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a b s t r a c t 
Strategic positioning and allocation of emergency responders and/or resources to potential 
emergency incidents are very important decisions for disaster management programs. In 
this paper, a reliable multi-type joint-service facility location model is proposed, which 
takes into consideration the need for cooperative service from multiple types of responder 
stations, as well as the probabilistic risk of station disruptions. The problem is formulated 
as a mixed-integer non-linear program and solved via a set of customized linear program 
and Lagrangian relaxation based algorithms. Numerical experiments on hypothetical and 
full-scale cases are conducted to demonstrate the applicability of the model and to draw 
managerial insights. 

© 2021 Elsevier Ltd. All rights reserved. 

1. Introduction 
Natural catastrophes and human-made disasters pose significant threats to society. In 2018 alone, they caused a total 

economic loss of approximately $ 165 billion worldwide ( McCarthy, 2019 ). Strategically prepositioning response and rescue 
resources is one of the most important parts of a disaster management cycle. Many emergency incidents, especially those of 
large-scale impacts, require cooperative dispatches of resources from multiple responder stations or jurisdictions. One reason 
is that individual responder stations can be limited by resources, equipment, organizational structure, and staffing strategies. 
For example, it was reported that 65% of all U.S. firefighters are part-time, on-call volunteers ( Ben and Gary, 2017 ) and as a 
result, in case of major incidents, multiple stations (or even jurisdictions) might need to cooperate with each other to form 
an effective response. Another reason is that large-scale incidents usually require services from different types of resources. 
For example, medical staff, reconstruction technicians, and security personnel had to be dispatched together in order to 
effectively respond to the 2010 Haiti earthquake ( Margesson and Taft-Morales, 2010 ). During the devastating 2019 Australian 
bush-fires, more than 30 0 0 reservists, 370 0 firefighters, and 440 emergency personnel are dispatched simultaneously from 
multiple jurisdictions as the disaster developed rapidly ( BBC, 2020 ). 

The situation with large-scale disasters is challenging also because built emergency-response systems themselves can be 
subject to random service disruptions, possibly due to physical damage, resource shortage, or temporary absences of em- 
ployees as a result of the disasters. Such disruptions of first responder stations during/after disasters will lead to even more 
damage and loss. It was reported that during Hurricane Maria in Puerto Rico, a third of deaths were caused by healthcare 
service disruptions ( Bryant, 2018 ). When stations are disrupted, they fail to respond to emergency incidents as originally 
planned, and service must be delivered through backup stations that are less convenient or responsive. As such, to enhance 
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disaster preparedness, emergency management agencies need to determine where to position the first responder stations of 
each type, which combinations of responder stations to cover a certain potential incident, and in what sequence (and with 
what probability) to use backups as needed. 

There is a large body of literature on facility location problem, which, depending on the objective and constraints, can 
be formulated as covering-, center-, or median-type models and solved by various discrete and continuous optimization 
techniques. The covering-type model aims at providing guaranteed service coverage to demand points with the least number 
of facilities. Toregas et al. (1971) proposed a set covering model for emergency facility location problem which was solved 
by linear programming type techniques. Several generalized covering models were later developed; for example, Church and 
ReVelle (1974) developed a maximal covering model that does not enforce coverage of all demand points. The center-type 
model, as described in Kariv and Hakimi (1979) , tries to position a given number of facilities to minimize the worst service 
time or cost experienced by any potential incident. This type of model is widely used in designing emergency facilities 
such as medical service facilities ( Jia et al., 2007 ) and fire stations ( Serra and Marianov, 1998 ). The median-type model, in 
which the objective is to minimize the average or total service time or cost of all potential incidents, was introduced by 
Hakimi (1964) and later studied extensively in the context of business facilities ( Rolland et al., 1997; Charikar and Guha, 
1999; Arya et al., 2004 ). 

Most of the emergency facility location problems were formulated as center or covering models where each ser- 
vice demand point is typically served by a single facility; interested readers are referred to Li et al. (2011) and 
Caunhye et al. (2012) for reviews. Also, most of the aforementioned models assumed that the facilities will be func- 
tioning once installed; hence, the system is not designed to be resilient to disruptions – the service quality and sys- 
tem performance might be significantly degraded if the installed stations are disrupted. In light of this, reliable facil- 
ity location problems have been studied during the past few years to account for probabilistic disruptions of facilities. 
Daskin (1983) introduced the maximum expected set covering location problem which considered the probabilities that 
facilities are unable to provide service. Repede and Bernardo (1994) extended the model by incorporating time-varying de- 
mand. Snyder and Daskin (2005) proposed reliability versions of the median problem and the uncapacitated fixed charge 
location problem, where the expected service costs under a large set of facility disruption scenarios are considered. A La- 
grangian relaxation algorithm was developed to solve the problem. Cui et al. (2010) studied the reliable uncapacitated fixed 
charge location problem, in which each facility is subject to independent but location-specific probabilistic disruptions. A 
mixed integer program formulation and a continuum approximation approach are both developed to solve the problem. 
Li and Ouyang (2010) started to address correlations among facility disruptions due to interdependencies or shared haz- 
ards. This line of work on correlated disruptions was followed by a series of effort s ( Li et al., 2013; Xie et al., 2015; 2019 ). 
An et al. (2015) further considered the queuing and congestion effect in reliable facility location problems, and a scenario- 
based stochastic mixed-integer non-linear program and a customized approximation solution algorithm were developed. 
Xie et al. (2016) then proposed an integer programming formulation of a reliable location-routing problem, in which out- 
bound delivery routing, facility setup, and backup plans are jointly optimized. More recently, Xie and Ouyang (2019) aug- 
mented the service network structure by critical network access points, such that the disruption of service facilities could 
be due to blockage of network access points. All the above reliable facility location literature deal with a single type of 
facility. Due to complexity, there is very limited literature on the reliable facility location problem with cooperative services 
from multiple types of stations/jurisdictions. The most relevant problem, to the best of our knowledge, is a sensor location 
problem as described in An et al. (2018) , in which multiple spatially distributed sensors are required to work together to 
trace a target object via trilateration. However, in that paper, all sensors are identical, and each target object will only use 
an equal number of sensors. Such assumptions might not be totally suitable for emergency response planning which often 
requires cooperation across varying numbers and different types of responders. 

