Taylor & Francis
Taylor & Francis Group

Journal of the
American
Statistical

Association

.

Journal of the American Statistical Association

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uasa20

Functional Horseshoe Priors for Subspace
Shrinkage

Minsuk Shin, Anirban Bhattacharya & Valen E. Johnson

To cite this article: Minsuk Shin , Anirban Bhattacharya & Valen E. Johnson (2020) Functional
Horseshoe Priors for Subspace Shrinkage, Journal of the American Statistical Association,
115:532, 1784-1797, DOI: 10.1080/01621459.2019.1654875

To link to this article: https://doi.org/10.1080/01621459.2019.1654875

A
h View supplementary material

@ Published online: 17 Sep 2019.

N
CA/ Submit your article to this journal

||I| Article views: 878

A
& View related articles '

P

(&) View Crossmark data &'

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=uasa20


https://www.tandfonline.com/action/journalInformation?journalCode=uasa20
https://www.tandfonline.com/loi/uasa20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01621459.2019.1654875
https://doi.org/10.1080/01621459.2019.1654875
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2019.1654875
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2019.1654875
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2019.1654875
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2019.1654875
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2019.1654875&domain=pdf&date_stamp=2019-09-17
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2019.1654875&domain=pdf&date_stamp=2019-09-17

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
2020, VOL. 115, NO. 532, 1784-1797: Theory and Methods
https://doi.org/10.1080/01621459.2019.1654875

Taylor & Francis
Taylor &Francis Group

‘ W) Check for updates

Functional Horseshoe Priors for Subspace Shrinkage

Minsuk Shin?, Anirban Bhattacharya®, and Valen E. Johnson®

2Department of Statistics, University of South Carolina, Columbia, SC; PDepartment of Statistics, Texas A&M University, College Station, TX

ABSTRACT

We introduce a new shrinkage prior on function spaces, called the functional horseshoe (fHS) prior, that
encourages shrinkage toward parametric classes of functions. Unlike other shrinkage priors for parametric
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models, the fHS shrinkage acts on the shape of the function rather than inducing sparsity on model parame-

ters. We study the efficacy of the proposed approach by showing an adaptive posterior concentration prop-
erty on the function. We also demonstrate consistency of the model selection procedure that thresholds the
shrinkage parameter of the fHS prior. We apply the fHS prior to nonparametric additive models and compare
its performance with procedures based on the standard horseshoe prior and several penalized likelihood
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approaches. We find that the new procedure achieves smaller estimation error and more accurate model
selection than other procedures in several simulated and real examples. Supplementary materials for this
article, which contain additional simulated and real data examples, MCMC diagnostics, and proofs of the

theoretical results, are available online.

1. Introduction

Since the seminal work of James and Stein (1961), shrinkage
estimation has been immensely successful in various statistical
disciplines and continues to enjoy widespread attention.
Many shrinkage estimators have a natural Bayesian flavor.
For example, one obtains the ridge regression estimator as
the posterior mean arising from an isotropic Gaussian prior
on the vector of regression coeflicients (Jeffreys 1961; Hoerl
and Kennard 1970). Along similar lines, an empirical Bayes
interpretation of the positive part of the James-Stein estimator
can be obtained (Efron and Morris 1973). Such connections
have been extended to the semiparametric regression context,
with applications to smoothing splines and penalized splines
(Wahba 1990; Ruppert, Wand, and Carroll 2003). Over the past
decade and a half, a number of second-generation shrinkage
priors have appeared in the literature for application in high-
dimensional sparse estimation problems. Such priors can be
almost exclusively expressed as global-local scale mixtures
of Gaussians (Polson and Scott 2010); examples include the
relevance vector machine (Tipping 2001), normal/Jeffreys’
prior (Bae and Mallick 2004), the Bayesian lasso (Park and
Casella 2008; Hans 2009), the horseshoe (HS) prior (Carvalho,
Polson, and Scott 2010), normal/gamma and normal/inverse-
Gaussian priors (Caron and Doucet 2008; Griffin and Brown
2010), generalized double Pareto priors (Armagan, Dunson,
and Lee 2013), and Dirichlet-Laplace priors (Bhattacharya
et al. 2015). These priors typically have a large spike near
zero with heavy tails, thereby providing an approximation
to the operating characteristics of sparsity inducing discrete
mixture priors (George and McCulloch 1997; Johnson and

Rossell 2012). For more on connections between Bayesian
model averaging and shrinkage, refer to Polson and Scott
(2010).

A key distinction between ridge-type shrinkage priors and
the global-local priors is that while ridge-type priors typically
shrink toward a fixed point—most commonly the origin—
global-local priors shrink toward the union of subspaces
consisting of sparse vectors. The degree of shrinkage to sparse
models is controlled by certain hyperparameters (Bhattacharya
et al. 2015). In this article, we further enlarge the scope of
shrinkage priors by proposing a class of functional shrinkage
priors called functional horseshoe (fHS) priors. fHS priors facil-
itate shrinkage toward prespecified subspaces. The shrinkage
factor (defined in Section 3) is assigned a Beta(a, b) prior with
a,b < 1, which has the shape of a HS prior (Carvalho, Polson,
and Scott 2010). While the HS prior shrinks toward sparse
vectors, the proposed fHS shrinks functions toward arbitrary
subspaces.

To illustrate the proposed methodology, consider a nonpara-
metric regression model with unknown regression function f :
X — Rgiven by

e ~ N(0,0°1,), (1)

where Y = (y1,...,yn) F = (f(x1),. ... f(xp))" = E(Y | x),
and covariates x; € X C R.

