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Abstract—Modern video data management systems store
videos as a single encoded file, which significantly limits possible
storage level optimizations. We design, implement, and evaluate
TASM, a new tile-based storage manager for video data. TASM
uses a feature in modern video codecs called “tiles” that enables
spatial random access into encoded videos. TASM physically
tunes stored videos by optimizing their tile layouts given the video
content and a query workload. Additionally, TASM dynamically
tunes that layout in response to changes in the query workload
or if the query workload and video contents are incrementally
discovered. Finally, TASM also produces efficient initial tile
layouts for newly ingested videos. We demonstrate that TASM
can speed up subframe selection queries by an average of over
50% and up to 94%. TASM can also improve the throughput of
the full scan phase of object detection queries by up to 2×.

I. INTRODUCTION

The proliferation of inexpensive high-quality cameras

coupled with recent advances in machine learning and computer

vision have enabled new applications on video data such as

automatic traffic analysis [1], [2], retail store planning [3], and

drone analytics [4], [5]. This has led to a class of database

systems specializing in video data management that facilitate

query processing over videos [3], [6]–[10].

A query over a video comprises two steps. First, read

the video file from disk and decode it. Second, process

frames to identify and return pixels of interest or compute an

aggregate. Most systems, so far, have focused on accelerating

and optimizing the second step [3], [9]–[11], often assuming

that the video is already decoded and stored in memory [3],

[7], [12], which is not feasible in practice.

The lack of efficient storage managers in existing video

data management systems significantly impacts queries. First,

subframe selection queries (e.g., “Show me video snippets

cropped to show previously identified hummingbirds feeding on

honeysuckles” ) are common and their execution bottleneck is at

the storage layer since these queries are selections, reading and

returning pixels without additional operations. Second, object
detection queries, which extract new semantic information

from a video (e.g., “Find all sightings of hummingbirds in this

new video”) require the execution of expensive deep learning

models. To avoid applying such models to as many frames as

possible, query plans typically include an initial full scan phase

that applies a cheap predicate [12] or a specialized model [7]

to the entire video to filter uninteresting frames. The overhead

(a) (b) (c)

Fig. 1. Video partitioned into tiles. (a) shows the first j frames partitioned
with a uniform 1×2 layout. (b) shows frames partitioned with a non-
uniform 2×2 layout. (c) shows a directory hierarchy. Video stored at
video/frames_1-j/tile0.mp4 contains the left half of frames [1, j].

of reading and decoding the video file is known to significantly

hurt the performance of this phase [13].

In this paper, we introduce TASM, a storage manager that

greatly improves the performance of subframe selection queries

and the full scan phase of object detection queries by providing

spatial random access within videos. TASM exploits the

observation that objects in videos frequently lie in subregions

of video frames. For example, a traffic camera may be oriented

such that it partially captures the sky, so vehicles only appear

in the lower portion of a frame. Analysis applications such

as running license plate recognition [1] or extracting image

patches for vehicle type recognition [1] only need to operate on

the parts of the frame containing vehicles. Privacy applications

such as blurring license plates and faces [14] or performing

region of interest-based encryption [15] similarly only need to

modify the parts of the frame that contain sensitive objects.

Using its spatial random access capability, TASM enables

reading from disk and decoding only the parts of the frame

that are interesting to queries. Providing such a capability is

difficult because the video encoding process introduces spatial

and temporal dependencies within and between frames. To

address this problem, TASM subdivides video frames into

smaller pieces called tiles that can be processed independently.

As shown in Fig. 1, each tile contains a rectangular subregion

of the frame that can be decoded independently because there

are no spatial dependencies between tiles. In contrast, current

state of the art incurs the cost of decoding entire frames. TASM

optimizes how a video is divided into tiles and stored on disk to

reduce the amount of work spent decoding and preprocessing

parts of the video not involved in a query. Through its use of

tiles, TASM implements a new type of optimization that we

call semantic predicate pushdown where predicates are pushed

below the decoding step and only tiles of interest are read from
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disk, decoded, and processed.

Building TASM raises three challenges. The first challenge

is fundamental, but important: Given a video file with known

semantic content (i.e., known object locations within video

frames) and a known query workload, TASM must decide on

the optimal tile layout, choosing from among layouts with

uniform or non-uniform tiles and either fine-grained or coarse-

grained tiles. TASM must also decide whether different tile

layouts should be used in different parts of a video. To do

this effectively, TASM must accurately estimate the cost of

executing a query with a given tile layout. TASM therefore

drives its selection using a cost function that balances the

benefits of processing fewer pixels against the overhead of

processing more tiles for a given tile layout, video content, and

query workload. In this paper, we experimentally demonstrate

that non-uniform, fine-grained tiles outperform the other

options. Additionally, we find that optimizing the layout for

short sections of the video (i.e., every 1 second) maximizes

query performance with no storage overhead. Given a video

file, TASM thus splits it into 1 second fragments and selects

the optimal fine-grained tile layout for each fragment.

The second challenge is that the semantic content and the

query workload for a video are typically discovered over time

as users execute object detection and subframe selection queries.

TASM therefore lacks the information it needs to design optimal

tile layouts. To address this challenge, TASM incrementally

updates a video’s tile layout as queries to detect and retrieve

objects are executed. TASM uses different tile layouts in

different parts of the video, and independently evolves the tile

layout in each section. To do this, TASM builds on techniques

from database cracking [16], [17] and online indexing [18].

To decide when to re-tile portions of the video and which

layout to use, TASM maintains a limited set of alternative

layouts based on past queries. It then uses its cost function to

accumulate estimated performance improvements offered by

these tile layouts as it observes queries. Once the estimated

improvement, also called regret [19], of a new layout offsets

the cost of reorganization, TASM re-tiles that portion of the

video. By observing multiple queries before making tiling

decisions, TASM designs layouts optimized for multiple query

types. For the ornithology example, TASM could tile around

hummingbirds and flowers that are likely to attract them.

The third challenge lies in the initial phase that identifies

objects of interest in a new video. This phase is both expensive

and requires at least one full scan over the video, generally

using a cheap model to filter frames or compute statistics.

The models used in the full scan phase are limited by video

decoding and preprocessing throughput [13]. To address this

final challenge, TASM uses semantic predicate pushdown where

the semantic predicate is not a specific object type, but rather

a general region of interest (ROI). TASM bootstraps an initial

tile layout using an inexpensive predicate that identifies ROIs

within frames. This predicate can use background segmentation

to find foreground objects, motion vectors to identify areas

with large amounts of motion, or even a specialized neural

network designed to identify specific object types. When an

object detection query is executed, TASM only decodes the

tiles that contain ROIs, hence filtering regions of the frame

before the decode step. TASM thus alleviates the bottleneck

for the full scan phase of object detection queries by reducing

the amount of data that must be decoded and preprocessed.

TASM can be directly incorporated into existing techniques and

systems that accelerate the extraction of semantic information

from videos (e.g., [3], [11]).

In summary, the contributions of this paper are as follows:

• We develop TASM1, a new type of storage manager for

video data that splits video frames into independently

queryable tiles. TASM optimizes the tile layout of a

video file based on its contents and the query workload.