In all the previous studies on reliable facility locations, there is only a single type of facility which are functionally iden- 
tical (i.e., in terms of providing the same service), while in this paper, we generalize previous models by considering, in 
addition to (i) disruption risks, location of (ii) multiple types of facilities (e.g., hospital, fire station, police station) that can 
provide complementing services, while (iii) each demand point (e.g., fire incident) require cooperative responses from a cer- 
tain combination of facility types. It is very challenging to incorporate joint services from multiple stations of different types 
into the reliable facility location problem, as the solution space now must cover discrete location and allocation decisions, 
combination of facilities as service units, and backup plans under probabilistic facility disruptions. Solving the problem for 
even small scale instances is very difficult. In spite of these challenges, however, this paper aims at developing a framework 
of model formulations and solution algorithms for the reliable multi-type joint-service facility location problem. Specifically, 
this paper develops a systematic approach to track joint service of multi-type facilities when some of the facilities may be 
subject to disruptions. The problem is formulated as a compact mixed-integer non-linear program to minimize expected 
systemwide cost across all disruption scenarios. A set of customized algorithms, including linear program and Lagrangian 
relaxation based algorithms, as well as approximation subroutines for lower bounds, is proposed to solve the problem effec- 
tively. A series of numerical experiments are conducted to draw insights on the optimal station deployment and assignment 
plans under various parameter settings. 

The remainder of this paper is organized as follows. Section 2 introduces the mathematical formulation of the pro- 
posed reliable multi-type joint-service facility location model. Section 3 discusses the set of customized solution approaches. 
Section 4 presents the numerical experiments, based on which managerial insights are drawn. Section 5 summarizes the pa- 
per and discusses future research directions. 
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2. Mathematical modeling 

We consider a set of discrete demand points I = { 1 , 2 , . . . , | I|} in a region where emergency incidents may occur. Each 
point i ∈ I has a service demand v i (e.g., expected risk, probability times consequence). Let J = { 1 , 2 , . . . , | J|} be a set of 
candidate locations for building emergency response stations. We denote the set of emergency station types in the system 
as M = { 1 , 2 , . . . , |M|} . At location j ∈ J, a type m ∈ M station can be built with a fixed set-up cost f jm . We further assume 
that an incident at i needs cooperative dispatch of resources from a combination of stations, which includes n im type- 
m stations, where nonnegative integer n im ∈ Z + ∪ { 0 } . The set of station types required by demand i is hence denoted as 
M i = { m | n im ∈ Z + } ⊆ M . We denote the set of all station combinations by K, such that a combination k ∈ K includes a 
set of location-type tuples. For example, if a combination k includes a type- m 1 station located at j 1 and a type- m 2 station 
located at j 2 , then k = { ( j 1 , m 1 ) , ( j 2 , m 2 ) } . A combination k can be used to serve demand i if it contains n im type m stations, 
∀ m ∈ M i . 1 We introduce a set of binary parameters { a ik } to describe the relationship between demand i and combination 
k, where a ik = 1 if demand i can be served by station combination k, or 0 otherwise. A set of parameters {b k jm } is also 
defined to represent the combination-location-type structure, where b k jm = 1 if combination k contains a type m station at 
location j, or 0 otherwise. 

A station located at j might fail to respond to an incident with probability p j . To enhance reliability, we must assign more 
than n im stations ∀ m ∈ M i to provide backups for each demand i . We assume that failure to serve demand point i results in 
a monetary loss of e max 

i . The monetary saving for serving demand i from station combination k is denoted as e ik . We assume 
this saving is decreasing with the increase of waiting time before service is delivered. These quantities shall be related. If 
the service can be delivered to instantaneously using station combination k (e.g., in an idealized world, where facilities are 
perfectly reliable and co-located with the demand point), then e ik is equal to e max 

i ; i.e., demand point i incurs no economic 
loss. In contrast, if the required time for service delivery from combination k is too large, then e ik approaches zero, indicating 
that the demand point i shall incurs the entire economic loss of e max 

i . For each demand i, we generally assume that the 
available stations are preferred based on a generally defined “distance” – when choices are available, stations that are closer 
to the demand will provide a better service quality and hence be used at a higher priority, while those farther away shall 
be used only if the high-priority ones are disrupted. For modeling convenience, we also assume there are N m = max i ∈ I { n im } 
type- m virtual dummy stations in the system ∀ m ∈ M such that there are always at least n im type m stations available 
for each demand point i even when all the regular stations are disrupted. The dummy stations have no contribution to 
the system service quality, i.e., when any demand is served by any dummy stations in any scenario, service is effectively 
discontinued and the service effectiveness is equal to 0. The dummy stations incur zero installation costs and are immune 
from failure. Let ˜ J m be the set of type m dummy stations and ˜ J be the set of all dummy stations, where | ̃  J | = ∑ 

m N m , and 
J = J ∪ ˜ J be the set of all stations. 

The main decision variables include those on station installation location, X := { X jm } , where X jm = 1 if a type m service 
station is installed at location j, or X jm = 0 otherwise. We use binary variables Z := { Z i jmr } to denote service assignments, 
where Z i jmr = 1 if a type m station installed at j is assigned to demand i with backup level r, or 0 otherwise. Higher priority 
of a station will be represented by a lower value of backup level r (starting from 0 for the highest priority). The assignment 
of combination k to demand is also traced by a level vector ! r = (r 1 , r 2 , . . . , r m , . . . , r | M| ) ∈ R = ( Z + ∪ { 0 } ) | M| 

, where the value 
of r m is the largest level index among all type- m station in k . For modeling convenience, we also use Y := { Y ik ! r } to directly 
describe the assignment of station combinations to the demand, where Y ik ! r = 1 if demand i uses combination k whose 
stations’ largest level indices by type are given by ! r , or 0 otherwise. Note that Y is redundant because it can be uniquely 
determined from the backup levels of stations that are assigned to the demand Z . Finally, we use continuous variables 
P := { P ik ! r } to denote the pseudo-probability variables, where P ik ! r is the probability that combination k is used by demand i 
if Y ik ! r = 1 . 

This reliable multi-type joint-service facility location problem can be formulated as the following mixed-integer non- 
linear program: 

( RFLP ) min 
X , Y , Z , P ∑ 

m ∈M 
∑ 
j∈ J f jm X jm + ∑ 

i ∈ I 
( 

e max 
i −

∑ 
k ∈ K 

∑ 
! r ∈R v i e ik P ik ! r Y ik ! r 

) 
(1) 

s.t. |M| ∑ 
m =1 X jm ≤ 1 , ∀ j ∈ J, (2) 
|J | ∑ 
r=1 Z i jmr ≤ X jm , ∀ i ∈ I, j ∈ J, m ∈ M i , (3) 

1 Traditional non-cooperative response in the literature (i.e., those provided by one station) can be considered as a special case of our model, in which 
we can simply define each combination to contain only a single station. 
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∑ 

m ∈M i 
|J | ∑ 
r=1 Z i jmr ≤ 1 , ∀ i ∈ I, j ∈ J, (4) 

|J | ∑ 
r=1 Z i jmr = 1 , ∀ i ∈ I, j ∈ ˜ J m , m ∈ M i , (5) 