In (1), one can either make parametric assumptions (e.g.,
linear or quadratic dependence on x) regarding the shape of f,
or one may model it nonparametrically using splines, wavelets,
Gaussian processes, etc. Scatterplots or goodness-of-fit tests
can be used to ascertain the validity of a linear or quadratic

Y=F+e¢,
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model in (1), but such procedures are only feasible in rela-
tively simple settings. In relatively complex and/or high dimen-
sional problems, there is clearly a need for an automatic data-
driven procedure to adapt between models of varying complex-
ity. With this motivation, we propose the fHS prior that encour-
ages shrinkage toward a parametric class of models embedded
inside a larger semiparametric model, as long as a suitable pro-
jection operator can be defined. The main difference between
the fHS prior and the standard HS prior is that the fHS prior
introduces a more general notion of shrinkage which operates
on the shape of an unknown function rather than shrinking
a vector of parameters to zero. We provide a more detailed
discussion on this in Section 5.1

The continuous nature of the prior allows development of a
simple and efficient Gibbs sampler. As a consequence, the fHS
procedure enjoys substantial computational advantages over
traditional Bayesian model selection procedures based on mix-
tures of point mass priors, since they require computationally
intensive search over large discrete model spaces.

Our approach is not limited to univariate regression and
can be extended to the varying coefficient model (Hastie and
Tibshirani 1993), density estimation via log-spline models
(Kooperberg and Stone 1991) and additive models (Hastie
and Tibshirani 1986), among others. Further details are
provided in Section 4. In the additive regression context,
the proposed approach performs comparably to state-of-
the-art procedures like the sparse additive model (SpAM) of
Ravikumar et al. (2009) and the high-dimensional generalized
additive model (HGAM) of Meier, Van de Geer, and Bithlmann
(2009).

We provide theoretical justification for the method by
showing an adaptive property of the approach. Specifically,
we show that the posterior contracts (Ghosal, Ghosh, and
van der Vaart 2000) at the parametric rate if the true func-
tion belongs to the predesignated subspace, and contracts
at the optimal rate for a-smooth functions otherwise. In
other words, our approach adapts to the parametric shape
of the unknown function while allowing deviations from
the parametric shape in a nonparametric fashion. In addi-
tion, we describe a model selection procedure obtained by
thresholding the shrinkage factor, and then demonstrate its
consistency.

2. Preliminaries

We begin by introducing some notation. For & > 0, let |«]
denote the largest integer smaller than or equal to o and [«]
denote the smallest integer larger than or equal to . Let C*[0, 1]
denote the Holder class of & smooth functions on [0, 1] that have
continuously differentiable derivatives up to order |« ], with
the | |th order derivative being Lipschitz continuous of order
o — | |. For avector x € R9, let HxH denote its Euclidean norm.
For a function g : [0,1] — R and points x1,...,x, € [0,1],
let ||g||§n = n~!' Y7, g*(xi); we shall refer to || - ||2’n as the
empirical L, norm. For an m x d matrix A with m > d and
tk(A) = d, let £(A) = {48 : B € R9} denote the column
space of A, which is a d-dimensional subspace of R™. Let Q4 =
A(ATA)71AT denote the projection matrix on £(A).
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3. The Functional Horseshoe Prior

In the nonparametric regression model in (1), we model the
unknown function f as spanned by a set of prespecified basis
functions {¢;}1<j<k, as follows

ky
fx) =) Bigj). 2)
j=1

We work with the B-spline basis (De Boor 2001) for illustrative
purposes here. However, the methodology trivially generalizes
to a larger class of basis functions. A detailed description of the
B-spline basis is provided in Section A in the supplementary
materials. Let 8 = (B1,...,Bk,)" denote the vector of basis
coefficients and let ® = {¢;(Xj)}1<i<n,1<j<k, denote the n x k,
matrix of basis functions evaluated at the observed covariates.
Model (1) can then be expressed as

Y | B~ N(®B,0°L,). 3)

A standard choice for a prior on B is a g-prior, § ~
N(0,g(®"®)!) (Zellner 1986). These priors are commonly
used in linear models because they incorporate the correlation
structure of the covariates inside the prior variance. The
posterior mean of B under a g-prior can be expressed as
{1 —1/1 + g)}//B\, where E = QoY is the maximum
likelihood estimate of 8. Thus, the posterior mean shrinks the
maximum likelihood estimator toward zero, with the amount
of shrinkage controlled by the parameter g. Bontemps (2011)
studied asymptotic properties of the resulting posterior by
providing bounds on the total variation distance between the
posterior distribution and a Gaussian distribution centered
at the maximum likelihood estimator with the inverse Fisher
information matrix as covariance. In Bontemps (2011), the g
parameter was fixed a priori depending on the sample size n
and the error variance o2. In particular, the results of Bontemps
(2011) imply minimax optimal posterior convergence for o-
smooth functions. In related work, Ghosal and van der Vaart
(2007) established minimax optimality with isotropic Gaussian
priors on B.

Our goal is to define a broader class of shrinkage priors on
B that facilitate shrinkage toward a null subspace that is fixed in
advance, rather than shrinkage toward the origin or any other
fixed a priori guess By. For example, if we have a priori belief
that the function is likely to attain a linear shape, then we would
like to impose shrinkage toward the class of linear functions.
In general, our methodology allows shrinkage toward any null
subspace spanned by the columns of a null regressor matrix @,
with dy = rank(®) equal to the dimension of the null space.
For example in the linear case, we define the null space as £(®g)
with @y = {1,x} € R"*2, where 1isa n x 1 vector of ones
and dy = 2. Shrinkage toward quadratic, or more generally
polynomial, regression models is achieved similarly.

With the above notation, we define the fHS prior through the
following conditional specification

1
20272

7(B1) oc (v2)~kn=do)/2 exp{— oI~ Qa)@ﬂ}, (4)

(.L,Z)b—l/Z

") o

1(0,00) (1), (5)
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where a,b > 0. Recall that Qp = ®o(P}Po) "' ®] denotes the
projection matrix of ®y.

When &y = 0, (4) is equivalent to a g-prior with g =
72, The key additional feature in our proposed prior is the
introduction of the quantity (I — Qo) in the exponent, which
enables shrinkage toward subspaces rather than single points.
Although the proposed prior may be singular, it follows from
subsequent results that the joint posterior on (8, T2) is proper.
Note that the prior on the scale parameter 7 follows a half-
Cauchy distribution when a = b = 1/2. Half-Cauchy priors
have been recommended as a default prior choice for global
scale parameters in the linear regression framework (Polson and
Scott 2012). Using the reparameterization w = 1/(1 + t2), the
prior in (5) can be interpreted as the prior induced on t through
a Beta(a, b) prior on w. We work in the w parameterization for
reasons to be evident shortly.

