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Current static verification techniques do not provide good support for incrementality, making it difficult
for developers to focus on specifying and verifying the properties and components that are most important.
Dynamic verification approaches support incrementality, but cannot provide static guarantees. To bridge this
gap, prior work proposed gradual verification, which supports incrementality by allowing every assertion to
be complete, partial, or omitted, and provides sound verification that smoothly scales from dynamic to static
checking. The prior approach to gradual verification, however, was limited to programs without recursive
data structures. This paper extends gradual verification to programs that manipulate recursive, mutable data
structures on the heap. We address several technical challenges, such as semantically connecting iso- and
equi-recursive interpretations of abstract predicates, and supporting gradual verification of heap ownership.
This work thus lays the foundation for future tools that work on realistic programs and support verification
within an engineering process in which cost-benefit trade-offs can be made.
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1 INTRODUCTION

Hoare proposed a logic for static verification where developers specify method pre- and postcondi-
tions [Hoare 1969]. Over time, this work has been extended to support more interesting programs.
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Most notably, Reynolds [2002] introduced separation logic to support modular verification of pro-
grams that manipulate heap data structures. As an extension to separation logic, Parkinson and
Bierman [2005] proposed recursive abstract predicates, enabling the verification of recursive heap
data structures such as graphs, trees, or linked-lists. Shortly after, implicit dynamic frames (IDF)
was proposed by Smans et al. [2009] as an alternative to separation logic that allows developers to
specify heap ownership separately from heap contents.

Unfortunately, these techniques require developers to provide enough specifications to form
a complete inductive proof. Consequently, even in very simple programs, a specification that is
inductively verifiable may be twice the length of merely specifying the properties the programmer
cares about (§3.2). To address this issue, Bader et al. [2018] proposed gradual verification, which
builds on prior research on gradual typing [Siek and Taha 2007, 2006; Siek et al. 2015], in particular
the Abstracting Gradual Typing methodology [Garcia et al. 2016]. Bader et al. [2018] extend a
simple Hoare logic static verifier with partial, imprecise specifications. Statically, the gradual verifier
can optimistically assume any (non-contradictory) strengthening of an imprecise specification.
To ensure soundness, dynamic checks are added when partial specifications are optimistically
strengthened. Bader et al’s approach smoothly supports the spectrum between static and dynamic
verification, as formalized similarly to the refined criteria for gradual typing [Siek et al. 2015].

While promising, the prior work on gradual verification does not support the specification of
recursive heap data structures, and thus cannot verify realistic programs. In this paper, we address
this limitation by presenting the design, formalization, and meta-theory of a sound gradual verifier
for programs that manipulate recursive heap data structures. Our approach follows Bader et al.’s
methodology, but starts from a static verifier with IDF and recursive abstract predicates. This more
sophisticated setting requires us to address the following technical challenges:

e Imprecise specifications may be strengthened not just with boolean assertions about arith-
metic expressions, but also with both abstract predicates and accessibility predicates, which
denote ownership of heap locations. Our strengthening definition also includes self-framing,
a well-formedness condition required by IDF [Smans et al. 2009].

e Both accessibility predicates and abstract predicates must potentially be verified dynamically.
Our system verifies accessibility predicates at runtime by tracking and updating a set of owned
heap locations. We verify recursive abstract predicates by executing them as recursive boolean
functions. This runtime semantics corresponds to an equi-recursive interpretation of abstract
predicates, contrasting with the iso-recursive interpretation used in static verifiers [Summers
and Drossopoulou 2013]; our theory ensures that these interpretations are consistent.

We show that the resulting gradual verifier is sound, that it is a conservative extension of the
static verifier—meaning that both coincide on programs with fully-precise specifications—and
that it adheres to the gradual guarantee. This guarantee, originally formulated for gradual type
systems [Siek et al. 2015], captures the intuition that relaxing specifications should not introduce
new (static or dynamic) verification errors.

The rest of this paper is outlined as follows. The annotation burden induced by statically verifying
linked list insertion is discussed in §2. Section 3 illustrates how this burden can be reduced or
eliminated with gradual verification by using examples, and §4 discusses challenges and solutions
to supporting such examples. In §5 we formally present a statically verified language supporting
a propositional specification logic extended with IDF and recursive heap data structures, before
gradualizing the static semantics of this language in §6 and dynamic semantics in §7. §8 discusses
the properties of the resulting gradual verifier. Finally, §9 and §10 further relate this paper to prior
work and discuss future work, respectively. The supplement of this paper contains full gradual
verification examples and supplementary definitions (e.g. complete semantics of both the static and
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1 class Node { int val; Node next; }
2 1 List

class List { 12 void insertLastHelper (int val)
3 Node head; 13 C
4 id i tLast(int 1
5 XOI insertlast(int val) 14 Node y = this.head;

i 1=
6 if (this.head == null) { iz whzle Ey'nizzt: )null)
7 this.head = new Node(val,null); y e ’
17 y.next = new Node(val,null);

8 } else { 18 3
9 insertLastHelper(val); 19 3
10 }
11 3}

Fig. 1. Linked list with insertion

gradual verifier introduced in this work) [Wise et al. 2020]. Proofs of all propositions and lemmas
are also given in the supplement.

2 THE BURDEN OF STATIC VERIFICATION

With static verification tools, ensuring that a component satisfies a given property requires more
than specifying the said property: many additional specifications are needed for tools to be able to
discharge proof obligations statically. In this section, we show that this additional specification
burden can be significant, even for a very simple example.

The program in Figure 1 implements a linked list and two methods for inserting an element at
the end of a list. Notice that insertLastHelper iteratively traverses a list for insertion, and that both
methods diverge if given cyclic lists. Therefore, it is useful to ensure these methods only receive
(and produce) acyclic lists. Let us look at how to achieve this with a static verifier.

One way to specify that a list is acyclic is to use the following abstract predicates [Parkinson and
Bierman 2005], which are essentially pure boolean functions:

predicate acyclic(List 1) = acc(l.head) * listSeg(l.head,null) and

predicate listSeg(Node from, Node to) = if (from == to) then true

else acc(from.val) * acc(fromnext) * listSeg(from.next,to)

Notice that 1istSeg is a recursive abstract predicate. Additionally, acyclic and listSeg’s bodies rely
on accessibility predicates of the form acc(x.f) and on the separating conjunction *, from implicit
dynamic frames (IDF) [Smans et al. 2009]. A program can only access a particular heap location if
the corresponding accessibility predicate is provided. For example, acc(1.head) gives permission
to access the heap location o.head if 1 is bound to the object o. The separating conjunction forces
accessibility predicates to refer to different heap locations. listSeg recursively generates accessi-
bility predicates for every node in a list segment. The accessibility predicates are joined with the
separating conjunction. Therefore, the recursive predicate instance acyclic(l) states that all the
heap locations in list 1 are distinct, i.e. 1 is acyclic.

A developer can expect to simply specify that both insertLast and insertLastHelper have
acyclic(this) as pre- and postconditions. However, they may be disappointed by the many ad-
ditional specifications required to statically discharge the proof obligations these specifications
introduce: loop invariants, fold and unfold statements, and lemmas, as shown in Figure 2, and
inspired by Smans et al. [2009]. Although this example is very simple, there is far more specification
code (44 lines) than program code (19 lines). Furthermore, this 44:19 ratio only highlights part of
the problem: many specifications are far more complex than the program itself, as explained next.

The specification unfold acyclic(this) at line 18 expands the abstract predicate acyclic(this)
into its body. This unfolding exposes the accessibility predicate acc(this.head), which gives permis-
sion to access the heap location of this.head. Dually, fold acyclic(this) repacks acyclic(this)’s
body. Figure 2 explicitly uses unfold and fold statements to control the availability of predicate
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; class Node { int val; Node next; } 39 eI 1ASESEE0Y, AU
3 class List { 40 while (y.next != null)
4 Node head; 41 invariant y != null * acc(this.head) =
5 42 listSeg(this.head,y) *
6 redicate acyclic(List 1) =
> y ( ) 43 acc(y.val) # acc(y.next) *
7 acc(l.head) = listSeg(l.head,null .
( ) &( ) 44 listSeg(y.next,null);
8
45 {
9 predicate listSeg(Node from, Node to) = 46 Node x = y;
10 if (from == to) then true else 47 y = y.next;
11 acc(from.val) * acc(from.next) = 48 unfold listSeg(y,null);
12 listSeg(from.next, to) 49 fold listSeg(x.next,y);
13 50 fold listSeg(x,y);
14 void insertLast(int val) 51 appendLemma(this.head, x, y);
15 requires acyclic(this) 52 }
16 ensures acyclic(this) 53
17 ¢ 54 y.next = new Node(val,null);
18 unfold acyclic(this); 55 fold listSeg(y.next.next,null);
19 if (this.head == null) { 56 fold listSeg(y.next,null);
20 this.head = new Node(val,null); 57 fold listSeg(y,null);
21 fold listSeg(this.head.next,null); .
! g(thi next,null) 58 appendLemma(this.head, y, null);
22 fold listSeg(this.head,null); . .
* g(thi wihy 59 fold acyclic(this);
23 fold acyclic(this); 60 h
24 } else { 61
25 fold acyclic(this); 62 void appendLemma(Node a, Node b, Node c)
26 insertlastHelper(val); 63 requires listSeg(a,b) * listSeg(b,c)
27 }
28 h 64 ensures listSeg(a,c)
29 65 {
30 id i tLastHel int 1
void insertLastHelper(int val) 66 if (a == b) {
31 requires acyclic(this) =*
67 } else {
32 unfolding acyclic(this) in
68 unfold listSeg(a,b);
33 this.head != null
. X 69 appendLemma(a.next, b, c);
34 ensures acyclic(this)
35 ‘ 70 fold listSeg(a,c);
36 unfold acyclic(this); 71 3
37 Node y = this.head; 72 }
38 fold listSeg(this.head,y); 73}
Static specification U Program code