Z i jmr = Z i, j+1 ,m,r+1 , ∀ i ∈ I, j ∈ ˜ J m \ {max { ˜ J m }}, r = 1 , 2 , · · · , |J | − 1 , m ∈ M i , (6) 
∑ 
j∈ J Z i jmr + r ∑ 

s =1 Z i, j ′ ,m,s = 1 , ∀ i ∈ I, r = 1 , · · · , |J | , m ∈ M i , j ′ = min { ˜ J m } (7) 
Y ik ! r ≤ 1 ∑ 

m n im ∑ 
j∈J 

∑ 
m ∈M i 

r m ∑ 
s =1 a ik b k jm Z i jms , ∀ i ∈ I, k ∈ K, ! r ∈ R , (8) 

Y ik ! r ≤ ∑ 
j∈J a ik b k jm Z i jmr m , ∀ i ∈ I, k ∈ K, ! r ∈ R , m ∈ M i , (9) 

P ik ! r ′ = ∑ 
j∈J 

(
p j )1 [ j∈ J] 

Z i, j,m, (r m +1) P ik, ! r , 
∀ i ∈ I, k ∈ K, ! r = (r 1 , . . . , r m , . . . , r |M| ) , ! r ′ = (r 1 , . . . , r m + 1 , . . . , r |M| ) ∈ R , m ∈ M i , (10) 

P ik ! 0 = ∏ 
m ∈M i 

∏ 
j∈ J 

(
1 − p j )a ik b k jm (

p j )−a ik b k jm 
, ∀ i ∈ I, k ∈ K, (11) 

X jm , Z i jmr , Y ik ! r ∈ { 0 , 1 } , ∀ k ∈ K, j ∈ J , ! r ∈ R , r = 1 , · · · , |J | , i ∈ I, m ∈ M . (12) 
The objective function (1) contains the station setup costs and the expected economic loss due to disasters. Constraints 

(2) require that at most one station can be installed at each candidate location. 2 Constraints (3) ensure that demand can be 
served by only installed stations. Note that Constraints (4) are included here for modeling convenience in the remaining part 
of this paper though they can be derived from (2) and (3) . Constraints (5) state that each dummy station must be assigned 
to a demand point at a certain backup level, while the same dummy station could be shared by multiple demand points 
at various levels. Constraints (6) enforce that if a dummy station j ∈ ˜ J m is assigned to demand i at level r, then dummy 
station j + 1 must be assigned to i at level r + 1 as well. As such, the dummy stations will be used only as the last resort. 
Constraints (7) require that demand i cannot use a regular station at level r if it uses the first dummy station at one of 
the higher-backup levels, s ≤ r. Constraints (8) enforce that combination k is available to demand i only if all stations in k 
are installed. These constraints are enforced by (i) to serve demand i using combination k at backup level ! r , all relevant 
assignments variables Z i jmr must be set to 1; and (ii) by enforcing constraints (3) , Z i jmr can be set to 1 only if a type m 
station is installed at location j, i.e., X jm = 1 . Constraints (9) relate the level vector of a station combination to the largest 
backup level index of any station type in that combination. Constraints (10) and (11) recursively define the assignment 
probability P ikr for Y ikr = 1 , in which 1 [ ·] = 1 if condition [ ·] is true, or 0 otherwise. The correctness of these assignment 
probability formulas are proven in the following proposition. 
Proposition 1. The recursive equations (10) - (11) define the assignment probabilities. 
Proof. When Y ik ! r = 0 , the value of P ik ! r has no effect on the objective function, hence we will only prove the correctness of 
P ik ! r when Y ik ! r = 1 . Expanding the recursive formula (10) - (11) , we see that P ik ! r can be written as 

P ik ! r = ∏ 
m ∈M i 

∏ 
j∈ J 

(
1 − p j )a ik b k jm ∏ 

m ∈M i ∏ 
s ≤r m [ ∑ 

j∈J Z i jms (p j )1 [ j∈ J] ] 
∏ 

m ∈M i ∏ 
j∈ J p a ik b k jm 

j . (13) 
It is essentially the product of two probabilities. The term ∏ 

m ∈M i ∏ 
j∈ J (1 − p j )a ik b k jm is equal to the probability that all 

stations in combination k are functioning. The remainder term, ∏ 
m ∈M i ∏ 

s ≤r m [ ∑ 
j∈J Z i jms ( p j ) 1 [ j∈ J] ] 

∏ 
m ∈M i ∏ 

j∈ J p a ik b k jm 
j , represents the probability 

that all the installed stations, by type, with priorities higher than those in k are disrupted. This completes the proof. !

2 This is not restrictive. Any location that allow multiple facility installation can be duplicated accordingly. 
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3. Solution approach 
3.1. Linearization approach 

Problem (RFLP) can be linearized using the technique introduced in Sherali and Alameddine (1992) (also discussed in 
Li and Ouyang (2012) ; An et al. (2018) ). Observing that P ik ! r Y ik ! r and Z i, j,m, (r m +1) P ik, ! r are both bounded between 0 and 1, we will 
replace them by new variables W = { W ik ! r } and L = {L i, j,m,k, ! r }, respectively, and then add the following set of constraints, 

W ik ! r ≤ P ik ! r + 1 − Y ik ! r , ∀ i ∈ I, k ∈ K, ! r ∈ R , (14) 
W ik ! r ≥ P ik ! r + Y ik ! r − 1 , ∀ i ∈ I, k ∈ K, ! r ∈ R , (15) 
W ik ! r ≤ Y ik ! r , ∀ i ∈ I, k ∈ K, ! r ∈ R , (16) 
W ik ! r ≥ −Y ik ! r , ∀ i ∈ I, k ∈ K, ! r ∈ R , (17) 
L i, j,m,k, ! r ≤ P ik ! r + 1 − Z i, j,m,r m +1 , ∀ i ∈ I, j ∈ J , m ∈ M , k ∈ K, ! r ∈ R , (18) 
L i, j,m,k, ! r ≥ P ik ! r + Z i, j,m,r m +1 − 1 , ∀ i ∈ I, j ∈ J , m ∈ M , k ∈ K, ! r ∈ R , (19) 
L i, j,m,k, ! r ≤ Z i, j,m, (r m +1) , ∀ i ∈ I, j ∈ J , m ∈ M , k ∈ K, ! r ∈ R , (20) 
L i, j,m,k, ! r ≥ −Z i, j,m, (r m +1) , ∀ i ∈ I, j ∈ J , m ∈ M , k ∈ K, ! r ∈ R , (21) 
L i, j,m,k, ! r , W ik ! r ≥ 0 , ∀ i ∈ I, j ∈ J , m ∈ M , k ∈ K, ! r ∈ R . (22) 

Then (RFLP) is transformed into the following linearized reliable facility location problem (LRFLP). 
( LRFLP ) min 

