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A B S T R A C T

Emergency evacuation is a critical response to deadly disasters such as hurricanes, floods, and earthquakes, etc.
However, mass emergency evacuation itself is a complex process that sometimes could lead to chaotic situations
and unintended consequences. In many emergency scenarios, mass evacuation is necessary to cope with severe
public threats within tight spatiotemporal ranges. To better understand complex phenomena like mass eva-
cuation, and study possible consequences, agent-based models (ABMs) have been widely developed in previous
work. Existing models simulate individual behaviors, posing computational challenges when applied to large
geographic areas and sophisticated behaviors. A key strategy for resolving such computational challenges is to
partition transportation networks into smaller regions and resolve corresponding computational costs by taking
advantage of advanced cyberinfrastructure and cyberGIS. In this study, a novel network partition algorithm is
developed to improve the scalability of agent-based modeling of mass evacuation based on a cutting-edge
cyberGIS-enabled computational framework that exploits the spatial movement patterns of emergency eva-
cuation. Specifically, the algorithm is termed as Voronoi Clustering based on Target-Shift, or ViCTS. It is en-
lightened by network Voronoi diagrams and designed to resolve computational scalability challenges caused by
the unique characteristics of evacuation traffic. We conducted a set of computational experiments with real
street network data in various evacuation scenarios to test the effectiveness and efficiency of the algorithm.
Computational experiments show that ViCTS outperforms a widely used network partition algorithm for mi-
croscopic traffic simulation in terms of achieving optimal computational performance by balancing computa-
tional loads and reducing communications across high-performance parallel computing resources.

1. Introduction

Emergency evacuation is critical to saving lives and properties in
the context of responding to deadly natural disasters such as hurricanes,
floods, and earthquakes, etc. However, mass evacuation is a complex
process sometimes leading to undesirable and chaotic outcome.
Therefore, it is important to gain rigorous understanding of this process
for designing effective evacuation strategies and assessing evacuation
consequences. For this purpose, extensive studies have been conducted
to understand the dynamics and consequences of emergency evacuation
(Lu, George, & Shekhar, 2005; Murray-Tuite & Wolshon, 2013; Shekhar
et al., 2012; Wolshon & McArdle, 2009).

One of the most significant challenges in understanding the emer-
gency evacuation process is its complex nature. For example, a mass
evacuation could involve a huge population; and each individual has a

unique situation with different incentives and motives; meanwhile the
behaviors and decisions of individuals tend to influence those of each
other, leading to collective uncertain evacuation dynamics, which is
hard to predict through analytical or empirical approaches (Fieguth,
2016; Fuchs, 2012; Lawler, Thye, & Yoon, 2014). Literature suggests
computational modeling, in particular agent-based models (ABMs), as
an effective way to represent such uncertain dynamics. Specifically,
these modeling approaches represent collective interactions, synthesize
heterogeneous data sources, and reveal implicit correlations (Chen,
2008; Farahmand, 1997; Han & Yuan, 2005; Suzumura, Houngkaew, &
Kanezashi, 2014; Yuan et al., 2017). However, the computational in-
tensity (Wang, 2008) of ABMs tends to increase dramatically as popu-
lation size and related spatial scope expand. This computational in-
tensity challenge often limits agent-based evacuation modeling to
relatively small areas (Yan, 2014), which jeopardizes the purpose of
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ABMs for gaining holistic insights.
Meanwhile, with recent advances in cyberinfrastructure (Hey &

Trefethen, 2005), enabling large-scale microscopic traffic simulation
based on high-performance computing has been pursued extensively
(Rickert & Nagel, 2001; Smith, Beckman, Anson, Nagel, & Williams,
1995; Suzumura et al., 2014; Yan, 2014; Wen, 2008). Such research
efforts shed light on how to improve the computational scalability of
agent-based traffic simulation. Nonetheless, gaps still exist for applying
scalable traffic modeling and simulation to emergency evacuation. A
major gap is that the unique characteristics of evacuation traffic (Dixit
& Wolshon, 2014; Wolshon & McArdle, 2009) are not incorporated into
the design of generic traffic simulation, causing low computational
performance.

In this research, we analyze and demonstrate the inefficiency of
directly applying the scalability strategy of generic traffic modeling to
evacuation scenarios. To fill this gap, we propose a novel network
partition algorithm for scalable agent-based evacuation modeling. The
algorithm is termed as Voronoi Clustering based on Target-Shift
(ViCTS). It is enlightened by network Voronoi diagrams (Okabe, Satoh,
Furuta, Suzuki, & Okano, 2008) and specifically designed to resolve
computational scalability challenges caused by the unique character-
istics of evacuation traffic. We have conducted a set of computational
experiments with real street network data in a specific evacuation
model scenario to test the effectiveness and efficiency of the algorithm,
as compared to the most popular counterpart of generic traffic mod-
eling: METIS (Karypis & Kumar, 1995).

In the following sections, we first provide an overview of related
work in scalable traffic modeling and identify the unique challenges of
modeling evacuation traffic in a scalable fashion (Section 2).
Subsequently, we describe our work that exploits the unique spatial
patterns of evacuation traffic into consideration to resolve the corre-
sponding computational challenges (Section 3). Finally, a series of
computational experiments using our network partition algorithm
against a mainstream method: METIS (Karypis, Aggarwal, Kumar, &
Shekhar, 1999) is conducted on Miami's street network for a simulated
traffic evacuation (Section 4). To our best knowledge, our work re-
presents the first network partition solution for scalable evacuation
emergency simulation.