Fig. 2. Specifying and proving acyclicity for linked list insertion

information. Each predicate instance is an opaque permission to access its body, i.e. predicates are
iso-recursive [Summers and Drossopoulou 2013]. Some dynamic verifiers reason about predicate
instances equi-recursively, i.e. treat a predicate instance equal to its complete unfolding. However,
completely unfolding recursive predicates often requires statically unknown information, such as
the length of the list in our example. Therefore, static verifiers reason about predicate instances
iso-recursively.

The while loop invariant at lines 41-44 segments a list into three parts using listSeg: from the
head to the current node (1istSeg(this.head,y)), the current node (acc(y.val) = acc(y.next)), and
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the rest of the list (1istSeg(y.next,null)). The loop body accesses y.next, so the loop invariant
must expose acc(y.next). After a new node holding the inserted element is added to the list at
line 54, we must show that the acyclic predicate holds for the new list. The loop invariant also
supports this goal. To build up the acyclic predicate we must first construct a listSeg predicate
from the beginning of the list to the new end of the list. We do this by starting with an empty list
segment (line 55) and incrementally extending it with the newly added element (line 56) and the
previous end of the list (line 57). This gives us a listSeg predicate from the current node to the
new end of the list. We then append the listSeg predicate from the head of the list to the current
node (loop invariant) to the listSeg predicate from the current node to the new end of the list (line
57). To achieve this, we need to prove that listSeg is transitive. Unfortunately, static tools usually
cannot automatically discharge such inductive proofs, so we encode the proof in the appendLemma
method at 58. Note that such additional proof efforts are part of the barriers to the adoption of
static verification, which would be important to get rid of. Finally, we combine the accessibility
predicate to the head of the list (loop invariant) with our listSeg predicate to reconstruct the
acyclic predicate (lines 7 and 59).

As the above description makes clear, static verification tools can impose a significant specification
burden on developers even for simple programs. Constructing loop invariants and (un)folding
predicates can be considerably more complex than program code. Simply ensuring that insertLast
and insertLastHelper receive and produce acyclic lists requires far more specification code than
program code. Of course, verifying more properties, for example that some insertion preserves
ordering, would require substantially more specification and verification effort.

3 GRADUAL VERIFICATION OF RECURSIVE HEAP DATA STRUCTURES IN ACTION

We now demonstrate how developers can use gradual verification to choose which obligations they
want to meet statically and leave the rest to be dynamically checked. They can then incrementally
address each proof obligation statically until they reach fully static verification, or stop at any point
along the way. As a result, the complexity of verification can be managed in small increments. In
the rest of this section, we show different partial specifications of list insertion (§3.1-§3.2), as well
as list search (§3.3). These examples illustrate the smooth scaling from dynamic to static checking
enabled by gradual verification.

3.1 Gradually Verifying List Insertion: Take 1

Figure 3 presents a possible gradual specification of acyclicity of list insertion. In addition to fully
precise formulas (in gray), the specification includes imprecise formulas [Lehmann and Tanter 2017]
(in yellow), which contain the unknown formula ? in addition to a static part (true if omitted).

Here, the developer chooses to completely ignore accessibility predicates, which would be
required for full static verification (§2), and only focuses on a partial specification. First, the acyclic
predicate is kept unknown by using ? as its body (line 4). Second, only the simple part of the loop
invariant—i.e. the current node of the list is not null—is statically specified, thanks to the imprecise
formula ? = y != null (line 27). Intuitively, this formula means that only y != null is enforced and
guaranteed statically, but that other properties can be optimistically assumed. Note that the partial
specification explicitly deals with (un)folding the acyclic predicate; unfolding acyclic implies
bringing its imprecision (i.e. optimism) in the verification, while folding acyclic simply satisfies
the declared pre- and postconditions. In general, the only interesting properties that can be verified
with this gradual specification are whether y != null is preserved by the loop and whether heap
accesses are justified with accessibility predicates. We discuss this in more detail.
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1 class Node { int val; Node next; }
2 class List { 18 void insertLastHelper(int val)
3 Node head; 19 requires acyclic(this) =
4 predicate acyclic(List 1) = ? 20 unfolding acyclic(this) in
5 void insertLast(int val) 2 this.head 1= null
6 requires acyclic(this) . X
22 ensures acyclic(this)
7 ensures acyclic(this) 23 {
8 { 24 unfold acyclic(this);
9 unfold acyclic(this); 25 Node y = this.head;
10 if (this.head == null) { 26 while (y.next != null)
11 this.head = new Node(val,null); 27 invariant ? * y != null
12 fold acyclic(this); 28 {y = y.next; }
13 } else { 29 y.next = new Node(val,null);
14 fold acyclic(this); 30 fold acyclic(this);
15 insertLastHelper(val); 31 3}
16 } 32 3
17 }
Imprecise specification Precise specification
Fig. 3. A possible gradual specification of insertlLast and insertLastHelper from Figure 1
18 while (y.next != null)
i i ? 1=
1 void insertLastHelper(int val) ;9 invariant 7 » y != null
2 requires acyclic(this) = 0 {
3 unfolding acyclic(this) in 21 ? %y !=null % y.next != null % acc(y.next)
4 this.head != null 22 = ? x acc(y.next.next)
5 ensures acyclic(this)
6 { 23 % acc(y.next) = y.next != null
7 acyclic(this) * unfolding acyclic(this) in 24 ? % acc(y.next.next) x acc(y.next) *
8 this.head != null = 25 y.next != null
? % acyclic(this) 26 y = y.next;
? 1=
10 ? - aeyelie(dns) 27 ? % y !=null % acc(y.next)
11 unfold acyclic(this); 28 ¥
— ? 1= == =
12 ? = ? % acc(this.head) * 29 ? % y != null * y.next null =
?
13 this.head != null % acc(this.head.next) 30 75 ey i)
?
14 ? % acc(this.head) * this.head != null = 31 7 & EEELMenE)
32 y.next = new Node(val,null);
15 acc(this.head.next) 33 2
16 Node y = this.head; 34 fold acyclic(this);
17 ? %y != null % acc(y.next) 35 syl is)
36 3
Intermediate condition produced by WLP Dynamically checked right side of =
Left side of = Statically checked right side of =

Fig. 4. The gradual verification of insertLastHelper from Figure 3

Figure 4 demonstrates how to gradually verify insertLastHelper from Figure 3. The formulas
shown in method bodies (highlighted in purple) are the result of applying gradual weakest liberal
precondition rules WLP (defined in §6.5) to each program statement.

WLP proceeds from the end of a method body to the beginning, starting with the postcondition
on the last line. Then, for each program statement WLP calculates a new intermediate condition that
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is minimally sufficient to verify the new program statement and the prior intermediate condition.
Since ? is the body of the acyclic abstract predicate, WLP calculates that ? is minimally sufficient
for lines 34 and 35. Assigning to y.next on line 32 requires an accessibility predicate, so WLP joins
acc(y.next) to ? on line 31.

When WLP cannot soundly propagate a condition backwards, a consistent implication (=)
check is performed. These implications are necessary under five conditions: at the beginning
of a method, at the beginning of a loop body, at the end of a loop with an imprecise invariant,
after unfolding an abstract predicate with an imprecise body, and after a method call with an
imprecise postcondition. At line 29 the imprecise loop invariant is joined with the negation of the
loop guard. The right-hand side of = is always the next intermediate condition. Since line 29
is not sufficient to statically entail the intermediate condition on 30, but may optimistically do
so considering imprecision, it is optimistically discharged and therefore highlighted in red. An
optimistically-discharged obligation gives rise to a dynamic check when running the program. Note
that if the left-hand side of a consistent implication cannot possibly imply the right side (e.g. as in ?
% x == null = x != null), then the program is statically rejected.

The last condition in a loop body is always the loop invariant joined with accessibility predicates
needed to evaluate the loop guard. Line 27 contains the loop invariant and an accessibility predicate
for y.next. When encountering a variable assignment, like the one on line 26, WLP substitutes the
right-hand side of the assignment (y.next) for the left-hand side (y) to generate the intermediate
condition above the assignment (lines 24 and 25). In addition, accessibility predicates are added for
the right-hand side of the assignment (acc(y.next)).

