. Then the
hyperbolicity of asymmetric lemon billiards follows from a classical result of Wojtkowski [16].

Remark 1.2. Note that the lower bound R(¢,) — oo when ¢, — 7. This is compatible with
the fact that the table Q(5, c0) is a semidisk, and the dynamical billiards on a semidisk is
completely integrable.

Remark 1.3. Note that R(¢,) — oo when ¢, — 0. In this case, better reduction schemes
exist [5], and the estimates on R(¢,) could be significantly improved.

Remark 1.4. Recall the strictly convex scattering condition formulated by Wojtkowski [17]:
T(x) > d(x) + d(Fx). (1.3)

See section 2 for the definitions of these notations. It is interesting to note that the exactly
opposite inequality holds for asymmetric lemon billiards: 7(x) < d(x) 4+ d(Fx). This is due to
the fact that Q(r, b, R) is the intersection of two disks.

2. Preliminaries

In this section we give some preliminary results about asymmetric lemon billiards. See [5, 6]
for more details. For general planar billiards, see [7].

2.1. The asymmetric lemons

Let Q(r,b,R) = D(O,,r) N D(Og, R) be the intersection of two disks of radii » and R,
respectively, where b = |0, Og| is the distance between the two centres. The boundary I" =
0Q(r, b, R) consists of two circular arcs I', and I', with two corners at A, B € 9D(O,,r) N
OD(Og, R). We assume R — r < b < R + r so that the intersection Q(r, b, R) is a nontrivial
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(asymmetric) lemon. Note that the orbit O(2) passing through the two centres O, and Oy is
periodic of period 2. It follows from [8, 13, 17] that this orbit is elliptic and nonlinearly stable
if b < rorb > R, parabolicif b = r or b = R, and hyperbolicif r <b < R.Sor < b < Risa
necessary condition for the asymmetric lemon billiards Q(r, b, R) to be hyperbolic.

2.2. The phase space

To describe the phase space of asymmetric lemon billiards, we first parametrize the boundary
' =T, UTk. For each point P € T',, we let ¢(P) € T = R/27 be the angle from the vector
OR—>O,. to the vector ﬁ (counterclockwise oriented). Similarly, for each point P € ['g, we let
@(P) € T = R/27 be the angle from the vector OR—>0, to the vector O_RI)D (counterclockwise ori-
ented). Then we have ¢(A) = ¢,, ¢(B) =21 — ¢,, P(A) = &, and P(B) = —P... See figure 2.
Both corners A and B will be treated as points on I',. It follows that that I, = [¢,, 27 — ¢, ],
I'g =(—P,,P,),and ' = [¢,, 27 — ¢,] L (—P,, D) (a disjoint union).

Let TrR? be the set of tangent vectors over points in I'. The phase space M C TrR? of
the asymmetric lemon billiards consists of unit vectors x € TrR? that point to the inside of
the table O(r, b, R). Let p: M — T be the projection from M to I'. For each x € M, let ¢(x) €
[¢,,2m — ¢, ] U (—P., D,) be the position coordinate of p(x) € T', and let O(x) € (0, w) be the
angle from the positive tangent direction of I" at p(x) to x. By identifying x with (¢(x), 6(x)),
we get a parametrization of the phase space M = M, LI Mg, where M, = [¢,, 27 — ¢,] x (0, 7)
and Mg = (—®,, D,) x (0, ).

2.3. The billiard map

Let (¢, 60) € M. This corresponds to a unit vector xo € TrR? pointing to the inside of
O(r, b, R). Suppose the ray R, (xo) crosses I' at a point other than the two corners, say ¢,.
Then the ray make an elastic reflection with respect to the tangent line of I' at ¢,. Let 6; be
the new direction coordinate with respect to the positive tangent direction of I at ¢,. Then the
map F: M — M, xo = (¢g, 00) — x1 = (¢,,0)) is the billiard map on M.

Note that the tangent bundle of I' is not continuous at the two corners A and B. Therefore,
the map F is not smooth (maybe even undefined) if either p(xo) € {A, B} or p(x;) € {A, B}.
Let S) be the set of points x € M where F is not smooth, which is called the singularity set
of F. Itis easy to see that S consists of {¢,,2m — ¢,} x (0, 7) and four skew segments in the
interior of M (two in M, and the other two in Mg).

For any xo = (¢o, 0p) € M\S1, let x1 = (¢, 61) = Fxo, 7(x) be the Euclidean distance
from the initial point p(x) to the terminal point p(x,), r; € {r, R} be the radius of the arc con-
taining p(x;), i = 0, 1. Wojtkowski [17] introduce a function d : M — R, where d(x) = rsin
if x = (¢,0) € M,, and d(x) = Rsin 6 if x = (¢, 0) € Mg. The geometric meaning of d(x) is
the half length of the chord along the trajectory of x in the osculating circle of I' at p(x). Then
the tangent map of the billiard map F' at a point x € M is given by

1 [ 7(x0) — d(xo) 7(xo) 2.1

DroF = Gy [rxo) — dxo) — dxn) 7(xo) — d(xn)|

For example, if p(x;), i = 0,1 are on one circular arc, then 7(x¢) = 2d(x¢) = 2d(x,), and

D, F = F

0 ﬂ Note that (1.3) is equivalent to that all four entries of equation (2.1) are

positive.
The billiard map F on M preserves the two-form w = p(¢) sin 8 d¢ A db, p(¢) is the radius
of curvature of 9Q at ¢. Therefore, it preserves the corresponding probability measure p on
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M, where
du = C- p(¢p)sin 0depde, 2.2)

where C = 2‘#1, is a normalizing constant such that (M) = 1. Note that (Sy) = 0.

It follows from Oseledets multiplicative ergodic theorem that the limit x(x, F) =
lim,,_o 1 log || D.F™|| exists for p-a.e. x € M, which is called the Lyapunov exponent of the
billiard map F at x. Then x € M is a hyperbolic point of F if x(x, F) > 0, and the dynamical
billiards is said to be hyperbolic if p-a.e. x € M is a hyperbolic point for the billiard map F.

2.4. Time reversibility

Consider the map I : M — M, (¢, 0) — (¢, — 0). This is an involution since I*(¢, §) = (¢, 0).
The billiard map F is time-reversible. That is, ' “lol=1I0oF.

3. Defocusing segments and hyperbolicity

Let ¢, € (0, 3), Q(¢,, R) be the asymmetric lemon table such that two arcs I', and 'z intersect
at the two points A and B with coordinates ¢(A) = ¢, and ¢(B) = 2w — ¢,, respectively. Note
that the boundary component I, is a major arc. We mainly use the [',-part M, C M of the phase
space of the billiards Q(¢,, R), as this part stays unchanged when we adjust the value R.

We will introduce a subset M C M, and consider the first return map F of the billiard map
F with respect to M in section 3.3. Some preparation is need to define this subset M. We start
with two subsets of M,:

(a) M™ =M, N FMp, which is the set of points x € M, with F~'x € Mg;
(b) M := M, N F~'Mg, which is the set of points x € M, with Fx € M.

It is easy to see that I(M™) = M°" due to the time-reversibility of the billiard map F. We
define the subsets M, M3 C My in a similar way. Then I(M') = M3™". See figure 3.

Let x € M, n(x) = inf{n > 0: F" x € M}, which represents the number of remaining
reflections the orbit of x has on I',. Let M, = {x € M" : n(x) = n}, n > 0. This provides a
partition of M". It follows from the definition that M°%' := F"(M™",) C M?" foreachn > 0, and
together they form a partition of M°". Note that

o MY =1 (M}.‘fn) by the time reversibility of the billiard map;
o Myfy = My = M (O MM
e M has at least two connected components for each n > 1.