2. Background

2.1. Network partitioning methods for scalable agent-based traffic modeling

ABMs have been demonstrated to be effective for simulating dy-
namic conditions and varying evacuee responses typically found in a
mass evacuation (Chen, 2008; Chen, Meaker, & Zhan, 2006; Cova &
Johnson, 2002; Farahmand, 1997; Han & Yuan, 2005; Richard &
Church, 2002) However, the computational intensity of such models
can be prohibitively high especially when the number of agents and
corresponding spatial domain are large. For the agents, aside from
computing resources needed to handle each one of them, there are also
interactions among these agents and between the agents and their en-
vironments that increase dramatically as the number of agents grows.
In a straightforward case of traffic modeling, a vehicle needs to know at

least the positions of preceding vehicles all the time in order to avoid
collision. For a spatial domain, when modeled in a sizable spatial net-
work, even the best shortest-path algorithms pose serious computa-
tional challenges. In an evacuation scenario where road conditions vary
dynamically, all vehicles modeled as agents need to update their
shortest paths frequently in order to get their optimal paths. All of these
processes need to be computed for each time step until the entire
evacuation ends. Given the above challenges, it is practically infeasible
to apply agent-based evacuation models to a large spatial domain such
as at the scale of populous cities without computationally scalable
models (Yan, 2014). Therefore, it is necessary to develop computational
scalability strategies to exploit advanced cyberinfrastructure and high-
performance computing for agent-based evacuation models.

To fully leverage cutting-edge cyberinfrastructure, a key strategy is
to design an agent-based model in a scalable fashion. For example,
TRANSIMS (Rickert & Nagel, 2001; Smith et al., 1995) uses a cellular
automata model that divides roads into car-length cells, each of which
can be occupied at most by one vehicle at the same time. The movement
of vehicles is modeled as the transition of vehicles from one road cell to
another. The distance of each transition represents the speed of the
vehicle at that moment. In this design, road cells could be assigned to
different logical processes (LPs) in parallel, with a message passing
interface to communicate vehicle transitions between different LPs.

The fundamental idea of scaling up agent-based traffic simulation
with network partitioning is illustrated in Fig. 1. Network partitioning
decomposes the spatial domain into a set of sub-networks, which pro-
vides a basis to decompose the underlying computation into a group of
processors. Each processor computes the movements of agents in its
area of focus in parallel, while constantly communicating with neigh-
boring processors when some agents go across their partition bound-
aries. The efficiency of parallelization is measured based on how ba-
lanced the computational work is split among processors (load-
balance), as well as the frequency and volume of communication be-
tween processors (communication cost). (Rickert & Nagel, 2001) pro-
posed a conceptual framework to evaluate the overall computational
efficiency of scalable traffic modeling:= +T T Tparallel cmp cmm (1)

= + +T
T
n

f f(1 )cmp
seq

overhead load (2)

= + +T n T n T C
C

· ·cmm neighbor lat message message
sat (3)

where Tcmpis the total time for computation; Tcmmis the total time of
communication; Tseq is the sequential computation time; foverheadis the
overhead effects (e.g. maintaining copies of the common roads and
vehicles on both LPs); floadis the effect of load balance; nneighboris the
number of neighboring LPs for one LP, Tlatis the latency (start-up time)
of each message;nmessageis the number of messages to be sent (size of
communication); Tmessageis the unit time cost for sending one message;
and C

Csat
accounts for the network saturation effects, which is dependent

on the network topology.
Generally, as foverhead is related to the number of edge splits, which

also contributes to part of the communication cost, network topology is

Fig. 1. Network partitioning for scalable agent-based traffic simulation.
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costly to optimize. The major goals of optimizing total computational
efficiency are to control 1) load balance and 2) communication cost,
both of which are critically affected by the mapping from traffic net-
work to LPs through spatial domain decomposition and network par-
titioning.

Based on the goal of computational performance optimization, the
following types of network partitioning methods have been studied (Xu,
Cai, Aydt, & Lees, 2014):

1) Geographic partitioning (Klefstad, Zhang, Lai, Jayakrishnan, &
Lavanya, 2005; Sun, Chen, Li, & Wang, 2012; Wei, Chen, & Sun,
2010) decomposes a street network directly using geographic loca-
tions of roads and intersections. Apparently, this kind of partitioning
methods achieve optimal performance when the computational load
and communication distribution have explicit and predictable geo-
graphical patterns. For example, police vehicles patrol in their own
jurisdiction. However, this assumption does not hold for most
complicated traffic scenarios, such as in emergency evacuation. Due
to its marginal computational cost, it is usually adopted for dynamic
repartitioning where the computational speed of partitioning is
preferred over optimality.

2) Scattered partitioning (Barceló et al., 1998; Thulasidasan,
Kasiviswanathan, Eidenbenz, & Romero, 2010) aims for load bal-
ance by dividing road networks into small and scattered parts, re-
gardless of their spatial proximity and connectivity. Consequently,
this type of partitioning usually induces significant communication
cost. Therefore, it is mainly used when the cost of communication is
marginal, which can be achieved for example through shared-
memory architecture.

3) Graph partitioning (Fiduccia & Mattheyses, 1988; Hendrickson &
Kolda, 2000; Kernighan & Lin, 1970; Xu, Cai, Eckhoff, Nair, & Knoll,
2017) formulates the network partitioning problem as a graph
partitioning problem by converting a road network into a graph and
assigning workload indices as weights to corresponding vertices and
edges in the graph. Graph partitioning is generally flexible and
comprehensive to represent different trade-offs between load-bal-
ance and communication. The major disadvantage is that many
graph partitioning methods are computationally intensive. There-
fore, hypergraph partitioning gains popularity among graph parti-
tioning methods due to its relatively low computational cost and
reasonable optimality. In hypergraph partitioning, the target graph
is generalized to a hypergraph by grouping parts of the graph
(subgraphs) as hyper vertices connected by hyper edges, which re-
duces the partition problem to a smaller scale and reduces compu-
tational cost of partitioning. In practice, the k-way multi-level Ker-
nighan-Lin hypergraph partitioning method of METIS and its
variants (Karypis et al., 1999; Karypis & Kumar, 1995; Karypis,
Schloegel, & Kumar, 1997; Xu & Tan, 2012) are widely adopted for
scalable agent-based traffic modeling.