As mentioned earlier, a consistent implication is checked at the beginning of a loop body: the left-
hand side (line 21) is the loop invariant, the loop guard, and any accessibility predicates necessary
for the guard. The right-hand side, as usual, is the next intermediate condition. Observe that here,
some of the conditions to prove are definitely implied—via standard implication—by the static part
of the left-hand side: they can therefore be discharged statically, which is highlighted in green
(line 23). The others are optimistically discharged, as before.

The condition on line 17 includes the loop invariant and an accessibility predicate to the loop
guard. The condition on lines 14 and 15 follows the same pattern as the assignment discussed
earlier. The unfold statement generates the consistent implication on lines 12 and 13. The left side
is the body of the unfolded abstract predicate, in this case ?. Since ? provides no static information,
the entire right-hand side is optimistically discharged.

The condition on line 10 includes the abstract predicate that is unfolded on line 11. This is
joined to ? because the body of acyclic is an imprecise formula and WLP maintains any residual
conditions beyond those needed for the unfolding. Finally, the left-hand side of the = at the
beginning of the method is the method precondition (lines 7 and 8). Since acyclic(this) is definitely
implied, the right-hand side is fully discharged statically.

The complete gradual verification of Figure 3 is given in the supplement [Wise et al. 2020].

3.2 Gradually Verifying List Insertion: Take 2

In Figure 5, we show another, more precise gradual specification of acyclicity for insertLast and
insertlLastHelper. The specifications highlighted in gray contain precise formulas, and the ones
highlighted in yellow contain imprecise formulas. The darker gray specifications are additional
specifications introduced by the developer as an increment over the ones in Figure 3. Here, the
developer chooses to fully specify acyclic’s body on lines 4 and 5 as acc(1.head) = listSeg(l.head,
null). With these predicates, the developer fully specifies insertLast for static verification and
adds more complete specifications to insertLastHelper. The developer uses listSeg to write a loop
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1 class Node { int val; Node next; }
2 class List {

3 Node head;
4

predicate acyclic(List 1) =

5 acc(l.head) * listSeg(l.head, null) 27 void insertlLastHelper(int val)
6 28 requires acyclic(this) =*
7 predicate listSeg(Node from, Node to) = 29 unfolding acyclic(this) in
8 if (from == to) then true else 30 this.head != null
9 acc(from.val) * acc(from.next) 31 ensures ?
10 * listSeg(from.next, to) 32 ¢
1 33 unfold acyclic(this);
12 void insertLast(int val) 34 Node y = this.head;
13 requires acyclic(this) 35 unfold listSeg(y, null);
i 1=
14 ensures acyclic(this) 36 while (y.next I= null)
15 c 37 invariant y != null * acc(y.val) *
16 unfold acyclic(this); 38 acc(y.next) * listSeg(y.next, null)
17 if (this.head == null) { 39 {
18 this.head = new Node(val,null); 40 y = y.next;
19 fold listSeg(this.head.next, null); 41 unfold listSeg(y, null);
20 A I e G HER CET ) vlib ) 42 }
43 y.next = new Node(val,null);
21 fold acyclic(this); 44 3}
22 } else { 45 }
23 fold acyclic(this);
24 insertLastHelper(val);
25 3}
26 }
Imprecise specification New precise specification (increment over Fig. 3)

Precise specification (from Fig. 3)

Fig. 5. Another possible gradual specification of insertLast and insertLastHelper from Figure 1

invariant, which exposes acc(y.next) for statically verifying accesses to y.next in the loop body and
on line 43. However, the developer does not want to build up specifications to statically prove that
the new list after insertion is acyclic. They therefore leave the postcondition of insertLastHelper
unknown. Observe that, in contrast to Figure 2, the programmer does not need to build up a
listSeg predicate from the previous end of the list to the new one, state and prove a separate
lemma about list concatenation, and state a more complex loop invariant. Instead, the gradual
verifier ensures at runtime that the new list after insertion is acyclic. This is a major benefit
of gradual verification, which can dispense the verification effort from working around certain
limitations of static reasoning tools. The detailed verification of Figure 5 with WLP is given in the
supplement [Wise et al. 2020].

3.3 Gradually Verifying List Search

Let us now consider another helpful method for linked lists, findMax, which finds and returns the
maximal value of the list. The program in Figure 6 contains an iterative implementation of findMax.
We discuss how a developer uses gradual verification to ensure that findMax indeed returns the
maximal value of a list; they incrementally build up specifications as illustrated in Figure 7. In doing
so, we show how developers can incrementally address proof obligations of interest and explore
the cost-benefit tradeoffs between static reasoning effort and runtime overhead.
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10 while (curr != null) {
1 class Node { int val; Node next; } 11 if (curr.val > max) {
2 12 max = curr.val;
3 class List { 13 curr = curr.next;
4 Node head; 14 } else {
5 15 curr = curr.next;
6 int findMax () 16 3
7 { 17 3
8 int max = this.head.val; 18 result = max;
9 Node curr = this.head.next; 19 3

20 3

Fig. 6. Linked list that iteratively finds and returns its maximal value

The developer begins the first increment (highlighted red, lines 6-20, 23-25, 34) by specifying
two properties: whether a value is an upper bound of a list (upperBound, lines 6, 7; upperBoundSeg,
lines 9-12) and whether a value is contained in a list (contains, lines 14, 15; containsSeg, lines
17-20). The upperBound and contains predicates are used in findMax’s postcondition to ensure that
it returns the maximal element (lines 24, 25). The predicates are imprecise to enable heap accesses to
1.head, from.val, and from.next without statically-acquired accessibility predicates. The developer
specifies that findMax not execute on empty lists in its precondition (this.head != null). In this
first increment, the precondition (line 23) is otherwise imprecise and the loop invariant (line 34) is
completely imprecise. As a result, the gradual verifier optimistically assumes—and dynamically
checks—accessibility predicates to heap accesses in findMax. The invariant also allows the verifier
to check upperBound(this, result) and contains(this, result) at runtime.

To move towards a strengthened version of findMax, the developer adds the specifications high-
lighted in yellow in Figure 7 (lines 30, 31, 35, 55). The developer folds upperBound(this, result)
on line 55 to show that findMax returns an upper bound of the list. The upperBound predicate
is constructed from an upperBoundSeg predicate for the whole list and result. To achieve this
upperBoundSeg predicate, the developer determines that the loop invariant (lines 34, 35) should con-
tain upperBoundSeg(this.head, curr, max).In other words, the loop should produce a value max that
is the upper bound of the list from its head to the current node at every iteration. Then, when the loop
terminates, max (result) will be an upper bound of the whole list (upperBoundSeg(this.head, null,
max)). The additional folds before the loop, on lines 30, 31, are used to build up the upperBoundSeg
for the first loop iteration.

As before, both accessibility predicates and contains(this, result) are dynamically verified.
However, the verifier now statically establishes that upperBound(this, result) holds, at an un-
fortunate cost. The loop invariant (lines 34, 35) must be preserved for every iteration of the loop,
but the developer has only constructed a proof for the first iteration (lines 30, 31). As a result,
imprecision introduced by the invariant is used to prove that the invariant holds for the remaining
iterations. That is, the invariant is dynamically checked—the list is traversed from its head to the
current node—at every iteration beyond the first!