Exploiting the conditional Gaussian specification, the condi-
tional posterior of B is also Gaussian, and can be expressed as

Bl Y, 0~ NBu» Zo)s (6)
where
-1
B = (@ch + — <I>T(I - Qo)d>> oY,
-1
S, = o2 (@Tap + 2 oTa-— Qo)d>) . 7)
l—w

We now state a lemma which delineates the role of w as the
parameter controlling the shrinkage.

Lemma 3.1. Suppose that £(Pg) C £(P). Then,

B, = (1 — w)QoY + wQyY,

where Qg is the projection matrix of ®.

E[®f|Y,0] =

This lemma shows that the conditional posterior mean of
the regression function given w is a convex combination of the
classical B-spline estimator Q¢ Y and the parametric estimator
QoY. The parameter w € (0, 1) controls the shrinkage effect; the
closer w is to 1, the greater the shrinkage toward the parametric
estimator. We learn the parameter w from the data with a
Beta(a, b) prior on w. The hyperparameter b < 1 controls the
amount of prior mass near one.

Figure 1 illustrates the connection between the choice of the
hyperparameters a and b and the shrinkage behavior of the

prior. The first and the second column in Figure 1, with a fixed at
1/2, shows that the prior density of w increasingly concentrates
near 1 as b decreases from 1/2 to 1/10. The third column in
Figure 1 depicts the prior probability that o > 0.95and w <
0.05. Clearly, as b decreases, the amount of prior mass around
one increases, which results in stronger shrinkage toward the
parametric estimator. In particular, when a = b = 1/2, the
resulting functional “HS” prior density derives its name from
the shape of the prior on w (Carvalho, Polson, and Scott 2010).

When £(®g) C £(P), we can orthogonally decompose
Qo = Qi + Qo, where the columns of Q; are orthogonal to
the columns of Qy, that is, Q] Qg = 0. For £(®¢) T £(P), this
follows because we can use Gram-Schmidt orthogonahzatlon
to create ® = [®g; 1] of _the same dimension as ® with
&Py = 0and £(P) = £(P). Let Q; denote the projection
matrix on £(®;). Simple algebra shows that

n(wm:/n(w,mmﬁ— i /f(Ylﬁ )7 (Blw)dp

= ot n—do)/2-1 ()

— o) exp{—H,o}/m(Y),
(8)

where H, = Y'Q,Y/(20%) and m(Y) = [} o+ kn=d0)/2=1(1 _

w)b1 exp {—Hyw} dw.

To investigate the asymptotic behavior of the resulting pos-
terior, it is crucial to find tight two-sided bounds on m(Y). Such
bounds are specified in Lemma 3.2.

Lemma 3.2 (Bounds on the normalizing constant). Let A, and
B, be arbitrary sequences satisfying A, — oo as n — oo and
B, = O(1). Define t,, = fol 0?11 — w)Br ! exp{—H,w}dw.
Then,

T'(An)T (By) .
m exp{—H,}(14+Q,)
T@Ardy) U
S n_l.,(A +Bn) p{ Hﬂ}(1+Qn))
where,
QU = D" exp(t)
" A, + B, PUn
. BuH, | DBy(B,+ T,
= Ay + By (An + Bp)3/?
(exp{Ha} — 1 — Hy — (T, +2)7'/%) .,

where T, = max{Af,, 3 [H,1} and D is some positive constant.

[Tol 0o S B
< < g 1
= o
> - = - = 4
g 5 g3
AN AN A o -
e © S_O
N
A A S| =
o o =3
00 02 04 06 08 10 00 02 04 06 08 10 05 04 03 02 01 00
® ® b

Figure 1. The first two columns illustrate the prior density function of w with different hyperparameters (a, b): (1/2,1/2) for the first column and (1/2,1/10) for the
second column. The third column shows the prior probability that @ > 0.95 (solid line) and @ < 0.05 (dotted line) for varying b and a fixed a = 1/2.



By setting A, = a + k,/2 and B, = b, Lemma 3.2 shows
that the magnitude of the normalizing constant m(Y) in (8)
is determined by an interplay between the relative sizes of b
and exp(H,). When b is small enough so that bexp(H,) =~
0, it follows that m(Y) ~ Be(a + kn/2,b) exp(—H,), where
Be(,-) denotes the beta function. Otherwise, ignoring polyno-
mial terms, m(Y) &~ Be(a+k;,/2, b)b. This asymptotic behavior
of m(Y) is central to identifying the posterior contraction rate
of the fHS prior. We also note that the magnitude of a asymp-
totically does not affect the strength of shrinkage for large n as
long as a is a fixed constant, since the prior contribution @*~! is
dominated by the likelihood contribution w*/2.

3.1. Posterior Concentration Rate

We assume a set of standard regularity conditions that have
been used by others (Zhou, Shen, and Wolfe 1998; Claeskens,
Krivobokova, and Opsomer 2009) to prove minimax optimality
of B-spline estimators. These regularity conditions are described
in Section A in the supplementary materials. Under the regular-
ity conditions, Zhou, Shen, and Wolfe (1998) showed that the
mean square error of the B-spline estimator Qg Y achieves the
minimax optimal rate. If the true function fo € C*[0,1] is «-
smooth and the number of basis functions k,, < n/@*D then
they showed that

E, [HQ<1>Y —F, ”;;1] —-0 (n—Za/(1+2a)> ) ©)

where E(-) represents an expectation with respect to the true
data generating distribution of Y. We now state our main result
on the posterior contraction rate of the fHS prior.