3.1. Frequently used notations

The following notations will be used throughout the rest of the paper. Given a point x € M,, let
ny = inf{n > 0: F"x € M?"} be the number of remaining reflections of the point x has on T,
Note that ny < oo forevery x € M, except finitely many segments of periodic points that never
leave I',. Let xo = (¢pg, 0y) :=F"0x € M;’m, and x; = (¢1,01) =Fxy € M}? Letn; = inf{n >
0: F"x; € My"} be the number of remaining reflections of x; has on I'g. Then F"lx; € M"
and x; = (¢, ) = F""Tlx; € M. Let 7 be the distance from p(xq) € I, to p(x;) € T, and
71 be the distance from p(F"' x;) € ' to p(x;) € T',. Let dy = d(xo) = rsin 0y, di = d(xy)
= Rsin 0y and d, = d(x) = rsin0,. Then (x, . . ., xg, X1, . . ., F"1x1, x2) is an orbit segment of
the billiard map F. We have suppressed the dependence of these objects on the point x € M,.
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ol

Figure 3. The set M, C R/27 x [0, 7]. The blue parallelogram is Mi,“, and the red
parallelogram is M°™.

ol

Figure 4. The blue region is M and the red region is M°"*. The set U(0) is the union of
the two blue sectors, and V() is the union of two red sectors.

3.2. Small neighbourhood of points whose trajectories are close to the chord

Letx, = 27 — ¢,,¢,) andy, = (¢,, T — ¢,) be two points in M" whose trajectories coincide
with the chord AB. Then the two points Iy, = (¢,, ¢,) and Ix, = 27 — ¢,, T — ¢,) are in M,
See figure 4.

Given ¢ >0, let V(x.,d) = B(x.,d)NM™, V(y.,0)=By.,o)NM™, and V()
= V(x,,0) U V(y,,d) be the J-neighbourhood of {x,,y,} in M. Similarly, let U(Ix.,J)
= B(Ix,,5) N M™, U(ly.,d) = B(Iy.,6) "M, and U(S) = U(Ix,,5) U U(ly,,5) be the
§-neighbourhood of {Ix., Iy, } in M'". It is easy to see that V(&) = I(U(9)).

Proposition 3.1. Let 0 < 0 < min{¢., 5 — ¢.} be given. Then we have
(@) UG) C Uy M, and V(S) C U, M2

rn’

(b) UGN V() =0 and F(UW))N V() = 0.
Proof. Let0 < 0 < min{¢,, ] — ¢.} be given. Then we have

(@) If x = (¢,0) € V(x4,0), then2m — ¢, —d < p < 2w — ¢, P, — 6 < 0 < ¢, + 6;
(b) If x =(9,0) € V(y,,0),thenp, < ¢ < ¢, + 0, 71— ¢, —d <O <m—0,+;
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() If x=1(¢,0) € Ulx,,0), then 2r — ¢, -6 < p<2m—¢,, T— ¢, —06<0<m—
b, +0;
(d) Ifx =(¢,0) € U(ly,,0), thenop, < p < o, +6,0, —6 <0 <, +6.

Given a point x = (¢, 0) € U(ly,,0), we have ¢, < ¢ < ¢, + 9 and ¢, < 3¢, — 20 <
¢ 420 <3¢, +30 <21 — ¢, — 9, since § < min{¢,, 5 — ¢.}. It follows that U(ly.,d) C
Un>1Mj“n, U(ly,,d) N V(§) = 0 and F(U(ly,,5)) N V(5) = 0. The same conclusions hold for
the part U(Ix,, §). This completes the proof. |

In the following we will set § = ¢, := min{¢., 5 — ¢.}, and consider the sets U(J.) and
V(0y).

To prove theorem 1.1, we will consider orbit segments that start on I',, have some reflections
onI'g and thenreturnto I',, let (x, . .., xg, X1, ..., F"1x], x2) be such a segment. See section 3.1
for these notations. The following two cases will be treated separately: (1) the case that there
is only one reflection on I'g (that is, when n; = 0); and (2) the case that there are multiple
reflections on I'k (that is, when n; > 1). Then we divide each case into several subcases. There
are two subcases when n; = 0:

(a) d1 Rsin 0; > 2r, which means the orbit segment is uniformly transverse to I'g at
- p(xl)a
(b) d1 < 2r, which means the orbit segment is almost tangent to ' at P} = p(x1).

Note that d; < rsin ¢, when n; > 1. The following lemma describes the patterns of orbit
segments that are almost tangent to I'g.

Lemma3.2. Let ¢, € (0,7/2) be fixed, 6. = min{¢,, 5 — .}, and U(S.) and V(9.) be the
open subsets of M, given in proposition 3.1. Then for any R > max{%:, 5:;‘{2;}* }, the follow-

ing holds for the billiard map on Q(¢,,R): for any x € M., if di < 2r, then xo € V(J.), and
xp € U(9,).

See section 3.1 for the definitions of the points x; = (¢;, 6;), i = 0, 1,2 and the quantity d;.
The proof of lemma 3.2 will be given at section 3.5.

3.3. The first return map

We will consider the following shuffled version of M;" using the partition M;* = J, 5 (M}:

M =M U (MN\UG)) UF (M N U6)) U JFME,. (3.1
n>2

In the case when U(d,) N Mi,‘fl = (), the definition (3.1) reduces to

M =My um U JFup, (3.2)
n>=2

For each x € M, let o(x) = inf{n > 1:F'(x) € M } be the first return time of x to M, and
F:M — M, x — F'“x be the first return map of F on M.

Note that the orbit segment (xo, x1, x,) when n; = 0 (or the segment (xg, X1, ..., F"xq, x2)
when n; > 1) is a subsegment of (F*x)o<i<o (). We need a finer description of orbit segments
(Fkx)ogkgg(x) if dl < 2r.

Proposition 3.3. Ler ¢, € (0,7/2) be fixed. Then for any R > max{%, 5*1‘:{1?;* }, the fol-

lowing holds for the billiard map F on Q(¢., R). Given a point x € M, let x;, i =0,1,2 be
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given as in section 3.1. If dy < 2r, then the segment (F'x0, %0, ..., %2, Fx3) is a subsegment
of the orbit segment (Fkx)ogkga(x).

Proof. LetR > max{%, %} be fixed. Let M be given by (3.1). For each x € M,
let x;, i = 0, 1,2 be given as in section 3.1. Suppose d; < 2r. Then it follows from lemma 3.2
that xo € V(5,) C U, My, and x2 € U(0.) C U, M5, Tt follows from our definition of M

in (3.1) that x, ¢ M and F Xy € M. For X0, we divide it into the following two cases:
Case 1. xg € V(5.) N M. Then F~'xo € M™,. Since F(U(8,)) N V(8.) = (), we have

F'xg € M N F'V(5,) € MU \US,) € M.

Therefore, x = F~'xq, and the segment (x, Xxo, . . ., X2, F'x») coincides with (F' kx)()gkgq(x).
Case 2. xo € V(5.) N M for some n > 2. Then F"x, € MY, and hence x = F'"x €

FMi,‘j,, C M. 1t follows that (F~'xg,xo,...,x2, Fx2) is a subsegment of (F¥x)o<i<o(-
This completes the proof of the proposition. (|

3.4. Orbit segments with invariant cones

We identify the tangent space T, M with R? via the mapping ud; + v0y — (u,v), for every
X € M. Then a cone in R? can be viewed as a cone at a point x € M, or a constant cone-field
on a subset £ C M, depending on the context.

