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The standard model of spin-transfer torque (STT) in antiferromagnetic spintronics considers the
exchange of angular momentum between quantum spins of flowing electrons and noncollinear-to-them
localized spins treated as classical vectors. These vectors are assumed to realize Néel order in equilibrium,
↑↓ � � �↑↓, and their STT-driven dynamics is described by the Landau-Lifshitz-Gilbert (LLG) equation.
However, many experimentally employed materials (such as archetypal NiO) are strongly electron-
correlated antiferromagnetic Mott insulators (AFMIs) whose localized spins form a ground state quite
different from the unentangled Néel state j↑↓ � � �↑↓i. The true ground state is entangled by quantum spin
fluctuations, leading to the expectation value of all localized spins being zero, so that LLG dynamics of
classical vectors of fixed length rotating due to STT cannot even be initiated. Instead, a fully quantum
treatment of both conduction electrons and localized spins is necessary to capture the exchange of spin
angular momentum between them, denoted as quantum STT. We use a recently developed time-dependent
density matrix renormalization group approach to quantum STT to predict how injection of a spin-polarized
current pulse into a normal metal layer coupled to an AFMI overlayer via exchange interaction and possibly
small interlayer hopping—mimicking, e.g., topological-insulator/NiO bilayer employed experimentally—
will induce a nonzero expectation value of AFMI localized spins. This new nonequilibrium phase is a
spatially inhomogeneous ferromagnet with a zigzag profile of localized spins. The total spin absorbed by
AFMI increases with electron-electron repulsion in AFMIs, as well as when the two layers do not exchange
any charge.
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Introduction.—The emergence of antiferromagnetic
spintronics [1–4] has elevated antiferromagnetic (AF)
insulators (AFIs) and metals into active elements of
spintronic devices. They exhibit dynamics of their localized
spins at much higher frequencies, reaching THz [4], when
compared to ferromagnetic spintronics. Furthermore, the
absence of net magnetization forbids any stray magnetic
fields, making them largely insensitive to perturbations by
external fields. They also exhibit magnetoresistance effects
[5,6] enabling the electric readout of changes in the
orientations of their localized spins.
Basic spintronic phenomena like spin-transfer torque

(STT) [7–10], where spin angular momentum is exchanged
between flowing conduction electrons and noncollinear-to-
them [11] localized spins; and spin pumping [12], where
precessing localized spins pump pure spin current in the
absence of any bias voltage, have been demonstrated
recently using different AF materials. The theoretical
description [13–22] of these phenomena invariably
assumes that localized magnetic moments on two sublat-
tices of the AF material, MA

i and MB
i , are classical vectors

with net zero total magnetization in equilibrium due to the
assumed Néel classical ground state (GS), ↑↓ � � �↑↓. Out
of equilibrium, the dynamics of such classical vectors of
fixed length is described by the Landau-Lifshitz-Gilbert

(LLG) equation [23]. The STT is typically introduced
into the LLG equation either as a phenomenological term
[17–20], or it is calculated microscopically by using
steady-state single-particle quantum transport formalism
applied to model [13,14,21] or first-principles [15,16,22]
Hamiltonians of AF materials. Recently STT [24] from
time-dependent single-particle quantum transport formal-
ism [25] has been coupled [26] to the LLG equation,
capturing additional quantum effects like electronic spin
pumping by movingMA

i ðtÞ andMB
i ðtÞ and the correspond-

ing enhanced damping on them, but this remains the
conventional [11] quantum-for-electrons–classical-for-
localized-spins approach to STT.
However, AFIs employed in spintronics experiments

are typically strongly electron-correlated transition metal
oxides due to narrow d bands. For example, widely used
[6–10] NiO shares features of both Mott and charge-
transfer insulators [27–30]. Because of quantum (or
zero-point) spin fluctuations [31–33], the AF GS is highly
entangled [32–36], which results in a zero expectation
value of all localized spins, Si ¼ 0 (so, MA;B

i ∝ SA;B
i ¼ 0).