By doing so, TASM accelerates queries that retrieve

objects in videos while keeping storage overheads low

and maintaining good video quality.

• We develop new algorithms for TASM to dynamically

evolve the video layout as information about the video

content and query workload becomes available over time.

• We extend TASM to cheaply profile videos and design

an initial layout around ROIs when a video is initially

ingested. This initial tiling reduces the preprocessing work

required for object detection queries.

We evaluate TASM on a variety of videos and workloads

and find that the layouts picked by TASM speed up subframe

selection queries by an average of 51% and up to 94%

while maintaining good quality, and that TASM automatically

tunes layouts after just a small number of queries to improve

performance even when the workload is unknown. We also find

that TASM improves the throughput of the full scan phase of

object detection by up to 2× while maintaining high accuracy.

II. BACKGROUND

Videos are stored as encoded files due to their large size.

Video codecs such as H264 [20], HEVC [21], and AV1 [22]

specify algorithms used to (de)compress videos. While the

specific algorithms used by various codecs differ, the high-

level approach is the same as we describe in this section.

Groups of pictures: A video consists of a sequence of

frames, where each frame is a 2D array of pixels. Frames in

the sequence are partitioned into groups of pictures (GOPs).

Each GOP is encoded independently from the other GOPs

and is typically one second in duration. The first frame in a

GOP is called a keyframe. Keyframes allow GOPs to act as

temporal random access points into the video because it is

possible to start decoding a video at any keyframe. To retrieve

a specific frame, the decoder begins decoding at the closest

keyframe preceding the frame being retrieved. Keyframes have

large storage sizes because they use a less efficient form of

compression than other types of frames, so the number of

keyframes impacts a video’s overall storage size. Videos stored

with long GOPs are smaller in size than videos stored with short

GOPs, but they also have fewer random access opportunities.

1Code is available at https://github.com/uwdb/TASM.
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Tiles: Compressed videos do not generally support decoding

spatial regions of a frame. The encoding process creates spatial

dependencies within a frame, and decoders must resolve these

dependencies by decoding the entire frame, even if just a small

region is requested. Modern codecs, however, provide a feature

called tiles that enables splitting frames into independently-

decodable regions. Fig. 1 illustrates this concept. Like frames,

tiles are also 2D arrays of pixels. However, a tile only contains

the pixels for a rectangular portion of the frame. The full frame

is recovered by combining the tiles. Tiles introduce spatial

random access points for decoding. To decode a region within

a frame, only the tiles that contain the requested region are

processed. This flexibility to decode spatial subsets of frames

comes with tradeoffs in quality; tiling can lead to artifacts

appearing at the tile boundaries [23], which reduces the visual

quality of videos. As such, carefully selecting tile layouts is

important for high-quality query results. While tiles act as spatial

random access points, temporal random access is still provided

by keyframes. Tiles are applied to all frames within a GOP, so

decoding a tile in a non-keyframe requires decoding that tile in

all frames starting from the preceding keyframe.

A tile layout defines how a sequence of frames is divided

into tiles. A layout L=(nr, nc, {h1, . . . , hnr}, {w1, . . . , wnc})
is defined by the number of rows and columns, nr and nc,

the height of each row, and the width of each column. These

parameters define the (x, y) offset, width, and height of the

nr·nc tiles. An untiled video is a special case of a tile layout

consisting of a single tile that encompasses the entire frame:

ω = (1, 1, {frame height}, {frame width}). Valid layouts

require tiles to be partitioned along a regular grid, meaning

rows and columns extend through the entire frame. We do

not consider irregular layouts, which are not supported by the

HEVC specification [21]. Different tile layouts can be used

throughout the video; a sequence of tiles (SOT) refers to a

sequence of frames with the same tile layout. Changes in the

tile layout must happen at GOP boundaries, so every new layout

must start at a keyframe. Therefore, changing the tile layout

has a high storage overhead for the same reason that starting a

new GOP has a high storage overhead. The cost of executing

a query over a video encoded with tiles is proportional to the

number of pixels and tiles that are decoded.

Stitching: Tiles can be stored separately, but they must be

combined to recover the original video. Tiles can be combined

without an intermediate decode step using a process called

homomorphic stitching [24]. Homomorphic stitching interleaves

the encoded data from each tile and adds header information

so the decoder knows how the tiles are arranged.

III. TILE-BASED STORAGE MANAGER DESIGN

In this section, we present the design of TASM, our tile-

based storage manager. TASM is designed to be the lowest

layer in a VDBMS. Unlike existing storage managers that serve

requests for sequences of frames, TASM efficiently retrieves

regions within frames to answer queries for specific objects.

Fig. 2 shows an overview of how TASM integrates with the

rest of a VDBMS. TASM incrementally populates a semantic

Fig. 2. Overview of how TASM integrates with a VDBMS.

index to store the bounding boxes associated with object

detections. While queries for statistics about the semantic

content can use the semantic index to avoid re-running

expensive analysis over the frame contents, TASM uses this

index to generate tile layouts, split videos into tiles, store such

physically tuned videos as files, and answer content-based queries

more efficiently by retrieving only relevant tiles from disk.

A. TASM API

TASM exposes the following access method API:

Method Parameters Result

SCAN video, L : labels, T : times Pixel[]

ADDMETADATA video, frame, label, —

x1, y1, x2, y2

The core method SCAN (video, L, T ) performs subframe

selection by retrieving the pixels that satisfy a CNF predicate on

the labels, L, and an optional predicate on the time dimension,

T . For example, L=(label=‘car’)∨(label=‘bicycle’) retrieves

pixels for both cars and bicycles.

TASM also exposes an API to incorporate metadata

generated during query processing into the semantic

index (discussed in the following section). The method

ADDMETADATA (video, frame, label, x1, y1, x2, y2) adds the

bounding box (x1, y1, x2, y2) on frame to the semantic index

and associates it with the specified label.

B. Semantic index

TASM maintains metadata about the contents of videos in

a semantic index. The semantic information consists of labels

associated with bounding boxes. Labels denote object types

and properties such as color. Bounding boxes locate an object

within a frame. When the query processor invokes TASM’s

SCAN method, TASM must efficiently retrieve bounding box

information associated with the specified parameters. The

semantic index is therefore implemented as a B-tree clustered

on (video, label, time). The leaves contain information about

the bounding boxes and pointers to the encoded video tile(s)

each box intersects based on the associated tile layout.

The semantic index is populated through the ADDMETADATA

method as object detection queries execute. As we discuss in

Section IV, TASM creates an initial layout around high-level

regions of interest within frames to speed up object detection

queries. As those queries execute and add more objects to the

semantic index, TASM incrementally updates the tile layout

to maximize the performance of the observed query workload.
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(a) Uniform 2x4 layout (b) Layout around cars & people

(c) Tile layout around cars (d) Tile layout around people

Fig. 3. Various ways to tile a frame. (a) is a uniform layout, while (b)-(d)
are non-uniform layouts. Depending on which objects are targeted, different
layouts will be more efficient.

