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ABSTRACT

In this study, a general theoretical framework is proposed to analyze particle deposition on a substrate, based on statistical and physical
considerations. A model is developed in the context of the proposed framework to quantitatively predict the particle deposition on the
substrate in terms of coverage evolution. Its validity was then verified by a dip coating experiment, where a polydimethylsiloxane substrate was
periodically immersed in a sonicated graphene solution. An extension of the model was subsequently developed to describe the growth of the
deposition thickness. The proposed framework’s general applicability in any situation where particle deposition is taking place is expected to
spur future endeavors in systematically characterizing film coating, drug delivery, and other processes involving particle deposition.
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I. INTRODUCTION

The deposition of particles onto surfaces is a widely observed
phenomenon in both natural and industrial processes, such as
inhalation,1,2 filtration,3 ash fouling on heat exchangers,4,5 drug
delivery,6 dry deposition removing aerosols from the atmosphere,7

microcontamination control in the semiconductor industry,8 etc.
Commonly, the particles are carried by a flow medium (e.g., air,
water, etc.) and interact with the surface. They may deposit to or
rebound from a surface depending on the interaction between the
particles and the substrate. Understanding the particle deposition
process is critical for solving many challenging problems, ranging
from targeted drug delivery to the coating of nanoparticles for con-
trollable manufacturing. Dip coating, for example, is a widely
adopted method in advanced manufacturing, where a substrate is
periodically immersed in a particle-carrying solution, prompting
particle assembly on it. Applications of the said method include
metal coating,9 textile coloring,10 food coating,11 among many
others.12 With the fast development of nanotechnology, dip coating
of nanomaterials (e.g., CNT, perovskite, and biomolecules) has
been extensively studied and developed for strain sensors,13 solar
cells,14,15 and biosensors.16,17 In a recent study by our group, gra-
phene flakes were assembled on a flexible substrate.18 The observed
assembly performance, in addition to its quick healing ability, shed

light on this method’s potential for future flexible electronics
applications.

A question that comes to mind is “What general physics
govern the deposition process of suspended particles on a sub-
strate?” The interactions of a single particle or multiple particles
with substrates have been extensively studied on the microscopic
level. Many of the studies are based on molecular dynamics simula-
tions, which assume that a nanoparticle in the vicinity of the sub-
strate surface has a probability of being adsorbed and a probability
to rebound.19 The rebound may occur when the particle velocity is
above a critical velocity, which depends on the energy of adhesion
between the particle and the surface.20 Several models have been
proposed to calculate the energy of adhesion, which include the
Bradley–Hamaker (BH), Hertz, Johnson–Kendall–Roberts (JKR),
Derjaguin–Muller–Toporov (DMT), and Maugis–Pollock (MP)
models.21 Bouncing is also characterized by the coefficient of resti-
tution which is the ratio between the particle’s post-collision and
incident velocities. The coefficient of restitution has been measured
experimentally22 and calculated by molecular dynamics simula-
tions.23 Besides the MD simulation, the Lattice Boltzmann method
(LBM), focusing on statistically predicting the interparticle and par-
ticle–substrate interactions, has been used to theoretically analyze
particle deposition patterns resulting from the evaporation of
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colloidal drops24 and soot deposition distributions in diesel particu-
late filters (DPFs).25 Particulate fouling has also been computation-
ally investigated in porous metal foam heat exchangers via a finite
volume-discrete element couple method26 and on dimpled heat
transfer surfaces both numerically and experimentally.27 The effect
that the thickness of a plate in a parallel airflow has on particle
deposition velocity has been studied experimentally and numeri-
cally.28 Trajectory analysis of individual particles within an imping-
ing jet has been performed to study their deposition on
heterogeneous substrates with micropatterned surface charge.29 The
deposition of electrospun nanofibers on both moving and station-
ary substrates, on the other hand, has been simulated.30 The
driving forces considered in that study were particle–particle
Coulomb force, surface tension, electric-field-induced force, and
viscoelastic forces. Friction and gravity were neglected. Elaborate
stochastic and statistical models for particle deposition in turbulent
flows have also been developed.31,32 An extensive Monte Carlo
model for particle deposition has been developed, using a novel
adherence-potential barrier.33 On the other hand, another classical
theory, Langmuir’s theory of site-specific molecular adsorption34

was first introduced to describe the adsorption of gas molecules on
solid surfaces, under different pressure and temperature conditions.
However, the theory focuses on chemical interactions between the
adsorbed particles and the substrate, and describes molecular layers
of deposits at specific binding sites.