Theorem 3.1. Consider the model (1) equipped with the fHS
prior (4) and (5). Assume £(®g) C £(P). Further assume
that for some integer > 1, the true regression function fy €
C“[0, 1] and the B-spline basis functions ® are constructed with
k, — la] knots and |«] — 1 degree, where k, =< nl/(42e)
Suppose that the prior hyperparameters a and b in (5) satisty
a € (8,1 — §) for some constant § € (0,1/2), and k, logk, <
—logbh < (nky)'/?. Then, for any diverging sequence ¢y,

Eo[P{|® — Fo,,, > M, (fo)'/? | Y}1 = o(1), where

an L if Fy € £(dy)
Mn(fo) = Cun 20/ 320 og p, if FY (1 — Qo) Fo < n.
Theorem 3.1 exhibits an adaptive property of the fHS
prior. If the true function is «a-smooth, then the posterior
contracts around the true function at the near minimax rate
of n~/@«+D Jogn. However, if the true function fy belongs
to the finite dimensional subspace £(®y), then the posterior
contracts around fp in the empirical L, norm at the parametric
n~1/2 rate. We note that the bound k,logk, < —logh <
(nkn)/? is a key to the adaptivity of the posterior, since the
strength of the shrinkage toward £(®y) is controlled by b. If
—logb < k,logky,, then the shrinkage toward £(®g) is too
weak to achieve the parametric rate when Fy € £(®g). On
the other hand, if —logb > (nk,)!/?, the resulting posterior
distribution strongly concentrates around £(®y) and fails to
attain the optimal nonparametric rate of posterior contraction
when Fy ¢ £(®y).
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We ignore the subspace of functions such that {F € R" :
F'Qd — Q)F = o(n), F ¢ £(®y)} and only focus on
functions that can be strictly separated from the null space
£(dg). However, we acknowledge that it would be useful
to illustrate the shrinkage behavior when the regression
function f approaches the null space under the condition that
limy_ 00 F*(I — Qo)F/n = 0.

3.2. Model Selection Procedure and Its Consistency

In this section, we illustrate a model selection procedure based
on the fHS priors and examine their theoretical consistency. As
mentioned in Lemma 3.1, w can be interpreted as the amount of
weight that the posterior mean for function F places on the para-
metric estimator QgY. Due to this fact, it is natural to consider a
model selection procedure by thresholding the posterior mean
of w analogous to the model selection procedure considered in
Carvalho, Polson, and Scott (2010) for the standard HS prior.
Since a posterior mean of w that is larger than 1/2 indicates that
more weight is imposed on the parametric estimator compared
to the amount of the weight on the nonparametric estimator, it
is natural to select the parametric model when E(w | Y) > 1/2.

The asymptotic properties of such a thresholding based
model selection procedure depends on the behavior of w
a posteriori. The following theorem states the posterior
convergence rate of w when the true function belongs to the
parametric or nonparametric family.

Theorem 3.2 (Posterior convergence rate of ). Assume condi-
tions from Theorem 3.1 hold. Then, for any diverging sequence
¢y and any constant €y > 0, Ey [P(a) <1—2¢uSon | Y)] =o(1)
if Fp € £(®o), and Eg [P(w > £uS1,0 | V)] = o(1) if Fj(I —
Qo)Fo =< n, where Sp, = k;lbl’60 and S;,, = (—logb)/n.

Theorem 3.2 indicates that when the true function is para-
metric, the posterior distribution of w contracts toward 1 at a
rate of at least k, 1617 for any €9 > 0. On the other hand,
when the true function is strictly separated from the class of
parametric functions, that is, Fj(I — Qo)Fy < n, the posterior
distribution of @ converges to zero at a rate of —logb/n. By
the condition k, logk, < —logb < (nk,)'/? in Theorem 3.1,
both k;, 1617€ and —logb/n converge to zero. These results
guarantee the consistency of the model selection procedure
based on thresholding E(w | Y) by any value in (0, 1).

4, Examples for the Univariate Case

In this section, we consider some applications of the fHS prior
for several nonparametric models

(i) simple regression model: Y; = f(x;) + €, (10)

(ii) varying coefficient model: Y; = t;f (x;) + €;, (11)

(iii) density function estimation: p(Y;) = M. (12)
[ exp{f(t)}dt

In cases (i) and (ii), we assume that ¢; i N(0,02) fori =
1,...,n In (ii), t; and x; are covariates for i = 1,...,n. In
(iii), p(-) is the unknown density function of Y. The varying
coefficient model (Hastie and Tibshirani 1993) in (11) reduces
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to a linear model when the coefficient function f is constant,
and the density function p is Gaussian when the log-density
function f is quadratic in the log-spline model (12) (Kooperberg
and Stone 1991). These facts motivate the use of the fHS prior
in these examples to shrink toward the respective parametric
alternatives.

Before providing a detailed simulation study, we illustrate
in Figures 2 and 3 what we generally expect from the fHS
procedure. Figure 2 depicts the point estimate (posterior mean)
and pointwise 95% credible bands for the unknown function
f for a single dataset for each of the three examples when the
true function belongs to the parametric class. That is, a linear
function in (10), a constant function in (11), and a quadratic

function in (12). Figure 3 depicts the corresponding estimates
when the data generating function does not fall into the assumed
parametric class. It is evident from Figure 2 that when the para-
metric assumptions are met, the fHS prior performs similarly
to the parametric model. This fact empirically corroborates our
findings in Theorem 3.1 that the posterior contracts at a nearly
parametric rate when the parametric assumptions are met. It
is also evident that the fHS procedure automatically adapts to
deviations from the parametric assumptions in Figure 3, again
confirming the conclusion of Theorem 3.1. That is, when the
true function is well-separated from the parametric class, the
posterior concentrates at a near optimal minimax rate. We
reiterate that the same hyperparameters a = 1/2 and b =

ylw

04 05 06 07

Density

0.3

0.2

0.1

0.0

Figure 2. Examples when the underlying true functions are parametric. Posterior mean of each procedure (red solid), its 95% pointwise credible bands (red dashed), and
the true function (black solid) from a single example with n = 200 for each model. The top row is for the simple regression model; the second row is for the varying
coefficient model; the last row is for density estimation. The Bayesian B-spline procedure, the Bayesian parametric model procedure, and fHS priors are illustrated in the

first, second, and third columns, respectively.
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Figure 3. Examples when the underlying true functions are nonparametric. The description of the figures are provided in the caption of Figure 2.

exp{—ky logn/2} for the fHS prior were used in the examples
in Figures 2 and 3.