Thus, conventional [11] STT ∝ si × Si ¼ 0 due to injected
nonequilibrium electronic spin density si cannot be ini-
tiated because Siðt ¼ 0Þ≡ 0. Even if jSiðt ¼ 0Þj ≠ 0 is
provoked by spin-rotation-symmetry-breaking anisotropies
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[37] or impurities [see Supplemental Material (SM) [38] for
illustration], the LLG equation is inapplicable [40,41]
because the length jSiðtÞj < jSNe

´
el

i j will be changing in
time, with a smaller value signifying higher entanglement
(unobserved quantum systems exhibit unitary evolution
toward states of higher entanglement [42]). Thus, both
situations necessitate to describe localized spins fully
quantum mechanically where their expectation values
SiðtÞ are calculated only at the end.
The entanglement in the AF GS leading to Si ¼ 0 can be

illustrated using a one-dimensional (1D) quantum spin-1
2

Heisenberg AF chain [43,44] as the simplest example of an
AFI defined on NAFI sites:

ĤAFI ¼ J
XNAFI−1

i¼1

Ŝi · Ŝiþ1: ð1Þ

Here Ŝαi ¼ Î1 ⊗ � � � ⊗ 1
2
σ̂α ⊗ � � � ⊗ ÎNAFI

acts nontrivially,
as the Pauli matrix σ̂α, only on the Hilbert space of site i; Îi
is the unit operator; and J > 0 is the AF exchange
interaction. The true GS is easy to write explicitly
for small NAFI, such as for NAFI ¼ 4 we find
jGSi ¼ 1ffiffiffiffi

12
p ð2j↑↓↑↓i þ 2j↓↑↓↑i − j↑↑↓↓i − j↑↓↓↑i−

j↓↓↑↑i − j↓↑↑↓iÞ. Its energy, hGSjĤAFIjGSi ¼ −2J, is
lower than the energy of the unentangeled (i.e., direct-
product) Néel state, h↑↓↑↓jĤAFIj↑↓↑↓i ¼ −J. This is in
sharp contrast to ferromagnets where quantum spin fluc-
tuations are absent, and both classical ↑↑ � � �↑↑ and its
unentangled quantum counterpart j↑↑ � � �↑↑i are the
GS of the respective classical and quantum Hamiltonians
[such as Eq. (1) with J < 0]. This justifies [40,41] the
picture of interacting classical Mi in spintronics [11] and
micromagnetics [23], even as the size of the localized
spin is reduced to that of a single electron spin. Conversely,
in the case of a many-body entangled [32–36] AF GS,
the quantum state of each localized spin subsystem
must be described by the reduced density matrix,
ρ̂i ¼ TrotherjGSihGSj, where partial trace is performed in
the Hilbert subspace of all other localized spins j ≠ i.
The expectation value

Si ≡ hŜii ¼ Tr½ρ̂iŜi� ð2Þ

is then identically a zero vector, Si ¼ 0, on all sites (see the
SM [38]). The GS in the limit NAFI → ∞ is computable by
the Bethe ansatz [44], and its entanglement ensures Si ¼ 0.
The entanglement in the GS of the crystalline realization of
1D [45] and two-dimensional (2D) [36] quantum
Heisenberg antiferromagnets, as well as of an AF Mott
insulator (AFMI) [46] realized with cold atoms on a square
lattice, has been detected by neutron scattering or optically,
respectively, at ultralow temperatures.
In this Letter, we employ the emerging concept of

quantum STT [47–50] where both conduction electrons
and localized spins are treated fully quantum mechanically

to describe the exchange of spin angular momentum
between them. This allows us to predict the nonequilibrium
phase transition of an AFMI driven by the absorption of
spin angular momentum from the spin-polarized current
pulse injected into an adjacent normal metal (NM). To
model such a genuine quantum many-body problem, we
evolve in time a nonequilibrium quantum state of NM/
AFMI system via the very recently adapted [49] to quantum
STT time-dependent density matrix renormalization group
(TDMRG) approach [51–55].
Our system geometry in Fig. 1 consists of a NMmodeled

as a 1D tight-binding (TB) chain, which is split into the left

(a)

(b)

(c)

