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stochastic formalism for the participation ratio. Quantitative Chromophores

agreement with traditional matrix diagonalization methods is

demonstrated for both small- and intermediate-size systems. The stochastic methodology enables the study of the effects of
spatial-correlation in site energies on the optical signatures of large 2D aggregates. Our results demonstrate that stochastic methods
present a path forward for screening structural parameters and validating experiments and theoretical predictions in large excitonic

aggregates.

B INTRODUCTION

Excitonic molecular aggregates are ubiquitous in molecular
electronics and photosynthetic light harvesting systems.' In
these systems, coupling among transition dipole moments
enables collective interactions with the electromagnetic field.
Long-range dipole—dipole interactions induce complex and
tunable photophysical properties, such as superradiance,”
exchange narrowing,” strong polarization dependent behavior,”
and long-range transport properties.” * Particular applications
of these materials are as photoemitters and antennas, and they
are highly desired for numerous technological, medical, and
biological imaging applications.”~"* Given the interest in the
optical properties of these dye aggregates, approaches to
rationalize and control excitonic properties aggregation are a
subject of recent research.">™'® Thoroughly testing design
principles for new aggregate complexes is difficult, as the
traditional Frenkel exciton matrix diagonalization approach
becomes prohibitively expensive for large systems.
Experimental and theoretical exploration of the optical
properties of molecular aggregates is nearly a century old.'*™"*
In recent years, advances in chromophore design and self-
assembly has allowed for the creation of tubular and 2D
aggregates which have potential as excitonic antennae.'*'**°
However, the slow convergence of the r3 dipolar coupling
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necessitates calculating band structures for extremely large
systems.”’ This is exacerbated in 2-D and quasi-2D tubular
systems for which the number of sites grows nonlinearly with
system size. Without methods which treat large systems,
computational studies are limited to diagonalizing Hamilto-
nians representing a few thousand dye monomers, and
observed localization effects of disorder depend on the size
of the calculation.'”*” Larger systems are approached analyti-
cally with highly limiting assumptions, such as nearest-
neighbor interactions or zero disorder. Probing 2-D aggregates
at the length scales observed experimentally (micrometers),*
stochastic methods provide an appealing alternative to
insurmountable diagonalization tasks.

The idea of calculating the density of states through
stochastic expectation values of a polynomial approximation
for the delta density operator is well established. Its
foundations go back to Lanczos in 1950,”* but the essential
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algorithm has been significantly refined in the 1970s and 1990s
in the fields of nuclear physics and quantum chemistry.”>~>*
Based off its numerical accuracy and ease of implementation, it
has become a staple method for computation of large quantum
systems, and is now often known as the kernel polynomial
method.>® To date, similar stochastic methods have been
applied to complex excitonic systems with similar computa-
tional2 giquirements as molecular aggregates, like quantum
dots.”™

The stochastic approach for calculating the density of states
is highly suitable for our specific case of dipole-coupled dyes in
ordered 2D planar or tubular systems. This is because the
effective exciton Hamiltonian that needs to be diagonalized has
a special form, i.e., the coupling between sites depends only on
the distance between them. This makes it very efficient to
calculate, in a quasi-linear scaling, the required kernel moments
using convolution. An additional advantage is that the method
is automatically suitable for including many kinds of energy
disorder, without additional cost, as the averaging over the
different disorder is included as part of the stochastic averaging
of the moments.

Following earlier work on the stochastic resolution of the
identity (SIR),”™** we show that, in addition to the
calculation of the density of states, the stochastic approach
enables the calculation of a further quantity that measures
exciton delocalization. This quantity, the participation ratio,*’
is obtained here with the same overall scaling as the density of
states.

The overall approach presented here enables extremely fast
screening of aggregate geometries and disorder, unlocking
rapid computation of experimentally relevant parameters
optical parameters.

B METHODS

Hamiltonian, Spectra, and Participation Ratio. We
study here the Frenkel exciton Hamiltonian for interacting
molecular chromophores'”

H=Y eln)nl + Y. J(n — m)ln)(m| o

where n represents the site basis of an exciton localized on a
single monomer, and €, are the on site excitation energies. We
set the average monomer excitation energy to 0 artificially to
study specifically the effects of aggregation.