Review of the literature indicates that, despite of extensive
studies about the mechanism driving the nanoparticle deposition,
there are studies mainly on a case by case basis. In any circum-
stance, whether a particle will deposit on a substrate solely depends
on the substrate–particle–medium interfacial energies, and the par-
ticle’s incident velocity vector upon impact. Since the number of
particles is usually too big to consider every single one of them,
and the flow field in the carrying medium is rarely enough to infer
the particles’ velocity distribution, much of this phenomenon is
stochastic in nature. In other words, a general theoretical frame-
work tying the macroscopically observed coverage and thickness
growth rates to the microscopic statistical and physical properties
of the particles surrounding a substrate is lacking in the literature.
The paper presented herein is aimed to fill in the knowledge gap
by developing a theoretical framework, based on statistical and
physical considerations, to characterize particle deposition in any
general settings. As a sample system to demonstrate the theory, a
dip coating scenario is specifically considered. A deposition model
is first developed and validated experimentally, where a polydime-
thylsiloxane (PDMS) substrate is cyclically immersed in a sonicated
graphene solution. An extension of the model is subsequently
developed to reflect the feature of multilayered deposition and
hence the growth of the deposition thickness.

II. COVERAGE MODEL

Figure 1 depicts a substrate being periodically immersed
(along the y-direction) into a solution with dispersed nanoparticles,
as an example of the general problem being examined. Consider a
particle approaching the substrate at a certain velocity V . The
velocity vector has a component that is normal to the substrate (w),
and another that is parallel to it (s), which can also be decomposed

to u and v. As a result of surface interactions, a portion of those
particles deposit on the substrate, eventually forming a thin film.
When the type and material for both the particle and the substrate
are determined, one would expect that the probability of the parti-
cle depositing on the substrate after colliding with it, Pd , is a
certain function of the head-on and sideways components of the
particle’s velocity: Pd ¼ Pd(s, w).

Consider a suspension of those particles being irradiated with
external forces, e.g., sound waves. The velocity distribution of parti-
cles would be a certain probability density function
g(u, v, w) (s3m�3). In other words, the probability of a particle’s
velocity being within (uþ du, v þ dv, wþ dw) is g du dv dw.

Now take a patch of exposed area, dA on the substrate. After
an infinitesimal amount of time dt, this patch will have been hit by
a certain number of particles, dNh. Evidently, dNh would include
particles of all possible velocity vectors heading toward the sub-
strate. However, before the collision, for a particle with a head-on
velocity w to hit dA within dt, its distance away from the substrate
cannot exceed wdt. This means that all the particles that will hit dA
with a head-on velocity in the vicinity of w are contained within an
infinitesimal volume, δV ¼ w dt dA. Therefore, for a given particle
concentration, np(m�3), δNh, which exclusively counts the particles
hitting within a certain velocity vector, V , can be obtained as

δNh ¼ w dt dA np g(u, v, w)dw du dv: (1)

Only a fraction of δNh, which we denote as δNd , will stick and
end up depositing on dA. This fraction is the probability Pd(s, w),
where s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

. Hence,

δNd ¼ w dt dA np g(u, v, w)Pd(s, w)dw du dv: (2)

FIG. 1. A schematic showing detailed look at a particle approaching the
substrate.
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To obtain the infinitesimal number of particles that deposited
on dA within dt, the above expression is integrated over half the
velocity space (the other half corresponding to the particles moving
away from the substrate),

dNd ¼
ð1
�1

ð1
�1

ð1
0

w dt dA np g(u, v, w)Pd(s, w)dw du dv: (3)