However, most existing network partitioning methods, even those
widely used for scalable traffic modeling, do not adequately take the
spatial patterns of traffic flows into consideration. Many graph partition
methods including METIS, mainly optimize the edge cuts, load-balance,
or a combination of both in their partitioning algorithms. While such
optimization is reasonable for most networks, and practically sufficient
for generic traffic modeling, it is not optimal when the traffic flows
have distinct spatial patterns such as those observed during an emer-
gency evacuation. In the next section, we first summarize the unique
patterns of evacuation traffic, and then analyze why such patterns can
cause suboptimal performance of existing network partition methods.

2.2. Evacuation traffic modeling

As summarized by (Gan, Richter, Shi, & Winter, 2016), evacuation is
“a time critical process in which the highest priority is to get those

people who may be affected by a disaster out of the danger zone as fast
as possible.” Undoubtedly, this kind of transportation demand (moving
out of a region under time pressure) is the most distinguishable char-
acteristic that is rarely observed or modeled for generic traffic. Besides
the general demand of moving outwards, there are also specific de-
mands of urgency and route planning affected by various factors, in-
cluding demographic, socio-economic, cultural and personal differences
of each household and individual, as well as local conditions and the
development of disaster threats (Murray-Tuite & Wolshon, 2013; Yin,
Murray-Tuite, Ukkusuri, & Gladwin, 2014; Yuan et al., 2017).

Driven by this demand, unique patterns of evacuation traffic have
been investigated by a series of empirical studies (Dixit & Wolshon,
2014; Wolshon & McArdle, 2009). For example, it is widely observed
that regardless of any physical locations or events, the capacity of
traffic flows in evacuation inevitably drops by 10–20% after reaching a
peak during early evacuation phases, and then the dropped capacity is
sustained for periods of six to twelve hours (Banks, 1990; Dixit &
Wolshon, 2014; Wolshon, 2008). This phenomenon, referred as capa-
city drop, can be caused by congestions in downstream queues (Brilon,
Geistefeldt, & Regler, 2005; Tu, van Rij, Henkens, & Heikoop, 2010).
The capacity drop phenomenon is an example of how the supply side of
traffic modeling can be volatile in an evacuation scenario. Events like
traffic congestion, traffic accidents, or road damage caused by disasters
can all result in dramatic drop of overall network capacity, potentially
leading to massive re-navigation and complex traffic dynamics.

In general, we summarize the unique characteristics of evacuation
traffic as compared to normal traffic as follows:

● Spatially heterogeneous demand: Evacuation traffic has clearly
heterogeneous demands (moving outwards from danger zones) and
traffic flows are non-uniform (diffusing towards the nearest exits).

● Dynamically uncertain supply: Road conditions are subject to ir-
regular events that reduce the capacity (supply) of the whole net-
work in the middle of evacuation, and force vehicles to re-navigate
their routes dynamically.

The spatial heterogeneity and dynamic uncertainty of evacuation
traffic lead to significant computational challenges that traditional
network partitioning methods are ill-suited to address. First of all,
spatially heterogeneous demands could lead to severe load imbalance
for traditional network partitioning based on homogeneous assump-
tions. Regardless of the initial vehicle distribution and evacuation ef-
ficiency, as long as traffic flows are moving out of danger zones in
general, vehicles will naturally concentrate on the periphery or outside
of danger zones and dilute in centers as the evacuation process unfolds.
If the network partitioning does not take this into consideration and
assumes homogeneous vehicle distributions over the entire evacuation
duration, it is likely that the center partition will be idle while the
peripheral partitions are severely swamped, which could cause sig-
nificant load imbalance and computation inefficiency.

However, the challenge posed by spatial heterogeneity alone is not
intractable. As long as the demand pattern is stable, corresponding
evacuation routes can be pre-computed to reveal the traffic load dis-
tribution across the entire street network. Then it becomes a typical
network partitioning problem with certain weight distribution over
network nodes and edges, which is well addressed by traditional par-
titioning algorithms (Karypis & Kumar, 1995). What makes the problem
more difficult is the combination of spatially heterogeneous demand
and dynamic uncertain supply. While congestion-induced supply re-
duction is still possibly manageable and predictable, supply reduction
caused by accidents or disaster damage is extremely complicated to
model and has to be represented by randomness. This means that there
will be many vehicles dynamically updating their evacuation routes and
possibly changing their target exits (“horizontal” movements) in an
unpredictable fashion. Therefore, even if traditional network parti-
tioning is designed to pay extra attention to peripheral exits/shelters,
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without properly handling the dynamic supply drop and the corre-
sponding traffic rerouting, the overall computational performance
could still suffer from large communication volume from vehicle tran-
sitions across partition boundaries.

3. Method

Previous analysis has shown that the spatial heterogeneity and un-
certain supply of evacuation traffic have to be taken into consideration
for optimal computational performance, and that it is difficult to in-
corporate these characteristics into traditional methods. In this section,
we propose a new network partition algorithm using Voronoi-
Clustering based on Target-Shift (ViCTS) to solve the aforementioned
problems.

3.1. Network Voronoi diagrams for evacuation

Instead of partitioning the network into arbitrary granularity, we
build final partitions from atomic parts, specifically network Voronoi
diagrams (Okabe et al., 2008), to address the spatial heterogeneity
problem. The detailed mechanism is explained in the following proof
and discussion.

Network Voronoi diagrams extend the traditional planar Voronoi
diagrams (Voronoi, 1908) to network space, by

● Restricting the spatial domain of interest from the entire geometric
plane to the edges and vertices on a specific network; and

● Replacing the distance definition from planar distances (Euclidean
distance, Manhattan distance, etc.) to the network distance (length
of the shortest path between two points on the network).

The formal definition of network Voronoi diagrams is as follows:
given a network graph G= (V,E) and a set of seed vertices S= {s1…sn}
on G, the network Voronoi diagram {VI1…VIn}is defined by:= =VI v d v s d v s j i j n v V{ | ( , ) ( , ), , 1. . , }i G i G j (4)
where dG(v1,v2) is the network distance from one vertex to another. It
should be noted that the distance could be directional depending on the
directionality of G. In the case that the distance is directional, what is
defined by Eq. (4) is actually an inward Voronoi diagram (Okabe et al.,
2008), which is used in this study for solving the network partitioning
problem.