The primary tool by which optical properties of excitonic
molecular aggregates are usually studied is through explicit
construction and diagonalization of the Frenkel Hamiltonian
matrix. A variety of different off-diagonal coupling functions
may be used to capture the transition dipole coupling or charge
transfer effects.'**°~* The important optical properties are
then assessed through several quantities defined below: optical
absorption, density of states, and participation ratios.

The optical absorption coefficient (abbreviated here as
optical absorption) is

Alw) =Y, (Ep)s(w —¢) @)

= 3, wldPo(w ~ <) 0

Here, €; and l¢;) are the eigenvalues and eigenvectors of H. g is
the dipole moment operator, and E is the electric field
polarization. For a system that is small relative to the

wavelength of the absorbed radiation, the so-called optically
bright state lyy) would be the k = O state, with elements

(nly) = p,-E (4)

where g, is now refers to the dipole vector of an individual
monomer. The k = 0 state is the most studied, so it is what we
restrict to in this paper, though the systems are large enough
that full consideration beyond the dipole limit may be
appropriate for future work.

The density of states is

plw) = Tr[6(H — w)] = z 5(g; — )

(s)
and the participation ratio is defined as
_ plw)
Plo) = K(o) (6)
where
K(w) = ) 8(e — @) Y. [(nlg)l* .
i n 7

Average aggregate properties should be estimated by many
realizations of the Hamiltonian with different disorder. This
additional cost further reduces the maximum practical
aggregate size that can be studied using direct diagonalization.

The Chebyshev Expansion. As mentioned, in this paper
we use a stochastic trace of the delta density operator to
retrieve the density of states. Before we can take the trace, the
delta function is first numerically implemented with Gaussian
regularization.”® One can realize the Gaussian regularization as
a Gaussian linebroadening on the tradition time correlation
function, from which the density of states is directly related by
a transform.

p(w) = Z <¢l| fdt e_theiwteyztz/zm)

NV _ L —H-0)?
; A ) "

For practical calculation, the regularized density operator is
defined through the Chebyshev polynomial expansion™’

Nehebyshes

> o(w)TH)

1=0 9)

Flw) = L H-w?/r
Nt

and of course in the small y limit, F(w) — §(H — w). Here, T,
(H') is the /th Chebyshev polynomial of a linearly scaled
Hamiltonian H' = (H — h)/AH constructed so that its
eigenvalues are within the interval [—1, 1]; T is an estimate for
the center of the spectrum of H, and 2AH is an upper bound
for its spectral width. Ny is the required number of
Chebyshev polynomials, which is proportional to AH/y.

As discussed later, the coupling in the Hamiltonian only
depends on the difference of position between sites, so if there
is no disorder AH can easily be shown to be given from a 2D
Fourier transform of the elements in the Hamiltonian.
Accounting for the effect of the disorder, we enlarge the
spectral width by a factor to ensure the stability of the
Chebyshev expansion.

The scalar Chebyshev coeflicients are calculated using the
transform 6 = cos™'(x).

https://dx.doi.org/10.1021/acs.jpca.0c07953
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i 2,2
e—(AHx—h—m) Via T,(x)

c,(a)) = \/_;W/_oodx

Vi1l (10)
_ 2= b0 27 a0 e—(AH cos e—ﬁ—w)z/yzeila
Jmy Jo (11)

The coefficients are then calculated via eq 11 using a fast
Fourier Transform (FFT).

Absorption Spectrum. From eq 2, the absorption spectra
is calculated with the Chebyshev expansion using only the
optically absorbing bright state

A(w) = (y|F(o)ly) (12)

This expectation value can be calculated for each coordinate of
the electric field, E, and therefore a bright state along each
coordinate can be defined via (eq 4). This gives the dichroism
response. An important thing to note is that since we know the
k = 0 wave function, ly), we only need our propagator to find
the absorption correlation function, and no additional
stochastic methods are required besides averaging over
instances of the diagonal disorder. Note that if we were to
consider k > 0, the full absorption could still be obtained
through a trace formula with the addition of a spatial filter (see
Supporting Information).