Definition 3.4. An orbit segment (F kx)mgkgn is said to have positive derivative if all four
entries of the tangent map DF" ™" : Tpm .M — Tr: M are positive. It is said to have negative
derivative if all four entries of the tangent map DF"™" : Tpm M — Tra M are negative.

Note that if an orbit segment (F*x),,<i<, has either positive derivative or negative deriva-
tive, then the cone C = {(u,v) € R?: uv > 0} is strictly invariant from F"x to F"x. That
is, DF"""(C) C C°, where C° = {(u,v) € R?:uv > 0} U {(0,0)} is the interior of C. For
example, the condition (1.3) implies that the cone C is (strictly) invariant under each iteration
along a (strictly) convex scattering arc.

The following is a simple observation:

Proposition 3.5. Suppose the cone C is (strictly) invariant along the orbit segment
(F*xX)m<ksn- If the points p(F*x), m' < k < m lie on one circular arc, and the points p(F*x),
n < k< n' lie on one circular arc, then C is (strictly) invariant along the concatenation
(F* ) <t~

Proof. Tt suffices to note that DF = {1 2} whenever the points p(F*x) and p(F**!x) lie on

0 1
one circular arc. |

The following is our main proposition, whose proof will be given in sections 4 and 5.

Proposition 3.6. Ler ¢, € (0,7/2) be fixed. Suppose R > max{ 146r - 147r 1773.7r}.

Os-sin ¢y ° sin2¢>*

Then the following holds for the billiard map on Q(¢,, R): for each x € M, let x; = (¢;,0;) and
di(x) =d(x;), i =0, 1,2 be given as in section 3.1. Then

(a) If ny = 0and d, > 2r, then the segment (xo, X1, X2) has negative derivative;
(b) If ny = 0and d, < 2r, then the segment (F "o, X0, - . ., X2, Fx2) has negative derivative;
(¢) Ifny > 1, then the orbit segment (F’lxo, X0, - - -, X2, FX2) has positive derivative.
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This allows us to complete the proof of theorem 1.1.

Proof of theorem 1.1. Let ¢, € (0,7/2),and R > max{ 146 147 1773, 7r},andee

Oy -sin Dx sm2 o

the billiard map on Q(6,,R), M C M, be given in section 3.3. Note that R > A6 > & .Let

2.
Cx)={(u,v) € T:M :uv > 0}, x € M, be the constant cone-field on M. Combmmg proposi-
tions 3.3, 3.5 and 3.6, we see that the cone-field C is strictly invariant along the orbit segment
(F* x)0<k<g(x) for p-a.e. x € M. 1t follows from [16] that the system (M F fi;) 1s hyperbolic.
Since M UF~'M > M‘,“, we see that UnEZF "M = M. Therefore, (M, F, 1) is hyperbolic. This
finishes the proof of theorem 1.1. |

3.5. Proof of lemma 3.2

We will give some preliminary estimates. Recall that R cos ®, = b+ r cos ¢, and Rsin®,
= rsin ¢,. Then

®, = arcsin(_ ¢*) < 1.002- '"SIR%‘ZS*, (3.3)

for R > 10r. Here we have used that 10 x arcsin 0.1 = 1.00167... < 1.002.
For later convenience, we introduce another quantity U = sin~! %. It is easy to see that

2r 2r
g = in(— 1.002 - —, 3.4
g = arcsin( R ) < R 3.4)

for R > 20r. Itis clear that Wg > 2®,, since sin Ug = 2 > 2 sin ..

Proof of lemma 3.2. Let U(),) and V(4,) be the open subsets of M, given in proposition
3.1,R > max{%, 5*1'3{2;* } be fixed. Given a pointx € M,,andn;,i = 0,1,x;,i = 0,1,2and d,
be defined as in section 3.1. Suppose d; = Rsin 8, < 2r, which is equivalentto ; € (0, Ug) U
(m — Wg, ). We can do some reduction using the symmetries of asymmetric lemon billiards:

R1). The two cases 0; € (0, Ug) and 6; € (m — Wg, ) are related to the symmetry of the
billiard table with respect to the line through O, and Og. It suffices to consider the case with
0, € (0, Up).

R2). Due to the time-reversal symmetry of the billiard map and the symmetry in the
definition V(9.) = I(U(d,)), it suffices to prove xy € V().

We divide our analysis into two cases according to the number of reflections of the orbit
segment on ['g:

Case 1. There is only one reflection on I'g. Applying the above reductions we can assume
6 € (0, Ug) and we only need to prove that x, € V(6,). Let P be the point of intersection of the
circle 9D(Og, R) with the line passing through Py = p(xg) € I', and P; = p(x;) € T'g. Then the
position angle ¢ of P with respect to O satisfies ¢ < —®,, since P lies outside of the arc I'.
Let Q be the perpendicular foot from Ok to the line passing through PyP;. See figure 5. Then
the coordinates of the points xo = (¢, 6p) € M and x| = Fxo = (¢,,61) € My are related
in the following way:

r cos 6y =R cos 6, —b cos(0) — ¢1); 3.5)
¢o+ 00 = —ZLo,(L,N) = —ZLoy (L, Q) = ¢1 — 0. (3.6)

100



Nonlinearity 34 (2021) 92 X Jin and P Zhang

Figure 5. An orbit with one reflection on I'g. Here Py = p(x¢), Py = p(x1), and P, =
p(x2). Both blue lines OgQ and O,N are perpendicular to the same line PyP;.

Since |¢;| < ®, and 0; < Wg, we have ¢ = ¢; — 260, € (—P, — 2Wg, —®,). Comparing
the positions of Py and P, we get

b+r cos ¢g >R cos ¢ >R cos(®, +2Wp)

=R cos P, + R(cos(P, + 2¥g) —cos P,)

122

=b+r cos ¢, —2R sin(P, + Wg)-sin Ug >b+r cos ¢, — R 3.7

since sin Wg =2, and sin(®. + Vg) < sin O, +sin Wp < 3. It follows from our

assumption on R that R > 3~ Then we have
122 .
(@) r cos ¢o > r cos ¢, — 5= > 0. Therefore, =5 < ¢ < —¢s;

12r
(b) 0> cos ¢o —cos ¢. > —=.

It follows from (a) that there exists ¢, € (—73, —¢.) such that

[cos o —cos .| = [sin .| [do — (=] = sin ¢. - g0 + ¢.]. (3.8)

Combining (3.8) with (b), we get

1 12r
b0+ 0:] < o ¢*\cos o —cos .| < oo 5 (3.9)
Since |¢,| < ®, and 6, € (0, Wp), it follows from (1.1) and (3.5) that
|F cos Oy —r cos ¢.| =|(R cos 0; —b cos(6) — ¢1)) — (R cos @, —b)|
< R-|cos 0; —cos D.|+b-|cos(y —¢1) — 1]
o, -0, . O, +0 L0 —
<2R- <|sin > L sin ;_ l|+smle¢l)
Up &, + Vg (D, + Ug)? 7.54r2
2R - | — . .1
< ( 2 2 4 < R (3.10)
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Since ¢ € (=3, —¢.), and @1 — 0, > —®, — Ur > —3.006-
have

£ > —1o, forR > %,we

1
Oo = 1 — 01 — ¢o € (¢« + ¢1 —91,g+¢1 —0)C (%qﬁ%) (3.11)

Then there exists § € (12¢,, 3) such that

. . 10 10 .
‘COS 90 — COos ¢*| = ‘SIH(H) ) (90 - ¢*)‘ = SIH(HQZ)*) : |90 - ¢*| > ﬁ s ¢* : ‘90 - ¢*|

(3.12)
Combining it with (3.10), we see that

11 11 7.54r 8.3r
Oy — O _ 0y — N - . - . 3.13
180 ¢|<1051n¢* | cos o Cos¢‘<105m¢* R <Rsm¢* ( )

Putting them together, we have
2 an1/2 14.6r

— X4 = N Oy — Oy _ 3.14
[x0 — x|l = (|d0 + &:]> + |60 — &:|*) <Rsm¢* (3.14)

It follows that [|xo — x.| < d. for R > max{3¥, =29}  Since xo € Mp", it follows that
xo € V(6,).