(a) Fine-grained tiles (b) Coarse-grained tiles

Fig. 4. Non-uniform tile layout around cars using (a) fine-grained tiles, or (b)
coarse-grained tiles.

C. Tile-based data storage

Having captured the metadata about objects and other

interesting areas in a video using the semantic index, the next

step is to leverage it to guide how the video data is encoded

with tiles. Two tiling approaches are possible: uniform-sized

tiles, or non-uniform tiles whose dimensions are set based

on the locations of objects in the video. Both techniques can

improve query performance, but tile layouts that are designed

around the objects in frames can reduce the number of non-

object pixels that have to be decoded. Fig. 3 shows these

different tiling strategies on an example frame.

1) Uniform layouts: The uniform layout approach divides

frames into tiles with equal dimensions. This approach does

not leverage the semantic index, but if objects in the video are

small relative to the total frame size, they will likely lie in a

subset of the tiles. However, an object can intersect multiple

tiles, as shown in Fig. 3a where part of the person lies in two

tiles. While TASM decodes fewer pixels than the entire frame,

it still must process many pixels that are not requested by

the query. Further, the visual quality of the video is reduced

because in general a large number of uniform tiles are required

to improve query performance, as shown in Fig. 7b.

2) Non-uniform layouts: TASM creates non-uniform layouts

with tile dimensions such that objects targeted by queries lie

within a single tile. There are a number of ways a given tile

layout can benefit multiple types of queries. If a large portion

of the frame does not contain objects of interest, the layout can

be designed such that this region does not have to be processed.

If objects of interest appear near each other, a single tile around

this region benefits queries for any of these objects. If objects

are not nearby but do appear in clusters, creating a tile around

each cluster can also accelerate queries for these objects.

Fig. 4 shows examples of non-uniform layouts around cars.

For a set of bounding boxes B, TASM picks tile boundaries

guided by a desired tile granularity. For coarse-grained tiles

(Fig. 4b), it places all B within a single, large tile. For fine-

grained tiles (Fig. 4a), it attempts to isolate non-intersecting b ∈
B into smaller tiles while respecting minimum tile dimensions

(a) Long layout duration (b) Short layout duration

Fig. 5. (a) shows how more pixels must be decoded on each individual frame
when a tile layout extends for many frames compared to (b) where fewer
frames have the same layout. The boxes show the location of the car on later
frames, and the dashed lines show the tile boundaries. The striped region
indicates the tile that would be decoded for a query targeting cars.

specified by the codec and ensuring that no tile boundary

intersects any b ∈ B. TASM does not limit the number of tiles

in a layout. To modulate quality, this could be made a user-

specified setting; we leave this as future work. TASM processes

fewer pixels from a video stored with fine-grained tiles because

the tiles do not contain the parts of the frame between objects,

but it processes more individual tiles because multiple tiles in

each frame may contain objects. TASM estimates the overall

effectiveness of a layout using a cost function that combines

these two metrics, as described in Section IV-A.

In addition to deciding the tile granularity, TASM also

chooses which objects to design the tile layout around, and

therefore which bounding boxes to include in B. The best

choice depends on the queries. For example, if queries target

people, a layout around just people, as in Fig. 3d, is more

efficient than a layout around both cars and people (Fig. 3b).

We explain how TASM makes this choice in Section IV.

3) Temporally-changing layouts: Different tile layouts,

uniform and non-uniform, can be used throughout a video; the

layout can change as often as every GOP. TASM uses different

layouts throughout a video to adapt to objects as they move.

The size of these temporal sections is determined by the

layout duration, which refers to the number of frames within a

sequence of tiles (SOT). Layout duration is separate from GOP

length; while layout duration cannot be shorter than a GOP, it

can extend over multiple GOPs. The layout duration affects

the sizes of tiles in non-uniform layouts, as shown in Fig. 5. In

general, longer tile layout durations have lower storage costs

but lead to larger tiles because TASM must consider more

object bounding boxes as objects move and new objects appear.

Therefore, TASM must decode more data on each frame. We

evaluate this tradeoff in Fig. 10.

4) Not tiling: Layouts that require TASM to decode a similar

number of pixels as when the video is not tiled can actually

slow queries down due to the implementation complexities that

arise from working with multiple tiles. Therefore, TASM may

opt to not tile GOPs when the gain in performance does not

exceed a threshold value.

5) Data storage and retrieval: TASM stores each tile as a

separate video file, as shown in Fig. 1. If different layouts are

used throughout the video, each tile video contains only the

frames with that layout. If only a segment of a video is ever

queried, TASM reads and tiles just the frames in that segment.
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This storage structure facilitates the ingestion of new videos

because each video’s data is stored separately. Additionally,

because each GOP is also stored separately, to modify an

existing video, updated GOPs can replace original ones, or

new GOPs can be appended.

TASM retrieves just the tiles containing the objects targeted

by queries. When complete frames are requested, TASM applies

homomorphic stitching (see Section II). This stitching process

can also be used to efficiently convert the tiles into a codec-

compliant video that other applications can interact with.

IV. TILING STRATEGIES

TASM automatically tunes the tile layout of a video to improve

query performance. The objects in a video and workloads, or the

set of queries presented to a VDBMS, may be known or unknown.

When TASM has full knowledge of both the objects targeted by

queries and the locations of these objects in video frames, TASM

designs tile layouts before queries are processed, as described in

Section IV-B. In practice, the objects targeted by queries and

their locations are initially unknown. TASM uses techniques

from online indexing to incrementally design layouts based on

prior queries and the objects detected so far, as described in

Section IV-C. Finally, TASM also creates an efficient, initial tiling

before any queries are executed as we present in Section IV-D.

A. Notation and cost function

We first introduce notation that will be used throughout

this section. A query workload Q = (q1, ..., qn) is a list of

queries, where each query requests pixels belonging to specified

object classes, possibly with temporal constraints. The set Oqi

represents the objects requested by an individual query qi,
while OQ = ∪qi∈QOqi is the set of all objects targeted by Q.

A video v = s0 ⊕ · · · ⊕ sn is a series of concatenated,

non-overlapping, non-empty sequence of tiles (SOTs; see

Section II), si. A video layout specification L=si �→ L
maps each SOT to a tile layout, L, which specifies how

frames are partitioned into tiles, as described in Section II.

If a SOT is not tiled, then si �→ω, where ω refers to a 1×1
tile layout. PARTITION(s,O) refers to tiling the SOT using a

non-uniform layout around the bounding boxes associated with

objects in the set O using the techniques from Section III-C2.

For example, PARTITION(s, {car, person}) refers to creating

a layout around cars and people, as in Fig. 3b.

TASM implements a “what-if” interface [25] to estimate

the cost of executing queries with alternative layouts using a

cost function. The estimated cost of executing query q over

SOT s encoded with layout L is C(s, q, L)=β ·P (s, q, L)+γ ·
T (s, q, L). The cost C is proportional to the number of pixels

P , and the number of tiles T that are decoded, both of which

depend on the query and layout. To validate this cost function

and estimate β and γ to use in experiments, we fit a linear

model to the decode times for over 1,400 video, query, and

non-uniform layout combinations used in the microbenchmarks

in Section V-B. The resulting model achieves R2=0.996. The

exact values of β and γ will depend on the system; TASM can

re-estimate them by generating a number of layouts from a small

sample of videos and measuring execution time.