X , Y , Z , P , W , L ∑ 
m ∈M 

∑ 
j∈ J f jm X jm + ∑ 

i ∈ I 
( 

e max 
i −

∑ 
k ∈ K 

∑ 
! r ∈R v i e ik W ik ! r 

) 
(23) 

s.t. (2) − (9) , (11) − (12) , (14) − (22) 
P ik ! r ′ = ∑ 

j∈J 
(

p j )1 [ j∈ J] 
L i, j,m,k, ! r , 

∀ i ∈ I, k ∈ K, ! r = (r 1 , . . . , r m , . . . , r |M| ) , ! r ′ = (r 1 , . . . , r m + 1 , . . . , r |M| ) ∈ R , m ∈ M i . (24) 
Problem (LRFLP) is a mixed-integer linear program and can be solved using existing commercial solvers (for example, 
Gurobi). However, as we will observe in Section 4 , the problem becomes very challenging for commercial solvers to handle 
even for relatively small problem instances due to the large number of interrelated variables. Hence a customized algorithm 
is developed in Section 3.2 to solve the problem more efficiently. 
3.2. Lagrangian relaxation based approach 
3.2.1. Lagrangian relaxation framework 

In (RFLP), the location decision variables X and sensor assignment variables Z are related through constraints (3) . This is 
one of the primary sources of model complexity. A Lagrangian relaxation (LR) approach can be adopted to decompose the 
problem into subproblems. In so doing, we relax constraints (3) and then add them to the objective function (1) using a 
set of non-negative Lagrangian multipliers µ = {µi j , ∀ i ∈ I, j ∈ J }, t o obtain the following relaxed problem (RRFLP). 

( RRFLP ) min 
X , Y , Z , P ∑ 

m ∈M 
∑ 
j∈ J 

( 
f jm − ∑ 

i ∈{ i : m ∈M i } µi jm 
) 

X jm + ∑ 
i ∈ I 

( 
e max 

i −
∑ 
k ∈ K 

∑ 
! r ∈R v i e ik P ik ! r Y ik ! r 

) 
+ ∑ 

i ∈ I 
∑ 
j∈ J 

∑ 
m ∈M i 

|J | ∑ 
r=1 µi jm Z i jmr 

(25) 
s.t. (2) , (4) − (12) . 
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Problem (RRFLP) has two separable parts that can be solved separately for any given set of multipliers µ. The first part 

involves only location variables X , i.e., 
min 

X ∑ 
m ∈M 

∑ 
j∈ J 

( 
f jm − ∑ 

i ∈{ i : m ∈M i } µi jm 
) 

X jm + ∑ 
i ∈ I e max 

i , 
s.t. (2) , 

X jm ∈ { 0 , 1 } , ∀ j ∈ J, m ∈ M . 
It can be solved easily by inspecting the cost coefficient, i.e., f jm − ∑ 

i ∈{ i : m ∈M i } µi j , for each X jm . The second part involves 
variables Y and Z but can be solved separately for each demand i . This sub-problem, formulated for each demand i, is as 
follows, 

( RRFLP i ) min 
Y , Z , P ∑ 

j∈ J 
∑ 

m ∈M i 
|J | ∑ 
r=1 µi jm Z i jmr − ∑ 

k ∈ K 
∑ 
! r ∈R v i e ik P ik ! r Y ik ! r (26) 

s.t. ∑ 
m ∈M i 

|J | ∑ 
r=1 Z i jmr ≤ 1 , ∀ j ∈ J, (27) 

|J | ∑ 
r=1 Z i jmr = 1 , ∀ j ∈ ˜ J m , m ∈ M i , (28) 
Z i jmr = Z i, j+1 ,m,r+1 , ∀ j ∈ ˜ J m \ {max { ˜ J m }}, r = 1 , 2 , · · · , |J | − 1 , m ∈ M i , (29) 
∑ 
j∈ J Z i jmr + r ∑ 

s =1 Z i, j ′ ,m,s = 1 , ∀ r = 1 , · · · , |J | , m ∈ M i , j ′ = min { ˜ J m }, (30) 
Y ik ! r ≤ 1 ∑ 

m n im ∑ 
j∈J 

∑ 
m ∈M i 

r m ∑ 
s =1 a ik b k jm Z i jms , ∀ k ∈ K, ! r ∈ R , (31) 

Y ik ! r ≤ ∑ 
j∈J a ik b k jm Z i jmr m , ∀ k ∈ K, ! r ∈ R , m ∈ M i , (32) 

P ik ! r ′ = ∑ 
j∈J 

(
p j )1 [ j∈ J] 

Z i, j,m, (r m +1) P ik, ! r , 
∀ k ∈ K, ! r = (r 1 , . . . , r m , . . . , r |M| ) , ! r ′ = (r 1 , . . . , r m + 1 , . . . , r |M| ) ∈ R , m ∈ M i , (33) 
P ik ! 0 = ∏ 

m ∈M i 
∏ 
j∈ J 

(
1 − p j )a ik b k jm (

p j )−a ik b k jm 
, ∀ k ∈ K, (34) 

Z i jmr , Y ik ! r ∈ { 0 , 1 } , ∀ k ∈ K, j ∈ J , ! r ∈ R , r = 1 , · · · , |J | , i ∈ I, m ∈ M . (35) 
We notice that, even with relaxation, (RRFLP i ) remains challenging due to the recursive computation of P in (33) and 

the nonlinearity introduced by P ik ! r Y ik ! r in (26) . To further reduce the computation complexity, we replace P ik ! r with a 
set of constants following the ideas proposed by An et al. (2018) . For each combination k, we identify a set of can- 
didate locations that are not used in k, denoted as T k = { j 1 , . . . , j | T k | }. Then we sort the candidate locations in T k by 
the site-dependent disruption probability in descending order, i.e., p j 1 ≥ p j 2 ≥ . . . ≥ p j | T k | , and replace P ik ! r with βik ! r = 
∏ 

m ∈M i ∏ 
j∈ J (1 − p j )a ik b k jm ∏ 

m ∈M i ∏ r m −n im 
t=1 p j t , in which j t is the t th element in T k . By replacing P ik ! r with βik ! r , we will have 

the following program. 
( RRFLP i - 1) min 

Y , Z ∑ 
j∈ J 

∑ 
m ∈M i 

|J | ∑ 
r=1 µi jm Z i jmr − ∑ 

k ∈ K 
∑ 
! r ∈R v i e ik βik ! r Y ik ! r (36) 

s.t. (27) − (32) , (35) . 
Proposition 2. The optimal objective value of ( RRFLP i - 1 ) provides a lower bound to ( RRFLP i ) . 
Proof. Since RRFLP i is a minimization problem, the optimal objective will only decrease if we remove constraints (33) - (34) . 
Also, if we consider the objective function of RRFLP i , the value of P ik ! r has no impact if Y ik ! r = 0 . When Y ik ! r = 1 , we notice 
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that by the definition of βik ! r , the probabilities of the stations in k being functioning are the same as those of P ik ! r . While 
P ik ! r includes the probability of the stations that are not in k being disrupted, the upper bound of this probability is used in 
βik ! r . Hence, P ik ! r is bounded from the above by βik ! r , and the optimal objective value of RRFLP i - 1 provides a lower bound to 
RRFLP i . !