Case 2. There are two or more reflections on I'p. It follows that 8, € (0, ®,) U (7 — ®,, 7).
Applying the reductions again, we assume 6, € (0, ®,) and we only need to prove xy € V(J.)
(figure 6). Let P be the point of intersection of the circle dD(Og, R) with the line passing
through Py = p(xo) € I', and P; = p(x;) € I'g. The position angle q3 of P with respect to Og
satisfies —3®, < ¢ = ¢, — 20, < —®,. Combining with (3.3), we get

b+r cos ¢y >R cos ¢ >R cos O, + R(cos 3P, —cos P,)

4 2 il y
— b4 r cos b, — 2R sin 2®, sin &, > b+ r cos qs*—%f”b. (3.15)
It follows that —7 < ¢ < —¢x, and hence
4r sin ¢,
60 — (=9 < ——]cos o —cos | < L0 P (3.16)
sin ¢, R
Since |¢,| < @, and 6, € (0, D), it follows from (1.1) and (3.5) that
|F cos Oy —r cos ¢.| =|(R cos 0; —b cos(6) — ¢1)) — (R cos @, —Db)|
< R-|cos 0; —cos D.|+b-|cos(y —¢1) — 1]
Cog 2SN 6 _ 4P sin® 6, (3.17)

R? R

Since ¢y € (—%,—¢.), and ¢; — 0 > —2®, > — L ¢, for R > 34r, we have

16
B = 1 — 01 — o € (b + 1 — O, g +é—0)C (ﬁqs*,g) . GB18)
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Or
P

/

Py
Figure 6. An orbit with two reflections on I'g. Here Py = p(xo), P; = p(x;1), and
Py = p(x2).

So there exists 6 € (12¢., 7) such that

= . 16 16 .
|cos Oy — cos ¢.| = |sin(@) - (6p — ¢.)| = sm(ﬁqﬁ*) 6o — @s] > 17 Sin O+ |00 — ul.

(3.19)
Combining them, we see that
17 17 4rsin® ¢, 17r sin @,
Oy — % . Oy — % N . = .
180 ¢|<16sm¢* | cos o C()S(Z$‘<1651n¢* R 4R
(3.20)
Putting them together, we have
12 5.84r sin o.
150 — x| = (160 + 6 + 60 — 6u[2) 7 < 25750 0o (3.21)

R

It follows that ||xg — x.|| < d. for R > max{34r, W} This completes the proof for the
second case.
Collecting terms, we complete the proof of lemma 3.2. (|

4. Orbit segments with a single reflection on '

In this section we will consider the case that the orbit segment (F k X)o<k<o(x) has exactly one
reflection on I'g. Let x € AA/I, x; = (¢;,0;) and d;(x) = d(x;) for i =0,1,2, n; fori = 0,1 be
given in section 3.1. Note that n; = 0 in this section. So the triple (xo, x;, x») is part of the orbit
segment (Fkx)()gkgq(x).

Let 7; be the distance from p(x;) to p(x;+1), i = 0, 1. By the major-arc assumption (see
figure 7), the union of the table with its mirror along the tangent line T}, I’ covers the
extended trajectory in D(O,, r). See the two dashed segments in figure 7. It follows that

To+ T >2d, i=0,2. .1
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Lo

Figure 7. The mirror table along the tangent line of I'g at p(x).

Combining the above inequalities for i = 0 and i = 2, we get that
T0+ 11 > dy+ ds. 4.2)

By (2.1), the tangent map D, F 2. Ty M — T,M with respect to the (¢, 6)-coordinates is
given by

1 T —d ul 1 70 — do o
D F> = — - — . (43
0 d, {71—611—612 T1—da| dy |To—do—di T0—d (43)
Modulo the scalar ﬁ, we get
_[Du Dn] _ 2
D= | D21 Dzz} =(ddy) - Dy F
_ (11 — di)(10 — do) + 71 (9 — do — d) (r —d)7o + 1i(10 — dy)
(11 —di —do)(10 — do) + (11 —da)(T0 —do —dv) (11 —di — dp)To + (11 — do)(T0 — di)
4.4)
_ 271(10 — do) — di(T9 — do + 1) 210 — di(T0 + 71) (4.5)
|21 —da)(10 —do) —di(To —do +T1 —dy) 2y —dy)To —di(To+T1 —da)|” ’

Since 79 + 71 > do + d», the coefficients of d; of all four entries of D from (4.5) are
negative.

Lemmad4.1. If % < % + %, then the orbit segment (xg, X1, X2) has negative derivative.

Proof. Suppose % < % + # Note that this is equivalent to Dj, < 0. For the other three

entries of D, F?, we divide our analysis into the following cases:
Case 1.7, — d, > 0 and 7y — dy > 0: in this case, % <

and # < —L Then

To—do Ti—dy”
(@) 7 < Lo + & andhence Dy = 27i(79 — do) — di(1o — do + 1) < 0;
(b) % < —Toldo + Tlidz and hence Dy = 2(71 — da)(T9 — do) — di(To — do + 71 — d2) < 0;
(©) 7 < =+ =L and hence Dy = 2(my — d2)7o — di(7o + 71 — d2) < 0.
Case 2. 7; —d, > 0 and 7y — dy < 0: then Dy, < 0 since % < T11d2' Moreover, D;; and

Dy, are negative since both terms in D;; and D;; are negative, respectively.
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Case 3. 7; —d, < 0and 7y — dy > 0: then D;; < 0 since % < Toldo' Moreover, D,; and
D»; are negative since both terms in D,; and D5, are negative, respectively.
Case 4. 71 —d> <0 and 79 —dy < 0: this is impossible since it contradicts (4.2).

This completes the proof of the proposition. (]

Proof of proposition 3.6 (1). Supposen; = 0andd; > 2r. Since Q(¢,, R) is contained in
the disk D(O,, r), we have 79 < 2r, and 7, < 2r. It follows that % <ic % + % Combining
with lemma 4.1, we see that the orbit segment (xg, x|, x») has negative derivative. This finishes
the proof. (]

Now we prove the second item in proposition 3.6. We will show that (F~ %0, X0, X1, X2, Fx3)
has negative derivative when n; = 0 and d; < 2r. In this case we have 6; € (0, Vg) U (7 —
Wg, 7). Applying the symmetry of the billiard table Q(¢,, R), it suffices to consider the case
that 6, € (0, Ug).

It follows from lemma 3.2, more precisely, from equation (3.13), that

8.3r2

|d; — r sin ¢.|=|r sin §; —r sin ¢.| < R sin o’

i=0,2. (4.6)

100r 8.3 1w 1. o 13
For R > o Ve have Rosin 4, < 75r sin ¢.. Therefore, B! sin o, < d; < 5F sin s,
i=0,2.