Finally, the cost of executing q over video v encoded

with layout specification L is the sum of its SOT costs (i.e.,

C(v, q,L )=
∑

si∈v C(si, q,L (si))) and the cost of executing

an entire query workload is the sum over all individual queries,

C(v,Q,L )=
∑

qi∈Q C(v, qi,L ). The difference in estimated

query time for query q over SOT s between layouts L and L′ is

Δ(q, L, L′, s)=C(s, q, L)−C(s, q, L′), or simply Δ(q, L, L′)
when s is obvious from the context. The cost of (re-)encoding

SOT s with layout L is R(s, L).
Using this cost function, the maximum expected

improvement for an individual query is inversely proportional to

the object density, which determines the number of pixels (P )

and tiles (T ). Tiling therefore leads to negligible improvement—

or even regressions—when objects are dense and occupy a large

fraction of a frame. In those cases, TASM does not tile a video

at all as we discuss in Section IV-B. In contrast, tiling yields

large improvements when objects are sparse. Fig. 11 shows the

linear relationship. It shows how, for a given video and query,

non-uniform tiling reduces the number of pixels that must

be decoded, which directly increases performance. TASM’s

regret-based approach described in Section IV-C converges to

such good layouts over time as queries are executed. Fig. 9

also shows how object densities affect performance.

B. Known queries and known objects

We first present TASM’s fundamental video layout

optimization assuming a known workload, meaning that TASM

knows which objects will be queried, and the semantic index

contains their locations. These assumptions are unlikely to hold

in practice, and we relax them in the next section.

Given a workload and a complete semantic index, TASM

decides on SOT boundaries then picks a tile layout for each

SOT to minimize execution costs over the entire workload.

More formally, the goal is to partition a video into SOTs,

v = s0 ⊕ · · · ⊕ sn and find L ∗ = argminLC(v,Q,L ).
The experiment in Fig. 10 motivates us to create small SOTs

because they perform best. We therefore partition the video

such that each GOP corresponds to a SOT in the tiled video.

This produces a tiled video with a similar storage cost as the

untiled video because it has the same number of keyframes.

It would be too expensive for TASM to consider every

possible layout, uniform and non-uniform, for a given SOT.

However, tile layouts that isolate the queried objects should

improve performance the most. Additionally, we empirically

demonstrate that non-uniform layouts outperform uniform

layouts (see Fig. 7a), and that fine-grained layouts outperform

coarse-grained layouts (see Fig. 9). Therefore, for each si,
TASM only considers a fine-grained, non-uniform layout around

the objects targeted by queries in that SOT, Osi ⊆ OQ.

TASM’s optimization process proceeds in two steps. First, for

each si and associated layout, L=PARTITION(si, Osi), TASM

estimates if re-tiling the SOT with L will improve query

performance at all. As described in Section III-C4, TASM

does not tile si when P (si, Q, L)>α·P (si, Q, ω), where α
specifies how much a tile layout must reduce the amount of

decoding work compared to an untiled video (i.e., L=ω). In our
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1: OQ′ ← ∅, Lalt ← ∅, ∀sj ∈ v : δj ← 0, Lj
0 ← ω

2: for all qi ∈ Q do
3: OQ′ ← OQ′ ∪Oqi

4: L′
alt = P(OQ′)

5: for all Lk ∈ L′
alt − Lalt do

6: for m = 0, . . . , i− 1 do
7: ∀sj ∈ v : δjk ← δjk +Δ(qm, Lj

m, Lk)

8: Lalt ← L′
alt

9: for all Lk ∈ Lalt do
10: ∀sj ∈ v : δjk ← δjk +Δ(qi, L

j
i , Lk)

11: for all sj ∈ v do
12: k∗ ← argmaxkδ

j
k

13: if δjk∗ > η ·R(sj , Lk∗) then
14: Retile sj with Lk∗ . δj ← 0

Fig. 6. Pseudocode for incrementally adjusting layouts

experiments we find α=0.8 to be a good threshold. As shown

in Fig. 11, this value of α prevents TASM from picking tile

layouts that would slow down query processing, but does not

cause it to ignore layouts that would have significantly sped up

queries. Second, from among all such layouts, TASM selects

the layout with the smallest estimated cost for the workload.

C. Unknown queries and unknown objects

In practice, objects targeted by queries and their locations

are initially unknown. Physically tuning the tile layout is then

similar to the online index selection problem in relational

databases [18]. In both, the system reorganizes physical data

or builds indices with the goal of accelerating unknown

future queries. However, while a nonclustered index can

benefit queries over relational data because there are many

natural random access points, video data requires physical

reorganization to introduce useful random access opportunities.

As TASM observes queries and learns the locations of objects,

it makes incremental changes to the video’s layout specification

to introduce these random access points.

TASM optimizes the layout of each SOT independently

because each SOT’s contribution to query time and the cost to

re-encode it are independent of other SOTs. TASM optimizes

the layout of an SOT based on the queries that have targeted

it so far. TASM may even tile it multiple times with different

layouts as the semantic index gains more complete information

and TASM observes queries that target additional objects.

As TASM re-encodes portions of the video, the SOT

sj transitions through a series of layouts: L=[Lj
0, · · · , Lj

n].
TASM’s goal is to pick a sequence of layouts that minimizes

the total execution cost over the workload by finding

L∗=argminL
∑

qi∈Q(C(sj , qi, L
j
i ) + R(sj , L

j
i )). The first

term measures the cost of executing the query with the current

layout, and the second term measures the cost of transitioning

the SOT to that layout. If the layout does not change (i.e.,

Lj
i−1=Lj

i ), then R(sj , L
j
i )=0. However, future queries are

unknown, so TASM must pick Lj
i+1 without knowing qi+1.

Therefore, TASM uses heuristics to pick a sequence of layouts,

L̂, that approximates L∗. While there are no guarantees on

how close L̂ is to L∗, we show in Section V-C that empirically

these layouts perform well. One such heuristic is guided by the

observation that many applications query for similar objects

over time. TASM therefore creates layouts optimized for objects

it has seen so far. More formally, let OQ′ be the set of objects

from Q′=(q0, · · · , qi) ⊆ Q. TASM only considers non-uniform

layouts around objects in OQ′ for Li+1.

Now consider a future query qj that targets a new class

of object: Oqj 	⊆OQ′ . While Li+1 will not be optimized for

Oqj , TASM attempts to create layouts that will not hurt the

performance of queries for new types of objects. It does this

by creating fine-grained tile layouts because, as shown in

Fig. 9, fine-grained tiles lead to better query performance

than coarse-grained tiles when queries target new types of

objects (PARTITION(s,O′), O′∩Oqj=∅). Objects that are not

considered when designing the tile layout may intersect multiple

tiles, and it is more efficient for TASM to decode all intersecting

tiles when the tiles are small, as in fine-grained layouts, than

when the tiles are large, as in coarse-grained layouts.