Stochastic Density of States. To take the trace of the
moments operator, a stochastic state is introduced, which
Monte Carlo samples a complete basis for H (see ref 32). The
stochastic excitation has a random =+1 amplitude at each site,
{(n) = (nl{) = £ 1. Thus, the DOS is calculated directly as

p(@) = {CIF@)I0)} = D, c(@)R,

i

(13)

where curly brackets are introduced to represent a classical
expectation value over the random excitations, and the kernels
are

R, = (1K) (14)
where we defined the Chebyshev vectors
£y = T(HOIE) (15)

obtained by the usual Chebyshev recursion relation, I 1) =
2H/|Z:I_1>—|é’[_2>,

The proof of eq 13 follows once we expand the random
vector in terms of the site basis set |{) = Zn £(n)|n), and use

{¢(n)¢(m)} = &,,- This approach to the density of states
converges rapidly with the line broadening parameter y, and is
memory friendly, as one stores only the kernels and
coeflicients.

Stochastic Participation Ratio. To have a fully stochastic
expression for the participation ratio, we need a stochastic
formalism that samples the fourth power of the eigenvectors
accurately, i.e., the denominator of eq 6. This is done here
analogously to the stochastic estimation of the exchange and
MP2 energies.35’36'44’45

For a given broadening parameter, y, we first pick two
independent random vectors, I{) and I£), each defined similarly
to the random vector in the previous section with +1 at each
grid site. We then define filtered-vectors:

IC(@)) = F Y (@)I0), 1E(w)) = F'*(w)|E) (16)
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where F'/% (@) = ——e #="/%" These vectors are

71/4”1/8

calculated using eq 9, i.e,,

Z(@)) = Y, gl

!

(17)
Here, ¢,(w) are the Chebyshev coefficients associated with

F"*(®). Given the filtered vectors, the stochastic expression
for the denominator in eq 6 is K(w) = lim,_,oK, (@) where

K,(0) = {2 (nIZ (@) )(nlE <w)>|2}
n (18)

To prove this expression, we first formally expand each vector
in terms of the complete basis of eigenstates of H

€)= X ald), 1) = X b4)
; (19)

where a; = (p]), etc. While the coeficients a; do not have a
closed form like the elements of I{), they remain uncorrelated
({aiaj} = 51‘;‘) due to their construction from I). We also define

f(n) = (lF"*(@)Igp) = 6"*(e; — @)p(n)

without explicitly denoting the @ dependence of f,(n).
Plugging to the expression for K(w), we get

K,(0) = X > {aabblf (0f (nf, (n)f, ()

n ikl (20)
and using
{aiajbkbl} = {“i“j}'{ biby} = 5:‘]‘5k1 (21)
leads to
K@) =3, (T, (" ()

y% zn zij e—(é',—w) /2y e—(é',—w) /2y <”|¢1>2<”|¢,>2
(22)

and taking the limit y — 0 and in the limit of any disorder to
break eigenstate degeneracies,

K(w) = lim L e_(g'_“’)z/zyze_(%_w)z/2y2<n|¢,->2<ﬂ|¢->2
r=0 YT /

4
= 51‘;'5(51' - ). (nlp)’,
(23)
finally leading to eq 7, as stipulated.

The estimate for the denominator in the participation ratio,
eq 18, converges well statistically, since it is an average of
positive definite quantities, but its y dependence relates to the
system size and disorder strength:

e For small N, the accuracy of the overall participation
ratio depends much more strongly on reaching the small
y limit than for the density of states alone, as shown in
Figure 1.

In contrast, for large N (beyond 10*) the participation
ratio converges rapidly with the number of stochastic
samples and with y, due to self-averaging and the fact
that different states have little spatial overlap. Put
differently, the i # j terms in eq 23 become minuscule
due to the reduced overlap of eigenvectors for large
systems, not just due to being a sum over spatially