If (RRFLP i -1) can be effectively solved at each Lagrangian iteration, then together with the solution to the first part of 
(RRFLP), we have already obtained a lower bound to the original problem (RFLP), as well as the station installation decisions 
X (from the first part of RRFLP). Following the convention, we can build a feasible solution based on X , by assigning demand 
to the nearest stations sequentially following the ideas proposed in An et al. (2018) . For each demand i and a station type 
m, sort the set of installed type- m stations based on increasing distance from customer i, as J im = { j 1 ,m , j 2 ,m , j | J im | ,m }, and 
set Z i j km mk = 1 for all k = 1 , . . . , | J im | , or 0 otherwise. And then determine Y from Z accordingly. This feasible solution gives 
us an upper bound to the original problem RFLP. Then we can use these bounds to update the Lagrangian multipliers using 
the sub-gradient techniques proposed in Fisher (1981) . To further close the gap, we embed the LR algorithm into a branch- 
and-bound (B & B) framework. The basic idea is to branch on variables X and build a search tree. We perform a breadth-first- 
search in the search tree, and at each tree node, we call the LR algorithm to obtain a lower bound. The final upper bound 
would be the best upper bound obtained at each node of the search tree. For the final lower bound of the root problem, we 
first compute the smallest lower bound at each fully explored level of the search tree, and then use the maximum of these 
lower bounds as the final lower bound. 
3.2.2. Lower bounds approximation 

Unfortunately, solving (RRFLP i -1) is still very time-consuming owing to the similarity to a generalized assignment prob- 
lem and the large number of assignment variables Y . As such, two approximation approaches, i.e., (RRFLP i -2) and (RRFLP i -3), 
are developed in this subsection to reduce the computation time needed for obtaining lower bounds.To this end, we con- 
sider ways to replace Y and approximate the service quality. First, we define a set of variables, U := {U i jm ! r }, and a set of 
parameters, C i jm ! r = max 

k ∈ K {a ik e ik βik ! r ρik jm }, where ρik jm = 1 if j is the remotest type- m station for demand i in combination 
k or 0 otherwise. Also, we let N i ! r = ∏ 

m ∈M i 
(

r m −1 
n im −1 ), and γi jm ! r = C i jm ! r N i ! r 

|M i | . Then we can formulate (RRFLP i -2) as follows to obtain 
another lower bound. 

( RRFLP i - 2) min 
Z , U ∑ 

j∈ J 
∑ 

m ∈M i 
|J | ∑ 
r=1 µi jm Z i jmr − ∑ 

! r ∈R 
∑ 
j∈ J 

∑ 
m ∈M i v i γi jm ! r U i jm ! r (37) 

s.t. (27) − (30) , 
U i jm ! r ≤ Z i, j,m,r m , ∀ m ∈ M i , j ∈ J, ! r = (r 1 , . . . , r m , . . . , r |M| ) ∈ R , (38) 
U i jm ! r ≤ ∑ 

j ′ ∈ J\ { j} Z i j ′ m ′ r m ′ , ∀ ! r = (r 1 , .r m ′ , .r |M| ) ∈ R , j ∈ J, m ∈ M i , m ′ ∈ M i \ { m } , (39) 
Z i jmr , U i ! j ! r ∈ { 0 , 1 } , ∀ j ∈ J , ! j ∈ J̄ , ! r ∈ R , r = 1 , · · · , |J | , i ∈ I, m ∈ M i . (40) 

Proposition 3. The optimal objective value of problem (RRFLP i -2) provides a lower bound to (RRFLP i -1) 
Proof. Suppose the optimal solution to (RRFLP i -1) is (Z ∗, Y ∗) and the corresponding optimal objective value is de- 
noted F (Z ∗, Y ∗) . We will show that there always exists a feasible solution (Z ′ , U ) to (RRFLP i -2), such that the asso- 
ciated objective value is no larger than F (Z ∗, Y ∗) . First, we set Z ′ i jmr = Z ∗i jmr , ∀ j ∈ J , m ∈ M i , r = 1 , · · · , |J | , and U i jm ! r = 
min {Z ∗

i, j,m,r m , min 
m ′ ∈M i \{ m } 

{ ∑ 
j ′ ∈J \ { j} Z ∗i j ′ m ′ r m ′ 

} }
. Obviously, Z ′ and U satisfy constraints (38) - (40) . Then we will show that the 

objective function (37) is no larger than F (Z ∗, Y ∗) . For each ! r , we define a set K i ! r = { k : Y ∗
i,k, ! r = 1 } ⊆ K. We first notice that 

if K i ! r is non-empty, then in the optimal solution to (RRFLP i -1), for any m ∈ M i , all combinations k ∈ K i ! r share the same 
station ˜ j m ( ! r ) in level r m , i.e., the remotest type- m station for demand i in any combination k ∈ K i ! r is ˜ j m ( ! r ) , and we know 
Z ∗

i, ̃ j m ( ! r ) ,m,r m = 1 (as enforced by constraints (30) and (32) ). Also we know that U i, ̃ j m ( ! r ) ,m, ! r = 1 for all m ∈ M i from (32) and 
our construction of U i, ̃ j m ( ! r ) ,m, ! r . Finally, we can see that | K i ! r | = N i ! r . Hence we have the following for any ! r ∈ R , 

∑ 
k ∈ K e ik βik ! r Y ∗ik ! r = ∑ 

k ∈ K i ! r e ik βik ! r Y ∗ik ! r ≤ N i ! r ∑ 
m ∈M i max k ∈ K i ! r {e ik βik ! r b ik ̃ j m ( ! r ) m }

|M i | 
≤

∑ 
m ∈M i γi, ̃ j m ( ! r ) ,m, ! r U i, ̃ j m ( ! r ) ,m, ! r ≤ ∑ 

m ∈M i 
∑ 
j∈J γi jm ! r U i jm ! r . 
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As such, we can conclude that the solution to problem (RRFLP i -2) provides a lower bound to (RRFLP i -1). !

An even tighter lower bound can be obtained, if we are tolerant to a larger relaxed problem size and a slightly higher 
computational cost. To this end, we define a set of vectors ! j = ( j 1 , j 2 , . . . , j m , . . . , j | M| ) ∈ J̄ , in which j m ∈ J ∪ { ˆ j } and ˆ j is a 
placeholder. To approximate the quality of service and avoid computation burden introduced by Y , we define a set of new 
variables, V := {V i ! j ! r }, and a set of parameters, C ′ 

i ! j ! r = max 
k ∈ K {a ik e ik βik ! r ηk ! j }, in which ηik ! j = 1 if j m (the m th entry of ! j ) is the 

remotest type- m station for demand i in combination k for all m ∈ M i or 0 otherwise. Also, similarly we let γi ! j ! r = C ′ 
i ! j ! r N i ! r . 