Appalled by this dynamic checking overhead, the developer decides to construct the missing
static proofs. The resulting specifications are highlighted in green in Figure 7 (lines 48-50, 58-70).
Since the loop’s else case (lines 46—-51) does not modify max, the developer focuses their effort here.
Their goal is to show that max is an upper bound of the list from its head to the next traversed
node (line 47). To achieve this, an empty upperBoundSeg starting and ending on the next node
(line 48) is extended with the previous (current) node (line 49). This creates an upperBoundSeg
predicate from the current node to the next node. The extension is justified by the negation of the
if condition curr.val < max (line 38). Then, the developer achieves their proof goal for the else
case by appending (lines 50, 58-70) the upperBoundSeg predicate from the head of the list to the
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1 class Node { int val; Node next; } 46 } else {
2 47 curr = curr.next;
3 class List { 48 fold upperBoundSeg(x.next, curr, max);
4 Node head;
5 ode hea 49 fold upperBoundSeg(x, curr, max);
6  predicate upperBound(List 1, int bound) = 50 appendLemma(this.head, x, curr, max);
51
7 ? * upperBoundSeg(l.head, null, bound) 52 3 ¥
8 53
9 predicate upperBoundSeg(Node from, Node to, int bound) 54 result = max;
10 = ? % if (from == to) then true else 55 fold upperBound(this, result);
11 from.val < bound * g;’ 3
12 upperBoundSeg(from.next, to, bound) 58 void apemlerR@id &, N b,
13
59 Node c, int val
14 predicate contains(List 1, int val) = )
60 i BoundS , b, 1
15 ? % containsSeg(l.head, null, val) requires upperBoundSeg(a val)
16 61 upperBoundSeg(b, c, val)
17 predicate containsSeg(Node from, Node to, int val) = 62 ensures upperBoundSeg(a, c, val)
18 ? % if (from == to) then false else 63 {
19 if (from.val == val) then true else 64 if (a ==b) {
20 containsSeg(from.next, to, val) 65 } else {
21 66 unfold upperBoundSeg(a, b, val);
22 int findMax () 67 appendLemma(a.next, b, c, val);
23 requires ? = this.head != null
68 fold upperBoundSeg(a, c, val);
24 ensures upperBound(this, result) x* N
69
25 contains(this, result)
70}
26 {
27 int max = this.head.val; 7
28 Node curr = this.head.next; 72 void upperBoundLemma(Node a, Node b,
29 73 int oldval, int newVal)
30 fold upperBoundSeg(this.head.next, curr, max); 74 Teauilies GleNEl = maEl o
31 fold upperBoundSeg(this.head, curr, max); 75 upperBoundSeg(a, b, oldval)
32
33 while (curr != null) 76 ensures upperBoundSeg(a, b, newval)
34 invariant ? 7 A
35 * upperBoundSeg(this.head, curr, max) 78 if (a ==b) {
36 { 79 fold upperBoundSeg(a, b, newVal);
37 Node x = curr;
38 if (curr.val > max) { 80 T else {
39 int oldMax = max; 81 unfold upperBoundSeg(a, b, oldval);
40 max = curr.val; 82 appendLemma(a.next, b, oldval, newVal);
41 curr = curr.next;
42 fold upperBoundSeg(x.next, curr, max); 83 fold upperBoundSeg(a, b, newval);
43 fold upperBoundSeg(x, curr, max); 84 b
44 upperBoundLemma(this.head, x, oldMax, max); 85 3
86
45 appendLemma(this.head, x, curr, max); 87 3}
1% increment (most imprecise of the 4) 37 increment
274 increment 4" jncrement (most precise of the 4)

Fig. 7. Incrementally more precise ways to gradually verify findMax from Figure 6
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current node (loop invariant, lines 34, 35) to the upperBoundSeg predicate from the current node to
the next node.

Now, the gradual verifier can statically prove that the loop invariant is always preserved by the
else branch. However, the verifier still dynamically checks the invariant on each loop iteration
executing the then branch. The other dynamic checks for accessibility predicates and the contains
predicate also still remain.

Finally, the developer generates specifications for the then branch, highlighted in blue in Figure 7
(lines 42—45, 72-85). As in the else case, the developer’s goal is to show that max is an upper bound
of the list from its head to the next traversed node (line 41). Here, however, max is assigned the
current node’s value (line 40). The assignment justfies the build up of the upperBoundSeg predicate
from the current node to the next node (lines 42, 43). But, unlike in the else case, the loop invariant’s
upperBoundSeg predicate applies to an old max value rather than the current (new) one. The old value
happens to be less than the current one (then condition, line 38), so the current max is an upper bound
of the list from its head to the current node. The developer proves this fact with upperBoundLemma
(lines 44, 72-85). Finally, as before, the developer uses appendLemma (lines 45, 58-70) to achieve the
proof goal for the then case. This last increment allows the gradual verifier to prove that findMax
returns an upper bound of the list completely statically. Only accessibility predicates for heap
accesses and contains(this, result) are dynamically checked. The developer can stop here, or
work further on either proving contains(this, result) or specifying accessibility predicates.

By using gradual verification on findMax, the developer is able to manage the complexity of
meeting proofs obligations incrementally. The developer could have stopped at any of the afore-
mentioned increments and be certain, in the absence of runtime checking errors, that the program
returns the greatest element of the list and accesses only owned heap locations. Gradual verifica-
tion enables the exploration of cost-benefit tradeoffs between static reasoning effort and runtime
overhead.

4 CHALLENGES OF RECURSIVE HEAP DATA STRUCTURES

While the basic principles of gradual program verification have already been laid out by Bader
et al. [2018], their work only accounts for pre- and postconditions that include basic logical and
arithmetic formulas. The contribution of this work is to scale these basic principles to deal with
realistic programming scenarios that involve recursive heap data structures.

This section explains the challenges involved in accounting for implicit dynamic frames (IDF)
[Smans et al. 2009] and recursive abstract predicates [Parkinson and Bierman 2005] in the context
of gradual program verification. We also informally outline our novel solutions to these challenges,
which will be formally developed in the following sections.

4.1 Gradual Verification of Heap Ownership

Adapting the Abstracting Gradual Typing approach [Garcia et al. 2016] to the verification setting
gives meaning to imprecise formulas such as x > 10 A ? by considering all the logically consistent
strengthenings of such formulas [Bader et al. 2018; Lehmann and Tanter 2017]. For instance, x >
10 A ? consistently implies x > 20, but not x < 0. In the latter case, the formula x < @ contradicts
the static part of the imprecise formula x > 10. In the former case, if we definitely know that x
> 10, then it might optimistically be the case that x > 20 as well. Of course, in order to preserve
soundness, optimistically assuming x > 20 when one only definitely knows that x > 10 requires a
runtime check to corroborate that the value bound to x at runtime is indeed greater than 2e.

As we have seen in prior sections, when dealing with heap data structures, the logic—IDF in
our case—includes more than arithmetic: we need to be able to talk about heap separation and
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ownership of heap cells. How are we to extend the interpretation of imprecise formulas in such a
setting, and how can we soundly track optimistic assumptions?

Imprecise Heap Formulas. When using IDF in a static verifier, one must make sure that formulas
are self-framed. For instance, this.head != null is not self-framed, because it does not explicitly
mention the accessibility predicate needed to evaluate the formula. The formula acc(this.head) =
this.head != null is self-framed. We want to ensure that programmers can smoothly strengthen
specifications, and one logical kind of strengthening is adding accessibility predicates that were
previously missing. Accordingly, in our design imprecise formulas must optimistically allow ?
to stand in for accessibility predicates that are necessary for framing. Furthermore, this is true
whether the imprecise formula appears directly in an assertion or indirectly in the definition of an
abstract predicate. Indeed, in IDF, framing can sometimes come from an abstract predicate. For
instance, acyclic(this) * unfolding acyclic(this) in this.head != null is self-framed if the
body of acyclic(l) includes acc(1.head). Thus, our semantics for imprecise formulas must allow
? to denote not only for predicates such as acyclic(this), but also any unfoldings of them that
are necessary to frame the static part of the formula. These semantic choices support different
scenarios described in the previous section.

Runtime Checking of Ownership. For a gradual verifier to be sound, optimistic assumptions made
statically due to imprecision must be safeguarded dynamically through runtime checks. Extending
gradual verification to IDF by allowing imprecision to account for missing accessibility predicates
means that we need to keep track of ownership in the runtime system. In particular, we design a
runtime that tracks and updates a set of heap locations at every program point, indicating current
ownership. Heap locations are added to this set when objects are created. Each time a field is
accessed, the set of owned locations is looked up: if the corresponding permission is found, the
check succeeds, otherwise a runtime error is raised.

At a call site, if an owned heap location is required by the precondition of the callee, then it
is removed from the owned locations of the caller. When the callee finishes executing, all callee
owned heap locations are passed to the caller.

The challenge here is how to deal with imprecise preconditions, either directly or via an imprecise
abstract predicate. In order to maximize the ability for the callee to execute properly, an imprecise
precondition has to require all the owned heap locations of the caller. Indeed, said imprecision might
potentially denote any location owned by the caller, not already passed statically, and effectively
required in the callee. Not transferring its ownership means the callee might error out at runtime.

4.2 Gradual Verification of Recursive Predicates

Recursive predicates can be dealt with in two different manners in program verification [Summers
and Drossopoulou 2013]: either iso-recursively—in which case to be able to exploit a predicate
instance, one needs to explicitly unfold it, and vice versa, to explicitly fold it back to establish it—or
equi-recursively—in which case a predicate is deemed identical to its unfolding, which need not be
specified explicitly. These two approaches have complementary strengths, which, we argue, are
particularly relevant when apprehending gradual verification. The iso-recursive approach is critical
for making static reasoning manageable for tools (and for humans who must deal with the error
messages reported by these tools) because it breaks reasoning into small steps. In contrast, the
equi-recursive approach is much more convenient in a dynamic setting, where the runtime system
can automatically unfold predicates as needed, and so the user does not have to write explicit folds
and unfolds.