FIG. 1. (a) Schematic view of a “bilayer” [10] for TDMRG
calculations. The 1D TB chain (blue dots) ofN ¼ NL þ NAFMI þ
NR ¼ 92 sites, with intrachain hopping γ, models the metallic
surface (such as that of topological insulator Bi2Se3 in the
experiments of Ref. [10]) through which a spin-polarized current
pulse is injected. The pulse exerts quantum STT on a Hubbard
chain of NAFMI ¼ 12 sites with the on-site Coulomb repulsion U,
modeling the surface of a strongly electron-correlated AFMI
(such as that of NiO in Refs. [7–10]). The electronic spins in two
chains interact via interchain exchange interaction Jv, and we
consider both γv ¼ 0 and γv ≠ 0 interchain hopping where the
latter mimics possible hybridization of a NM and AFMI via
evanescent wave functions [22]. For times t < 0, Ne ¼ 12
noninteracting electrons are confined by potential V within
Nconf ¼ 25 sites of the L lead (composed of NL ¼ 40 sites),
as well as spin-polarized by an external magnetic field Be along
the z axis. Concurrently, NAFMI

e ¼ 12 electrons half-fill the AFMI
chain. For times t ≥ 0, V and Be are removed, so that electrons
propagate as a spin-polarized current pulse from the L to the R
lead, as animated in the movie in the SM [38]. In panel (c), the
AFMI from (a) and (b) is replaced by an AFI modeled as a
quantum Heisenberg AF chain whose spin-1

2
operators reside on

each (orange) site and interact via J ¼ 4γ2=U in Eq. (1) while no
electrons are allowed within this chain.
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(L) and the right (R) leads sandwiching a central region.
The conduction electron spins in the central region are
exchange coupled to an AFMI chain modeled by the
Hubbard model with the on-site Coulomb repulsion U.
The current pulse, carrying electrons initially spin polarized
in the direction perpendicular to the interface (i.e., along the
z axis in Fig. 1), is injected from the L lead into the central
region of the NM in order to initiate the AFMI dynamics
via quantum STT. Our geometry mimics the recent experi-
ment [10] on the injection of current pulses into the metallic
surface of a topological insulator Bi2Se3, which then exert
spin torque on the surface of a NiO overlayer covering
Bi2Se3, except that in the experiment spin-orbit coupling
polarizes injected electrons in the plane of the interface
(i.e., along the y axis in Fig. 1). Nevertheless, since the
singlet with s0iðt ¼ 0Þ≡ 0 on all sites of an AFMI is
rotationally invariant, the final spin state of an AFMI driven
by quantum STT will be the same for the arbitrary spin
polarization of injected electrons.
Our main results in Figs. 2–5 demonstrate how quantum

STT deposits spin angular momentum [Figs. 4 and 5] into
the AFMI by driving its on-site electronic spin expectation
value from s0iðt ¼ 0Þ≡ 0 in equilibrium toward the spa-
tially inhomogeneous profile [Figs. 2(a) and 3], s0zi ðtÞ ≠ 0

[s0xi ðtÞ ¼ 0 ¼ s0yi ðtÞ] with a zigzag pattern s0z2j−1ðtÞ < s0z2jðtÞ

for j ¼ 1;…; NAFMI=2. The total spin angular momentum
absorbed by the AFMI increases with the on-site Coulomb
repulsion [Fig. 5(a)], but it is reduced [Figs. 4(c)] when the
interchain hopping allows for hybridization of the NM and
the AFMI, and electron leakage from the AFMI [Fig. 4(a)]
into NM [Fig. 4(b)]. Prior to delving into the results, we
introduce notation and concepts.
Models and methods.—The second-quantized many-

electron Hamiltonian describing the NM/AFMI system
in Fig. 1(a) consists of four terms:

Ĥ ¼ ĤNM þ ĤAFMI þ ĤNM−AFMI þ ĤV;Bðt < 0Þ: ð3Þ

The first term is the 1D TB Hamiltonian of
noninteracting electrons within the NM chain
ĤNM¼−γ