We now provide the details of a replicated study for the
simple regression model. The details for the varying coefficient
model and the log-density model are provided in Section B of
the supplementary materials, with the overall message consis-
tent across the different problems. We generated the covariates
independently from a uniform distribution between —m and
7 and set the error variance 0> = 1. We considered three
parametric choices for f. These include linear, quadratic, and
sinusoidal functions. We standardized the true function so as to
obtain a signal-to-noise ratio of 1.0.

To shrink the regression function in (10) toward linear
subspaces for the simple regression model, we set &9 = {1,x}
in the fHS prior (4) (&9 = {1} for the varying coefficient model

and @y = {1,x,x?} for the log-density model). An inverse-
gamma prior with parameters (1/100,1/100) was imposed
on o2 for the fHS prior, and we set b = exp{—k,logn/2}
to satisfy the conditions of Theorem 3.1. We arbitrarily set
a = 1/2. We consider the number of basis functions k, €
{5,8,11,35}. In particular, the choice k, = 35 was empirically
recommended when n > 140 in Ruppert, Wand, and Carroll
(2003).

To compare the fHS prior to the standard HS prior, we
considered a decomposition F = Fy + Fj, where F is the
parametric function and F; = ®p is the nonparametric com-
ponent modeled by the B-spline basis functions. The parametric
form Fj is set to be linear. For a performance comparison to our
procedure, we imposed the standard HS prior on the coeflicients
of the B-spline basis functions to encourage shrinkage of the
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nonparametric part toward zero in a different fashion than the
fHS method.

We also considered a penalized spline procedure for the
performance comparisons. The object function of the penalized
likelihood can be expressed as H Y—®g H; +1B8TEB, where T is
ak, by k, matrix with Xj = [ ¢]7/(t)¢,’c/(t)dt forjk=1,...,ky.
The smoothness parameter A was chosen by generalized cross-
validation (Golub, Heath, and Wahba 1979). .

For each prior, we used the posterior mean f as a point
estimate for f, and reported the empirical mean square error

(MSE), that is, |f —f Hiz We also compare our approach to a
partial oracle estimator enabled with the knowledge of the func-
tional form (parametric or nonparametric) of the true function.
When the true function has a parametric form, the partial oracle
estimator is equivalent to the parametric estimator; otherwise,
the partial oracle estimator is equivalent to the standard B-spline
estimator.

Tables 1 lists the MSE of the posterior mean estimator over
100 replicates in estimating the unknown function f for the
simple regression model with sample sizes of n = 200 and 500.
When the true function f belongs to the nominal parametric
class, the posterior mean function resulting from the fHS prior
outperforms the HS prior. When the true function does not
belong to the class of the parametric functions, the fHS prior
performs comparably to the partial oracle estimator.

Under nonlinear settings, the penalized spline method and
the procedure based on the standard HS prior show smaller
estimation error than that of the fHS prior and the partial oracle
estimator (the standard B-spline estimator). This is because
the penalized spline estimator regularizes the smoothness of
the function. In contrast, the fHS prior produces a fitted func-
tion that is almost identical to the standard B-spline estimator
in the nonlinear case. The shrinkage effect of the fHS prior
toward a parametric function is only activated when the shape of
the function fits the prespecified parametric form. Thus, when
the parametric model is true the fHS estimator behaves like
the parametric estimator. If not, it behaves like the B-spline
estimator.

5. Simulation Studies for Additive Models

Our regression examples in the previous subsection involved
one predictor variable. In the case of multiple predictors, a pop-
ular modeling framework is the class of additive models (Hastie
and Tibshirani 1986), where the unknown function relating
p candidate predictors to a univariate response is modeled as
the sum of p univariate functions, with the jth function only
dependent on the jth predictor. In this section, we apply the fHS
prior to additive models and compare results obtained under
this prior to several alternative methods. To be consistent with
our previous notation, we express additive models as

p
Y=>) F+e (13)
j=1

where F; = {fj(x1j),....fj(xy)} for j = 1,...,p, and € ~
N(0,021,,). We let ®; denote the spline basis matrix for X; and
let B; = {Bj1>.--,Bjk,} denote the corresponding coefficient.

Table 1. The results for the simple regression models.

Sine

Quadratic

Linear

Truth
n =200

35

kn
17.088(0.35)

13.745(0.29)
8.847(0.23)

=1

kn

kn =18
3.568(0.16)

kn=5
2.602(0.13)

35

kn
17.088(0.35)

12.983(0.29)
11.203(0.26)

=1

kn
5.052(0.20)

3.557(0.15)

kn =38
3.593(0.16)

2.563(0.13)

kn=5
2.961(0.13)

2.187(0.13)

35

kn

kn =38 kn

kn
0.918(0.08)

1.563(0.11)

5.049(0.20)
3.660(0.15)

Oracle
PenSpline

2.618(0.13)

3.344(0.13)

12.939(0.29)
5.436(0.19)

3.555(0.29)

2.030(0.11)

2.536(0.13)

3.280(0.15) 3.968(0.16)

2.191(0.12)

3.278(0.15) 4.646(0.18)

3.243(0.13)

1.591(0.10)
0.934(0.08)
0.933(0.08)

1.233(0.09)
1.109(0.08)
1.101(0.08)
1.101(0.08)

HS
fHS1

16.579(0.91)

5.017(0.21)
5.018(0.21)
5.018(0.21)

2.701(0.13) 3.640(0.16)
kn=11

2.702(0.13)

15.162(0.35)
15.162(0.35)
15.162(0.35)

5.031(0.21)
5.031(0.21)
5.031(0.21)

0.922(0.08) 4.237(0.11) 3.627(0.17)

0.922(0.08)

0.926(0.08)
0.925(0.08)

16.579(0.91)
16.579(0.91)

3.641(0.16)
3.641(0.16)

3.627(0.17)

5.116(0.11)

5.381(0.15)

fHS2
fHS3

2.702(0.13)

3.627(0.17)

0.925(0.08) 0.922(0.08)

0.933(0.08)

35
0.16)

0.13)

kn
6.836

kn =8
1.535(0.07)