In an evacuation scenario, we define the Voronoi diagram as spe-
cified in (4), using the street network as G; the set of safe exits (i.e. road
intersections outside the periphery of the danger zone) as the seed
vertices; and the travel distance as network distance (see Fig. 2 for an
illustrative example). This way we can observe the following evacua-
tion pattern for all vehicles initially located in a Voronoi subnet VIi:

● All the vehicles in this subnet have the same nearest exit si, hence
they are likely to choose that si as the same destination for eva-
cuation;

● The shortest path from their initial locations tosicompletely falls in= +VI VI VIi i i
_

, i.e.

= > > … > =v VI and p v s
v v v v v s with length p v s d v s

( , )
{ , , , } ( ( , )) ( , ),

i i

m i i G i1 1 2

j m v VI{1. . }, j i
_ (5)

Here ∂VIi stands for those vertices that have equal distance to si and
another sj, ∂VIi = {v|∃j,dG(v, si) = dG(v, sj)}, which technically belongs
to both Voronoi subnets. But in reality, with road segment lengths
measured as floating-point numbers, the chance for one origin to have
exactly the same shortest distance to multiple destinations is extremely
small, hence most of the time ∂VIi = ϕ and =VI VIi i

_
.

(5) can be proved by contradiction: if a shortest path p(v, si) lands on
a vertex v VIk i

_
which belongs to another Voronoi subnetwork VIj, then

we have= +d v s d v v d v s( , ) ( , ) ( , )G i G k G k i (6)
Since v VIk j

_
and vk ∈ VIj, according to the definitions ofVIj

_
andVIj,>d v s d v s( , ) ( , )G k i G k j (7)

Combining (6) and (7),= + > + =d v s d v v d v s d v v d v s d v s( , ) ( , ) ( , ) ( , ) ( , ) ( , )G i G k G k i G k G k j G j (8)
meaning vis strictly closer to sjthansi, which contradicts the definition of
VIiin (4) that requires dG(v, si) ≤ dG(v, sj).

In summary, if all vehicles in the same Voronoi subnet choose to
evacuate to the nearest exit, not only will they move towards the same
destination, but also all of their routes will completely fall in the range
of that Voronoi subnet. This is a strong indication for network parti-
tioning: if a partition consists of a set of complete Voronoi subnets, then
all vehicles in this partition will stay within the partition during the
entire evacuation, and hence vehicle transitions across partitions will
be zero. However, this is only the case when every vehicle holds to their
shortest path, and road conditions remain constant.

3.2. Road closure and target shift

While network Voronoi diagrams are effective for solving the par-
titioning problem in static cases, it remains difficult to deal with dy-
namic, random road closures during the evacuation. To assess this
difficulty, the consequences of road closures for evacuation traffic need
to be analyzed. However, in a real -world mass evacuation, these con-
sequences could be complex, depending on how the road closure in-
formation is disseminated and how each individual reacts to the si-
tuation. For the sake of simplicity and the computational focus of this
research, we assume that information dissemination is complete and
instant, and all evacuation vehicles make decisions in the following
pattern:

● If the closed road is not on the shortest route to a vehicle's current
destination, then this vehicle is not affected and will resume its
travel as normal.

● Otherwise, if the shortest route is now partially closed, then:
○ If a short detour exists (the second-shortest path towards the
same destination), the vehicle should take that detour and stick to
the previous destination

○ If the road closure is critical (the path towards the current des-
tination increases tremendously), then the vehicle should re-na-
vigate to the current nearest exit, given the new road conditions.

As long as the vehicle sticks to its previous destination, it is not
likely to detour very far and hence would possibly remain geo-
graphically close to its Voronoi subnet. The real obstacle here is the
kind of road closure that leads vehicles to switch to other exits, which
could result in dramatic changes in the vehicles' routes. To tackle this
problem, we need an effective indicator to predict the range of alter-
native destinations a vehicle would choose in case of road closures
(target shift).

Intuitively, the more numbers of roads between a vehicle and an
exit, the less likely the vehicle is going to shift its target. Specifically,
assuming the closure of roads is subject to an identical independent
distribution (iid), then the “stickiness” between a vehicle's location and
an exit could be measured by the minimum number of road segments
that have to be closed in order to increase the shortest distance to be
larger than the distance between the alternative exit (second-nearest)
and the vehicle and its current location. Formally, if we define this
number as M, then:
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= >M L v s min c d v s L( , , ) { | ( , ) }i G c i (9)
where L is the length limit, which could be the value of dG(v, sj), wheresj
stands for the second nearest exit of v, and c is a certain set of edge cuts
or road closures. In general, to define the minimum number of edges to
be cut for a vehicle to choose the nthclosest exit svnas its destination, we
have

= =C v n M d v s v s( , ) ( ( , ), , )i
n

G v
n

i1
1

(10)
Theoretically, a minimum number could correspond to multiple

road closure situations. However, in a realistic network, especially
when road lengths are measured as float numbers, the minimum solu-
tion is practically unique. Therefore, given the identical independent
distribution (iid) of each road closure, the probability for a vehicle to
choose its nth closest exit as an evacuation destination, with the least
number of roads being closed equals to the multiplication of each in-
dividual road closure:

= =P v n r
E

r E( , ) ·| |
C v n

C v n C v n
( , )

( , ) ( , )
(11)

where r is the probability for any road to be closed, and ∣E∣ is the
number of roads in the entire region. Now we need to find out how P
(v,n) unfolds for different v and n.

Unfortunately, there is a theoretical roadblock in the above de-
duction: the computation of M(L,v, si) defined in (9) is known as the
minimum length-bounded edge cut problem, whose general solution has
been proven NP-hard to approximate even in unit-edge-length graphs
(Baier et al., 2006). Therefore, the exact value of C(v,n)and P(v,n) will
be impractical to compute for any sizable road network, and thus we
seek an effective approximation instead.