Note that the arc-length |[I'g|=2R®, < 2R sin ®, +2R-1®) =2r sin ¢, + £o].
Combining this with (3.3) and (3.9), we have

2r sin ¢ < 1o+ 71 < |Ur|+ 7|00+ &u| + 7|2 — .l

1242 122 < 2r sin o + 24.172
r SIn @y —,
R sin ¢,

4.7)

2R
rsin ¢+ 3 *+R sin ¢*+R sin ¢,

: 2R 53 0.1/2
since 5 P < s o for R > 100r.

Combining (4.1) and (4.2) with (4.6) and (4.7), we get that

40.77
0<to+m—2d < —_ i=02; (4.8)
R sin ¢,
40.77
O<to4m—do—dy < —_ (4.9)
R sin ¢,

Let D = (did>)D,,F* be the matrix given by (4.4), which corresponds to the tangent map
along the orbit segment (xo, x, x2). However, the orbit segment (xo, x, x») may fail the nega-
tive derivative condition for some point x € M with d 1 < 2r. We need to consider the extended
segment (F ~Lxo, X0, X1, X2, Fx), whose tangent map is (modulo the coefficient ﬁ

Gi=(didy) - Dy, F* = é ﬂ (dyds)D F? - [1 2]

0 1
_[1 2] [pn D] [1 2
[0 1] D Dn| [0 1

_ (D11 + 2Dy 2Dy + 4Dy + D12 + 2D (4.10)
| Da 2Dy + Dy ’ '
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Proof of theorem 3.6 (2). We will show that all four entries of the matrix G are negative.
We will argue in the following order: the (2, 1)-entry, the (1, 1)-entry, the (2, 2)-entry and the
(1, 2)-entry.

The (2, 1)-entry. Note that

Gy = Dy = 21y — dy)(10 — do) — di (19 + 71 — do — db). (4.11)

Note that 79 + 71 — dp — d» > 0. This term is clearly negative if (7; — d2)(79 — dp) < 0. So
we are left with the case (71 — d)(T9 — dpy) > 0. Since 79 + 71 — dy — d, > 0, it follows that
71 —d> > 0and 79 — dy > 0. Since the billiard table is the intersection of two disks, we have
To < do +d; and 71 < dy + d,. Putting them together, we have 0 < 79 —dyp < d;, 0 < 171 —
d» < dy and hence

2 1 1 1 1

2_Lr_ 1. , 4.12
d, d1+d1 Tl—d2+7'0—d0 ¢-12)
It follows that G»; < 0.
The (1, 1)-entry. Note that
2 2
Gi1 = D1 + 2Dy = 6(71y — gdz)(To —do) — 3di(1o + 11 — do — §d2)~ (4.13)

This term is clearly negative if (77 — %dz)(T() —dp) < 0. So we are left with the case (1 —
2dy)(1o — dy) > 0, which implies that 7y — 2d, > 0and 79 — dy > 0. We claim that 7 < d +
2d, when R > -2 Then using 0 < 79 — do < d again, we have

sin® .

2 1 1 1 1
b < , 4.14
d d1+d1 71—%d2+70—d0 @19

and hence G1; < OforR > szsf; .

Proof of claim. We will prove by contradiction. Suppose on the contrary that 71 > d; +
%dz. It follows that d; > %dz since 71 < 2d;. Combining with 79 > dj and (4.9), we get we
get

4 2 40.7r2
do+-=-db <dy+d +-dh <190+71 <dy +dp + ———.
3 3 R sin ¢,
Applying (4.6), we get 1r sin ¢, — 5535 < Ldy < 2927 which is impossible for R >
%. This completes the proof. ([
The (2, 2)-entry. Note that
2 2
G2 = 2Dy + Dy = 6(11 — d2)(T9 — gdo) = 3di(to+ 71 — gdo — dh). (4.15)

This term is clearly negative if (17 — d»)(7o — %do) < 0. So we are left with the case (7, —
dy)(1o — 3do) > 0, which implies that 71 — ds > 0 and 79 — 3do > 0. Following the same
argument used for the (1, 1)-entry, we obtain that 7o < d; + %do for R > ﬁ?i’* . Then using
0 < 71 — d, < d; again, we have

2 1 1 1 1

- = +7< + ’
ddi di  m—dy 70— 3do

(4.16)
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and hence G, < 0 for R > ;328?: )
The (1, 2)-entry. Note that

G2 = 2Dy +4Dy + Dy + 2Dy
2

2 2
= 18(1 — gdz)(To - gdo) —9di(ro + 11 — 3

do — §d2). 4.17)

This term is clearly negative if (11 — 3d2)(1o — 3do) < 0. So we are left with the case (11 —
2dy)(1o — 3do) > 0, which implies that 7y — 3d, > 0 and 7o — 3do > 0. In this case, G1» < 0
if and only if

2 - 1 n 1
d ~T—3d  To—3do

(4.18)

We further divide our analysis into three subcases:
Case 1.7y < 2dy +d, and 7y < d; + 2d>. Then (4.18) holds and hence G;> < 0.

Case 2. 7y > 2dy + dy. Combining with (4.9), we get do + ds + %77 > 70+ 7 > 2do +

R sin ¢y

dy + 7. Therefore, 1 < %d() +dy —di + 40712 . Combining T = %d() + dy with 2d; > 79,

R sin ¢y

we getd; > %do. Combining these with (4.6) for d, we have

2 11 4072 1. 1 40.77
0<T—2dy < ~do+ ~dp—dy + — <« “gy— —dy "
STTgh s gt gh mdit e S 3R T 30t s
16.612 40.712 1 8.3r2 do d
<arsin g — o <D
Rsin g, Rsin g S3 S T iR g ~ 3 <2 G

for R > 147" Then (4.18) holds and hence G, < 0 for R > - 147

sin? by sin? oy
Case3. 7 >d; + %dz. Using the same argument in case 2, we have 0 < 79 — %do < %1 for
R > -3 Then (4.18) holds and hence Gy < 0.

sin® ¢y

Collecting terms, we see that the orbit segment (¥ ~x0, X0, X1, X2, Fx») has negative deriva-

tive for R > gil'f; . This completes the proof of the second item of proposition 3.6. O

5. Orbit segments with multiple reflections on I'g

In this section we consider points x € M whose orbit segments (F k X)o<k<o(r) have two or
more reflections on I's. We will reuse most of the notations from section 4. Recall that
x0 = (G0, 00) € M, x1 = (¢1,01) = Fxo € M, ny > 1 with F"'x; € MR™, xo = (¢2,6>) =
Fitlx; € M, dy = rsin 0y, dy = Rsin 0, and d, = rsin 6,. The intermediate points of this
orbit segment on ['f are Fkx, = (¢) + 2k0,1,01),1 < k < ny. Let ¢ be the distance from p(x)
to p(x;), 71 be the distance from p(F™ x;) to p(x;). See figure 8 for an illustration. We will

show that the segment (F~'x0, x0, X1, . . ., F" x, x2, Fx») has positive derivative.
Since the segment (x, . . ., F""1x}) is on the same arc I'g, the tangent map along this segment
is given by

1 21\" 1 2n
ny _ —
b =(lo 1) =l V)
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Py

Figure 8. An illustration when n; = 1. Again Py = p(xo), P1 = p(x1), and P, = p(x7).