1.231(0.06)

kn=5
1.237(0.06)

2.024(0.09)
0.921(0.05)

35

kn
6.836(0.16)

kn=11
2.136(0.09)

1.514(0.07)
2.176(0.07)
2.114(0.09)
2.114(0.09)
2.114(0.09)

kn =38
1.559(0.07)

1.109(0.06)
1.456(0.06)
1.551(0.07)
1.551(0.07)
1.551(0.07)

kn =5
1.626(0.06)

1.072(0.05)

35

kn

kn

kn =18

kn
0.425(0.04)

0.661(0.05)
0.573(0.04)

n =500

2.133(0.09)
1.607(0.06)

Oracle
PenSpline

5.071

5.232(0.13)

5.071(0.13)
2.663(0.13)

1.510(0.07)
0.995(0.07)
0.432(0.04)

1.081(0.06)
0.771(0.06)
0.442(0.04)

0.12)

5.915(0.14)
5.915(0.14)
5.915(0.14)

4.514

1.864(0.08)
2.055(0.09)
2.055(0.09)
2.055(0.09)

1.399(0.07)
1.499(0.07)
1.499(0.07)
1.499(0.07)

5.569(0.13)

1.614(0.05)
1.627(0.05)
1.627(0.05)
1.627(0.05)

HS
fHS1

1.230(0.06)
1.230(0.06)
1.230(0.06)

6.463(0.15)

0.429(0.04)

0.578(0.04)
0.576(0.04)
0.576(0.04)

6.463(0.15)

0.432(0.04) 0.429(0.04)

0.442(0.04)

fHS2

6.463(0.15)

0.432(0.04) 0.429(0.04)

0.442(0.04)

fHS3

NOTE: The smallest MSE is in bold for each kp,, except for the partial oracle estimator (“Oracle”). “fHS1,"“fHS2,"and “fHS3" are the procedures based on the fHS prior with b = exp(—kp log n/10), exp(—kn log n/4),and exp(—kn logn/2),

respectively.



In general, each component function can be modeled nonpara-
metrically. For example, using the B-spline basis functions as
described in the previous section, fj(x) = 2521 Bjipi(x), so that
Fj = ®;Bjforj=1,...,p. However, if there are many candidate
predictors, then nonparametrically estimating p functions may
be statistically difficult and may result in a loss of precision and
overfitting if only a small subset of the variables are significant.
With this motivation, we extend the fHS framework to additive
models, where we assign independent fHS priors to the f;’s to
facilitate shrinkage of each of these functions toward the class of
prespecified parametric functions. For 8 = {1, .., By} where
B € Rk for j € 1,...,p, the resulting prior density can be
expressed as the product of independent fHS prior densities as
follows

’ B 011 — Qo) Bsf
kn—do J AL
T(B|t%0%) x E T exp {— 2021:j2 }, (14)
P (.L.Z)b 1/2
7(7) X l_[ i 2)(a+b) L0,00) (T))- (15)

Here, T = {t1,...,7p}. This prior imposes shrinkage on each
ﬂJTGDJT(I — Qo) ®;B;j toward zero so that the resulting poste-
rior distribution contracts toward the class of the parametric
functions. In particular, when Qy = 0 for j = 1,...,p,
the resulting posterior distribution on F; concentrates on the
null function when the marginal effect of F; is negligible. This
property enables us to select variables by using the thresholding
procedure discussed in Section 3.2.

For shrinkage across many variables, the classical HS prior
includes a global shrinkage parameter common to all variables.
In the present context, the role of the global shrinkage parameter
is implicitly replaced by the scale parameter b. We treat b as
a fixed hyperparameter in the sequel and follow the default
recommendation from the earlier section regarding its choice.

For the univariate examples considered in the previous sec-
tion, standard Bayesian model selection procedures based on
the mixture of point mass priors (Choi, Lee, and Roy 2009; Choi
and Rousseau 2015; Choi and Woo 2015) can also be applied.
These approaches have advantages in interpreting the results of
model selection and Bayesian model averaging (Raftery, Madi-
gan, and Hoeting 1997). However, when multiple functions
are considered in model selection, standard procedures with
discrete mixture priors can be computationally demanding in
searching the discrete space of models.

5.1. A Comparison to the Standard Horseshoe Prior

Under the additive model, one can impose a product of standard
HS priors (Carvalho, Polson, and Scott 2010) on the spline
coeflicients to impose shrinkage toward the null function. The
hierarchical structure of such an HS prior can be expressed as

kn ’32
WZZ ; >

j=1 I=1
A~ C(0,1), ¥ ~ C (O, 1),

7(B | M, 0%) o exp
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where CT (0, 1) is the half-Cauchy distribution. The parameter A
serves a global shrinkage parameter controlling the concentra-
tion near zero, while the y/j’s are local shrinkage parameters that
control the tail heaviness of the individual coefficients (Polson
and Scott 2010). The use of the standard HS prior imposes
strong shrinkage effects toward zero on each coefficient. But
unlike the proposed fHS prior, the HS prior does not account for
the grouping structure in the spline expansions of the compo-
nents. We illustrate the importance of accounting for the group
structure through a number of simulated and real examples
next. We found that the fHS prior outperforms the vanilla HS
prior. An analogy may be drawn to the superior performance
of group lasso (Yuan and Lin 2006) over ordinary lasso when
a similar group structure is present in the spline coefficients
(Huang, Horowitz, and Wei 2010).

It is not immediately clear how to select variables in an
additive model by using the standard HS prior. On the other
hand, the thresholding procedure based on the fHS prior in (14)
performs a natural model selection in this setting.