Since the integration is performed over the velocity space, dA
and dt can be brought outside, along with np. If m (kg) is the parti-
cle’s mass, then the solution concentration C (kg/m3) is C ¼ mnp.
Hence, the frequency f (m�2s�1) of particle deposition on the
exposed area of the substrate is obtained as

f ¼ 1
dA

dNd

dt

� �
¼ C

m

ð1
�1

ð1
�1

ð1
0

wg(u, v, w)Pd(s, w)dw du dv: (4)

With the types and materials of the particle solutions and sub-
strates being known, and the experimental conditions set, Pd(s, w),
and g(u, v, w) are then determined. This shows that f is a linear
function of C,

f ¼ αC, (5)

where α is the definite integral

α ¼ 1
m

ð1
�1

ð1
�1

ð1
0

wg(u, v, w)Pd(s, w)dw du dv: (6)

While it may be argued that physical intuition can be enough
to assume the truth of Eq. (5) and just proceed from there, the
development above [Eqs. (1)–(6)] was deemed instructive for two
reasons. The first is that it rigorously validates this intuitive infer-
ence, once and for all. The second is that the explicit general form
of α, stated by Eq. (6), quantitatively elucidates the interplay
between the factors affecting the deposition performance, namely,
experimental conditions (e.g., sonication condition) through
g(u, v, w), and the choice of the substrate–solution pairing
[through Pd(s, w)]. For a specific situation, different mechanisms
driving the particle deposition and growth, including but not
limited to van der Waals attractive force, electrostatic double layer
force, hydrodynamic drag force, lift force, buoyancy force, and
Brownian motions, etc. would be reflected in the deposition proba-
bility, Pd , and the velocity distribution, g, which, in turn, affect the
parameter α in Eq. (6). Therefore, any future studies involving well-
controlled experiments or molecular dynamics simulations, where
the specific molecular interactions could be accurately estimated to
infer Pd and g, can use Eq. (6) to obtain the adsorption rate. In the
current study, these collective effects will be inferred from a sample
dip coating experiment, by finding the appropriate value of α that
provides the best fit between the experimentally observed coverage
rate and their theoretical counterpart.

Next, we shall investigate the substrate’s coverage evolution.
Although a particle depositing on top of another that has already
occupied a spot on the substrate is a real possibility, this would not
affect the coverage status of that spot. Once it receives a particle, it
will always appear as occupied when viewed from the top. Since α
is related to the deposition frequency on the exposed fraction of the
substrate, exclusively, the following development will be useful for
inferring α from the experimentally observed local deposition
described later in this paper. As detailed in Sec. III, the obtained
optical images of the substrate only provide a top view through
which a given spot can be judged as either occupied or vacant.

Let F be the exposed fraction of an area of the substrate where
the nanoparticle surface density is δ (kg/m2), and ap (m2) be the area
occupied by one particle on the substrate. As we have already estab-
lished that stacked particles do not affect the coverage status of a given
location, δ will refer to the surface density corresponding to just one
layer of particles. The exposed fraction, F would then be obtained as

F ¼ 1� δap
m

: (7)

This yields the rate of change of surface density at the subtrate,

@δ

@t
¼ αCm 1� ap

m
δ

� �
: (8)

Equation (8) will now be solved for each vertical location, y,
during one dipping cycle of the substrate. Defining the dimension-
less parameters,

δ*¼ ap
m
δ, t*¼αC0apt, C*¼ C

C0
, y*¼ y

L
: (9)

Equation (8) becomes (for the ith dip)

@δ*

@t*
¼ C*

i�1(1� δ*): (10)

Note that for one layer of nanoparticles, m
ap
is the upper bound

of δ, making δ*¼1� F [Eqs. (7) and (9)], the covered fraction
itself. Let T(y) be the immersion time spent by a vertical location,
y, on the substrate (Fig. 1). The solution to Eq. (10) during the ith
dip gives the evolution of the nanoparticle surface density during
that dip. For 0 , y* , 1, and 0 , t* , T*(y*) (top end: y*¼0,
bottom end: y*¼1),