Then we can define another approximate problem, (RRFLP i -3), as follows. It gives another lower bound. 
( RRFLP i - 3) min 

Z , V ∑ 
j∈ J 

∑ 
m ∈M i 

|J | ∑ 
r=1 µi jm Z i jmr − ∑ 

! r ∈R 
∑ 
! j ∈ ̄J v i γi ! j ! r V i ! j ! r (41) 

s.t. (27) − (30) , 
V i ! j ! r ≤ Z i, j m ,m,r m , ∀ m ∈ M i , ! j = ( j 1 , . . . , j m , . . . , j M ) ∈ J̄ , ! r = (r 1 , . . . , r m , . . . , r |M| ) ∈ R (42) 
Z i jmr , V i ! j ! r ∈ { 0 , 1 } , ∀ j ∈ J , ! j ∈ J̄ , ! r ∈ R , r = 1 , · · · , |J | , i ∈ I, m ∈ M ı. (43) 

Proposition 4. The optimal objective value of problem (RRFLP i -3) provides a lower bound to (RRFLP i -1) 
Proof. The proof uses a similar idea as that for Proposition 3 . We will show that there is a feasible solution (Z ′ , V ) to 
(RRFLP i -3) whose objective value is no larger than the optimal objective value of (RRFLP i -1), denoted by F (Z ∗, Y ∗) . Similarly, 
we set Z ′ 

i jmr = Z ∗
i jmr , ∀ j ∈ J , m ∈ M i , r = 1 , · · · , |J | , V i ! j ! r = min 

m ∈M i 
{ 

Z ∗
i, j m ,m,r m } 

, and K i ! r = { k : Y ∗
i,k, ! r = 1 } ⊆ K for each ! r . Obviously, 

Z ′ and W satisfy the constraints in (RRFLP i -3). To see the objective function in (41) is no larger than F (Z ∗, Y ∗) , we first 
notice that in the optimal solution to (RRFLP i -1), for any m ∈ M i , all combinations k ∈ K i ! r share the same station j m in level 
r m , i.e., the remotest type- m station for demand i in any combination k ∈ K i ! r is j m , and we know Z ∗

i, j m ,m,r m = 1 , which is 
enforced by constraints (30) and (32) . We collect all such j m in a vector ! j ′ ( ! r ) (using placeholder ˆ j if m / ∈ M i ), and we know 
that V i, ! j ′ ( ! r ) , ! r = 1 by construction. Hence, we have the following, for any ! r ∈ R : 

∑ 
k ∈ K e ik βik ! r Y ∗ik ! r = ∑ 

k ∈ K i ! r e ik βik ! r Y ∗ik ! r ≤ N i ! r max 
k ∈ K i ! r {e ik βik ! r b k ! j ′ ( ! r ) } ≤ γi, ! j ′ ( ! r ) , ! r = γi, ! j ′ ( ! r ) , ! r V i, ! j ′ ( ! r ) , ! r ≤ ∑ 

! j ∈ ̄J γi ! j ! r V i ! j ! r . 
As such, we conclude that the solution to problem (RRFLP i -3) provides a lower bound to (RRFLP i -1). !

It shall be noted that the number of variables in (RRFLP i -3) is much larger than that in (RRFLP i -2), mainly due to the 
existence of ! j However, as shown in the following proposition, the solution to (RRFLP i -3) provides a tighter lower bound to 
(RRFLP i -1). 
Proposition 5. The optimal objective value of (RRFLP i -2) provides a lower bound to (RRFLP i -3). In other words, the optimal 
objective value of (RRFLP i -3) provides a tighter lower bound to (RRFLP i -1) than the optimal objective value of (RRFLP i -2). 
Proof. The logic behind the proof is again through construction. Given any optimal solution to (Z ∗, V ∗) to (RRFLP i -3) with 
optimal objective function F ′ (Z ∗, V ∗) , we will show that there is always a feasible solution (Z , U ) to (RRFLP i -2), and the ob- 
jective function is no larger than F ′ (Z ∗, V ∗) . Then, the optimal objective value of (RRFLP i -2) must be no larger than F ′ (Z ∗, V ∗) 
as well. To do this, we set Z i jmr = Z ∗

i jmr , ∀ i ∈ I, j ∈ J , m ∈ M i , r = 1 , · · · , |J | . Also, for any ! j and ! r such that V ∗
i ! j ! r = 1 , we can 

set U i jm ! r = 1 if j is the m th entry in ! j , ∀ m ∈ M i and j ∈ J. And we will set other Z i jmr and U i jm ! r to 0. The feasibility of (Z , U ) 
is enforced by (42) . For any ! r , if we have γi, ! j ′ ( ! r ) , ! r V ∗i, ! j ( ! r ) ′ , ! r * = 0 for some ! j ( ! r ) ′ ∈ J̄ , then we define ˜ j m ( ! r ) as the m th entry in 
! j ( ! r ) ′ . Note that by the definition of γi, ! j ′ ( ! r ) , ! r , the value of ! j ′ ( ! r ) is unique. Also, we have U i ̃ j m ( ! r ) m ! r = 1 from the construction 
of U . As such, we have the following for each ! r , 

∑ 
! j ∈ ̄J γi ! j ! r V ∗

i ! j ! r = γi, ! j ′ ( ! r ) , ! r V ∗
i, ! j ′ ( ! r ) , ! r = ∑ 

m ∈M i 
γi, ! j ′ ( ! r ) , ! r 
|M i | U i ̃ j m ( ! r ) m ! r ≤ ∑ 

m ∈M i 
∑ 
j∈ J γi jm ! r U i jm ! r . 

Note the second inequality holds since C ′ 
i ! j ! r is defined by taking the maximum over a smaller set as compared to what 

we used for C i jm ! r . Hence, we see that the solution to (RRFLP i -2) is a lower bound to (RRFLP i -3). !

Approximate problems ( RRFLP i - 2) or ( RRFLP i - 3) can be solved by commercial solvers such as Gurobi to obtain better 
lower bounds to (RFLP). The rest of the LR algorithm as well as the use of B & B framework remains the same.It should 
be noted, however, that Proposition 5 only holds under the same multipliers; it does not necessarily indicate that the LR 
gaps obtained using (RRFLP i -3) is smaller than those obtained using (RRFLP i -2). The reason is that, in the LR algorithm, 
the multipliers might converge to different values, and in turn, possibly yield looser lower bounds. Also, the computation 
time per Lagrangian iteration can be significantly different, and hence use of (RRFLP i -2) may still have a better overall 
convergence rate and performance within a limited computation time. 
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4. Numerical results 

In this section, we demonstrate the applicability of our modeling approach by running a series of numerical experiments 
over a set of hypothetical examples and a Chicago railroad network example. All numerical experiments are coded in Python 
and tested on a 3.4 GHz Intel i7 laptop with 16 GB RAM. 
4.1. Hypothetical case 