What (Baier et al., 2006) pointed out is that in general, for any
theoretically possible origin-destination pair (v, si) on any graph G, M
(L,v, si) is expected to grow approximately exponentially with respect to
L, i.e.
M L v s k( , , )~i L (12)
where k > 1 is a constant. Therefore,

= == =C v n M d v s v s k n k( , ) ( ( , ), , )~ ( 1)
i
n

G v
n

i i
n d v s d v s

1
1

1
1 ( , ) ( , )G v

n G v
n

(13)
and

=P v n r
E

r
E

( , ) ~
C v n n k( , ) ( 1) dG v svn( , )

(14)
Now the key component is dG(v, svn), whose exact value is highly

dependent on the actual location of the vertex v, the graph G, and the
set of exits {si}, but nonetheless is computable in polynomial time using
any shortest path algorithms. In general, as dG(v, svn) is the exponential
part of an exponential; its increase will be dramatically amplified to-
wards P(v,n), meaning that the probability for a vehicle to take faraway
exits decreases extremely quickly. Even if in edge cases where v is in the
center of all exits S = {si} and dG(v, svn) remains constant with respect
to n, then P(v,n) still decreases exponentially with respect to n.

>P v n r
E

r
E

( , )~
n k k n( 1) ( 1)dG v svn( , )

(15)
In conclusion, the above formulation captures the target-shifting

behavior caused by random road closures, which can be leveraged to
achieve optimal network partitioning. Generally, it is appropriate to
assume that a vehicle is most likely to switch among a few of its nearest
exits and disregard distant ones. Depending on the specific needs and
available information, either (14) or (15) could be used as an estima-
tion of the target-shifting probability.

We conducted a set of computational experiments on real street
network data (see Section 5) to further validate the above conclusion.
Fig. 3 illustrates the percentage of vehicles that finally evacuated at
their nth nearest exit based on a set of simulations with different rates of
random road closures. For example, 0.005/30 means that every road
has a 0.5% chance to be closed in every 30 s (which means on average
about 55% of all roads in a city will be closed in an hour). As indicated
by the formulation, most vehicles will end up at a small number of
closest exits, which provides quantitative support for defining the
Target-Shift proximity.

The Target-Shift proximity between a pair of sub-graphs G1and G2
of G is defined as follows:

= +TS G G P v n v s P v n v s( , ) ( , ( , )) ( , ( , ))
v V s S v V s S1 2

1 2 2 1

(16)
where V1and V2 are the set of vehicles located in G1 and G2 respectively;
S1 = S ∩ G1 and S2 = S ∩ G2 are the set of exits in the corresponding
subgraphs; n(v, s) is the distance rank of an exit to an vehicle, i.e. s is the

Fig. 2. (a) Miami road network with hypothetical evacuation sections area (red rectangle) and exits (green dots) (b) Miami road network Voronoi indicated by color.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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n-th nearest exit for v. The general idea of (16) is to aggregate the
probability of all possible vehicle transitions between the two sub-
graphs. In an actual simulation, P(v,n) could be estimated using either
(14) or (15). A visual illustration of target-shift distance is shown in
Fig. 4.

With the proof for the Voronoi subnets as a valid basis for parti-
tioning, and the definition of TS-proximity between Voronoi subnets to
represent the uncertainty of road closures, our network partitioning
method for evacuation traffic modeling can be formulated by clustering
Voronoi subnets using TS-proximity. Such clustering could vary, as it
has to be traded off with load-balance. Since we have proven that

partitioning based on Voronoi groups with short TS-proximity can re-
duce vehicle transitions across partitions, then the runtime load balance
is likely to stay close to its initial value. Therefore, an effective clus-
tering strategy should produce a load balanced result on top of the
Voronoi subnets and TS-proximity.

In fact, if we consider the Voronoi subnets as abstract vertices, and
the TS-proximity as weights of edges between each pair of Voronoi
subnets, then the problem is transformed to a classical graph parti-
tioning problem on the complete Voronoi graph. The reason we refer to
this problem as “clustering” is to differentiate it from the original net-
work partitioning problem, and also to emphasize the idea of
“grouping” Voronoi subnets into larger units. Since this Voronoi-based
graph is significantly smaller in size compared to the original road
network, its partitioning can be solved using many classic graph par-
titioning methods, such as Kernighan-Lin (Kernighan & Lin, 1970) or
Fiduccia-Mattheyses (Fiduccia & Mattheyses, 1988). Our computational
experiments use Kernighan-Lin algorithm for Voronoi subnets clus-
tering in favor of its explicit control over the final number of partitions.

3.3. Assumptions and limitations

To summarize this section, we propose and prove that using Voronoi
subnets as basic units to form partitions for evacuation traffic modeling
is valid and potentially efficient, and that target-shift proximity clusters
Voronoi subnets for partitioning, in terms of reducing possible vehicle
transitions against dynamic and uncertain road closures. Nonetheless,
the effectiveness of our method is built upon a set of assumptions. In
this subsection, we will discuss these underlying assumptions, assess
possible problems in case these assumptions do not hold, and provide
corresponding remediation for such cases.

For example, since the Voronoi subnets are defined by the set of exit
points, in order to provide an adequate range of choices to form par-
titions from Voronoi subnets, the number of exits has to be significantly
larger than the required number of partitions. In other words, the
number of partitions generated by the proposed method will be no
larger than the number of exits of the evacuation. This may cause some
problems in the following scenarios.

Fig. 3. Distribution of vehicles' final destinations in the case of random road closure.