https://dx.doi.org/10.1021/acs.jpca.0c07953
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3 315
0,02 <l where ¥ represents the Fourier transform. Open boundary
001 os) conditions, such aslin the most recent computational work on
' tubular aggregates,'” can be achieved via zero-padding of the
o —4600—2600 6 20‘00 o 74600 72‘000 6 20‘00 Coupllng matrix.
w (cm1)  (cm-1) Stochastic fluctuations in the direction of the dipoles will
easily be extended by treating { as a 3N vector, where each site
75 1 is weighted by the 3 elements of ¢, and the coupling is the 3N
* 3N dipole tensor. Short-range fluctuations in the J;; elements
3 507 are easily included explicitly, i.e., J; = Jo(i — j) + JJ;, where ],
] labels now the perfect coupling from above, and the action of
251 — Stochastic 0J;; on a vector is taken explicitly.
0 — Diagonalized Large-range fluctuations are more challenging and poten-
T T T y tially more interesting, since they interfere with the long-range
4000 _2002 (cm‘?) 2000 dipole which is a dominant mechanism in 2D sheets. They

Figure 1. Demonstration of the accuracy of the stochastic resolution
of the participation ratio. Top left is the density of states, top right is
the denominator of the participation ratio K(®), and the participation
ratio is shown at the bottom. A small system of N = 15 X 9 = 135
monomers is simulated here with Ny, = S X 10° samplings (of ¢
and the noisy diagonal energies, with disorder ¢ = 400 cm™" and no
site-to-site correlation of the diagonal energies). In accordance with
the small y limit necessary for the accuracy of the ratio, we used y = 2
cm™! and Njebysher = 16384. The very high-wavelength fluctuations
are due to stochastic error, and they can be flattened either by more
samplings or by explicit smoothing.

destinct Gaussians at small y. For further details, see
Figure S2.

A complication in the participation ratio calculation is that
memory-constraints rather than CPU time usually limit the
teasible system size, N. This is due to the need to store the set
of I£(w)) vectors, of size N,-N, which for a large system
quickly reaches gigabytes of CPU memory per core if
significant resolution across the band is desired.

Choice of Coupling Function. An underlying key
element of the iterative stochastic approach is the use of a
Hamiltonian with oft diagonal components that depend only
on the distance between sites, or difference of indices, and the
use of a perfect lattice. This makes it feasible to apply the
Hamiltonian on a vector with quasi-linear cost. Specifically,
here we use the point dipole approximation,

) By )

g
|

](n_ )_ |3

I, (24)
with r,,, = r, — r,. eq 24 is applied to aggregates with both
planar and tubular geometry. 20,2246 Figure 2 contains a
diagram showing how the coupling is constructed from the
aggregate geometry. System geometry is further discussed in
the Supporting Information.

For perfect toroidal boundary conditions, the Frenkel
exciton Hamiltonian, eq 1, forms a block circulant matrix,
with block sizes N, and N,, and is thus diagonalized by a 2D
Fourier Transform.”' At sufﬁc1ently large block sizes, perfect
periodic boundaries (toroidal) do not impose an issue with
self-coupling. Multiplication by a block circulant matrix is done
by the two-dimensional convolution theorem,

would be taken care of by our resolution-of-the-identity
approach; essentially 5]; = {£(i)&(j)} where & is constructed to
yield the required statistics, and would be guided by ab initio.
In practice, we will access such fluctuations by calculating the
correlation function with a split operator approach, so that at
every time step the action of e on a vector amounts to
essentially (1 — i5t IE)(&l), and € is chosen stochastically at
every time step.

Overall Algorithm Scaling. The main numerical CPU
cost is due to the repeated application of the Hamiltonian
(Nchebyshev times) and specifically the convolutions parts,
costing in FFT about 10N log,(N) each time. In addition,
when we calculate the participation ratio, we need to
accumulate frequency-resolved Chebyshev vectors. Thus, the
total cost is approximately

l\loppemtions = NStochustithChzbysheVN(lo IOgZ(N) + Na)) (27)

The Monte Carlo sampling is done in parallel on each node
(using MPI) with every node starting from a different random
excitation.

The scaling is exemplified in Figure 3. Both Ny, and
Nochastic do not scale up with N, so the algorithm scales quasi-
linearly with N. Specifically:

e N, is fixed for constant resolution, since AH is
approximately independent of system size.