We consider 3 hypothetical grid networks as shown in Figs. 1 a- 1 c. The cases include | J| = 2 × 2 , 3 × 3 , and 4 × 4 candi- 
date station locations, where 2 types of stations can be built to serve | I| = 2 − 8 demand points. We assume service demand 
v i = 1 , ∀ i, and consider the following service station-type requirements: for network (i), n 11 = 1 , n 12 = 1 , n 21 = 0 , n 22 = 2 ; 
for network (ii), n i 1 = 1 , n i 2 = 1 , ∀ i ∈ { 1 , 2 } , n i 2 = 2 , ∀ i ∈ { 3 , 4 } and n im = 0 otherwise; for network (iii), n i 1 = 1 , n i 2 = 1 , ∀ i ∈ 
{ 1 , . . . , 4 } , n i 2 = 2 , ∀ i ∈ { 5 , . . . , 8 } and n im = 0 otherwise. We assume e ik = ∑ 

j∈ J ∑ 
m ∈M a ik b k jm e max 

i 
2+20 ∗d i j , ∀ i ∈ I, k ∈ K, in which d i j is 

the Euclidean distance from demand point i to station location j. Parameter e max 
i is assumed to be 300 $. To evaluate the 

performance of our model, we try different station failure probabilities, i.e., p j = p ∈ { 0 . 05 , 0 . 1 } , ∀ j ∈ J, as well as different 
values of station installation cost f jm = f ∈ { 5 , 10 } , ∀ j ∈ J, m ∈ M . The performance of (LRFLP) formulation and the two LR 
approaches, i.e., (RRFLP i -2) and (RRFLP i -3), which will be referred to as LR-1 and LR-2, respectively. 

The results are summarized in Table 1 . All the cases are solved for 7200 seconds and the optimality gaps are less than 
3 % . It should be noted that Gurobi failed to find feasible solutions if we directly use the (LRFLP) formulation for cases 5–12. 
For cases 1–4, our algorithms were able to find the same best feasible solution as Gurobi. For cases 5–12, the (approximate) 
optimality gap is computed as (UB-LB)/UB, where upper bound UB is used as the benchmark because we want to evaluate 
the difference between UB and LB against the actual system cost of a feasible solution, i.e., UB. We can see that as the 
station setup cost and failure probability increase, the total cost will increase for most cases. Also, we can observe different 
optimal deployment decisions from Figs. 2 a and 2 c. In all three cases, the optimal decision is to install both type 1 and 
type 2 stations at the bottom part of the region where demand requires service from both types of stations. From cases 
1–8, we can see that when there is a small number of candidate locations and demand, (B & B+LR-2) can obtain better lower 
bounds and smaller gaps as compared with (B & B+LR-1). However, when the problem size becomes large, the computation 

Fig. 1. Hypothetical network. 
Table 1 
Numerical results for hypothetical network case. 

Case Network p f LRFLP B & B+LR-1 B & B+LR-2 
LB UB Gap # of installed 

stations LB UB Gap # of installed 
stations 

1 i 0.05 10 579 578 579 0.17 % 3 578 579 0.17 % 3 
2 i 0.05 5 564 562 564 0.36 % 3 564 564 0.0 % 3 
3 i 0.10 10 583 582 583 0.17 % 3 582 583 0.17 % 3 
4 i 0.10 5 568 567 568 0.18 % 3 567 568 0.18 % 3 
5 ii 0.05 10 - 1086 1093 0.64 % 3 1091 1093 0.18 % 3 
6 ii 0.05 5 - 1073 1078 0.47 % 4 1073 1077 0.37 % 4 
7 ii 0.10 10 - 1097 1103 0.55 % 4 1097 1103 0.55 % 4 
8 ii 0.10 5 - 1078 1083 0.46 % 5 1078 1083 0.46 % 5 
9 iii 0.05 10 - 2155 2198 2.0 % 6 2148 2198 2.33 % 6 
10 iii 0.05 5 - 2131 2157 1.22 % 10 2133 2167 1.59 % 10 
11 iii 0.10 10 - 2154 2198 2.04 % 7 2151 2214 2.93 % 9 
12 iii 0.10 5 - 2138 2163 1.17 % 10 2132 2161 1.36 % 7 
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Fig. 2. Optimal station location. 
time per iteration for LR-2 becomes relatively large and thus the overall performance will degrade. Hence, we can see that 
even though the subproblem in LR-2 is more complex and harder to solve, it is possible that the tighter lower bound from it 
can improve LR convergence and reduce optimality gaps; some evidence is shown in these numerical experiments, in which 
LR-2 seems to work better for smaller size network. 
4.2. Chicago example 

The proposed model is also tested with a Chicago railroad network example as shown in Fig. 3 a. The data was originally 
used in Xie and Ouyang (2019) . The 30 railroad segments face heavy hazardous material traffic and are subject to incidents 
such as fires and chemical spills, and thus can be considered as service demand points. We assume these railroad segments 
might require 2 types of service facilities, e.g., fire stations and hospitals, and there are 20 candidate locations where these 
2 types of stations can be installed, as shown in Fig. 3 b- 3 c. We design two service need patterns: (i) n i 1 = 1 , n i 2 = 1 , ∀ i ∈ 
{ 1 , . . . , 15 } , n i 2 = 2 , ∀ i ∈ { 16 , . . . , 30 } and n im = 0 otherwise; (ii) n i 1 = 1 , n i 2 = 1 , ∀ i ∈ I. The service quality function and the 
remaining parameters are the same as those for the hypothetical network, except that we are using city street network 
instead of Euclidean distance. To evaluate the performance of our model, we try different station failure probabilities, i.e., 
p j = p ∈ { 0 . 05 , 0 . 1 } , ∀ j ∈ J, different values of station installation cost f jm = f ∈ { 5 , 10 } , ∀ j ∈ J, m ∈ M , as well as different 
monetary value of loss, e max 

i = e max ∈ { 20 0 , 50 0 , 80 0 } , ∀ i ∈ I. 

Fig. 3. Chicago railroad network. 
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Table 2 
Numerical results for Chicago network case. 