δ*i (y
*, t*) ¼ 1� (1� δ*i�1(y

*, T*(y*)))e�C*
i�1t

*
: (11)

Letting W, L, and V be the substrate’s width, immersed length,
and the solution’s volume, respectively, Ci can be obtained by inte-
grating the mass captured by the substrate during the previous dip,

Ci ¼ Ci�1 �W
V

ð ðT(y)
0

@δi
@t

dt dy, (12a)
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or in dimensionless terms,

C*
i¼C*

i�1�
WLm
apVC0

ð ðT*(y*)

0

@δ*i
@t*

dt* dy*: (12b)

Equations (11) and (12b) should be applied to successive dips
to obtain the evolution of δ*(y*, t*). For illustrative purposes, we
will consider an example in which the immersion time is of a
linear shape: T*(y*) ¼ ay*, applying Eq. (11) to successive dips
shows that the surface density distribution by the end of the ith dip
looks like

δ*i¼1� e�kiy* , (13)

where ki ¼ a
Pi�1

j¼0 C
*
j . From Eq. (12b), the solution concentration

after the ith dip, C*
i is obtained from C*

i�1 as

C*
i¼C*

i�1þ
WLm
apVC0

1
ki
(1� e�ki )� 1

� �
: (14)

Figure 2 shows the surface density after different numbers of
dips. The chosen parameter values are a ¼ 0:4 and wLm

apVC0
¼ 0:01

(again, for demonstration purposes). Note how with further
dipping cycles, the distribution gradually becomes flat, showing an
eventual indifference to the immersion time, which is more appar-
ent at lower vertical locations (greater values of y* and, therefore,
longer residence times) as the substrate becomes close to
saturation.

III. EXPERIMENT

To validate the coverage model, a sono-assisted surface
energy-driven assembly mechanism is developed to assemble gra-
phene (average diameter of ∼5 μm and average thickness of
approximately 6–8 nm, and a density of 2300 kg cm−3, XGSciences)
flakes on polymer substrates.18 The PDMS was prepared by mixing

the monomer and crosslink agents with a volume ratio of 10:1. The
as-mixed PDMS was cast into a square Petri dish and cured at
room temperature for one week before the assembly. An unfavora-
ble solvent (i.e., water) for both graphene and PDMS is used to
drive the assembly of graphene on the PDMS surface. The assembly
was done using a graphene solution (0.5 mgml−1) and PDMS sub-
strate under the sonication (20 kHz, 0.3W cm−2). Under the effect
of sonication, the dispersion of graphene can be maintained, and
the assembly process can be significantly facilitated. In order to
mimic the relative motion between the particle media and the sub-
strate, a customized dip coating system is used, and the diagram is
shown in Figs. 3(a) and 3(b). The setup is mainly constructed by a
customized slider-crank mechanism composed of 3D printed parts
and is driven by a linear DC motor with a fixed angular speed of
60 rpm. A representative displacement vs time curve in one dipping
cycle is shown in Fig. 3(c). Intuitively, the actual assembly time
(the time of substrate immersed in water) is related to the dipping
time. In each dipping cycle with 1 s period, the actual assembly
time is 0.5 s. Due to the bottom part of the substrate being
immersed in the solution for longer than the top, the deposition
efficiency can be expected to change with the distance from the top
of the substrate, leading to a thickness gradient. Under the same
deposition condition, the coverage increases with the assembly
time, which is reflected in the optical images [Fig. 3(d)]. The cover-
age increases from top to bottom in the same sample. In the same
position, increased coverage can be found with increased dipping
times, i.e., assembly time.

The quantitative coverage was obtained by calculating the
ratio between the deposited graphene area and the overall area and
summarized in Fig. 4 The length of the substrate (3 cm) is normal-
ized to 1 and represented by y*. Figure 4 shows an increasing cov-
erage for greater values of y*, due to their corresponding longer
residence time during a given dip. As the number of dips grows,
the coverage approaches saturation.