® N jepysher 15 about SATH ~ 2000 — 8000. For most of

these aggregate systems without extreme disorder, the
spectral width is on the order of about 10° cm™', while
the spectral line width, y, need only be about as good as
one could achieve experimentally, i, ~ 1 cm™ or
larger. Note that our choice of using the most studied
point dipole coupling function is known to overestimate
nearest-neighbor couplings, and thus the spectral
width."”> One would expect a decrease in the number
of coefficients with more sophisticated or system specific
coupling functions.

o In the regime of disorder studied, N4 does not scale
with system size. In fact, due to self-averaging in large

systems the error goes like 1/ \/m 3233 o

Ngiochastic 18 reduced commensurately with the system
size.

Disorder. A key feature of a Monte Carlo based approach is
the ability to vary multiple input parameters at once and still

https://dx.doi.org/10.1021/acs.jpca.0c07953
J. Phys. Chem. A 2020, 124, 10111-10120
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Figure 2. (a) Diagram of section of 2D planar aggregate. The relative coupling strengths for near neighbors of a given site are shown by different
colors. (b) DOS (gray) and absorption spectra (red) for various slip values. Standard geometry parameters of length and width of 2 and 0.4 nm
respectively are used for all aggregates (see Supporting Information).”® (c) Examples of the slip = 0.5 planar DOS for different system sizes. As with
all calculations, we have done perfect toroidal lattice boundary conditions. Fluctuations in the center of the DOS still appear at system sizes of
about 10 000. Further driving the need to simulate big systems, or use artificial boundary conditions. Mild disorder of 50 cm™" is additionally used
to help smooth out the DOS. (d) Scan across 100 slip values, showing the upper (UB) and lower (LB) band edges as well as the position of the

absorption peak and position of the tallest Van Hove peak.

103 -
— 107 1
u ]
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10! E e Stochastic, CPUs=1
] e Stochastic, CPUs=10
e Diagonalized
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Figure 3. Timing test on the program that calculates absorption and
density of states, comparing a single core (red) and ten cores (blue).
For very small systems, the time is approximately constant, and then
scales like <N log(N) for larger systems. For all calculations Ni,gaqic
=10 and Ny = 4096, which is enough to converge the integral
density of states to the exact value of N. Small wiggles in the timing
are due to the different relative efficiency of the FFT package used,
FFTW3," at different array sizes. For the diagonalization method, the
full dimension N X N hermitian Hamiltonian matrix is constructed,
diagonalized, and the density of states is calculated from the
eigenvalues. Only a single instant of diagonalization (no disorder) is
considered here. All times were recorded with the Linux “time”
command on an AMD EPYC 7452 32-core processor at 3 GHz.
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sample the general spectrum. As such, disorder poses no new
additional cost to the algorithm, in which we sample a new
realization of the diagonal disorder and a new random
eigenstate, {, simultaneously and compute one classical average
over both disorder and random eigenstates at the end of the
calculation. We study the most common kind of disorder,
diagonal site disorder €, Later papers will study the effects of
disorder in the dipole direction and of deviations from the
ideal lattice positions.

The simplest model of diagonal-site disorder is non-
correlated noise, usually via a normal distribution of standard
deviation . More sophisticated models introduce correlations
into the site disorder. Specifically, the study of the effects of
exponentially correlated site disorder is known as Knapp’s
model in molecular aggregates.*® Knapp suggested that
correlation in disorder may be important in organic molecular
aggregates, modeling lattice defects and mixtures with glasses,
and strong low-frequency exciton—phonon coupling where
there is no resolvable vibronic structure.”” Such a strongly
coupled low energy phonon mode was indeed recently
observed in light-harvesting nanotube aggregates, prompting
new interest in correlation in two-dimensional and tubular
aggregates.50

Computational work on correlated disorder has a rich
literature in one-dimensional systems”' " and recent work on
two-dimensional nearest-neighbor lattices.”> Correlation has
yet to be studied in large nonbiological aggregate systems, or in

https://dx.doi.org/10.1021/acs.jpca.0c07953
J. Phys. Chem. A 2020, 124, 10111-10120
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two-dimensional systems with full coupling. Studies of
correlated disorder in 1D and higher dimensions have long
suggested that localized states may exist at all levels of
disorder.>>’

In photosynthetic systems, there are common claims that
small-scale correlated fluctuations may effect their emissive
properties. The most heavily studied model is the Fenna—
Matthews—Olson (FMO) complex, in which long-lived
quantum coherences between chromophores suggest relevant
spatial correlations between chromophores.”*”® Similarly
long-lived quantum coherences due to spatial correlation in
multiexciton dynamics have been observed in quantum
dots.’ 7 These experiments all suggest relevant correlation
length scales of subnanometer scale or smaller.