In this work, we propose a novel design that achieves the benefits of both approaches. Statically,
the gradual verifier treats recursive predicate instances iso-recursively: programmers can specify
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x4,z € VAR (variables) f € FIELDNAME (field names)
0 e VAL (values) m € METHODNAME (method names)
e e EXPR (expressions) C € CLASSNAME (class names)
s e STMT (statements) p € PREDNAME (predicate names)
o e LOC (object Ids) s u=skip | s;s | Tx | x:=e | x.f:=y
P = clss | if (e) {s}else{s}
cls = class C { field pred method } | while (e) invO {s} | x :=newC
field == T f; | y:=z.m(x) | assert ¢ | fold p(e)
pred = predicate p(T x) =60 | unfold p(e)
T u=int | bool |C | T e =0 |x | ede | ede |e.f
method = T m(T x) contract {s} x = result | id | old(id) | this
contract ::= requires 6 ensures 0 v z=n | o | null | true | false
) =4 | =] x|\ ¢ == true | false | e®e | p(e) | acc(e.f)
) = =< | > <] 2 | if e then ¢ else ¢
| unfolding p(e) in ¢ | pAP | px¢
6 ::= self-framed ¢

Fig. 8. SVLgrp: Syntax

folds and unfolds in the precise parts of their pre- and postconditions, as well as in program
statements, just as they would with mainstream static verifiers. By exploiting syntax, verification
becomes simply algorithmic for tools to implement, and visually clear for humans to keep track of
the underlying activity of the verifier.

In contrast, dynamically, predicate instances are checked equi-recursively. An equi-recursive
evaluation of predicate instances is the natural choice for dynamic checking, as the runtime system
can simply execute the predicate as if it were a function. Crucially, an equi-recursive approach to
program evaluation allows users to leave out fold and unfold statements, which one can expect to
be the default for partially (or un-)verified code. Seen dually, adopting an iso-recursive runtime
approach while allowing programmers to omit (un)folding statements would mean trying to
automatically infer when to actually perform (un)folding. Known approaches to this are heuristic,
meaning that some well-behaved code could be conservatively rejected when made imprecise
enough. This would result in a violation of the dynamic gradual guarantee [Siek et al. 2015], whose
motto is that losing precision is harmless.

Therefore we argue that combining iso- and equi-recursive treatments of recursive predicates is
required in order to achieve a proper gradual verifier: statically, the iso-recursive approach ensures
algorithmic checking, and dynamically, the equi-recursive approach allows imprecise code to run
smoothly.

5 SVLgp

Following the AGT methodology [Garcia et al. 2016], gradual verification is built on top of static
verification. Therefore, we first formally present a statically verified language supporting a propo-
sitional specification logic extended with implicit dynamic frames (IDF) and recursive abstract
predicates. This language, called SVLgp, is directly inspired by Summers and Drossopoulou [2013].
Readers familiar with static verification might want to read through this section anyway, because
it sets up notations and key concepts used in the gradualization (§6).

5.1 Syntax & Static Semantics

The complete syntax of SVLgp can be found in Figure 8. Programs consist of classes and statements.
Classes contain publicly accessible fields, predicates, and methods. Statements include the empty
statement, sequences, variable declarations, variable and field assignments, conditionals, while
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loops, object allocations, method calls, assertions, as well as fold and unfold statements. Expres-
sions can appear in specifications, and therefore cannot modify the heap. They consist of literal
values (integers, objects, null, and booleans), variables, arithmetic expressions, comparisons, and
field accesses. Methods have contracts consisting of pre- and postconditions, which are formulas
represented by ¢. Formulas join boolean values, comparisons, predicate instances, accessibility
predicates, conditionals, and unfoldings via the non-separating conjunction A or the separating
conjunction *. Note that 6 refers to a self-framed formula [Smans et al. 2009], formally defined
in §5.2.4. We require pre- and postconditions, predicate definitions, and loop invariants to be
self-framed.

Looking ahead to gradual verification, we would like formulas to be efficiently evaluable at
runtime—and in the presence of accessibility predicates, efficient evaluation requires knowing
which branch of a disjunction to evaluate. Therefore, we include a conditional if construct in
formulas instead of disjunction V.

As the focus of this work is not on typing, we only consider well-formed and well-typed programs,
which is standard and not formalized here. Additionally, variables are declared and initialized before
use, and class, predicate, and method names are unique. Finally, contracts should only contain
variables that are in scope: a precondition can only contain the method’s parameters x; and this

and a postcondition can only contain the special variable result, this, and dummy variables old(x;).

5.2 Formula Semantics

In this section, we give meaning to formulas in SVLgp. We also give related definitions for formula
satisfiability, implication, footprint computation, and framing. The semantics and related definitions
are inspired by Summers and Drossopoulou [2013] and Bader et al. [2018].

5.2.1 Equi-Recursive Evaluation. Evaluating the truth of formulas requires a heap H, a variable
environment p € ENv, and a dynamic footprint 7 € DYNFPRINT = P (Loc X FIELDNAME). A heap
H is a partial function from heap locations to a value mapping of object fields, i.e. HEAP = Loc —
(FIELDNAME — VAL). Additionally, we introduce a big-step evaluation relation for expressions
H,p + e || v, which is standard. An expression e is evaluated according to H, p + e || v yielding
value v. The heap H is used to look up fields and the local variable environment p to look up
variables.

Then, formula evaluation - Fr - € MEM X FOormuULA determines the truth of a formula using
heap H, variable environment p, dynamic footprint z, and an equi-recursive interpretation of
predicate instances. Select rules for formula evaluation are given in Figure 9 (complete rules are
in the supplement [Wise et al. 2020]). EvAcc checks whether access demanded by a formula is
provided by the dynamic footprint, e.g. acc(1.head) where 1 points to o is true when (o, head) € 7.
EvSEPOP checks two separated subformulas against disjoint partitions of the dynamic footprint.
This ensures that access to the same field is not granted twice; for instance, this ensures that
acc(1li.head) * acc(lop.head) references two distinct fields. In contrast, the rule for A (EvVANDOP)
checks both operands against the full dynamic footprint; therefore, acc(11.head) A acc(ls.head)
may reference the same fields. Further, EVPRED checks the complete unrolling of a predicate
instance using the function body, : PREDNAME — ExPR* — SFRMFORMULA. Given a predicate
name and arguments, this function returns the predicate’s definition (from the ambient program')
after parameter substitution. We make sure that every argument e; produces a value, only in
order to line up with the isorecursive semantics. But we do not need to substitute the values into
body,(p)(ey, ..., en), because it already has the e;’s within it after parameter substitution. Finally, the
rule for an unfolding (EvUNFOLDING) ignores the predicate unfolding, because it is an iso-recursive

!Many relations we define are implicitly parameterized over the ambient program.
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H,prelo Hpre.flo (o,f)en (H,p,m1) FE ¢1 (H,p,m2) FE ¢2
EvAcc EvSEPOP
(H, p, 7} FE acc(e.f) (H,p,m Wm2) FE ¢1 * ¢2
Hpre Jou H,prepl| o, (H, p, m) Fg body,(p)(e1, ..., en)
EVPRED

(H,p,7) FE p(e1,...,en)

(H,p,m) FE ¢
(H, p, 7) Eg unfolding p(e1,....,en) in ¢

EvUNFOLDING

Fig. 9. SVLRrp: Formula evaluation (select rules)

H,ptei o Hptrey,l| o, (p,v1,...0p) €1l
(H,p,1I) Fr p(e1,...,en)

EVPRED

Fig. 10. SVLRp: Iso-recursive formula evaluation (select rule)

only construct. For example, unfolding acyclic(l) in 1.head != null is true exactly when 1.head
!= null is true. Also, all the construct does is provide access to more heap locations in the predicate.
The other rules are as expected.

5.2.2  Iso-Recursive Evaluation. We also introduce an iso-recursive formula evaluation semantics,
used in static verification (§2). This semantics differs from its equi-recursive counterpart in §5.2.1 on
the EVPRED rule. Figure 10 presents the iso-recursive version of EVPRED. It treats predicate instances
as opaque permissions by checking whether a predicate instance demanded by a formula is justified
by a dynamic permission set IT € PERMIssIONS = $ ((Loc X FIELDNAME) U (PREDNAME X VAL")).
Compared to a dynamic footprint, a dynamic permission set can contain dynamic predicate instances
in addition to heap locations. For example, acyclic(l) where 1 points to o is true when {(acyclic, o) €
IT. Other than EVPRED, the iso-recursive semantics is simply defined by replacing = in the equi-
recursive rules with II.

5.2.3  Formula Satisfiability and Implication. Similar to SVL [Bader et al. 2018], formal definitions
for formula satisfiability and implication rely on sets of H, p, and II tuples that make formulas true.
Definition 5.1 presents a function that produces these sets from formulas. Definitions 5.2 and 5.3
rely on Definition 5.1 to formally state formula satisfiability and implication respectively. Note that
these definitions are iso-recursive in order to be implementable in static verification tools (§2).

Definition 5.1 (Denotational Formula Semantics). [-] : Formura — P (HeaP X ENV X PERMISSIONS)
[¢] def { (H, p,TI) € HEAP X ENV X PErMISsIONS | (H, p,II) F; ¢ }

Definition 5.2 (Formula Satisfiability). A formula ¢ is satisfiable if and only if [¢] # 0. Let
SatFormurA C ForMULA be the set of satisfiable formulas. Ex. acc(1;.head) * acc(1z.head) is
satisfiable since 11 may not equal 1,. In contrast, acc(1;.head) xacc(lp.head)*1; = 1, is unsatisfiable.