5.2. Simulation Scenarios

For additive models, Ravikumar et al. (2009) proposed penal-
ized likelihood procedures called SpAM that combine ideas
from model selection and additive nonparametric regression.
The penalty term of SpAM can be described as a weighted group
Lasso penalty (Yuan and Lin 2006) in which the coefficients
for each component function f; for j = 1,...,p are forced to
simultaneously shrink toward zero. Meier, Van de Geer, and
Bithlmann (2009) proposed the HGAM that differs from SpAM
by its penalty term, which imposes both shrinkage toward zero
and regularization on the smoothness of the function. Huang,
Horowitz, and Wei (2010) introduced a two-step procedure
called adaptive group lasso (AdapGL) for additive models. The
first step estimates the weight of the group penalty, and the
second applies it to the AdapGL penalty. Since the performance
of penalized likelihood methods is sensitive to the choice of
the tuning parameter, in the simulation studies that follow we
considered two criteria for tuning parameter selection: AIC
and BIC. R packages SAM, hgam, and grplasso were used
to implement SpAM, HGAM, and AdapGL, respectively. We
also considered the standard HS prior and its computation was
implemented by the R package horseshoe. We develop a
blocked Gibbs sampler to fit the fHS procedure; the details
are provided in Section E of the supplementary materials. We
observed good mixing and convergence of the algorithm devel-
oped based on examination of trace plots; see Section F of the
supplementary materials for representative examples. For the
fHS prior and HS prior, we imposed a prior on o2 propor-
tional to 1/02. We used 20,000 samples from the MCMC algo-
rithms after 10,000 burn-in iterations to estimate the posterior
mean.

We define the signal-to-noise ratio as SNR = var(f(X))/
var(e), where f is the true underlying regression function, that
is, f = Zﬁ;l fj» where f; is the true component function for
j = L,...,p. We examine the same simulation scenarios that
were considered in Meier, Van de Geer, and Biithlmann (2009)
as follows:
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Scenario 1: (p = 200, SNR ~ 15). This is the same scenario
as Example 1 in Meier, Van de Geer, and Bithlmann (2009).
A similar scenario was also considered in Hardle et al. (2012)
and Ravikumar et al. (2009). The true model is Y; = fi (xi1) +

fo(xi2)+f3(xi3)+fa(xia)+€i, where €; id N(,1)fori=1,...,n,
with f (x) = —sin(2x), f(x) = x> — 25/12, f3(x) = x, fa(x) =
exp{—x} — 2/5 - sinh(5/2). The covariates are independently
generated from a uniform distribution between —2.5 and 2.5.
Scenario 2: (p = 80, SNR ~ 7.9). This is equivalent to Example
3 in Meier, Van de Geer, and Bithlmann (2009) and similar
to an example in Lin and Zhang (2006). The true model is
Yi = 5f1(xi1) + 3f2(xi2) + 4f3(xi3) + 6fa(xia) + €;, where €; X
N(0,1.74) for i = 1,...,n, with f{(x) = x, fo(x) = 2x — 1),
flx) = %,ﬁ;(x) = 0.1sin(2x) + 0.2cos2mx) +
0.3sin?(2mx) + 0.4 cos’(2mwx) + 0.5sin?(27x). The covariate
Xj = (x1j,...,Xyj)" forj = 1,...,p is generated by x; = (W, +
U)/2, where Wy,..., W, and U are independently simulated
from U(0, 1) distributions.

Scenario 3: (p = 60, SNR ~ 11.25). This scenario is equivalent
to Example 4 in Meier, Van de Geer, and Bithlmann (2009),
and a similar example was also considered in Lin and Zhang
(2006). The same functions and the same process to generate the
covariates used in Scenario 2 were used in this scenario. The true
model is Y; = f1(xi1) + f2(xi2) + f3(xi3) + fa(xia) + 1.5f1(xi5) +
L5f(xis) + L.5f3(xi7) + 1.5fa(xis) + 2.5f1(xi9) + 2.5f2(xi10) +

2.5f3(xi11) + 2.5fa(xi12) + €i, where ¢; i N(0,0.5184) for i =
1,...,n

To evaluate the estimation performance of the fHS prior, we
report the MSE for each method. To measure the performance
of variable selection, we examined the proportion of times the
true model was selected, as well as the Matthews correlation
coefficient (MCC; Matthews (1975)), defined as,

B TP - TN — FP - EN
~ (TP + FP)(TP + EN)(TN + FP)(TN + FN)’

MCC

where TP, TN, FP, and FN denote the number of true positive,
true negatives, false positives, and false negatives, respectively.
MCC is generally regarded as a balanced measure of the per-
formance of classification methods, which simultaneously takes
into account TP, TN, FP, and FN. We note that MCC is bounded
by 1, and the closer MCC is to 1, the better the model selection
performance is.

We used the fHS prior in (14) with Qo; = 0 for all j. This
setting of the fHS prior imposed a shrinkage effect toward the
null function so that the posterior distribution of most com-
ponent functions contracts toward zero. For model selection
using the fHS prior, we selected variables with E(w; | Y) <
1/2 as described in Section 3.2, where w; = 1/(1 + rjz) is
the shrinkage coeflicient for the jth variable. To investigate the
performance achieved by the proposed method, we compared it
to a “partial oracle estimator.” The partial oracle estimator refers
to the B-spline least squares estimator when the variables in the
true model are given, but the true component functions in the
additive model are not provided.

Results from simulation studies to compare these methods
are depicted in Tables 2-4. In most settings, the procedure based
on the fHS prior has smaller MSE than the estimator based

on the HS prior and the penalized likelihood estimators. These
results hold consistently with different hyperparameters (b =
exp(—ky,logn/A) where k, € {5,8,11,35} and A € {2,4,10}).
The SpAM with the tuning parameter chosen by BIC performs
comparable to the fHS procedure in some settings; for example,
Scenario 1 with k, = 11, and Scenario 2 with k, = 5 and
k, = 11. However, its estimation performance is clearly inferior
to the fHS procedure. The MSE of SpAM with BIC is at least
two times larger than the estimator based on the fHS prior in all
simulation scenarios.

While the HS prior shows comparable estimation perfor-
mance to the procedure based on the fHS prior in Scenario 3, its
MSE is unstable and sensitive to the choice of k,, in Scenario 1
and Scenario 2. In particular, in Scenario 1 with k, = 11, the
MSE of the HS prior is almost 9 times larger than the MSE of
the fHS prior. When the number of basis function is chosen to
be relatively large (k, = 35), the MSE of the fHS procedures with
three different hyperparameters is uniformly smaller than that
of the HS prior through all considered scenarios. In addition,
as we have already discussed, model selection with the standard
HS prior is not immediate in the present context.