P
N
i¼1ðĉ†i↑ĉiþ1↑þ ĉ†i↓ĉiþ1↓þH:c:Þ where ĉ†iσ (ĉiσ)

creates (annihilates) an electron with spin σ ¼ ↑;↓ at site i,
and γ is the intrachain hopping. These operators act on four
possible states at each site i—vacuum j0i, spin-up j↑i,
spin-down j↓i, and doubly occupied state j↑↓i, so that the
total Hilbert space of the NM/AFMI system has dimension
492 × 412. The interacting electrons within the AFMI chain
are described by the Hubbard Hamiltonian [43,44]

ĤAFMI ¼ −γ
XNAFMI−1

i¼1

ðd̂†i↑d̂iþ1↑ þ d̂†i↓d̂iþ1↓ þ H:c:Þ

þU
XNAFMI

i¼1

n̂0i↑n̂
0
i↓: ð4Þ

Here, n̂0iσ ¼ d̂†iσd̂iσ is electron density (per site) operator for
spin σ at site i of the AFMI. The on-site Coulomb
repulsion, such as U ¼ 0–10γ in Fig. 3(b), is expressed
in the units of hopping γ (typically γ ¼ 1 eV) which we use

(a) (c)

(b) (d)

FIG. 2. Spatiotemporal profiles of the z component of spin
density within: (a) an AFMI chain with the Coulomb repulsion
U ¼ 8γ; and (c) the same chain with U ¼ 0 (acting then as the
second NM chain half-filled with electrons). In both panels
s0zi ðt ¼ 0Þ≡ 0, so that only the s0zi ðtÞ ≠ 0 component is induced
by a current pulse spin-polarized along the z axis and flowing
along the bottom NM chain in Fig. 1(b) whose szi profiles in
panels (b) and (d) are driving the profiles in panels (a) and (c),
respectively, via quantum STT. The dotted horizontal lines in (b)
and (d) mark the boundaries between the leads and the central
region of the NM chain in Fig. 1. The interchain exchange is
Jv ¼ 0.5γ and hopping γv ¼ 0 in Eq. (5). All four panels,
together with the corresponding electron densities, are animated
in the movie in the SM [38].

(a) (b)

FIG. 3. Spatial profile of the z component s0zi of the spin density
within the AFMI chain in Fig. 1(b) driven by quantum STT from
the NM chain: (a) at different times using U ¼ 8γ in Eq. (4); and
(b) for different U values at time t ¼ 25ℏ=γ. The interchain
exchange is Jv ¼ 0.5γ and hopping γv ¼ 0 in Eq. (5).
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as a unit of energy. The operators for the total number of
electrons, N̂AFMI

e ¼ P
i n̂

0
i, and total spin along the

α axis, ŝ0α ¼ P
i ŝ

0α
i , are given by the sum of electron

and spin density operators, n̂0i ¼
P

σ¼f↑;↓g d̂
†
iσd̂iσ and

ŝ0αi ¼ P
σ;σ0¼f↑;↓gd̂

†
iσ

1
2
σ̂ασσ0 d̂iσ0 , respectively. The interchain

exchange interaction Jv between electronic spins within the
NM and AFMI is described by

ĤNM-AFMI ¼ −Jv
XNAFMI

i¼1

ŝiþNL
· ŝ0i

− γv
XNAFMI

i¼1

ðĉ†iþNL↑
d̂i↑ þ ĉ†iþNL↓

d̂i↓ þ H:c:Þ;

ð5Þ

where ŝi and ŝ0i are spin density (per site) operators in NM
and AFMI chains, respectively. Here we also add a term
with possible γv ≠ 0 hopping between NAFMI sites of the
central region of the NM chain and NAFMI sites of the
AFMI in Fig. 1(a), which can arise in realistic devices used
in spintronics [7–10] due to evanescent wave functions
[22]. They penetrate from the NM surface into the region of
the AFMI near the interface, thereby leading to charge
transfer in equilibrium or current leakage between the two
materials [22]. Such a normal-metal proximity effect on
finite-size Mott insulators can also create exotic many-body
states in equilibrium [56]. To prepare the initial state of the
conduction electrons in the NM chain, we confine them
within Nconf sites of the L lead in Fig. 1(a) and polarize
their spins along the +z axis by means of an additional term
ĤV;Bðt<0Þ¼−V

PNconf
i¼1 ðĉ†i↑ĉi↑þĉ†i↓ĉi↓Þ−

PNconf
i¼1 gμBŝ

z
iB

z
e.