Fig. 4. The Target-Shift proximity for an example Voronoi area (red) to other
Voronoi areas (darker color indicates closer distance in terms of Target-Shift
(TS) proximity). (For interpretation of the references to color in this figure le-
gend, the reader is referred to the web version of this article.)
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● When there are few exits available for a large population to evacuate
through, e.g. when the danger zone is an island and the only exit is
through a bridge. In this case, the proposed method could lead to an
inevitably large load for each partition, and result in computational
inefficiency. However, leaving aside tremendous social panic, in this
scenario, the evacuation problem at the exits degenerates to simply
traffic control at a few roads, which does not require a complicated
model. Meanwhile, internal traffic, i.e. how to move vehicles effi-
ciently to somewhere near these exits, is a more meaningful pro-
blem. Therefore, in this scenario, it is better to redefine (probably
shrink) the evacuation zone to a more meaningful range before
applying the proposed method.

● When there are huge amounts of computational resources to exploit,
e.g. millions of CPUs on a supercomputer. As the number of parti-
tions produced by the proposed method is limited by the number of
exits, its scalability is bounded. However, we argue that the scal-
ability of network-partition-based traffic simulation models are in-
trinsically bounded. Regardless of any particular partitioning

methods, as the number of partitions increases, the average network
size of each partition will inevitably be reduced. When the size of
partitions becomes too small to host a meaningful number of ve-
hicles for a substantial amount of time, vehicle transitions between
partitions will be enormous, which will lead to overwhelming
communication cost and inefficient overall computation. Therefore,
if extreme scalability is desired, it is better to use other paralleli-
zation paradigms if possible.

Another underlying assumption is that the load for each Voronoi
subnet is moderate. An exceptional case is where a single Voronoi
subnet hosts a majority of the vehicles in the evacuation region. In this
case, the proposed method might have difficulty to balance the roads
among partitions, since it uses Voronoi subnets as basic units. However,
still leaving aside the tremendous social consequences of such a sce-
nario, the problem itself is not difficult to accommodate. In the presence
of giant Voronoi subnets that cause severe load imbalance, it is fair to
assume that not all vehicles in these Voronoi subnets plan to evacuate

Fig. 5. Flowchart for the executing evacuation traffic model.
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using their closest exits. Therefore, it is meaningful in reality and
computation to pre-navigate some of the vehicles to nearby exits, which
could be their 2nd, 3rd closest exits, etc. This way the giant Voronoi
subnets are further broken down to smaller partitions based on the new
destinations of the vehicles. Load balance could be achieved again using
the split partitions. In case that re-navigation is forbidden and all ve-
hicles must choose their closest exits to evacuate, the situation is then
similar to the “few exits” case discussed previously, and the same logic
applies.

4. Results

To evaluate ViCTS, we have conducted a series of computational
experiments using real street network data and compare ViCTS against
the widely adopted graph partitioning method for traffic simulation:
METIS (Karypis et al., 1999). Results shown that ViCTS outperforms
METIS for evacuation traffic modeling with superior computational
performance.

4.1. Study area and data source

We chose the city of Miami as our study area for the following two
reasons.

1. It is known for its high risk of flooding, which has led to several
mass evacuations (e.g. the recent mass evacuation caused by
Hurricane Irma in 2017).

2. It has a adequate diversity of terrain and transportation conditions
including coasts, islands, bridges, as well as common metropolitan
road networks with major highways.

We retrieved street network data for the city of Miami from
OpenStreetMap (Haklay & Weber, 2008) using OSMnx (Boeing, 2017)
with the bounding box: 80.316665° W, 25.703935° N, 80.119601° W,
25.858107° E (17 × 20 km). The retrieved street network contains
16,149 intersections and 46,707 road links, with an accumulated road
length of 5638.83 km. The area is shown in Fig. 5.

The retrieved data is in a network structure with complete geo-
metric attributes for each road lane. One-way roads are represented as
directional edges in the network. However, due to the crowd-sourced
nature of OpenStreetMap, the quality and coverage of the data is not
uniform. For example, some traffic information, like speed-limits, is not
available for all roads, and the traffic signal information is also in-
complete. Therefore, we manually assign missing speed-limits values
based on estimated values, and apply simple traffic control mechan-
isms, like stop-sign rules, to all intersections. However, it is also fair to
assume weaker traffic regulations in an actual case of massive emer-
gency evacuation. For the initial vehicle locations, we synthesize a lo-
cation dataset of 500,000 vehicles. The number of vehicles is based on
the census population estimation of Miami in 2017, which is about
463,000 (U.S. Census Bureau, n.d.). To increase the occurrence of ve-
hicle transitions and target-shifts as a means to highlight scalability
challenges, all vehicles are randomly distributed on every road.

Fig. 6. A snapshot of a traffic evacuation simulation in the Champaign-Urbana area.

D. Yin, et al. &RPSXWHUV��(QYLURQPHQW�DQG�8UEDQ�6\VWHPV�����������������

�



4.2. Model specification and computing environment

(Gan et al., 2016) has formulated a conceptual evacuation model for
optimizing staged evacuation with static routing. We use some of their
configurations, but adapt for a microscopic, dynamic scenario with road
closures and re-navigations specified as follows.

1. The disaster is still ongoing in an area of high risk during the eva-
cuation; road infrastructure inside the region is subject to periodic
failure (closure) with a certain probability;

2. All intersections outside the area of high risky region are considered
an exit;

3. The exits are uncapacitated, i.e. evacuees reaching the exits are
considered safe and thereafter removed from the model;

4. All evacuees start their evacuation processes at the same time;
5. Evacuees have instant global knowledge and always take the
shortest path towards the nearest exit at any time (immediately
respond to the road closures);

6. Evacuees drive either at the speed limit of the current road, or fol-
lowing the leading vehicle;

7. All intersections execute stop-sign rules (first come, first serve).

The workflow of the model is illustrated in Fig. 5.
The above model is implemented on the CyberGIS-Jupyter platform

(Yin et al., n.d.) with the Python language. Fig. 6 shows a snapshot of an
example evacuation of a test area in Champaign-Urbana (Illinois, USA).
This test area is chosen as a small but complete road network that could
clearly present the distribution of individual vehicles on roads with
different topology and density. The red rectangle represents an area of
high risk where roads could be closed (the orange diamonds) at any
time. Large green circles indicate safe exits/shelters. Small dots on the
roads are individual vehicles colored by the partition they belong to.
There are 8000 vehicles in this simulation.