At a high level, TASM tracks alternative layouts based on

the objects targeted by past queries and identifies potentially

good layouts from this set by estimating their performance

on observed queries. TASM’s incremental tiling algorithm

builds on related regret-minimization techniques [18], [19].

Regret captures the potential utility of alternative indices or

layouts over the observed query history when future queries are

unknown. As each query executes, TASM accumulates regret

δjk for each SOT sj and alternative layout Lk, which measures

the total estimated performance improvement compared to the

current tile layout over the query history.

Fig. 6 shows the pseudocode of our core algorithm for

incremental tile layout optimization using regret minimization.

Initially, TASM has not seen queries for any objects, so it does

not have any alternative layouts to consider, and each SOT is

untiled (line 1). After each query, TASM updates the set of seen

objects and alternative layouts (lines 3-4). Each potential layout

is a subset of the seen objects that have location information

in the semantic index. TASM then accumulates regret for

each potential layout by computing Δ and adding it to δ. Δ
measures the estimated performance improvement of executing

the query with an alternative layout rather than the current

layout, using the cost function described in Section IV-A:

Δ(q, L, L′) = C(s, q, L) − C(s, q, L′). Layouts with high Δ
values would likely reduce query costs, while layouts with

low or negative values could hurt query performance. TASM

accumulates these per-query Δ’s into regret to estimate which

layouts would benefit the entire query workload.

TASM first retroactively accumulates regret for new layouts

based on the previous queries (lines 5-7), and then accumulates

regret for the current query (lines 9-10). Finally, TASM weighs

the performance improvements against the estimated cost of

transitioning a SOT to a new layout. In lines 11-14, TASM

only re-tiles sj once its regret exceeds some proportion of its

estimated retiling cost: δjk > η ·R(sj , Lk).
As an example, consider a city planning application looking

through traffic videos for instances where both cars and

pedestrians were in the crosswalk at the same time. Initially the

traffic video is untiled, so for each si, L (si)=ω. Suppose the
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first query requests cars in s0. TASM updates Lalt={{car}}
to consider layouts around cars. TASM accumulates regret

for s0 as δ0car=Δ(q0, ω, PARTITION(s0, {car})), and it is

positive because tiling around cars would accelerate the query.

Suppose the next query is for people in s0. TASM updates

Lalt={{car}, {person}, {car, person}} to consider layouts

around cars and people. The regret for PARTITION(s0, {car})
on q1 will likely be negative because layouts around anything

other than the query object tend to perform poorly (see

Fig. 9b), so δ0car decreases. TASM retroactively accumulates

regret for the new layouts. The accumulated regret for

PARTITION(s0, {person}) will be similar to δ0car because it

would accelerate q1 and hurt q0. PARTITION(s0, {car, person})
has positive regret for both q0 and q1, so after both queries it

has the largest accumulated regret.

The threshold η (see line 13) determines how quickly TASM

re-tiles the video after observing queries for different objects.

Using η = 0 risks wasting resources to re-tile SOTs. The work

to re-tile could be wasted if a SOT is never queried again

because no queries will experience improved performance

from the tiled layout. The work to re-tile can also be wasted if

queries target different objects because TASM will re-tile after

each query with layouts optimized for just that query. Values

of η > 0 enable TASM to observe multiple queries before

picking layouts, so the layouts can be optimized for multiple

types of objects. Observing multiple queries before committing

to re-tiling also enables TASM to avoid creating layouts

optimized for objects that are infrequently queried because

layouts around more representative objects will accumulate

more regret. However, if the value of η is too large, it reduces

the number of queries whose performance benefits from the

tiled layout. Using a value of η = 1 is similar to the logic

used in the online indexing algorithm in [18], and we find it

generally works well in this scenario, as shown in Fig. 12. If

the types of objects queries target changes, this incremental

algorithm will take some amount of time to adjust to the new

query distribution, depending on the value of η.

D. ROI tiling

Initially, nothing is known about a video. As we discussed

in Section I, in many systems, the first object detection query

performs a full scan and applies a simple predicate to filter

away uninteresting frames or compute statistics. Because of

the speed of these initial filters, decoding and preprocessing is

the bottleneck for this phase [13]. To accelerate this full scan

phase, TASM also uses predicate pushdown. Instead of creating

tiles around objects, however, TASM creates tiles around more

general regions of interest (ROIs), where objects are expected

to be located. ROIs are defined by bounding boxes, so TASM

uses the same tiling strategies described in previous sections.

TASM accepts a user-defined predicate that detects ROIs and

inserts the associated bounding boxes into TASM’s semantic

index. Examples include applying background subtraction to

identify foreground objects, running specialized models trained

to identify a specific object type [7], [12], extracting motion

vectors to isolate areas with moving objects, or any other

TABLE I
VIDEO DATASETS

Video dataset Duration Res. Per-frame Frequently
(sec.) object occurring objects

coverage (%)

Visual Road [28]† 540–900 2K, 4K 0.06–10 car, person

Netflix public [29] 6 2K 0.32–49 person, car, bird

Netflix OS [30]* 720 2K, 4K 25–45 person, car, sheep

XIPH [31] 4–20 2K, 4K 2–59 car, person, boat

MOT16 [32] 15–30 2K 3–36 car, person

El Fuente [33] 480 (full) 4K 1–47 person, car,

15–45 (scenes) boat, bicycle

† Synthetic videos * Both real and synthetic videos

inexpensive computation. More expensive predicates may also

be used by applying them every n frames, as in [11].

Generating ROIs and creating tiles around these regions are

operations that a compute-enabled camera can perform directly

as it first encodes the video. Cameras are now capable of

running these lightweight predicates as video is captured [26].

For example, specialized background subtractor modules can

run at over 20 FPS on low-end hardware [27]. This optimization

is designed to be implemented on the edge.

Through its semantic predicate pushdown optimization,

TASM improves the performance of object detection queries

by only decoding tiles that contain ROIs. As we show in

Section V-E, an initial ROI layout in combination with semantic

predicate pushdown can significantly accelerate the full scan

phase of object detection queries while maintaining accuracy.

V. EVALUATION

We implemented a prototype of TASM in C++ integrated

with LightDB [24]. TASM encodes and decodes videos using

NVENCODE/NVDECODE [34] with the HEVC codec. We

perform experiments on a single node running Ubuntu 16.04

with an Intel i7-6800K processor and an Nvidia P5000 GPU. Our

prototype does not parallelize encoding or decoding multiple

tiles at once. We use FFmpeg [35] to measure video quality.

We evaluate TASM on both real and synthetic videos with a

variety of resolutions and contents as shown in Table I. Visual

Road videos simulate traffic cameras. They include stationary

videos as well as videos taken from a roof-mounted camera

(the latter created using a modified Visual Road generator [28])

The Netflix datasets primarily show scenes of people. The

XIPH dataset captures scenes ranging from a football game

to a kayaker. The MOT16 dataset contains busy city scenes

with many people and cars. The El Fuente video contains a

variety of scenes (city squares, crowds dancing, car traffic).

In addition to evaluating the full El Fuente video, we also

manually decompose it into individual scenes using the scene

boundaries specified in [33] and evaluate each independently.