Here V ¼ 2.5γ is the confining potential; Bz
e is the external

magnetic field; and gμBBz
e ¼ 10γ, where g is the electron

gyromagnetic ratio, and μB is the Bohr magneton. After the
initial state is prepared for t < 0, ĤV;Bðt ≥ 0Þ is set to zero,
so that spin-polarized electrons from the L lead propagate
toward the R lead, as illustrated in Fig. 1(b), computed in
Fig. 2, and animated in the SM [38].
In the limit U ≫ γ, the half-filled (ni ¼ 1) 1D Hubbard

model describes electrons localized one per site, so it can be
mapped [43,44] to an isotropic quantum spin-1

2
Heisenberg

AF chain with the effective Hamiltonian given in Eq. (1).
Therefore, for comparison we also analyze the NM/AFI
setup in Fig. 1(c) where AFI sites host localized
spin-1

2
operators Ŝi, as described by the Hamiltonian

Ĥ ¼ ĤNM þ ĤAFI þ ĤNM−AFI þ ĤV;Bðt < 0Þ. Here ĤNM

is the same as in Eq. (3); ĤAFI is the same as in Eq. (1)
where we use J ¼ 4γ2=U as the exchange interaction in the
limit U ≫ γ [43,44]; the interchain interaction is described
by ĤNM−AFI ¼ −Jv

PNAFI
i¼1 ŝiþNL

· Ŝi where Jv ¼ 0.5γ; and
ĤV;Bðt < 0Þ is the same as in Eq. (3).
The TDMRG simulations [51–55] evolve the nonequili-

brium state of the whole system in Fig. 1, jΨðtþ δtÞi ¼
e−iĤδt=ℏjΨðtÞi, using the time step δt ¼ 0.1ℏ=γ. Additional
details of TDMRG simulations are provided in the
SM [38].
Results and discussion.—The Hubbard 1D chain model-

ing the AFMI possesses a sizable energy gap Δc for charge
excitations atU ≳ 2γ, whose value is exactly known [44] in
the limit NAFMI → ∞ (Δc ¼ 0.173γ at U ¼ 2γ; or Δc ¼
0.631γ at U ¼ 3γ). In chains of finite length, such as ours

(a)

(b)

(c)

(d)

FIG. 4. Time dependence of the total number of electrons
within (a) an AFMI and (b) NM chains in the setup of Fig. 1(b)
for two different interchain hoppings γv ¼ 0 (blue lines) and γv ¼
0.1γ (red lines). Panels (c) and (d) show the corresponding time
dependence of the sum of the z component of spin densities,P

i s
0z
i and

P
i s

z
i , respectively. The on-site Coulomb repulsion is

U ¼ 8γ [Eq. (4)] within the AFMI and the interchain exchange is
Jv ¼ 0.5γ.

(a) (b)

FIG. 5. (a) Time evolution of the sum of spin densities within
the NM chain

P
i s

z
i (dashed lines) and AFMI chain

P
i s

0z
i (solid

lines) in the setup of Fig. 1(b) for different values of the on-site
Coulomb repulsion U within the AFMI chain. For comparison,
panel (b) plots the same information for the setup in Fig. 1(c)
where the AFMI is replaced by the AFI, modeled by the quantum
spin-1

2
Heisenberg AF chain with no electrons, so that solid lines

are
P

i S
z
i where S

z
i is obtained from Eq. (2). For eachU in (a), we

set the corresponding intrachain exchange interaction J [Eq. (1)]
within the AFI in (b) as J ¼ 4γ2=U. The interchain exchange is
Jv ¼ 0.5γ.
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with NAFMI ¼ 12 sites, the DMRG predicts slightly larger
Δc values [57]. However, the spin sector of the half-filled
Hubbard chain is gapless in the thermodynamic limit. This
means that injecting a charge in the AFMI is energetically
costly, but creating a spin excitation is not. Figures 2(a) and
3 demonstrate that the AFMI with U ≳ 4γ will be driven
out of its GS with s0i ¼ 0 on all sites toward a non-
equilibrium phase with s0zi ðtÞ ≠ 0 and s0xi ¼ 0 ¼ s0yi due
to quantum STT exerted by the injected current pulse in the
NM chain that is spin polarized along the z axis. The spatial
profile of s0zi ðtÞ is inhomogeneous with a zigzag pattern
deep in the Mott insulator phase, which distinguishes
it from the weak response of the borderline case with
U ¼ 2γ [Fig. 3(b)] or the noninteracting chain with U ¼ 0
[Figs. 2(c) and 3(b)].
Even after the current pulse in the NM chain has ended,