All computation work was conducted in a virtual machine en-
vironment with 10 Intel Xeon CPUs (2.40GHz), 50GB of RAM, Ubuntu
16.04, and Message Passing Interface (MPI) version 3.2.

4.3. Experiments and results

To test the efficiency of ViCTS in scalable computation, we have
conducted two sets of computational experiments using the Miami data

and compared the results against the most well-adopted graph parti-
tioning method for traffic simulation: METIS (Karypis et al., 1999). The
2 sets of experiments differ in the vehicle routing/re-routing behavior.
In the first set of experiments, vehicles always choose the path with the
shortest distance to an exit as their evacuation route. In the second set
of experiment, vehicles choose their paths with the shortest total esti-
mated travel time. Simulation results show that ViCTS outperforms
METIS for evacuation traffic modeling on load balance and commu-
nication volume in both sets of experiments.

We applied METIS and ViCTS to the study area and conducted
evacuation simulation based on their partition results using a different
number of CPUs. The performance of the simulation is evaluated based
on the following two metrics:

1. Communication Cost: For each time step (one second), find the
maximum number of vehicle transitions between all pairs of dif-
ferent CPUs, and compute the average transition volume during the
entire evacuation process. Higher communication cost indicates
higher networking latency leading to worse computational perfor-
mance.

2. Load Balance: For each time step, find the partition with the least
number of vehicles and the one with the most, calculate the ratio
min t
max t

( )
( )and compute the average ratio for all t. The overall load bal-

ance is a value in [0,1], where 0 means extreme imbalance and 1
means perfect balance.

The partition result is shown in Fig. 7. It is shown that METIS as-
signs the center of the evacuation zone to one partition (purple), while
ViCTS divides that area into different partitions. While evacuating,
vehicles in the central areas are likely to scatter along different direc-
tions, which could lead to significant cross-boundary movements in the
METIS partition. Furthermore, METIS breaks possible evacuation paths
into different partitions. For example, many paths from the center to the
north or northwest fall into 3 partitions (purple, yellow, and red); most
paths from the center to the west are cut into purple and cyan parti-
tions. All of these lead to extra cross-boundary movements in evacua-
tion, which increases the communication cost, and jeopardizes load
balance.

Fig. 8 shows the actual performance metrics of ViCTS versus METIS
in the shortest distance scenario. It is clear that ViCTS outperforms
METIS in both metrics, which indicates better scalability.

Fig. 7. (a) METIS's partition result on Miami road network (4 partitions, shown in different colors); (b) ViCTS' result on the same area (4 partitions, shown in different
colors);
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With the increasing availability of navigation services based on real-
time traffic condition, it is reasonable to assume individuals plan their
evacuation routes based on the real-time estimated travel time, instead
of shortest distance (Miller-Hooks, 2001; Sheffi, Mahmassani, & Powell,
1982). To further test the efficiency of ViCTS, we conducted another set
of experiments with the exactly same parameters except the individual
routing behavior.

In this configuration, individuals are set to choose their evacuation
route as the one with the shortest estimated travel time. The estimated
travel time of each road is obtained as follows:

1) If there are no vehicle traveling on this road:=Estimated Travel Time Road Length Speed Limit/ (17)
The speed limit data are retrieved from OpenStreetMap.

2) Otherwise, assuming there are n vehicles on this road, each vehicle
vi has traveled a distance of di within the time of ti since it enters the
road. =Estimated Travel Time Road Length Estimated Speed/ (18)

where

= =Estimated Sp ed d
t

ne /
i
n i

i1 (19)

The estimated travel time is regularly updated, and the latest esti-
mation is used by all vehicles to update their evacuation paths.
Therefore, rerouting happens not only because of road closures but also
abrupt speed changes, e.g. either the occurrence or relief of traffic jams.

Compared to distance-based re-routing (caused by road closures),
the time-based re-routing is much harder to predict as it is related to
dynamic traffic conditions, meanwhile the mechanism itself could also
lead to a chain of reactions which further increase the complexity of the
entire simulation. From a computational perspective, unexpected ve-
hicle transitions could lead to higher communication cost, and possibly
undesirable load balance. Moreover, both Voronoi and Target-shift
proximity are designed for scenarios where vehicles (re)navigate en-
tirely based on network distance, which is not the case in time-based re-
routing scenarios.

Nonetheless, ViCTS maintains its effectiveness to a solid extent even
in time-based rerouting situations. First of all, the fact that the center of
evacuation zone is likely to be empty in the later stage of evacuation
still holds regardless of the rerouting behaviors; which means that the
Voronoi-based partition principle is still valid. Secondly, the distance is

Fig. 8. (a) Communication cost of ViCTS and METIS for different partitions (lower is better); (b) Load balance of ViCTS and METIS for different partitions (higher is
better). All experiments were conducted with a closure configuration of 0.005/30.

Fig. 9. Performance evaluation of ViCTS and METIS for time-based rerouting. (a) Communication cost (lower is better); (b) Load balance (higher is better). All
experiments were conducted with a closure configuration 0.005/30.
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a reasonable approximation for time, especially when a perfect travel
time prediction is not available; therefore, the target-shift proximity
developed from shortest distance is still able to reflect the target shift
behavior in time-based situation. As shown in Fig. 9, although the gap
has been reduced compared to the previous scenario, ViCTS still re-
mains an advantage over METIS in both communication cost and load
balance.

To further illustrate the computational difference between METIS
and ViCTS in both scenarios. We conducted another set of comparison
based on the computational time. As the total time span of the eva-
cuation process is stochastically affected by the road closure sequences,
comparing overall simulation time is not particularly meaningful.
Instead, we focus on the ratio of time spent on synchronization (in-
cluding communication and waiting) versus the time spent on compu-
tation across the entire evacuation process. At each time step, this ratio
could be different among processors, as an comprehensive effect of load
balance and communication cost. We select the largest ratio among all
processors (the bottleneck) as the performance at that time step, and
average that performance across the entire evacuation process. I.e.:

=Overhead Ratio Avg Max
T

T
t p

sync

comp (20)
where t iterates over all time steps, and piterates over all processors.