IV. MODEL VALIDATION

Typically, the particle build-up on the substrate plateaus at a
thickness of a couple hundred nanometers, amounting to a negligi-
ble mass adsorbed from the nano-solution. With the number of
particles in the solution at which the experiment starts off, the final
particle concentration remains practically unchanged. Therefore, to
experimentally obtain the value of α in the context of the coverage
model in Sec. II, the concentration, C, was assumed to be C0

throughout all 100 dipping cycles. As will be outlined in Secs. IV A
and IV B, the value of α will first be extracted based on the
observed coverage distribution resulting from a certain number of
dipping cycles. The calculated value will then be used to predict the
coverage resulting from the other numbers of dips.

A. Extraction of α

With a constant concentration, according to the coverage
model, the substrate coverage distribution, δ*i (y

*), after the ith dip,
simplifies to Eq. (15), by solving Eq. (10) for C*¼1, and

FIG. 2. Evolution of the surface density distribution after the ith dip, where i = 1,
5, 10, 20, 30, 50, 100, and 1000.
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substituting t* by the cumulative immersion time, iT*(y*),

δ*i (y
*) ¼ 1� eiT

*(y*): (15)

Since T*(y*) ¼ αC0apT(y*), the value of α is embedded in the
appropriate inverse of the time scale, P(s�1) ¼ αC0ap, which brings
δ*i (y

*) closest to the observed coverage distribution (Fig. 4), for a

given value of i. The residence time, T(y), corresponding to the
geometry and speed settings of the crank-slider mechanism (Fig. 3)
can be obtained as

T(y) ¼ 2
ω
cos�1 1þ y(y � 2l)

2r(r þ l � y)

� �
: (16)

The number of dips on which the calculation of P was based
is i ¼ 30, for reasons that will be discussed in Sec. IV B. The value
of P that scaled T(y), and generated a distribution, δ*30(y

*), that was
closest to its observed counterpart (had the least RMS error), was
P ¼ 0:32 s�1. This implies a value of α ¼ P

C0ap
.

B. Predictions of coverage distribution based on α

The value of P that was calculated based for i ¼ 30, was used
to obtain T*(y*), which was substituted in Eq. (15) to predict
δ*i (y

*), for the other values of i (i ¼ 1, 3, 5, 10, 50, 100). Before
getting into the details of the comparison results shown in Fig. 5,
three significant sources of uncertainty should be pointed out, two
of which led to the choice of i ¼ 30 dips for the calculation of P.
The first is statistical significance. Inferring the value of P (and
therefore α), from a small number of dips, makes an inaccurate
assumption that the observed coverage resulting from those dips
would be representative of the actual deposition rate that is directly
related to α. The second source of uncertainty is the hindering
effect. The model is developed in the context of a smooth contin-
uum of deposition density, where every spot on the substrate is
visualized as part occupied and another that is vacant. However,

FIG. 4. Coverage results for different numbers of dips as a function of vertical
location.

FIG. 3. (a) Schematic of the customized dip coating system. (b) Real experimental setup image. (c) Schematic showing the moving trajectory of the substrate in one dip-
coating cycle. (d) Optical images of the substrate at three vertical locations, y = 0.5 cm, 1.5 cm, and 2.5 cm, after the ith dipping cycle, i = 1, 10, 50, 100, respectively. The
y axis is measured from the top of the substrate (Fig. 1). The scale bar is 100 μm.
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the physical particles tend to form local aggregates. When a vacant
location on the substrate happens to be surrounded by those aggre-
gates (Fig. 3), it becomes more difficult for an incoming particle to
occupy it. Hence, while the coverage distribution resulting from a
greater number of dips is statistically preferable for the calculation
of P, the prevalence of the hindering effect when the coverage is
too dense (i too large) will lead to an underestimate of P (and con-
sequently α). Therefore, as a compromise, the intermediate value of
i (i ¼ 30) was chosen. The third source of uncertainty resides in
the processing of the optical images to estimate the coverage. As
can be seen in Fig. 3, the brightness signature of the deposits is
mostly bipolar, where some stand out as bright regions while
others as dark. This makes the thresholding for the disjoint ranges
of brightness that are relevant to the deposits a bit challenging,
thereby introducing inevitable errors in the coverage estimation.