Definition 5.3 (Formula Implication). ¢1 = ¢> if and only if [$1] C [¢2].
Ex. 1head.val =6 = lhead.val > 5, and 1.head.val = 6 % acc(l.head.val) x 1.head.val > 5 since
acc(l.head.val) is missing on the left-hand side.

5.24  Footprints and Framing. A statically-verified language supporting IDF requires formal defini-
tions for the footprint and framing of a formula. These definitions are also iso-recursive.
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(H, p,II) Fr acc(e.f) (H,p,II) bgym1 € (H, p,I1) Fgym1 €
FRMFIELD FrmAcc
<H) ,D,H> FfrmI eAf <H: P,H> Ffrm1 acc(e.f)
<H, P H> FfrmI (ﬁl <H; P,H> FfrmI ¢2
FrRMSEPOP
(H’pan> Ffrm1 ¢1 * ¢2
(H,,D,H> Ffrm1 €1 <H=P=H> FfrmI €n
FRMPRED
(H, P> H) FfrmI P(el ) €n)
<H:,D:H> ’:I P(@l,..-,en) <H,P,H> Ffrm1 €1 (H,P,H> FfrmI €n

<H; P> H’) FfrmT ¢ Ir=I1uv LbOdYH(P)(el, oo en)_]H,p
(H, p,11) F¢yp1 unfolding p(e,....e,) in ¢

FRMUNFOLDING

Fig. 11. SVLRp: Framing (select rules)

The footprint of a formula ¢, denoted |¢]p,p, is simply the minimum set of permissions II
required to satisfy ¢ given a heap H and variable environment p:

l¢]H.,p = min { I € PErRMISSIONS | (H, p,TI) Fy ¢ }

The footprint is defined (i.e. there exists a unique minimal set of permission II) for formulas
satisfiable under H and p. It can be more directly implemented by simply evaluating ¢ using H and
p, granting and recording precisely the permissions required. The footprint of 1.head != null is
empty, while the footprint of acc(1.head) * 1.head != null is {{o,head)} when 1 points to o.

A formula is said to be framed by permissions II iff it only mentions fields and unfolds pred-
icates in IT. We give select inference rules for formula framing in Figure 11 and give the rest
in the supplement [Wise et al. 2020]. Note that FRMUNFOLDING allows one unrolling of a pred-
icate to frame a part of a formula. Now, formula ¢ is called self-framed (we write ey ¢) if for
all H, p, I (H, p,II) F1 ¢ implies (H, p,II) Ferpr ¢. We define the set of self-framed formulas

SrRMForRMULA & {$ € FORMULA | Frp @ }. 1.head != null is not self-framed, because it can eval-
uate to true even when IT does not contain acc(1.head). On the other hand, acc(1.head) * 1.head
= null is self-framed, because it does not evaluate to true unless II contains acc(1.head). Simi-
larly, unfolding acyclic(l) in 1l.head != null is not self-framed while acyclic(l) * unfolding
acyclic(l) in l.head != null is for acyclic(l) with body acc(1l.head). We write 0 to denote
self-framed formulas.

5.2.5 Relating Permission Sets and Footprints. By using the footprint definition in §5.2.4, we can
formally relate dynamic permission sets to dynamic footprints via the partial function (( - ))g of
type PERMISSIONS X HEAP — DYNFPRINT:

(ONa={{.f)1.f) el Ul )y  wherell'=Uyp o o,enbodyu(p)(o1,....0n) 11

This function completely unrolls the predicate instances in a dynamic permission set gathering
owned heap locations on the way. For example, given (acyclic, o), with acyclic defined precisely as
in Figure 2, this function returns all the heap locations ({{o, head), (0.head, val), (o0.head,next), ...})
in the list o. Note that (( - ))y is only defined when predicates can be finitely unrolled.

5.3 Static Verification

Static verification relies on a weakest liberal precondition calculus [Dijkstra 1975] to generate
verification conditions. We now present this WLP calculus, which is defined iso-recursively.

5.3.1  WLP Calculus. Select rules for a weakest liberal precondition function WLP(s, 8) of type
StTMT X (SATFORMULA N SFRMFORMULA) — (SATFORMULA N SFRMFORMULA) are given in Figure 12
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WLP(x :=e, 0) = max {010 = 0[e/x] A 0 = acc(e) }
WLP(x.f :=y,0) =acc(x.f) A Oly/x.f]
WLP(y :=z.m(x),0) = max {60 yeFV(O) A

30F .60 = (z # null) * mpre(m)[z/this, x/mparam(m)] * 65 A
0 * mpost(m)[z/this, x/old(mparam(m)), y/result] = 0 }

Fig. 12. SVLgp: Weakest liberal precondition calculus (select rules)

(all rules are in the supplement [Wise et al. 2020]). Note, we explicitly restrict the domain and
codomain of the WLP function to contain only satisfiable and self-framed formulas. These restric-
tions are often ensured in Figure 12 by finding a maximum self-framed and satisfiable formula with
respect to implication (the weakest formula).

The statement-specific rules for WLP are standard, save for specific care related to field accesses,
accessibility predicates, and predicate instances. Rules for variable and field assignment, conditionals,
and while loops produce accessibility predicates for field accesses in the program statement, e.g. the
WLP for y := 1.head must contain acc(l.head). Some rules rely on the function acc(e) : Expr —
FormuLraA, which returns a formula of accessibility predicates corresponding to field accesses in e.
More interestingly, the rule for a method call frames off information in the method’s postcondition
from 6 producing the frame 0. If the accessibility predicates and predicate instances in 07 are not
in the method’s precondition, then 0y is joined with the precondition to produce the WLP. Consider
computing the WLP for the call to insertLastHelper on line 26 in Figure 2. In this example, 6 =
acyclic(this), the precondition is acyclic(this) = unfolding acyclic(this) in this.head !=
null, and the postcondition is acyclic(this). Therefore, Of = true and the WLP is this != null
% acyclic(this) * unfolding acyclic(this) in this.head != null * true.

5.3.2 Static Verification. A SVLgp program is statically verified if it is a valid program:

Definition 5.4 (Valid Method). A method with contract requires 6, ensures 8, parameters x, and
body s is considered valid if 8, = WLP(s, 04)[x/old(x)] holds.

Definition 5.5 (Valid Program). A program with entry point statement s is considered valid if
true = WLP(s, true) holds, 6; A (e = true) = WLP(r, 6;) and §; = acc(e) hold for all loops with
condition e, body r, and invariant 6;, and all methods are valid.

5.4 Dynamic Semantics

The soundness of static verification is relative to SVLgp’s dynamic semantics, which we now expose.

5.4.1 Program States. Program states consist of a heap and a stack, i.e. STATE = HEAP X STACK. A
stack is made of stack frames that contain a variable environment p € ENv, a dynamic footprint
7 € DYNFPRINT = P (Loc X FIELDNAME), and a program statement s € STMT:

S € Stack ::=E - S | nil where E € STACKFRAME = ENV X DYNFPRINT X STMT

During execution of an SVLgp program, expressions and statements operate on the topmost
variable environment p. Expressions and statements may additionally access and mutate the heap
as long as the topmost dynamic footprint contains the corresponding object-field permissions.
Thus, the memory accessible at any point of execution can be viewed as a tuple of type MEm =
HeaP X ENV X DYNFPRINT.
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<H’p’ﬂ> ':E ¢
(H,{p,m,assert ¢ ; s)-S)y — (H, (p,m,s)-S)

SSASSERT

(H, p, ) Fg acc(e) H,prelo p'=plx 0]
(H,{p,m,x :=e;s)-Sy — (H,(p,ms) S)

SSASSIGN

method(m) = T, m(T x’) requires 6, ensures 04 { r } Hprzlo Hprx|o

p’ = [this > 0,x’ — v,0ld(x’) — 0] 7 = 0plup NH a c (H,p', 7"y EE 0,
SsCALL

(H,{p,m,y :=z.m(x) ; s)-S) — (H,{p/,n',r; skip) - (p, m\7',y :=z.m(x) ; s) - S)

mpost(m) = 04 (H,p',n'") EE 04 p" =ply p'(result)]
(H,{p', 7', skip) - {p, 7,y :=z.m(X) ; s) - S) — (H,{p",nU7,s)-S)

SsCALLFINISH

SsFoLp

(H, {p,m,fold p(e1,...,en) ; s) - S) — (H,{p,ms)-S)
Fig. 13. SVLgp: Small-step semantics (select rules)

5.4.2  Reduction Rules. Figure 13 presents select rules for SVLgp’s small-step semantics - — - C
STATE X STATE. Complete rules are in the supplement [Wise et al. 2020]. Notably, we structure the
rules so as to not require a sequence rule. This aligns the small-step semantics more closely with
the WLP calculus, and makes the SVLgp soundness proof easier.