We do not evaluate on videos with resolution below 2K because

we found that decoding low-resolution video did not exhibit

significant overhead. All experiments populate the semantic

index with object detections from YOLOv3 [36], except for

the MOT16 videos where we use the detections from the

dataset [32]. We store the semantic index using SQLite [37], and

TASM maps bounding boxes to tiles at query time.
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(a) (b)
Fig. 7. (a) shows the improvement in query time achieved by tiling the video
using the fastest uniform and non-uniform layout for each video and query
object. (b) shows the quality of these layouts compared to the untiled video.

The queries used in the microbenchmarks evaluated in

Section V-A and V-B are subframe selection queries of the

form “SELECT o FROM v”, which cause TASM to decode all

pixels belonging to object class o in video v. The queries

used in the workloads in Section V-C additionally include a

temporal predicate (i.e., “SELECT o FROM v WHERE start

< t < end”). 2 Reported query times include both the index

look-up time and the time to read from disk and decode the tiles.

Unless otherwise specified, queries target the most frequently

occurring objects in each video. When videos primarily show

a single type of object (e.g., some Netflix public dataset videos

show only people), queries target just that object. When videos

feature multiple types of objects with similar frequency (e.g.,

the Visual Road videos show similar numbers of cars and

people), we evaluate on queries that target each object type.

Queries over the MOT16 videos retrieve cars and people

because the bounding boxes that come with the dataset are

unlabeled, so we store them in the semantic index with a generic

label of “object”. For all graphs, the bars show the median value

across videos, while the error bars denote the interquartile range

(IQR) across videos. The performance differs across videos

because they have different object densities, which affects

TASM’s efficacy as described in Section V-B2. However, the

runtime for a single query on any video has low variance. The

standard deviation for multiple executions of the same query

is < 1% of that query’s mean execution time.

A. Tiling effect on decode cost and quality

We first evaluate whether tiling can provide meaningful

improvements in query time without degrading the visual

quality of videos. We find that non-uniform layouts yield

better query performance and higher video quality than uniform

layouts. Fig. 7 only shows results for videos and queries that

benefit from tiling, using the layouts that empirically led to

the greatest performance improvement. We discuss how TASM

determines whether to tile a video in Section V-B3 and how it

selects the optimal tile layout in Section V-B and Section V-C.

Fig. 7a shows the improvement in query time achieved by

operating over a tiled video compared to a video that is not

tiled. For a given video and query object, a non-uniform layout

provides an average of 10% improvement and up to a 35%

improvement over the best uniform layout.

2While we use SQL to explain the experiments because of its familiarity
to most readers, other language bindings on TASM’s API are possible; the
language itself is not the focus of this paper.

Fig. 8. This figure shows improvement in query time achieved with various
uniform layouts compared to the untiled video.

(a) Same (b) Different (c) All (d) Superset

Fig. 9. The effect of tile granularity on query time compared to untiled videos.
All videos used a one second tile layout duration. Objects occupy <20% of
each frame on average in “sparse”, and ≥20% in “dense” videos.

Fig. 7b shows that tiling maintains good visual quality

when the tiles are stitched to recover the full frame. We

measure quality using peak signal-to-noise ratio (PSNR), where

values above 30 dB are acceptable [38], and videos with

values ≥ 40 dB are perceived to have good quality [29], [39].

PSNR was computed over the entire tiled video stitched using

homomorphic stitching [24] and compared against the untiled

video. For comparison, the median PSNR after re-encoding the

videos without tiles is 46 dB. Non-uniform layouts achieve an

average PSNR of 40 DB, while uniform layouts have an average

of 36 dB. PSNR is likely lower for the uniform layouts because

the layouts with the largest performance improvement have

many tiles (the median number of tiles is 25), and therefore a

large number of tile boundaries where quality is degraded.

B. Microbenchmarks

1) Uniform tiles: We dig deeper into the results of Fig. 7 and

show in Fig. 8 the performance improvements when varying the

number of uniform tiles on the same set of videos. We increase

the number of uniform tiles first by increasing the number

of rows and columns together, and then by only increasing

the number of columns once the height of each tile reached

the minimum height allowed by the decoder. Fig. 8 shows

that creating more uniform tiles initially improves query time

because tiles contain fewer non-object pixels. However, as the

number of tiles grows, the per-tile decode overhead begins to

slow queries down. Additionally, variation in performance across

videos and queries increases with the number of tiles, as indicated

by the widening IQR bars, demonstrating that the same uniform

layout does not work equally well on all videos and queries.

2) Non-uniform tiles: The performance of non-uniform

layouts depends on the objects queries target and the objects

considered when designing the tile layout. Fig. 9 shows results

from different settings. We classify layouts as same, different,
all, or superset. “Same” describes a tile layout around the query

object. “Different” describes a layout around an object different
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Fig. 10. This plot shows the effect of SOT duration on query time and storage
cost. Tiled videos were encoded with fine-grained tiles and a GOP length
equal to the SOT duration.

from the query object (e.g., tiling around people but querying

for cars). “All” describes tiling around all objects detected in

the video. Finally, “superset” evaluates tiling around the target

object and only 1-2 other, frequently occurring objects (e.g.,

tiling around cars and people, as in Fig. 3b). We further classify

videos as sparse, where the average area occupied by all objects

in a frame is <20%, or dense, where it is ≥20%. Fig. 9 shows

the results. The “different” and “superset” categories only use

Visual Road videos and El Fuente scenes that feature multiple

object classes; the other videos have a single primary object type.

Fig. 9 shows that tiling generally improves performance in

sparse videos more than dense videos, and tile granularity has

the largest impact when objects are dense. Fig. 9a shows that

when the tile layout is constructed around the query object,

both coarse- and fine-grained tiles significantly improve query

performance. Fig. 9b shows that tiling around an object type

different from the query object hurts performance when objects

are dense. This happens when one object is more dense than the

others. Querying for the dense object using a layout around the

sparse object requires TASM to decode most of the tiles because

the dense object occupies much of each frame. Querying for

a sparse object using a layout around the dense object also

requires most of the frame to be decoded because tiles around

dense objects tend to be large. TASM avoids creating these

ineffective layouts around dense objects using the decision

rule from Section IV-B, which we evaluate in Section V-B3.

Improvement in sparse videos is reduced, but still positive;

although the query object may intersect multiple tiles, TASM

still performs less work if the tiles are small.

Fig. 9c shows that tiling around all objects is effective only

when objects are sparse. When objects are dense, median

improvement is 1% worse for coarse-grained tiles. Fig. 9d

shows that the “superset” strategy performs similarly to “all”;

considering only two or three types of objects rather than all

objects when designing layouts achieves small performance gains.

These results show that tiling around anything other than

the query object slows queries down compared to tiling around

the query object. However, fine-grained tiles can still lead to

moderate performance improvements in these cases because

they are smaller, so fewer non-object pixels must be decoded.