Based on i = 30, we theoretically predicted that coverage of
nanoparticles on the substrate at different locations and for differ-
ent numbers of dips. The theoretical predictions agree reasonably
well with the experimental data, Fig. 5, despite all the uncertainties
explained above. Since the hindering effect is not completely absent
after 30 dips, the prediction tends to underestimate the coverage
corresponding to smaller numbers of dips, where hindering is not
as prevalent. The relatively greater deviation corresponding to the
coverage after 1 dip can be attributed to the problem of statistical
significance where the coverage resulting from the 1-dip experi-
ment performed one time, can significantly fluctuate around the
predicted average. The stark difference observed for 10 dips may be
attributed to the experimental coverage estimation errors due to the
bipolar brightness signature of the deposits in the optical images as
can be seen in the row corresponding to 10 dips in Fig. 3. Even the
trend of the experimental coverage distribution corresponding to
10 dips looks quite different than the others. Since hindering
would be more severe for greater numbers of dipping cycles, the
prediction overestimates the coverage for 50 and 100 dips. Overall,
the theoretical model captures the general behavior of the particle
deposition and its spatial distribution.

V. THICKNESS GROWTH MODEL: MULTIPLE LAYER
DEPOSITION

Based on the validated coverage model, which quantifies the
interaction between the particles and the substrate, through the
parameter α, a model for the thickness growth will be proposed. In
this model, both particle–substrate and particle–particle interac-
tions are represented through a value of α that varies with the dis-
tance z from the substrate. As mentioned earlier in Sec. IV, the
total mass that ends up depositing on the substrate is so small that
the solution concentration is left practically unchanged. The self-
limiting thickness growth indicates a decreasing deposition proba-
bility with increasing thickness, which points to a decreasing value
of α (eventually vanishing). To model this process in a consistent
theoretical framework, each level (z) above the substrate is visual-
ized as having all its points occupied by parts of an infinitesimal
slice (dz) of the depositing material. To put it differently, at every
instant during immersion, the semi-infinite line standing on each
immersed point of the substrate has growth occurring on each of
its points, at decreasing rates further from the substrate. Integrating
the incremental surface concentrations along this semi-infinite line
would then yield the total surface concentration (δ) at its corre-
sponding location on the substrate. Equation (8) will, therefore, be
applied to the incremental counterparts of δ and m, denoted as δ̂
and m̂, respectively, with the concentration as a constant for the
reason pointed out earlier,

@δ̂

@t
¼ α(z)C0m̂ 1� ap

m̂
δ̂

� �
: (17)

Nondimensionalizing as follows:

δ̂*¼ ap
m
δ̂, t*¼α0C0apt, α*¼ α

α0
, T*(y*)

¼ α0C0apT(y), m̂*¼ m̂
m

¼ dz
h
, z*¼ z

z0
: (18)

where α0, h, and z0 are the value of α at the substrate’s level, the
particle’s height, and a general height scale, respectively, Eq. (17)
becomes

@δ̂
*

@t*
¼ α*(z*)m̂* 1� δ̂

*

m̂*

 !
, (19)

to which the solution is

δ̂*¼m̂*(1� e�t*α*(z*)): (20)

Recognizing that Eq. (20) describes infinitesimal quantities,
the dimensionless surface distribution is then integrated as

δ*¼ z0
h

ð1
0
(1� e�t*α*(z*))dz*: (21)

FIG. 5. Predicted vs experimentally observed coverage.
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The deposits thickness distribution would then be H ¼ δ
ρ,

where ρ is the deposits density. Hence,

H*¼H
z0

¼ h
z0
δ*¼

ð1
0
(1� e�t*α*(z*))dz*: (22)