The measurement result is shown in Fig. 10. Generally, the over-
head ratio (OR) increases as the number of partitions go up. Meanwhile,
ViCTS outperforms METIS in both scenarios with lower ORs for most
partition variations. This finding shows that ViCTS produces less
overheads as the number of partitions increases, and thus achieves
superior scalability.

Furthermore, we examine the effect of the road closure rate and
interval to demonstrate the relative effectiveness of ViCTS in different
road closure situations. Previous experiments are conducted using the
parameter pair of 0.005/30, meaning each road has a probability of
0.5% to be closed every 30 s, which leads to about 55% road closure
within an hour. In reality, a disaster could be better or worse. In order
to test the proposed method in different disaster settings, we conduct a
series of experiments using closure rates of 0.001, 0.005, 0.01, 0.05,
and closure intervals of 15, 30, 60, and 120, for both distance- and
time-based scenarios. For the illustrative purpose, we conduct these
experiments using 8 partitions only; and the performance variance
between ViCTS and METIS are presented as the ratio of METIS' OR to
ViCTS' OR for the same parameter configuration, i.e.=Performance Variance Overhead Ratio Overhead Ratio/METIS ViCTS (21)

Therefore, a performance variance (PV)>1 means that METIS

generates more overhead than ViCTS; larger PVs indicates better per-
formance of ViCTS over METIS, and vice versa.

The experiments are first grouped by closure rate, and a PV-interval
curve is generated for each closure rate. The reason for such organi-
zation is that closure rate is more decisive for the severe magnitude of
the disaster. For example, with a 0.05 closure rate,> 80% of roads will
be closed in an hour even at 120 s closure interval, while the same
percentage for a rate of 0.001 at 15 s closure interval is only about 20%.
A more exhaustive illustration of road closure percentage at different
rates and intervals are shown in Fig. 11. In fact, the 0.05 rate is so
destructive that the evacuation simulation finishes shortly after begin-
ning, as most vehicles are immediately stuck by massive road closures.

The final performance results are shown in Fig. 12. There are no-
ticeable differences between distance- and time-based re-routing sce-
narios: 1) the PV values in distance-based re-routing scenarios (up to
3.0) is systematically larger than those in time-based scenarios (below
2.1); 2) the variance between different closure configurations is also
significantly larger in distance-based (1.2–3.0) than time-based
(1.2–2.1); 3) the performance pattern is clearer in distance-based sce-
narios, where smaller closure rate and larger intervals seem to have
positive impacts on the performance variance despite some outliers.
One common pattern revealed by both scenarios is that all PV values
are> 1, meaning that ViCTS does outperform METIS regardless of
scenarios and closure configurations.

The cross-scenario difference generally reinforces the previous
conclusion that ViCTS excels more for distance-based re-routing, as

Fig. 10. Overhead ratio of METIS and ViCTS in both scenarios: (a) Re-routing based on road closures; (b) Re-routing based on estimated time.

Fig. 11. One-hour road closure percentage under different rates and intervals.
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both Voronoi and Target-shift heuristics are designed based on distance.
Nonetheless, it is still effective for the time-based scenario. As a bottom
line, one could argue that the performance variance is around 1.5 for
most cases (33% less overhead than METIS); and it goes higher in
distance-based scenarios with moderate road closures, where the eva-
cuation process can be completely unfolded, enabling ViCTS to fully
demonstrate its advantage over the entire process.

5. Concluding discussion

In conclusion, a novel network partitioning algorithm - ViCTS - is
developed to take spatial heterogeneity and dynamic uncertainty of
emergency evacuation into account for achieving scalable agent-based
modeling of emergency evacuation This research has demonstrated that
ViTCS based on target-shift proximity outperforms the widely adopted
traffic network partitioning algorithm, METIS, in terms of achieving
computational load balance and minimizing communication cost.

Regarding overall computational performance, ViCTS consistently
results in lower overhead ratios as compared with METIS, demon-
strating better computational scalability. A direct implication is that
adopting ViCTS for mass evacuation simulation is more computation-
ally efficient and requires less execution time. This reduction is crucial
to mass evacuation simulation, as emergency response is an extremely
time-sensitive process. A more efficient computational model could
result in more timely responses to save more lives and properties,
especially in the context of deadly disasters that require mass evacua-
tion.

Through our research on ViCTS network partitioning, it is evident
that there are significant opportunities for future research towards
optimally scalable agent-based traffic modeling for mass evacuation.
For example, the partitioning solution does not necessarily need to be
static throughout the entire simulation. A dynamic mechanism could be
introduced to re-partition a spatial domain based on real-time vehicle
distributions when load balance falls below a certain threshold. This
improvement could be significant, as the exit routes of vehicles could
change significantly due to congestion, which affects the shape of
corresponding Voronoi diagrams (Ouyang & Daganzo, 2006; Ouyang,
Wang, & Yang, 2015). Moreover, the spatiotemporal patterns of road
closures caused by specific disasters could be incorporated in the par-
tition design, as they could impact the road conditions as well as be-
haviors and decisions of individuals being evacuated (Chang, Peng,
Ouyang, Elnashai, & Spencer Jr, 2012; Xie & Ouyang, 2019). Ad-
ditionally, for network-based spatial representations such as street
networks, it is helpful to optimize communication performance be-
tween processors according to the topological structure of spatial net-
works, e.g. by configuring fast data exchange channels for processors
with heavy communication needs. This approach holds great potential

to reduce the communication overhead and improve the overall com-
putational performance. Following these research directions, the scal-
ability of agent-based evacuation modeling could be further improved,
enabling time critical decision making for mass evacuation.
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