Sequence of tiles (SOT) duration. Here we evaluate the

impact of SOT duration (the number of frames with the same

layout) on the performance of non-uniform tile layouts. SOT

duration affects the sizes of both tiles and the video. Layout
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Fig. 11. Ratio of the number of pixels decoded with a non-uniform layout to
the number decoded without tiles vs. performance improvement. Each point
represents a video, query object, and non-uniform layout. Points below the
horizontal line at 0% represent cases where queries ran more slowly on the
tiled video. Points to the right of the vertical line at 0.8 represent videos that
would not be tiled when the threshold for tiling requires the ratio to be < 0.8.

changes must happen at GOP boundaries, so short SOTs require

short GOPs and lead to larger storage sizes (see Section II).

Fig. 10 shows the effect of SOT duration on query

performance and storage size. The tiled videos are encoded

with a GOP length equal to the SOT duration. We compare

query performance and storage size to an untiled video encoded

with one-second GOPs (the default GOP duration in most video

encoders). Shorter SOT durations lead to larger improvements

in query performance because the tiles are smaller and contain

fewer non-object pixels. However, shorter SOTs lead to larger

storage costs because there are more keyframes. Note that we

see a small improvement in the size of the tiled video with

one-second SOTs compared to the original video (also encoded

with one-second GOPs); this is due to video encoders being

inherently lossy and having the ability to exploit additional

compression opportunities during recompression. These results

demonstrate that setting SOT duration to GOP length is optimal

since it leads to the best performance without storage overhead.

3) Not tiling: There are videos where tiling is an ineffective

strategy to improve query performance. To identify cases where

tiling should not be used, we evaluate the effectiveness of a

decision rule based on the number of pixels decoded with a

given layout. Fig. 11 plots the improvement in query time

against the ratio of pixels decoded with a non-uniform layout

compared to the untiled video (i.e., P (v, q, L)/P (v, q, ω))
for various videos and query objects. The figure includes a

sampling of diverse layouts, both optimal and suboptimal.

The “same” category includes the greatest variety of layouts

measured, including suboptimal layouts. While many points

overlap, the key observation is that queries for sparse objects

primarily lie in the top-left quadrant. This aligns with the

expected improvements based on the cost function described

in Section IV-A. Using a threshold of not tiling when

P (v, q, L)/P (v, q, ω)>0.8 captures nearly all tile layouts that

slow queries down (i.e., the improvement is negative). A small

number of videos achieve minor performance improvements

(<20%) above this threshold (the upper-right quadrant).

C. Incremental tiling

We next evaluate strategies for incremental tiling over various

subframe selection workloads, which we construct to represent

possible query patterns over videos. The baseline strategies

are not tiling the video (“Not tiled”) and tiling around all

detected objects before queries are processed (“All objects”).
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0 50 100 150 200
0

50

100

150

200

(d) Workload 4

0 50 100 150 200
Query number

0
50

100
150
200

T
o

ta
l 
d

e
co

d
e

a
n

d
 r

e
ti

li
n

g
 t

im
e

(e) Workload 5
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Fig. 12. Cumulative decode and re-tiling time for various workloads. Values
are normalized to the time to execute each query over the untiled videos.

We compare against two incremental strategies. “Incremental,

more” re-tiles each GOP with a non-uniform, fine-grained

layout around all object classes that have been queried so far.

For example, if a GOP were queried for cars and then people,

TASM would first tile around cars and then re-tile around

cars and people. Finally, we evaluate the regret-based approach

from Section IV-C (“Incremental, regret”). In this strategy, TASM

tracks alternative layouts based on the objects queried so far, and

re-tiles GOPs once the regret for a layout exceeds the estimated

re-encoding cost if the layout is not expected to hurt performance.

TASM estimates the layout will hurt performance if, for

any query, P (si, qi, L)≥α·P (si, qi, ω), where α=0.8 (see

Section IV-B). TASM estimates the regret using the cost

function described in Section IV-A. Similarly, the re-encoding

cost is estimated using a linear model based on the number of

pixels being encoded. It was fit based on the time to encode

videos with the various layouts used in the microbenchmarks.

As we are focused on the operations at the storage level,

we measure the cumulative time to read video from disk and

decode it to answer each query, and re-tile it with new layouts

as needed. The time to initially tile the video around all objects

is included with the first query for the “all objects” strategy.

We normalize each query’s cost to the time to execute that

query on the untiled video, so each query with the “not tiled”

strategy has a cost of 1. The lines in Fig. 12 show the median

over all videos the workload was evaluated on. We evaluate the

first four workloads on Visual Road videos, which have sparse

objects, and the last two on videos and scenes with dense objects.

As Fig. 12 shows, the regret-based approach consistently

performs best across all evaluated methods, except for Workload

1. TASM’s regret-based approach was designed for more

dynamic workloads than Workload 1 where the same query is

evaluated across the entire video. For this type of workload,

running object detection and tiling up front is a reasonable

strategy because all of the results will be used.

We now drill down in the results of each workload. Queries

in Workload 1 target a single object class across the entire

video. The workload consists of 100 one-minute queries for

cars uniformly distributed over each Visual Road video. As

shown in Fig. 12a and discussed above, pre-tiling around all

objects performs well when queries target the entire video.

Incrementally tiling without regret also performs well because

all queries target the same object, so SOTs are re-tiled to a

layout that speeds up future queries. The regret-based approach

performs poorly over a small number of queries because TASM

must observe multiple queries over the same SOT before enough

regret accumulates to re-tile. This requires many total queries to be

executed when they are uniformly distributed over the entire video.

We next evaluate Workload 2, which examines the

performance when queries are restricted to a subset of the

video. Workload 2 consists of 100 one-minute queries over the

first 25% of each Visual Road video. Each query has a 50%

chance of being for cars or people. As shown in Fig. 12b, both

incremental strategies perform similarly well. Both outperform

pre-tiling the entire video around all objects, which is wasteful

when only a small portion of the video is ever queried.

Workload 3 measures the performance when queries are

biased towards one section of a video and particular object

types. It consists of 100 queries over the Visual Road videos,

where each query has a 47.5% chance of being for cars or

people, and a 5% chance of being for traffic lights. We exclude

one 4K video that did not contain a traffic light. The start

frame of each query is picked following a Zipfian distribution,

so queries are more likely to target the beginning of the video.

As shown in Fig. 12c, the regret-based approach performs

better than incrementally tiling around more objects because it

spends less time re-tiling sections of the video with tile layouts

designed around the rarely-queried object.

Workload 4 measures performance when queries target

different objects over time. It consists of 200 one-minute queries

following a Zipfian distribution over the Visual Road videos.

The middle third of the queries target people, and the rest

target cars. As shown in Fig. 12d, the incremental, regret-based

approach performs well and does not exhibit large jumps in

decode and re-tiling time when the query object changes.

Workload 5 measures performance when tiling is not

effective. It is evaluated on select videos from the Xiph, Netflix

public dataset, and scenes from the El Fuente video that contain

diverse scenes with many types of objects (e.g., markets with

people, cars, and food). The queries are uniformly distributed,

and each randomly targets one of the video’s primary objects

within one-second. As shown in Fig. 12e, only the regret-

based approach keeps costs similar to not tiling. “All objects”

performs poorly because objects are dense in these scenes.