There have been studies using mixed quantum and classical
photosynthetic systems showing the effects of intersite
correlation.** Few-state quantum mechanical models, similar
to the calculations done here (but for much smaller scales),
show large influence of even small correlations between
chromophores and agree qualitatively with the experimentally
observed lifetimes and coherences.”””®” Without an exper-
imentally solved system structure and the difficulty in treating
these large aggregate systems quantum mechanically, the full
significance of intersite correlation has not been yet known.

In this work, we apply correlation through convolution.®®
Any correlation functions that strictly decreases with distance
can be studied with this method. A strictly decreasing
correlation function implies that its Fourier transform is
positive, and the existence of the square root of the covariance
matrix. In either case, we assume that the disorder covariance
matrix is block circulant (as is the Hamiltonian)

C; = (eg)/ (g7 = ™" (28)

so that it is diagonalized by a 2D plane-wave Fourier-transform
matrix, with eigenvalues denoted by g.

C=F"gF (29)
Correlated noise is then generated with convolution with JC.
e=¢g,xJC = 7:_1[\/§'7:[€0]] (30)

and g, is the initial uncorrelated normal disorder with standard
deviation o.
In the infinite space limit, \/g is the square root of the

Hankel transform of the exponential decay
~ ;T”(R_Z + |k|2)_3/ * For small correlation lengths it is

better to numerically FFT the desired convolution matrix,
rather than simply use the infinite lattice functional form of /g

, to avoid edge effects in the correlation.

B RESULTS AND DISCUSSION

Through a series of simple applications we show the power of a
stochastic approach in describing molecular aggregates. Our
studies include a scan of the point dipole coupling function
parameter space in Figure 2, eﬁﬁcientlzf reproducing the earlier
deterministic results of Chuang et al.”’

Figure 3 demonstrates the speed of the method for very
large systems. The stochastic method has a roughly constant
cost for small systems (where the time is dominated by the
cost of extracting the Chebyshev coefficients), and the cost
only rises mildly once N is beyond a thousand side. While

Figure 3 shows the same calculation for a fixed number of
stochastic samples, the true scaling is better than linear due to
self-averaging; i.e., fewer stochastic orbitals are needed for
larger systems to achieve the same level of stochastic error in
p(w) and P(w).

Simulating a single “sampling” of a typical 2D aggregate with
half a million monomers, as in Figure 2, takes a mere five wall
minutes on a single node. Ten such stochastic samplings (each
on its own core) are sufficient for converging the DOS and
absorption cross section with the full effect of disorder to
within a percent at each frequency. Each of these samplings
uses a different stochastic vector { and a different diagonal
energies. Such a system is about 2 orders of magnitude larger
than systems that could be studied with numerical diagonaliza-
tion on any current computing system. Whether it be
geometry, or disorder (Figure 4), a key point of the
demonstrated application of this method is the ease of
screening through parameter space.
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Figure 4. (a) Absorption lineshapes at varying degrees of disorder,
with the same system setup as in Figure 2. (b) Maximum absorption
peak shift and fwhm of H, ], and I planar aggregates of slip = 0.2, 0.5,
and 1.0 nm, respectively. For the slip = 0.5 nm band-edge ] aggregate,
a scaling power law of fwhm o 6> was observed.