6. Real Data Analysis for Sparse Additive Model
Under High-Dimensional Settings

In this section, we considered the near infrared (NIR) spec-
troscopy dataset to examine the performance of the fHS prior
for sparse additive models in high-dimensional settings. This
dataset was previously analyzed in Liebmann, Friedl, and
Varmuza (2009) and Curtis, Banerjee, and Ghosal (2014),
and is available in the R package chemometrics. The NIR
data include glucose and ethanol concentration (in g/L) for
166 alcoholic fermentation mashes of different feedstock (rye,
wheat, and corn). Two hundred thirty-five NIR spectroscopy
absorbance values were acquired in the wavelength range of
115-2285 nm by a transflectance probe (Liebmann, Friedl, and
Varmuza 2009). We implemented the model selection procedure
on the data values with a response variable defined by ethanol
concentrations. We have n = 166 and p = 235; we set the
training and test set sizes to be 146 and 20, respectively. For each
method, the prior specification used in Section 5.2 was applied.
Results are summarized in Table 5 and show that the proposed
procedure with the fHS prior achieves the smallest prediction
error among the considered methods. In addition, the average
model size of the fHS procedure was smaller than that selected
by the other methods. Compared to other procedures, the
tHS procedure shows stable performance overall. This result
typically held regardless of the choice of b and k,. The exception
occurred when b = exp(—k,logn/10) and k, = 5. In that
case, the average model size was 26.37, almost double that
compared to the fHS procedure with the other hyperparameter
values. One remark is that when k, = 35, all procedures
showed poor and unstable prediction performances, except
for the HGAM procedures. We think that this is because the
HGAM imposes extra regularization on the smoothness of
the function, unlike other procedures. So, the corresponding
HGAM estimator avoids an overfitting issue caused by a
relatively large k.
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Table 5. NIR dataset.

kn = kn =8 kn =11 kn =35
MSPE MS MSPE MS MSPE MS MSPE MS
HS 1.542(0.14) 3.604(0.72) 6.724(1.01) 50.673(4.81)

fHS1 1.450(0.15) 26.37 2.014(0.22) 17.27 3.712(0.96) 12.99 810.826(42.86) 4.80
fHS2 1.637(0.16) 13.57 2.052(0.27) 15.33 2.521(0.46) 12.73 73.996(30.40) 4.78
fHS3 1.446(0.14) 13.78 2.222(0.41) 14.39 2.970(0.80) 12.45 27.400(4.18) 4.50
SpAM (AIC) 13.977(1.38) 38.93 24.707(2.36) 27.89 28.683(2.71) 15.94 111.218(11.12) 2.96
SpAM (BIC) 49.294(6.06) 36.54 65.957(7.84) 2432 60.924(7.97) 13.86 146.869(14.69) 2.78
HGAM (AIC) 2.036(0.13) 39.69 2.286(0.24) 33.07 2.776(0.29) 34.17 3.911(0.39) 21.60
HGAM (BIC) 1.854(0.12) 45.19 2.285(0.24) 32.86 2.786(0.30) 33.91 3.912(0.39) 21.50
AdapGL (AIC) 19.914(3.57) 38.40 47.016(8.09) 109.93 57.948(8.05) 79.80 75.519(8.53) 7.80
AdapGL (BIC) 10.626(1.42) 14.07 16.370(2.57) 15.06 33.421(4.45) 14.25 476.551(12.96) 0.00

NOTE: “MS” indicates the average model size. The smallest MSPE is noted in bold.

7. Conclusion

We have proposed a class of shrinkage priors which we call
the fHS priors. These priors impose strong shrinkage toward
a prespecified class of functions. The shrinkage mechanism
in this prior is new. It allows the nonparametric function
to shrink toward a parametric function without performing
selection or shrinkage on the basis coefficients toward zero.
By doing so, it preserves the minimax optimal parametric
rate of posterior convergence n~'/? when the true underlying
function is parametric. It also comes within O(logn) of
achieving the minimax nonparametric rate when the true
function is strictly separated from the class of parametric
functions. We also investigated the asymptotic properties
of model selection procedure by thresholding the posterior
mean of w. The resulting model selection procedure consis-
tently selects the true form of the regression function as n
increases.

The fHS prior imposes shrinkage on the shape of the
function rather than shrinking or selecting certain basis
coefficients. Hence, its scope of applicability is broad and
it can be applied whenever a distance function to the null
subspace can be formulated. In contrast, standard selec-
tion/shrinkage priors need an explicit parameterization of the
null space in terms of zero constraints on specific parameters/
coeflicients.

Like other nonparametric procedures, it is important to
choose an appropriate value of the hyperparameters of the
tHS prior (k, for the B-spline basis and b for the hyperprior
on w). In the real and simulated examples considered here,
we used multiple hyperparameters, k, € {5,8,11,35} and
b = exp(—k,logn/A) with A € {2,4,10}, and compared the
results with the different choice of the hyperparameters. More
formal criterion to choose k, or b might also be considered,
and investigation of such criterion remains an active area of
research.

The novel shrinkage term contained in the proposed prior,
F'(I1—Qo)F, can be naturally applied to a new class of penalized
likelihood methods having a general form expressible as —I(Y |
F) + p;L(FT(I - QO)F), where I(Y | F) is the logarithm of a
likelihood function and p; is the penalty function. In contrast to
other penalized likelihood methods, this form of penalty allows
shrinkage toward the space spanned by a projection matrix Qo,
rather than simply a zero function.

Supplementary Materials

Supplementary materials, which are available online, contain additional
simulated and real data examples, MCMC diagnostics, and proofs of the
theoretical results. In Section A, a detailed description of the B-spline basis
function is provided. In Section B, we examine additional simulation stud-
ies for univariate examples. These examples include the varying coefficient
model and the log-density model introduced in Section 4. In Section C,
we provide additional real data examples for the additive model. Section
D contains the proofs of the theoretical results. In Sections E and F, the
MCMC algorithm used to implement the fHS procedure is described and
its convergence diagnostics is examined, respectively.
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