the spin angular momentum remains deposited within the
AFMI, with its total value increasing with U [Fig. 5(a)].
Such a Mott insulator transmuted into a phase with nonzero
total magnetization remains magnetized also when intra-
chain hopping is switched on, γv ¼ 0.1γ, in Fig. 4(c).
However, γv ¼ 0.1γ allows electrons to leak from the
AFMI [Fig. 4(a)] into the NM [Fig. 4(b)] chain, so that the
total spin deposited into the AFMI is reduced in Fig. 4(c)
when compared to the isolated AFMI.
Figure 5 explains quantum STT [47–50] as the transfer

of total spin angular momentum from NM conduction
electrons (dashed lines in Fig. 5) to confined electrons
within the AFMI [solid lines in Fig. 5(a)] or to localized
spins within the AFI [solid lines in Fig. 5(b)]. While some
spin transfer exists even for U ¼ 0, it is dramatically
enhanced by increasing U to establish the AFMI
[Fig. 5(a)]. The NM/AFMI case with U ¼ 10γ shows thatP

i s
0z
i ðtÞ within the AFMI is nearly identical to

P
i S

z
i ðtÞ

within the AFI with J ¼ 4γ2=U, as anticipated from
mapping [43,44] of the AFMI to the AFI in the limit
U ≫ γ. However, this correspondence fails for U < 10γ.
The absorbed spin by the AFMI or AFI can be viewed as
multiple excitations of any two-spinon or higher-order
spinon states [58], as long as they are compatible with
total angular momentum conservation [49].
Conclusions.—In conclusion, we demonstrate how the

TDMRG approach [51–55] adapted [49] for quantum STT
[47–50] makes it possible to study spin transfer into
strongly electron-correlated antiferromagnets. In contrast,
quantum-classical theory of conventional STT [11,13–22]
would conclude that an entangled AF true GS does not
undergo any current-driven dynamics when its localized
spins have zero expectation value at t ¼ 0 as the initial state
used in this study. Although the TDMRG approach has
been previously applied to study the charge current through
an AFMI [59–61] or spin-charge separation [62] in geom-
etries where electrons are injected into the AFMI by finite
bias voltage, spin-dependent transport phenomena in
geometries like Fig. 1 of relevance to spintronics [7–10]

remain unexplored. Realistic spintronic devices would
require us to consider 2D or 3D geometries. But
Keldysh Green functions [25,63], as the only available
nonequilibrium quantum many-body formalism for higher
dimensions and longer times, cannot at present access large
U with perturbative self-energies [57,63], or its nonper-
turbative implementation can handle [64] only a very few
sites. Therefore, this study represents a pivotal test case that
provides intuition about quantum STT phenomena in
strongly correlated and/or entangled quantum materials,
as well as a benchmark [63] for any future developments
via the Keldysh Green functions.

M. D. P., P. M., and B. K. N. were supported by the U.S.
National Science Foundation (NSF) Grant No. ECCS
1922689. A. E. F. was supported by the U.S. Department
of Energy (DOE) Grant No. DE-SC0019275.