In Figure 4 we track the width and position of the
absorption spectra at varying magnitudes of on-site disorder
(without correlation). When beyond the exchange narrowing
small-N regime (as demonstrated in Figure S2), our method
produces nonlinearities in the peak width that are similar to
previous 2D tubular simulations™'® and well established
scalings for 1D Kasha aggregates.’® Since the power law
exponent scaling of the width is sensitive to the underlying
geometry (slip), this method may be used as a tool for
designing aggregates for particular optical properties.>*’

Moving beyond the kernel approach for absorption spectra
and density of states, we show in Figure 5 the participation
ratio for large aggregates with both tubular and planar
geometry. This is the first simulation that can access an
eigenvector-based observable like the participation ratio for
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Figure S. Density of states (left) and participation ratios (right) for
macroscopic systems at three different levels of disorder for a band
edge planar aggregate (top) and the equivalent tubular aggregate
(bottom). Increasing color lightness signifies increasing system
disorder. N =~ 5§ X 10* For the tubular aggregate, a low disorder
value, 50 cm™, is not strong enough to destroy a fully delocalized
bright state, while the planar aggregate is not able to support such a
delocalized state. These calculations were performed with y = 2 cm™,

and they have not been interpolated to the y — 0 limit.

very large systems, and also the largest participation ratio
calculations for molecular aggregate systems. The figure shows
that the tubular geometry is able to support a largely

delocalized bright state at the higher levels of disorder of
50—200 cm™!, while such a state is not observed in a planar
aggregate for those parameters. Controlling the system
localization is important for gotential applications of these
aggregates as photoemitters,’” and this work is merely a
beginning for full exploration of the model space with the
stochastic approach.

In Figure 6, we apply correlated disorder to a 2D planar
aggregate and track the properties of the absorption spectra,
fully mapping out the disorder strength and correlation space.
This figure demonstrates that even small correlation lengths
extending over just a few monomers can have a drastic effect of
the observed width on the absorption spectrum. Previous
studies on the effect of local intersite correlation in 1D
molecular aggregates has discussed the change to absorption
width in terms of the small-N phenomena of motional
narrowing.*”*” Given how different the landscape and coupling
of the 2D aggregate systems is compared with 1D and the
change to the large N limit,"* a new mechanism is needed to
explain the effect of short length correlation.

B CONCLUSION

This work shows that a stochastic approach rapidly yields the
DOS, absorption and participation ratio for large and
disordered molecular aggregate systems over the full range of
frequencies. We demonstrated the ability to efficiently screen
the large modeling parameter space for these systems and to
accurately model realistic micrometer-scale systems of up to a
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Figure 6. Width (fwhm) of the absorption spectra at varying disorder strengths and exponential correlation lengths. The full parameter space is
mapped out in part a, while curves of constant disorder are shown in part b, and constant correlation (part c). Parts d and e show an instance of
exponentially correlated disorder at two different correlation lengths, as generated by the same random seed. We observe that ¢ is not a separable
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million monomers with the ability to extend to even larger
systems if needed. A new stochastic approach was introduced
to model delocalization via the participation ratio, going
beyond previous work with the DOS.

This work adds to the current knowledge of 2D and tubular
molecular aggregates. We map out the entirety of the
parameter space due to varying the lattice angle (slip), and
the effects of disorder and correlated disorder on the optical
spectrum. We find that the effect of correlation on the
absorption is strong even at short length scales, and is not
separable from the strength of the disorder.

Future extensions of the stochastic method presented here
would tackle more challenging dynamic optical properties that
are not be feasible for large systems with a deterministic
approach. Sample applications include time-dependent treat-
ment of exciton lifetime, coherences, and diffusion,”' system
environment and vibronic bath effects,’® or a multiexcitonic
basis looking at transport and recombination properties.”’

B APPENDIX

Stochastic Absorption beyond the Dipole Approximation
Calculating the absorption beyond the dipole approximation
requires filtering of the collective dipoles of each exciton to
obtain the eigenstate at a particular wavevector k. Stochasti-
cally, we will extract the k-dependent information by starting
with spatially random state and filtering them, spatially, after
the frequency filtering, i.e.

A(w) x {({|p-eBS(H — w)p-€ll)} (31)

where Py = |k) (kl is a spatial filter at the wavevector k. Thus,
we will apply a delta Chebyshev filter to select for frequency-
selected eigenstates followed by a spatial filter that selects for
overlap with the applied wavevector of the radiation.
Dichroism can similarly be extracted as we do under the
dipole approximation in the main section.
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