Then the tangent map D, F"' 2 along the orbit segment (xo, x1, . . ., F" xy, x2) is given by
1 T —d 7 1 2n
nm+2 _ ny _ 1 1 1 . 1
D F = DF o DF ODF_d2 |:T1—d1—d2 Tl—dj |:0 l}
L m—do o
dy [7o—do—di T0—di]’

We introduce a matrix modulo the scalar d;d>:

o n+2 _ Tl—dl T1 0 2711 . To—d() )
D= (ddo)Dyy F™! _[Tl—dl—dz Tl—dz} (”{o 0 ro—do—di o —di

_ (11 — d)(10 — do) + T1(79 — do — d) (11 — d)1o + 11(10 — d1)
T (i —dy — do) (10 — do) + (11 — do)(T0 —do — dy) (11 —dy — do)To + (11 — d2)(T0 — dy)
(11 — di)(19 — do — dy) (11 — dy)(19 — dy)
+ 2 [(n —dy — do)(ro — do — dy) (r1 — dy — do)(ro —dl)} : -1

nj

e for short. Then the four entries of the matrix D can be written as:

Set p =

Dy = (11 — d\)(10 — do) + 11(79 — do — dy) + 2ni(11 — dy) (70 — do — dy)

= (n1 + 1)((11 — d1)(19 — do — pdy1) + (11 — pdi)(10 — do — dy)) . (5.2)
Dy = (11 — d)70 + 11 (10 — d1) + 2ny (11 — dy) (10 — dy)
= (n1 + 1)((11 — di)(10 — pd1) + (11 — pdi)(10 — d1)) . (5.3)
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Dy = (11 — di — d2)(19 — do) + (11 — do)(19 — do — dy)
+ 2n(1y — dy — da)(10 — do — dy)
=+ D11 —dy — dr)(10 — do — pdy) + (11 — pdi — do)(19 — do — d)). (5.4)

Doy = (11 —di — do)1o + (11 — da)(70 — dy) + 2ny (11 — dy — da)(10 — dy)
= (1 + D (11 —dy — dr)(10 — pdy) + (11 — pdy — dr)(10 — d1)) . (5.5)

The tangent map DFflon"‘H along the orbit segment (F~'xq, xo, X1, ..., F"xy, X2, Fx2)

) Dy Dy ) 1 2
Dy Dxn| |0 1

_ (D11 + 2Dy Dy +2D22} {1 2]

(again, modulo the scalar ﬁ) is

1 2
._ ny+4 _
Gi=(did) - Doy = | 1]

Dy Dy, 1o 1

_ (D11 +2Da; 2Dy + 4Dy + Dia + 2D2 (5.6)
| Dn 2Dy + D ’ '

1

e G (modulo a common factor n; + 1) are

where the four entries of the matrix G :=
Gy = ;(D +2Ds))
1= w1 11 21
2 2
=3(r —d; — gdz)(To —doy — pdy) + 3(11 — pdy — gdz)(To —do —dy), (5.7)

1
Gip:=——2D1 +4D3 + D12 +2D2)
ny + 1

2 2 2 2
=91 —d; — gdz)(To - §d0 — pdy) +9(11 — pd; — gdz)(To - §d0 —dy), (5.8)

= (11 —di — dr)(10 — do — pdy) + (11 — pdi — dr)(10 — do — d1), (5.9
~ 1
Gy =—(D 2D
2= 1( 2 + 2Dy1)
2 2
=3(r1 —di — dy)(79 — §d0 — pdy) + 3(11 — pdy — dr)(70 — gdo —dy). (5.10)

We have the following observation:

Proposition 5.1. Let p= " If 70 < 2do+ pdy and T\ < pdy + 3do, then the orbit

segment (F 'xo,...,Fxy) has positive derivative.

Proof. If 1y < %do + pdy and 1 < pd; + %dg, then all four entries of the matrix G are
positive. Therefore, all four entries of DF’ nita along the orbit segment (F “Ixo,...,Fx,) are
positive. It follows that the orbit segment (F “xo,...,Fx) has positive derivative. |

Proposition 5.2. Let R > 33.2r. If ny > 2, then 7y < 3dy + %dy and 71 < 3d, + 2d>.
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Proof. Letn; > 2 be given. We will give some preliminary estimates first. There are exactly
n; complete chords on I'g. It follows from (3.20) that for i = 0, 2

177% sin ¢,
|di — r sin ¢.|=|r sin §; —r sin ¢,| < w (5.11)
4R
Using (3.16) and a similar argument as in (4.7), we get:
2r sin ¢, < 10+ 2mdy + 711 < |Tr|+r-|po+ &| + 1|2 — &)
8.172 sin ¢,
<2r sin ¢, + %M, (5.12)
for R > 33r. Since 7; < 2d;,i = 0, 1, we have
2r sin ¢* < 70+2md + 11 < 2ny +4)d,, (5.13)

rosin ¢y
and hence d; > T

Now we are ready to prove the two items in the proposition. Set o = ;—‘1). Note that v € (0, 2).
Then

177 sin ¢, 16.612 sin ¢,
2dy > 2r sin qﬁ*—w >7—0+2n1d1+7—1_ﬂ
2R R
16.67> sin o,
> ady + 2md, +0 — =2 S @« Rsm P (5.14)
It follows that
2 2 1 1972 sin s 2
Zdo+ =d, — ~(ad +2mdy — ——="2) + 24, — ad
304-31 7'0>3<Oé1+n11 R )+31 ad,
_ 2m —|—2—2ad 16.6/2 sin ¢,
B 3 : 3R
2ny — 2 rsin gy — 16.61% sin 0
3(ny +2) ) 3R
16.67> sin o,
> gl sin ¢, — 27;““?5, (5.15)

. 202 1 2 2 1 16.6r2
since 555 Z ¢ forn; > 2. Therefore, £dy + gdl — 79 > 0 when = iR . The later holds

for R > 33.2r.
In the same way we get %dl + %dg — 71 > 0 for R > 33.2r. This completes the proof. [J

Note that p = nanlrl > % for n; > 2. Combining proposition 5.1 with proposition 5.2, we
get
Proposition 5.3. Let R > 33.2r be fixed. Then for each x € M, if ny > 2, then the orbit
segment (F~'x¢,...,Fx) has positive derivative.

n

Forn; = 1,wehave p = pTEs]

are

= %, and the four entries of the matrix G givenin (5.7)—(5.10)
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Py

Py 0

Figure 9. An illustration for 75 > %do + %a’l (left) and 71 > %dl + %dz (right).

2 1 1 2
G = 6(m —d; — gdz)(To —do — Edl) +6(11 — Edl - gdz)(To —do — dy), (5.16)
2 2 1 1 2 2
18 —dy — = ~dy— —dy) + 18 — ~dy — = - 1
Gz &(ri — di 3d2)(7'0 30'0 2d1)+ 8(71 20'1 3d2)(7'0 30'0 dy), (5.17)
1 1
Go = 2(1y —dy — dy) (19 — do — Edl) +2(1 — Edl — dy)(10 — do — dy), (5.18)

Gor = 6y — dy — da)ry — 2o — 2 d0) + 6(r — 3 — )y — 2y — ). (5.19)
Then proposition 5.1 implies that the orbit segment (F 'xo, ..., Fxy) has positive deriva-
tive if 79 < %do + %dl and 7 < %d 1+ %dz. In the remaining two subsections, we will show
that the orbit segment (F~'xo,...,Fx;) has positive derivative for the remaining cases.
Note that there do exist orbits such that either (1) 70 > 2do + 3di or (2) 7 > 3di +
%dz. See figure 9. It follows from equation (5.12) that these two inequalities cannot hold
simultaneously.