Note added in the proof.—Recently, we became aware of
Ref. [65] in which quantum spin torque on 1D quantum
spin-1

2
Heisenberg AF chain was studied due to injection of

single-electron spin-polarized current pulse, which (as a
special case) is in accord with our results in Fig. 5(b) where
multielectron spin-polarized current pulse is used.
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In addition to the movie animating Fig. 2 in the main text, this Supplemental Material provides details of time-
dependent (TDMRG) simulations, as well as one additional multi-panel Fig. S1 showing expectation value Szi of
spin- 1

2 operators, as defined in Eq. (2) of the main text, in the ground state (GS), |GS〉, at each site i of either

one-dimensional (1D) quantum spin-1
2 Heisenberg antiferromagnetic chain composed of NAFI = 12 sites [Figs. S1(a)

and S1(b)] or two-dimensional (2D) quantum spin-1
2 Heisenberg antiferromagnet on 6× 4 square lattice [Figs. S1(c)

and S1(d)]. Both quantum spin systems are described by the quantum Heisenberg Hamiltonian [1, 2]

ĤAFI = J
∑
〈i,j〉

Ŝi · Ŝj − hŜzm, (1)

as the simplest model of an antiferromagnetic insulator (AFI). Here the exchange interaction J = 1 eV is nonzero
between the nearest-neighbor sites, as denoted by 〈i, j〉. Periodic boundary conditions are employed in both cases.
The spin- 1

2 operator at site i

Ŝαi = Î1 ⊗ . . .⊗
1

2
σ̂α ⊗ . . .⊗ ÎNAFI

, (2)

FIG. S1. Spatial profile of the z-component Sz
i [Eq. (2) in the main text] of spin operator in Eq. (2) within: (a) 1D chain of

12 sites described by the first term in Eq. (1); (b) 1D chain of 12 sites with the local magnetic field h = 0.2J in the second
term in Eq. (1) at site m = 2; (c) 2D square lattice described by the first term in Eq. (1); (d) 2D square lattice with the local
magnetic field h = 0.2J in the second term in Eq. (1) at site m = (3, 2).
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acts nontrivially, as the Pauli matrix σ̂α, only on the Hilbert space of site i; and Îi is the unit operator. We consider
systems with the global spin rotation symmetry, as described by the first term only in Eq. (1); or we introduce an
additional local magnetic field h = 0.2J at site m of 1D or 2D lattice, due to, e.g., impurity whose spin is large and
can be considered as a classical vector. The nonzero second term in Eq. (1) breaks the global spin rotation symmetry.
The GS is found by exact diagonalization in 1D or in 2D by using QUIMB package [3].

One of the standard tools to quantify entanglement in many-body quantum systems is entanglement entropy of its
subsystem [4], such as half of 1D chain or 2D lattice. We compute

ρ̂half = Trother−half |GS〉〈GS|, (3)

and from it obtain the von Neumann entanglement entropy

Shalf = −Trρ̂half log2 ρ̂half . (4)

This entropy for systems in Fig. S1(a)–(d) is: (a) Shalf = 1.71; (b) Shalf = 1.67; (c) Shalf = 2.96; and (d) Shalf = 2.91,
respectively. Thus, even though systems in Fig. S1(b) or Fig. S1(d) exhibit staggered pattern of expectation values
Szi , akin to Néel classical ground state ↑↓ . . . ↑↓, their |GS〉 remains highly entangled. This is also signified by
|Si| � |SNéel

i |, where |SNéel
i | = 1/2 is for unentangled (i.e., separable or direct-product) Néel quantum state | ↑↓ . . . ↑↓〉.

The TDMRG simulations [5–9] in the main text evolve the nonequilibrium state of the whole system in Fig. 1 in

the main text, |Ψ(t+ δt)〉 = e−iĤδt/~|Ψ(t)〉, using the time step δt = 0.1~/γ. We start the propagation with m = 100
states and limit the truncation error to 10−7, while the maximal number of states allowed during the evolution is set
to mmax = 400. Any single-particle expectation value at site i can be obtained from ρ̂i(t) = Trother |Ψ(t)〉〈Ψ(t)|, as
exemplified by Eq. (2) in the main text. Since fermionic leads are not semi-infinite as in usual quantum transport
calculations [10], the systems in Fig. 1 in the main text can be evolved only for a limited time [11–14] before electrons
are backscattered by the right boundary which breaks L→R current flow. For example, in Fig. 2 in the main text and
its animation via the movie included as Supplemental Material, such backscattering occurs at t ' 40~/γ. Nevertheless,
the quantum dynamics of the conduction electrons in the NM chain and charge and spin confined within the AFMI
chain can be safely assumed to be effectively equivalent to that in an infinite [10] open quantum system before the
boundary reflection takes place.
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