The semantics gets stuck when a statement accesses a field that the current state does not
own, as specified in SsAssIGN. Notice that SSASSIGN relies on acc(e) to check the accessibility of
field accesses on the right-hand side. The semantics also gets stuck when preconditions (SsCALL),
postconditions (SsCALLFINISH), loop invariants, or assertions (SSASSERT) do not hold.

To determine whether a field access is valid at runtime, the semantics tracks a set of owned heap
locations 7. This set is expanded during allocation with heap locations for the object’s fields. At a
method call (SsCaLL) 7 is split into disjoint caller and callee sets using the method’s precondition.
The callee set 7’ is derived from the precondition’s accessibility predicates and the accessibility
predicates gained from unrolling the predicates in the precondition. Ownership of the heap locations
in 7’ is passed to the callee, so the caller set is defined as & \ 7’. After execution of the callee’s
body finishes (SsCALLFINISH), execution resumes at the call site. The callee returns to the call site
ownership of all received heap locations and new heap locations gained during execution.

Notice that we treat predicates equi-recursively when we track 7, determine whether field
accesses are valid, and determine whether contracts, loop invariants, or assertions hold. We also
treat folds and unfolds equi-recursively as skip statements (SsSFoLp). SVLgp’s dynamic semantics is
equi-recursively defined so the gradual verifier, which builds on SVLgp’s semantics, adheres to the
dynamic gradual guarantee (as discussed in §4.2).

5.5 Soundness

As explained above, the dynamic semantics of SVLgp is designed to get stuck when assertions,
method contracts, or loop invariants are violated during program execution. The dynamic semantics
also gets stuck if a program accesses fields it does not own during execution. Thus informally,
soundness says that valid SVLgp programs do not get stuck, i.e. verified programs respect program
specifications at runtime. Just as with SVL [Bader et al. 2018], we use a syntactic statement of
soundness via progress and preservation.

Now, we introduce the formal definition of a valid state in Definition 5.6. This definition is an
invariant that relates the static verification and dynamic semantics of valid SVLgp programs. It also
relates the formal statements of progress and preservation in Propositions 5.7 and 5.8. Informally,
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if the current program state satisfies the WLP of a program, then execution does not get stuck
(progress), and after each step of execution, the new state satisfies the WLP of the remaining
program (preservation).

Definition 5.6 (Valid State, Final State). We call the state (H, {py,, 7y, Sp)-...-{p1, 71, $1)-nil) € STATE
validif s, = s ; skip or skip for some s € STMT, s; = s/ ; skip for some s] € STmMT forall 1 <i < n,
miNmj=0foralll <i<n 1< j<nsuchthati # j,and (H, p;, 1;) Fg sWLP;(s,-...-s1-nil, true)
forall 1 < i < n (sWLP;(5,0) is the i-th component of sSWLP(s, 0)). A state ¢ is final if ¢ =
(H, {p, 7, skip) - nil) for some H, p, 7.

Note that the definition above relies on sWLP, a stack-aware extension of WLP (defined in the
supplement [Wise et al. 2020]). sWLP ensures that access permissions are not duplicated in different
stack frames. Program validity (Def. 5.5) gives the validity of the initial program state.

PROPOSITION 5.7 (SVLrp PROGRESS). If ) is a valid non-final state then y — /" for some {/’.

PROPOSITION 5.8 (SVLrp PRESERVATION). If{ is a valid state and y — ' for some ' then ' is
a valid state.

6 GVLgp: STATIC SEMANTICS

We now derive GVLgp, the gradually-verified language counterpart of SVLgp, essentially following
the Abstracting Gradual Typing methodology [Garcia et al. 2016], whose main principles and
mechanisms apply beyond type systems. This section presents the syntax and static semantics of
GVLgp. §7 develops the runtime semantics, and §8 establishes the main properties of GVLgp.

6.1 Syntax

The syntax of GVLgp is the same as SVLgp except for the addition of gradual formulas a Gradual
formulas replace formulas € in method contracts, predicate definitions, and loop invariants:

pred = predicate p(T x) :[5 s == ... | while (e) inv 5{3 }
contract ::= requires aensures $ $ n=0 | 7x¢

A gradual formula is either a self-framed syntactically precise formula 0 or an imprecise formula
? % ¢. Note that the static part of an imprecise formula does not need to be self-framed (as discussed
in §4.1) and ? is syntactic sugar for ? = true. Additionally, the set of all gradual formulas is given
by FORMULA. A syntactically precise formula does not contain ? directly, i.e. it is not visibly partial.
However, it may contain hidden ?s by containing predicates that, when unrolled, expose ?, e.g.
acyclic(l) where acyclic’s body is ?. Self-framing is augmented to handle nested imprecision
in GVLgp, and its new definition is given in §6.2. We will refer to formulas that do not contain ?,
neither directly nor nested in predicates, as semantically precise formulas, e.g. acyclic(l) where
acyclic’s body is acc(1.head) * listSeg(l.head, null) (asin Figs. 2 & 5). Note that all semantically
precise formulas are syntactically precise, but not all syntactically precise formulas are semantically
precise.

6.2 Framing

Definitions for framing and self-framing syntactically precise formulas in GVLgp are redefined to
handle imprecise predicate definitions exposed by the FRMUNFOLDING rule. For example,
acyclic(this)’s body is analyzed for the permissions required to frame this.head != null in
unfolding acyclic(this) in this.head != null.If acyclic(this)’s body is imprecise, then SVLgp’s
framing definition would be undefined for this formula. Therefore, formula framing in GVLgp,
(H, p, 11} Fsrn1 @, is defined as in SVLgp except for the FRMUNFOLDING rule:
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<H:,D:H> PI P(fly---yen) <H,P,H>Ffrml €1 (H,P,H> Ffrml €n
(H,p,IU') Frnr ¢ T =T1U |body,(p)(e1, ... en) IotalFp(¢,H.p).H.p

— - - FRMUNFOLDING
(H, p,II) Ferpr unfolding p(e1,...e,) in ¢

This rule differs from its SVLgp counterpart in computing II’, which aides in framing ¢. In
particular, the retrieval of accessibility predicates and predicate instances from body,(p)(e1, ..., en)
now accounts for imprecision. The TotalFP(:,-,-) : FormurAa X HEAP X ENV — PERMISSIONS
function returns the explicit and implicit iso-recursive permissions required by ¢ ({(o, head)} for
this.head != null where this points to o). Then, a new footprint definition [q;JH,H,p is used
to either frame ¢ optimistically with this maximal permission set or precisely with calculated
permissions from body,(p)(e1, ..., en). The result depends on whether body,(p)(e1, ..., en) is imprecise
or precise, respectively (acyclic’s body is ? so {(o,head)} is used):

L0lnap = L01H,p [? # ¢lnmp =10

Now, a formula ¢ is called self-framed (we write F¢ry @) if for all H, p, T1, (H, p,II) F; ¢ im-

plies (H, p,II) Fru1 ¢. We redefine the set of self-framed formulas: SFRMFORMULA def {¢ €

FORMULA | Frry ¢ }, and we still write 0 to denote self-framed formulas. As a result, acyclic(this)
x unfolding acyclic(this) in this.head != null is self-framed when acyclic’s body is ?.

6.3 Interpretation of Gradual Formulas

Gradual formulas are given meaning by the set of precise formulas that they represent. The inter-
pretation of gradual formulas is used to define variants of formula evaluation, formula implication,
and the WLP calculus that operate over gradual formulas and are consistent liftings [Bader et al.
2018; Garcia et al. 2016] of their SVLgp counterparts. Then, the static verification judgment in
GVLgp is defined similarly to SVLgp using these lifted definitions. The set denoted by a gradual
formula is obtained via a concretization function [Lehmann and Tanter 2017]:

Definition 6.1 (Concretization of Gradual Formulas). y : FORMULA — PTOMUA s defined as:

y(0) ={06} y(? = ¢) = { 0" € SatFormutra | 0’ = ¢ } if ¢ € SATFORMULA y(? % ¢) undefined otherwise

The concretization of a syntactically precise formula is the singleton set of this formula. The
concretization of an imprecise formula is the (infinite) set of syntactically precise formulas that
are 1) satisfiable and 2) imply the static part of the imprecise formula. For example, y(7 % x > 0) =
{x=2, y=x%x>0, ...}.Notice, x <0*x >0 ¢ y(7 *x > 0), because it is not satisfiable.

Novel compared to Bader et al. [2018]’s work is the requirement that all syntactically precise
formulas represented by gradual formulas must be self-framed (§6.2). This extra condition allows ?
to frame the static part of an imprecise formula, a requirement we motivated in §4.1. Additionally,
y treats predicates opaquely by relying on iso-recursively defined satisfiability, self-framing, and
implication. We make this design choice, because y is an integral part of GVLgp’s static verification
system, which we want to be iso-recursive (§4.2). This choice has implications. For example, when
both p(x) and q(x)’s bodies contain acc(x.£), p(x) * q(x) is equi-recursively unsatisfiable but iso-
recursively satisfiable. Therefore, p(x) * q(x) € y(? * q(x)). On the other hand, acc(x.f) = acc(x.f) ¢
y(? = ace(x.f)), since acc(x.f) = acc(x.£) is also iso-recursively unsatisfiable.