Case Demand 
pattern p f e max 

i B&B + LR-1 SA Result 
# of installed 

stations LB UB Gap 
1 i 0.05 5 200 7 5922 5953 0.5 % 5968 
2 i 0.05 10 200 4 5934 5982 0.8 % 6012 
3 i 0.1 5 200 6 5926 5953 0.5 % 5970 
4 i 0.1 10 200 3 5942 5978 0.6 % 6014 
5 i 0.05 5 500 14 14760 14817 0.4 % 14865 
6 i 0.05 10 500 9 14783 14874 0.6 % 14906 
7 i 0.1 5 500 10 14771 14827 0.4 % 14870 
8 i 0.1 10 500 10 14797 14877 0.5 % 14912 
9 i 0.05 5 800 18 23606 23696 0.4 % 23754 
10 i 0.05 10 800 8 23638 23731 0.4 % 23799 
11 i 0.1 5 800 8 23609 23705 0.4 % 23763 
12 i 0.1 10 800 12 23645 23745 0.4 % 23808 
13 ii 0.05 5 200 5 5909 5949 0.7 % 5963 
14 ii 0.05 10 200 3 5934 5974 0.7 % 6004 
15 ii 0.1 5 200 10 5914 5960 0.8 % 5965 
16 ii 0.1 10 200 3 5933 5975 0.7 % 6006 
17 ii 0.05 5 500 14 14746 14818 0.5 % 14846 
18 ii 0.05 10 500 6 14759 14868 0.7 % 14888 
19 ii 0.1 5 500 14 14748 14825 0.5 % 14852 
20 ii 0.1 10 500 6 14766 14880 0.8 % 14893 
21 ii 0.05 5 800 15 23582 23688 0.4 % 23706 
22 ii 0.05 10 800 12 23621 23747 0.5 % 23772 
23 ii 0.1 5 800 11 23581 23688 0.5 % 23724 
24 ii 0.1 10 800 12 23609 23747 0.6 % 23781 

For the Chicago example, direct application of commercial solvers such as Gurobi will certain not work. Hence, we com- 
pare our algorithms with a simulated annealing (SA) algorithm. In the SA algorithm, we will randomly perturb 3 entries in 
binary location decisions X at each perturbation, i.e., 3 facilities will be installed/uninstalled at certain locations. Given the 
location decisions X , we obtain the optimal assignment decisions, i.e., Z and Y , conditional on X using the same approach 
as described in Section 3.2 , and we evaluate the objective function value. Here we run B & B+LR-1 algorithm and the heuristic 
algorithm for 7200 seconds and the results are summarized in Table 2 . Note here only B & B+LR-1 algorithm is used since the 
problem size of B & B+LR-2 becomes very large and thus Gurobi fails to solve it within the time limit. 

We can see that the optimality gaps are less than 1 % for all cases. Also, the total cost will increase as f increases for 
all cases. If we compare cases 1 and 2, we can observe that fewer stations will be installed as f increases. When we com- 
pare cases 6 and 8, we can see that the number of installed stations changes from 9 to 10 when the failure probability 
changes from 0.05 to 0.1, which indicates that it is more profitable to install more stations to hedge against the service 
quality reduction due to station disruptions. However, if we compare case 9 with case 11, we can see although the fail- 
ure probability increases to 0.1, the number of installed stations actually decreases from 18 to 8, which indicates that the 
marginal installation cost exceeds the marginal increase of service quality. Hence, how the number of installed stations 
will change with the failure probability depends on the trade-off between the increase of the expected marginal service 
quality and the marginal installation cost. For example, it is possible that the monetary value of effectiveness im prove- 
ment from building additional stations is larger than the cost of setting up the facilities, in which we should set up more 
stations. If the monetary value of the expected service quality improvement of building more stations is smaller than the 
facility setup cost, for example, the probabilities of using newly installed stations is very small while the facility setup 
cost is relatively large, then it is not cost-effective to set up these additional stations. A similar observation was also made 
in An et al. (2018) . 

We can also see that in Fig. 4 a and Fig. 4 b, notably more type-2 stations are installed in order to serve demand pattern 
(i), and most type-2 stations are installed at the southern part of the city, where more type-2 stations are needed. While for 
demand pattern (ii), we can see a more homogenous installation distribution; for example, in Fig. 4 c, the numbers of type-1 
and type-2 stations installed are 5 and 7, respectively. This is probably because in pattern (ii), all demand points require 
service from a type 1 station and a type 2 station. Also, we can compare the best feasible objective functions obtained 
from our proposed algorithm (i.e., UB) and the SA algorithm, which are summarized in column 8 and column 10 of Table 2 , 
respectively. We can see that the proposed algorithm can (i) outperform the SA algorithm (and proven to be effective) for 
large size networks, by obtaining solutions with smaller total costs for all 24 cases; and (ii) yield a tight lower bound which 
can be utilized to evaluate the quality of solutions, i.e., the optimality gaps, as shown in column 9 of Table 2 . Finally, it 
should be noted that our observation is based on the feasible solutions we get from our algorithms (which might not reflect 
the true optimal results), but we believe the insights are correct and useful. 
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Fig. 4. Optimal station installation. 
5. Summary and future research 

In many emergency response systems, cooperation across different types of responders is required. However, it is very 
challenging to incorporate joint service decisions into the reliable facility location problem due to (i) most existing literature 
on reliable facility location problem assumes there is only a single type of facility which are functionally identical (i.e., 
in terms of providing the same service), while the literature on systems with multi-type facilities and evaluation of the 
performance of such systems under probabilistic disruption and reliability considerations is quite lacking; (ii) it is difficult to 
model the interrelationship among multi-type facility location decisions, assignment of facility combinations of proper types 
to serve demand points with different service need patterns, and backup plans (also in terms of facility combinations) under 
different disruption scenarios; and (iii) when multi-type stations and the cooperation dispatching strategies are considered, 
the number of variables and constraints becomes significantly larger than that of the models for single-type facilities, which 
makes it very challenging to solve the model. In this paper, we developed a reliable multi-type joint-service facility location 
model to optimally position and allocate emergency response resources such that the expected quality of service across 
multiple stations is maximized under the risk of station disruptions. The model is formulated as a mixed-integer non-linear 
program, and then solved using a set of customized algorithms based on linear program relaxation, Lagrangian relaxation, 
as well as approximate formulation methods for enhanced lower bounds. A series of numerical experiments and sensitivity 
analyses are conducted to demonstrate how the proposed model could be applied to both hypothetical and full-scale cases, 
and how the proposed algorithm far outperforms commercial solvers in terms of solution quality and computation time. 

Future studies can be extended in several directions. First, this paper assumes that each station is disrupted indepen- 
dently. It would be interesting to look at the possibility of correlated disruptions (e.g., due to shared hazards or spatial 
proximity); see Xie et al. (2015, 2019) . Some large-scale disasters often cause degradation to the supporting transportation 
networks as well, and this effectively contributes to disruption of the services (beyond the failures of the stations them- 
selves), as discussed in Bell et al. (2014) ; Xie and Ouyang (2019) . We would also like to investigate how to deploy resources 
for joint services from a combination of unreliable stations through unreliable roadway networks. Furthermore, when the 
size of network is extremely large, the discrete mixed-integer models in this paper can suffer from prohibitive computation 
costs. Hence, it may be very important to derive more efficient solution algorithms, such as those based on continuum ap- 
proximation and following the ideas in Cui et al. (2010) ; Li and Ouyang (2010) , for large-scale networks. Also, no capacity 
constraints have been considered for the stations. In reality, a station might only be able to respond to a limited number of 
incidents at the same time (especially under disruptions). It will be of interest to explore how capacity constraints can be 
incorporated into the proposed model. Finally, this paper assumes that the demand is deterministic while in the real world, 
the demand might be stochastic which should affect the optimal installation strategy and service plan. 
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