“Incremental, more” performs poorly because it spends time

re-tiling with layouts that perform similarly to the untiled video.

Finally, Workload 6 measures performance when tiling

around the query object is beneficial, but tiling around all

objects is not. It is evaluated on select videos from the Netflix

public dataset and scenes from the full El Fuente video that fit
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Fig. 13. Speedup achieved with TASM over the Visual Road object detection
workload. The lines show the median speedup over six orderings of the queries.

this criteria. The queries are uniformly distributed, and each

targets the same object class over one second. As shown in

Fig. 12f, both incremental strategies eventually achieve layouts

that perform better than not tiling. “All objects” performs poorly

because objects in these videos are dense.

D. Macrobenchmark

Beyond the decoding benchmarks, we also evaluate TASM’s

performance on an end-to-end workload from the Visual Road

benchmark [28], specifically Q7. Each query in the workload

specifies a temporal range and a set of object classes. The

following tasks are executed per-query: (i) detect objects if

not previously done on the specified temporal range, (ii) draw

boxes around the specified object classes, and (iii) encode the

modified frames. The original Visual Road query involves

masking the background pixels, but we omit that step to

demonstrate TASM’s benefits when users want to view full

frames. We compare the performance of executing this query

on untiled frames to TASM with incremental, regret-based

tiling. We detect objects by running YOLOv3 [36] every three

frames. TASM adds bounding boxes by decoding only the

tiles that contain the requested objects, drawing the boxes,

then re-encoding these tiles. TASM outputs the full frame by

homomorphically stitching the modified tiles that contain the

object with the original tiles that do not contain the object.

We execute 100 one-minute queries over the Visual Road

videos, using a Zipfian distribution over time-ranges. Each

query is randomly for cars or people. Fig. 13 shows the

median speedup achieved with TASM compared to the untiled

video over six orderings of the queries. TASM reduces the

total workload runtime by 12-39% across the videos. Object

detection contributes significantly to the total runtime and

LightDB does not use a pre-filtering step to accelerate this

operation. If we examine one instance of the workload where

the last 20 queries no longer need to perform object detection

and execute after TASM has found good layouts, the median

improvement for these queries ranges from 23% to 66% across

the videos. While these queries request the full frame, TASM

accelerates them by processing just the relevant regions of the

frame, which allows it to decode and encode less data.

E. Object detection acceleration

We now evaluate TASM’s ability to accelerate the full scan

phase of object detection queries, as described in Section I. One

system that uses specialized models during the full scan phase

is BlazeIt [3]. For example, it uses a specialized counting

Fig. 14. Specialized model
preprocessing throughput

TABLE II
MODEL ACCURACY

Day 1 Day 2 Day 3

Full 0.79 0.51 0.56

ROI 0.84 0.61 0.51

Coarse 0.76 0.60 0.54

model to compute aggregates. We evaluate TASM’s ability

to accelerate this phase using BlazeIt’s counting model as a

representative fast model. This model runs at over 1K frames

per second (fps), while preprocessing the frames runs below 300

fps. TASM reduces the preprocessing bottleneck and achieves

up to a 2× speedup while maintaining the model’s accuracy.

The preprocessing phase includes reading video from disk,

decoding and resizing frames, normalizing pixel values, and

transforming the pixel format. BlazeIt implements this using

Python, OpenCV [40], and Numpy [41] (“Python” in Fig. 14).

We reimplemented this using C++, NVDECODE [34], and Intel

IPP [42] to fairly compare against TASM (“C++”). We evaluate

on three days of BlazeIt’s grand-canal video dataset.

We compare against using semantic predicate pushdown

with ROI layouts generated by TASM. We first use MOG2-

based background segmentation implemented in OpenCV [40]

to detect foreground ROIs on the first frame of each GOP.

This is a throughput that recent mobile devices are known to

operate above [27], and therefore it would be possible for this

step to be offloaded to a compute-enabled camera as discussed

in Section IV-D. We use TASM to create fine-grained tiles

(“Fine tiles”) and coarse-grained tiles (“Coarse tiles”) around

the foreground regions. We also compare against a tile layout

created around a manually-specified ROI capturing the canal in

the lower-left portion of each frame (“ROI”).

Fig. 14 shows the preprocessing throughput when operating

on entire frames compared to just the tiles that contain ROIs.

Operating on tiles improves throughput by up to 2× and

therefore reduces the bottleneck for performing inference with

the specialized model. We next verify that using tiles rather than

full frames does not negatively impact the model’s accuracy. We

use the same model architecture for tiled inputs. However, rather

than training and inferring using full frames, we use a single tile

from each frame that contains all ROIs. For each strategy we train

BlazeIt’s counting model on the first 150K frames or tiles from

the first day of video. We evaluate this model on 150K frames or

tiles from each day (using a different set of frames for the first

day). As shown in Table II, models trained and evaluated on tiles

show similar accuracy to full frame training within each day.

VI. RELATED WORK

As mentioned in Section I, many systems optimize extracting

semantic content from videos. BlazeIt [3] and NoScope [7]

apply specialized NNs that run faster than general models.

Other systems filter frames before applying expensive models:

probabilistic predicates [12] and ExSample [43] use statistical

techniques, MIRIS [11] uses sampling, and SVQ [44] and IC
and OD filters [45] use deep learning filters. These systems and
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techniques can use TASM to run models on specific ROIs to

reduce their preprocessing overhead. Focus [9] shifts some

processing to ingest-time. Systems such as LightDB [24],

Optasia [1], and Scanner [8] accelerate queries through

parallelization and deduplication of work, while VideoEdge [46]

distributes processing over clusters. These general VDBMSs

could incorporate TASM to further accelerate performance.

Panorama [6] and Rekall [47] expand the set of queries that can

be executed over videos, which is orthogonal to video storage.

Other systems also target storage-level optimizations.

VStore [10] modifies encoding parameters to accelerate

processing while maintaining accuracy. Smol [13] jointly

optimizes video resolution and NN architectures to achieve high

accuracy while accelerating preprocessing, but, like VStore,

only considers reducing the resolution of videos while TASM

maintains video quality. Vignette [48] uses tiles for perception-

based compression but only considers uniform layouts.

TASM’s incremental tiling approach is inspired by database

cracking [16], [17], which incrementally reorganizes the data

processed by each query, and online indexing [18] which creates

and modifies indices as queries are processed. Regret has also

been used to design an economic model for self-tuning indices

in a shared cloud database [19]. TASM extends these relational

storage techniques to provide efficient access to video data.

Other application domains have observed the usefulness of

retrieving spatial subsets of videos. The MPEG DASH SRD

standard [49] is motivated by a similar observation that video

streaming clients occasionally request a spatial subset of videos.

While it specifies a model to support streaming spatial subsets,

it does not specify how to efficiently partition videos into tiles.

VII. CONCLUSION

We presented TASM, a tile-based storage manager that

accelerates subframe selection and object detection queries

by targeting spatial frame subsets. TASM incrementally tiles

sections of the video as queries execute, leading to improved

performance (up to 94%). We also showed how TASM alleviates

bottlenecks by only reading areas likely to contain objects.
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