On a side note, the convergence of the integral in Eqs. (21)
and (22) is not unconditional. Functional forms of α*(z*) that
keep the function ψ(z*) ¼ z*p(1� e�α*(z*)) bounded as z* ! 1, for
p . 1, guarantee convergence. Substituting t* in Eq. (22) by the
dimensionless residence time, T*(y*) multiplied by the number of
dipping cycles, i, the thickness distribution after the ith dip, H*

i (y
*),

is then obtained as

H*
i (y

*) ¼
ð1
0
(1� e�iT*(y*)α*(z*))z*: (23)

In the formulation above, α(z) is a general decreasing func-
tion, vanishing as z* ! 1, To get a sense of what Eq. (23) predicts,
an exponential form is explored: α(z) ¼ α0e�βz , which means
α*(z*) ¼ e�z* where z*¼βz (making the chosen height scale
z0 ¼ 1

β). The figure shows that the thickness distribution when α is
exponential, and T*(y*) ¼ ay*, for a ¼ 0:4.

Despite the evolving profile in Fig. 6 tending toward a flat
slope after infinite dipping cycles, indicating an ever-slowing
growth rate, the growth itself (H*) is not bounded. This can be seen
in Eq. (22) where if α*(z*) is not exactly 0, H* will keep increasing
for arbitrarily longer immersion periods. In reality, however, there
is a cutoff growth thickness where deposition completely stops, and
beyond which α is exactly 0, thereby making H* bounded at 1 (by
choosing the height scale, z0, as the cutoff thickness). Future
studies can experimentally investigate the cutoff thickness in differ-
ent conditions, from which the functional form of α(z) can be
inferred using this model. It is noticed that the growth model pre-
sented herein is not validated experimentally due to the limitation
of our experiments. Nevertheless, since the growth model is an

extension of the coverage model which has been validated experi-
mentally, its validity can be inferred from that of the latter with
reasonable confidence. An on-going experimental study is per-
formed by our group which would allow us to directly validate the
growth model.

VI. CONCLUSION

In this paper, a statistical, physics-based, theoretical frame-
work was proposed, in which a model for particle deposition on a
substrate was developed. The part of the model concerned with
deposition coverage was tested against experimental results from a
dip coating setup where a PDMS substrate is cyclically immersed in
a sonicated graphene solution. Optical images of the substrate at
different vertical locations, after several numbers of dips were
obtained and processed for the covered fraction. The coverage data
corresponding to 30 dipping cycles were used to infer the value of
the parameter α, which in this study, was shown to quantify the
substrate–nanoparticle interaction for given sonication conditions.
The inferred value was substituted in the coverage model to predict
the coverage profiles corresponding to the other numbers of dips.
Overall, the predictions compared well with experimental data,
despite anticipated discrepancies attributed to statistical signifi-
cance, image processing uncertainties, and the hindering effect for
dense coverage. The model was extended to accommodate the
growth of deposition thickness resulting in sensible theoretical
results, thereby setting the stage for future efforts to experimentally
determine α’s thickness dependence.

The paper presented herein provides a unifying general theoret-
ical framework to describe particle deposition in any setting, by rig-
orously relating the microscopic physical and statistical properties of
particle–substrate interactions to the macroscopically observed cover-
age rate. The details of microscopic mechanisms driving particle
deposition are not the crux of what this paper is concerned with.
Studies examining those on a case by case basis are abundantly avail-
able in the literature. However, theories describing macroscopic
observations of particle coverage and film growth are lacking in the
literature, despite their fundamental importance. The current paper
fills in this knowledge gap. Specifically, Eq. (6) is a general exact
expression relating the macroscopically observed adsorption rate to
the statistical description of particles in the vicinity of the substrate.
In any process involved with nanoparticle deposition on a substrate,
no matter what type of physical or chemical interactions are
involved, their effects, as reflected in the deposition probability, Pd ,
and the velocity distribution, g, will affect the parameter α in
Eq. (6), which is used to predict the deposition performance on the
macroscopic level. Being reminiscent of the famous Langmuir’s
theory of site-specific molecular adsorption,34 the parameter α char-
acterizing the adsorption rate can serve as the adsorption coefficient
in Langmuir’s kinetic equation.
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FIG. 6. Evolution of the deposition profile over 1000 dipping cycles.
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