5.1. The subcase when ny =1 and 7o > 5do + di

In this subsection we show that the orbit segment (F X0, X0, X1, Fx1, %2, Fx;) has positive
derivative for points x € M with 7y > %do + %d 1. We start with some preliminary estimates:
(1). Combining 7o > %do + 3d; with 7o < 2d;, we see that

4 4 1772 sin ¢, 4 177 sin ¢, 13 .
d, >§do>§-(r sin d)*—%inqs):gr sin ¢*—%M>%r sin @,
The last inequality holds for R > 170r. (5.20)
(2). Since 7¢ < 2d;, we have 2d, + w > 19 + 2d, + 7 > 279. Therefore,
8.3r2 sin ¢,
70 < do + %M. (5.21)

(3). Combining 279 < 7 + 2d; < 2r sin ¢, + $17$1% with the condition 7o > 2do +
%dl, we get

m
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8.17% sin ¢,

dy < 2r sin ¢, + R

4 2 13.872 sin ¢,
- gdo < —r sin ¢, + ﬂ < 0.7r sin ¢,.

3 R

The last inequality holds for R > 414r. (5.22)

(4). Since 2r sin ¢, < 79+ 2d; + 71 < 2r sin ¢, + 81’21‘& and |d; — r sin ¢.| <

177 sin ¢x S 9« = 0,2, we have
. . 8.17% sin ¢,
|71 —dy — (do — 10 — 2dy)| < |do — r sin ¢,| + |dp — r sin ¢.| + qu
16.6r2 si B
- r° sin ¢ , (5.23)
R
2 4 4 2 8.1r% si »
m1 = 3= Gdo =7 = 2d1)| < 3ldo — 1 sin 6] + Tld2 — r sin 6] + %m‘b
16.6r2 si “
- r° sin ¢ . (5.24)
R
(5). Moreover, we note that
(a) Since 79 > 3do + 3dy, we have 7o — do — dy > —3do — 3d; > —0.7r sin ¢,
(b) Since 79 < do + di, we have 7o — 3dy — 3d < 1do + 3di < 0.7r sin ¢,.
Putting these two estimates together, we get that for R > 414r,
|70 — do — di] < 0.7r sin ¢,; (5.25)
1
|70 — do — Edl\ < 0.7r sin ¢,; (5.26)
2 .
|70 — §do —di| <0.7r sin ¢,; (5.27)
2 1 .
|70 — gdo — Edl\ < 0.7r sin ¢,. (5.28)

Now we are ready to estimate the four entries of G. We will argue in the following order:
the (2, 1)-entry, the (1, 1)-entry, the (2, 2)-entry and the (1, 2)-entry.
The (2, 1) entry. It follows from (5.20) and (5.21) that 0 < 3d, — 1do <70 —do + di <

di + 83’2% Combining with (5.23), (5.25) and (5.26), we have
1 1
Gy = 2(11 — dy — dy)(70 — do — §d1) +2(1 — §d1 —dy)(10 — do — d)

1 5
> 2(dy — o — 3d1)(1o — do — Edl) +2(do — 10 — Edl)(TO —do—d)

16.6r% sin o
R

—4 -0.7r sin ¢,

3 in2
= —4(r —do + i)’ + 1247 — W

8.3r2 sin ¢,

46.57 sin® ¢,
> Ay + =) 124} 46.5r” sin” ¢,

R

12
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8.3r2 sin ¢*) 8.3r% sin ¢, 46.51° sin® ¢,

1
+ 8(£r sin ¢,)? —

—42
> 4@+ R R R
43 83 sin® ¢, 338, ., 46.57 sin® ¢,

The last inequality holds for R > 62.7r. We have assumed R > 414r when obtaining (5.20)

and (5.22).
The (1, 1) entry. It follows from (5.20) and (5.21) that 0 < —1do + 3d; < 7 — 2do +

d, < —Ldy+dy + 537309 Combining with (5.24)—(5.26), we have
2 1 12
G =6(n —di — gdz)(To —do — Edl) +6(11 — Edl - gdz)(To —do—dy)

4 1 4 5
> 6(§d0 — 70 — 3d)(T0 — do — §d1) + 6(§d0 —To — §d1)(To —dy —dy)

16.672 sin ¢,

R -0.7r sin ¢,

—12

7 1 139.573 sin® ¢,
S 120 — Lo+ d ) + L2 — Tdody + 362 — 122 SO
6 3 R
139.5/% sin® ¢,
R
8.3r% sin ¢, 8.3r% sin ¢, > 139.5 sin? O
R R R
107.47° sin® ¢, 0.1/ sin®> ¢, 139.5/° sin’¢,
R R R
24773 ;inz e 3002 sint? b0 — 24773 ;inz bs

8.3r% sin ¢,

1
I )+ §d5 — Tdod, + 36d; —

1
> _12(_6d0 +d +

= —3dyd, + 24d> + (4dy — 24d))

(5.30)

> —3dyd; + 24d} —

27
> (—T+24)df— >0, (5.31)

where the second last inequality follows from equation (5.20) that d; > %do, and the last
inequality holds for R > 77.2r. Again we have assumed R > 414r in obtaining (5.22).
The (2, 2) entry. Combining with (5.27), (5.28) and (5.23), we have

2 1 1 2
Gy = 6(11 — di — dy)(70 — gdo - §d1) +6(1 — §d1 —da)(T0 — §d0 —dy)

2

1 5 2
3d0 - §d1) +6(do — 10 — §d1)(To — zdo — dy)

> 6(d0—7'0— 3d1)(7‘0— 3

139.57° sin® ¢,
R
139.5/3 sin? o

= (5.32)

5 1
= —12(r0 — Zdo + di)* + §d§ — 7dod, + 36d} —

We will divide the estimate of this term into two subcases according to 7o < « - dy or not.
To determine a proper value of o, we need to consider the equation E,()\) = 0 of A, where

2
E,(\) = — 12<(a — %))\ + 1) + %AZ —TA+36 (5.33)
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= (=8 +20a — 120*)\? + (13 — 24a)\ + 24. (5.34)

This function E,(\) appears later in (5.36). Note that —8 + 20a — 120 > 0 whenever o €
(3. 1). The two roots Aj(a) < Aa(e) of the equation Eq(\) = 0 is

—13 4240 £+ \/(13 —24a)> —4-24 - (=8 + 20 — 12a2)

Ara(@) = 2(—8 + 20c — 12a2)

(5.35)

Note that Ay (c) > Aj(a) > 2.25 for all 0.7 < o < 0.989 814. Moreover, 2 < 2 for any o >
% ~ 0.916 67. Then any choice of a € (0.91667,0.989 814) will work.
Case 1. 79 < - do. Then 0 < 79 — 2do + d < (e — 2)do + d;. Continuing from (5.32),

we have

5 S 139.57 sin® ¢,
Gy > —12<(a ~ 2)do +d1> + i = Tdody + 36d; rTS“”‘s (5.36)
d 139.5/ sin® ¢ 13 : 139.5/ sin® ¢
=& E, () - 2 2 T s (2 sin ¢, ) cEl(225) — — - ¢
di 4 R 30r sin ¢ (2.25) R ,
(5.37)

since (5.20) and (5.22) implies j—? < 2.25 < M\i(«@) and d; > %r sin ¢,. Then G, > 0 for
30\2 139.5r
R> (ﬁ) Eq(2.25)"
Case 2. 79 > « - dy. Combining with 79 < 2d;, we have dy < 2d. It follows from (5.21)

that 0 < 7o — 2do +dy < Ldo+di + 19’22% Continuing from (5.32), we have

1 8.31% sin ¢, 1 139.573 sin® ¢,
G > —12Cdp+ay + 220 0 L 40, 4 3642 — 1307 S0 0
6 R 3 R
1 192.57 sin® ¢, 1 139.5/° sin® ¢,
> Y2 gy —1ogp - 2SO L g 4 g6qr - 1390 ST 0
3 R 3 R
33277 sin? ¢ 24 d 33277 sin’ ¢
= —1ldod) +24d> - =" —— " 14} (= -2 ) - == —
01 244y ! (11 d1> R
13 /24 2\ 3327 sin? ¢,
- (=rsing¢ ) - [=—-2) - — =, 5.38
- (30;» sin ¢> (11 a> R (5.38)

since dy < %r sin ¢, %r sin ¢, < d; < 0.7r sin ¢, from (5.20) and (5.22). Then G, > 0

30\2 332
forR > (E) (24_2).

For certainty, we pick o = 0.9807. For this o, we have Ay(a) > Aj() > 2.25,and 2 < 2.
Then a sufficient condition for Gy, > 0 in both cases is R > 1128.3r.
The (1, 2) entry. Combining with (5.27), (5.28) and (5.24), we have

2 2 1 1 2 2
Gy = 18(1 —d; — gdz)(To - §d0 — §d1) + 18(1 — §d1 - gdz)(To - §d0 —dy)

4 2 1 4 5 2
> 18(50'0 — 70 — 3d1)(10 — gdo — Edl) + 18(§do —T0 — Edl)(TO - gdo —dy)

418.51° sin® ¢,
R
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418.5¢° sin® ¢,

R (5.39)

= —36(79 — do + dy)* + 4d5 — 42dyd, + 108d; —

We divide the analysis of Gy, into two subcases according to 79 < « - dp or not. To
determine a proper value of «, we need to consider the equation F,(\) = 0 of A\, where

Fo(\) = —=36((c — DA+ 1)> +4X> — 42X + 108 (5.40)
=4 —=36(1 — )N + 30 — T2a)\ + 72. (5.41)

This function F,()\) appears later in (5.43). Note that 4-36(1 — a)*> > 0 whenever a € (3, }).
Then the two roots A\j(a) < Az(«) of the above equation are

—(30 — 72a) £ /(30 — 7202 — 4 - 72 - (4 — 36(1 — a)?)

Ap(@) = 2(4 —36(1 — @)?)

(5.42)
In the particular case that a = 1, F(\) = 4)\* — 42\ + 72, which appears in (5.45). The
two roots of the equation Fi()\) = 0 are \;(1) = 42%@ ~ 2.15676 and A (1) = 42+7§m ~
8.34233. So % < Ai(1) for any o > ﬁ ~ 0.926 925. Note that A\y(a) > A\ j(a) > 2.25 for
all 0.7 < o < 0.985 887. We pick a € (0.926 925,0.985 887).

Case 1. 79 < ady. Then 0 < 79 — dy + d; < (a — 1)dy + d,. Continuing from (5.39), we
have

418.57° sin® ¢,

Gy > —36((cc — D)o + d)* + 4d3 — 42dyd, + 10847 — R T (5.43)
d 418.5° sin® ¢ 13 2 418.5° sin® ¢
2 0 * . *
- : F(y > ) A % . F(l 2.25) — —_—
d; <d1> R > <3Or sin (;5) (2.25) R
(5.44)

since Z—‘l’ <225 < A\i(a) < X(a) and d; > L7 sin ¢, from (5.20). Then G, > 0 for R >

30
(@)2 418.5r
13) F,(225)°

Case 2. 7 > « - dy. Combining with 79 < 2d;, we have dy < 2d;. It follows from (5.21)
that 0 < 70 — do + dy < dy + 3739 Continuing from (5.39), we have (for R > 1000r)

8.3r% sin ¢, 418.57% sin® ¢,
Gp > —36(%1”5 b dy) + 4d? — 42dod, + 10843 — %W
,  418.47% sin®> ¢, 2480.1/* sin? ¢, ) 5
> —36d> — 2 - 7 + 4d2 — 42dyd, + 108d>
418.51° sin® ¢,

e 5.45
7 (5.45)
dy\ 9407 sin® ¢, 13 : 2\ 940/ sin® ¢,

=& F(=)]-F—F——— (= L) R (2] T/
1t <d1> R >\ 30" 80 ¢ "\a R
(5.46)

since j—‘l’ < % < Ai(1) and %r sin ¢, < d; < 0.7r sin ¢, from (5.20) and (5.22). Then

2
Gia > 0forR > (33) 5o
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For certainty, we pick o = 0.9778. For this «, we have A\,(a) > Aj(a) > 2.25, % < A (D).
Then a sufficient condition for G, > 0 in both cases is R > 1773.7r.

Collecting terms, we see that all four entries of the matrix G = (d,d,)DF? along the orbit
segment (F ~xo, X0, X1 Fx1, X2, Fx5) are positive for R > 1773.7r. Therefore, the orbit segment
has positive derivative for R > 1773.7r. This complete the proof when 7o > %do + 3d..

5.2. The subcase when ny =1and 1 > 1di + 2d-

There are two ways to deal with the case when 7, > %d 1+ %dzz

(a) Either we run the same analysis as in section 5.1 for the second time,
(b) Or we use the time reversal property of the billiard map.

We will explain the second approach in details. Let (F “Txo, X0, X1, Fx1, X2, Fx5) be an orbit
segment satisfying 7, > %dl + %dz. Recall that the involution map 7 : M — M satisfies F" o
I =10 F™"forany n € Z. Then the involution orbit of the above orbit segment, re-ordered in
the positive direction, is

(IFxy, Ix, IFx1, Ix1, x0, IF ' x0) = (F~" Ix2, Ix2, F~'Ixy, Ixy, X0, FIxo). (5.47)
Note that this involution orbit satisfies the condition 7y > %do + %d 1, since
d(Ix) = p(¢) sin(m — 0) = p(¢) sin(f) = d(x) (5.48)

forevery x € M. See figure 9, where the left figure can be viewed as the involution orbit of the
one on the right. Applying the result in section 5.1, we see that all four entries of the matrix

a - . o . .
Dipx, F S = L are positive. Taking derivatives of the time reversal symmetry equality, we

d
get

Dp1( F =Dpr U0 F > ol)=Dp1j, ] o (Dypy FP) " o Dpor 1

711](2

1 1 0 d -—-b||l 0 1 d b
~ ad — bc [O —1} [—C a} {0 —1} ~ ad — bc L a} ' (5-49)
Note that ad — bc = det Dypy, I’ 5> 0 since F preserves the area form w on M. It follows
that all four entries of the matrix Dy, F 5 are positive for R > 1773.7r. Therefore, the
orbit segment (F X0, x0, X1, Fx1, x2, Fx») has positive derivative. This finishes the proof
of proposition 3.6 (3).
Collecting the lower bounds on R, we see that the asymmetric lemon billiards Q(¢,, R) is
hyperbolic for

16r 165r
J, -sin ¢, sin® @,

R > max { , 1773.7r} . (5.50)

This completes the proof of theorem 1.1.

Remark 5.4. The bound on R we got is not optimal, especially in the case when ¢, < 5.

s

More precisely, when ¢, < 7, one can define a slightly different first return set M c M,
and show that the orbit segment (F “2xo,...,F?xy) is a subsegment of the orbit segment
(F* X)o<k<orny Tor every x € M' with d; < 2r, where o/(x) is the first return time of a
point x € M’ to M'. Then most of the estimates in sections 4 and 5 can be significantly
improved.
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