Definition 6.1 induces a natural definition of the (im)precision of gradual formulas:

Definition 6.2 (Precision of Gradual Formulas). q?l is more precise (i.e. less imprecise) than 52,

written ¢ C ¢, if and only if y(¢1) C y(d2).
Ex. 7 « acc(l.head) * listSeg(l.head,null) C 7?xacc(l.head).
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Semantic Interpretation of Gradual Formulas. Since Definition 6.1 is interpreted iso-recursively,
even if acyclic’s body is ?, we can have acyclic(l) * unfolding acyclic(l) in 1l.head != null
€ y(? «x1.head != null). Thatis, y in Definition 6.1 may give syntactically precise, but semantically
imprecise formulas. We therefore need a semantic interpretation of gradual formulas that extends
the concept of concretization to also cover imprecise predicate bodies. As a result, such a semantic
concretization of gradual formulas would only give semantically precise formulas.

A difficulty with writing semantic concretization is that in order to fully interpret formulas, we
require an additional function body,, which returns predicate bodies from the ambient program
given a predicate instance, e.g. body, (acyclic)(this) = ?. Since body, may return imprecise
formulas, we cannot use it to interpret formulas that we want to be semantically precise. Instead,
we must rely on some new function body, : PREDNAME — ExprR* — ForRMULA, which returns only
precise formulas. As a result, we work with local formulas (¢, body,s) € FormuLA X (PREDNAME —
Expr* — FormuLa) that explicitly drag along their body function.

Existing rules can easily be adjusted in order to deal with this new parameter, for example:

bodya (p) (e1,...en) = ¢ H,prel | Hprenl| o, (H, p, t) FE (¢,bodya)
(H,p,m) FE (p(e1,...,en),bodya)
The EVPRED rule now uses bodya to lookup predicate bodies, rather than using the designated
body,. Notice the function body, is carried around for reference, simply making explicit what was
previously assumed as constant and ambient in SVLgp.

EVPRED

Now, we can give an interpretation to gradual body functions body, by concretizing them into

sets of body, functions that produce precise, self-framed formulas. Given a body ,, Definition 6.3
returns a set of bodyA functions constructed from formulas that are in the y (Def. 6.1) of each
gradual formula in bodyA For example, if dom(bodyA) = {acyclic}, bodyA(acycllc)(l) =72, and
bodya (acyclic)(1) = acc(l.head), then body, € y(bodyA) Additionally, each body, function must
be well-formed with respect to self-framing, i.e. the body that body, returns for each predicate must
be self-framed with respect to the body, function itself. For example, if bodya(g)(1) = acyclic(1) *
unfolding acyclic(l) in l.head !=null, then bodya(acyclic)(1l) must contain acc(1l.head).

Definition 6.3 (Concretization of Gradual Formulas (continued)). Concretization of a gradual body
function y : (PREDNAME — EXPR* — FORMULA) — PPREPNAMEEXPR'—SFRMFORMULA §¢ defined as:

y(&)d-yA) = { bodya = Ap; € dom(body,). Ae € Expr". Op, [€/tmp;] | (0p;,0p,,...) €
y(body, (p1) (tmpy)) X y (body, (p2) (tmp3)) X ..., Vp; € dom(body,). Feem (bodya (p:) (tmp;), bodya) }
where dom(body,) = { p1,p2, ... } € PREDNAME.

Given this partial function, we can concretize a gradual formula and its gradual body function,
yielding a set of semantically precise self-framed formulas:

y({¢,body,)) = { (6,bodya) | 8 € y(4),bodya € y(body,), Ferm (6, bodya) }

As before, Definition 6.3 allows us to give a natural (semantic) definition for formula precision:

Definition 6.4 (Preczszon ofFormulas (continued)). (¢1, bodyA) is more prease than (452, bodyA),
written (@1, body,) C (2. bodyy) if and only if y (61, body,)) € y({g. body,)).

6.4 Lifting Predicates

We lift predicates on formulas in SVLgp to handle gradual formulas in GVLgp such that they are
consistent liftings of corresponding SVLgp predicates. Following AGT [Garcia et al. 2016], the
consistent llftmgP C FormuLA X ForMULA of predicate P C FORMULA X FORMULA is defined as:

B(1d2) <L 31 € (1), d2 € y(B). P, o).
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The existential in this definition expresses the optimistic nature of gradual semantics: we want a
gradual predicate to be true if there exists any interpetation of 7 that makes the static version of
the predicate true.

Since we rely on an equi-recursive dynamic semantics for SVLgp and GVLgp and allow predicate
definitions to be imprecise, we now give a semantic definition of gradual formula evaluation:

Definition 6.5 (Consistent Formula Evaluation).
Let - F - C Mem X (FormuLA X (PREDNAME — ExPR* — FormuLA)) be defined inductively as

(H,p,w) Fp ($.bodyn)  (H.p.7) remme (¢, bodys)
(H,p, ) F (2 + ¢,body,)

(H, p, ) Eg (0,bodya) (H, p, ) Ferme (0, bodya)
(H,p, ) E (6,body,)

where bodys = Ap € dom(body,). Ae € Expr*. static(body, (p) (e))
and static : FORMULA — FORMULA s.t. static(d) = 0 and static(? * ) = ¢.

Note that - F - is a consistent lifting of - Fg - (with y from Def. 6.3). Our definition is conveniently
implementable for equi-recursive dynamic checking: it simply evaluates the static parts of predicates,
and ensures that any heap accesses touch only owned locations. For example, if acyclic’s body is ?
and 1 points to o, then acyclic(l) * unfolding acyclic(l) in l.head != null evaluates to true

when o.head is owned and o.head # null. The static part of ? is true, so acyclic(l) is ignored.

Additionally, gradual formula evaluation depends on an equi-recursive framing judgment for
semantically precise formulas. The framing judgment (H, p, 7) Ferue ¢ is defined similarly (re-
placing IT with 7 and iso-recursive formula evaluation with equi-recursive formula evaluation) to
its iso-recursive counterpart in SVLgp, except for FRMPRED and FRMUNFOLDING. Equi-recursive
variants of these rules are:

Vi, (H,p, ) FeruE €; (H, p, ) bsrne body,(p)(eq, ..., €n) (H, p, ) bsruE ¢
(H,p, ) Ferme ple1, ..., €n) (H, p, ) e unfolding p(eq,...en) in ¢

Then, a formula is said to be (equi-recursively) framed by permissions 7 if its complete unrolling
only mentions fields in 7. For example, acyclic(l), where acyclic’s body is defined as in Figure 2,
is framed by 7 if 7 contains all of list 1’s heap locations. We can also easily adjust the equi-recursive
framing judgment to pass around and use a bodya context, as described in §6.3.

In contrast to gradual formula evaluation (Lemma 6.5), gradual formula implication is a consistent
lifting of SVLgp formula implication with the syntactic interpretation of gradual formulas given in
Definition 6.1. This is because SVLgp implication is defined iso-recursively, i.e. hides imprecision in
predicates. We give the definition for gradual formula implication in Lemma 6.6.

Definition 6.6 (Consistent Formula Implication).
Let - = - C FormuLA X ForMuULA be defined inductively as

0, = static(¢z) — 0 € SATFORMULA 0= ¢ 0 = static(¢z) —
——— X IMPLSTATIC IMPLGRAD

01 = ¢2 2% ¢ S o

Here also, - = - is a consistent lifting of - = - (with y from Def. 6.3). For example, ? = ? =
acc(l.head) * 1.head != null because acc(l.head) = 1.head != null is satisfiable and implies the
static part of both sides of the implication.
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WLP(if (e) {s1 }else {s2 },¢) = a({ max { ¢’ € SatFormuULA | ¢’ = if e then 07 else O3 A

¢ = acc(e) A ke (¢, bodya’) } | 01 € y(WLP(s1,9)), 02 € y(WLP(s2, ),
bodya” € y(bodyy,), Frm (01,bodya”), Ferm (02, bodya”) })
WLP(y :=z.m(%), §) = a({ max { ¢’ € SATFORMULA | y & FV(¢') A Frm (¢, bodya’) A
3pr.¢" = (z # null) * O,[z/this,x/mparam(m)] = ¢¢ A
¢r * Oqlz/this, x/old(mparam(m)), y/result] = 6 A rerm (f, bodya’) }
|0 € y(¢). 0p € y(mpre(m)), 04 € y(mpost(m)), bodya’ € y(body,),
Ferm (0, bodya”), Ferm (Op, bodya”), Ferm (Og,bodya”) })
WLP(while (e) inv ¢; {s L $) = a({ max { ¢’ € SatFormuLA | ¢’ = acc(e) A Fry (@', bodya”) A
3pr. ¢ = 0 x br A X EFV(PF) A Ferm (br,bodya’) A
¢r * (0: = (e = false)) [xi/y;] = O[xi/yi] }
|0 € y(§), 0: € y($:), bodya” € y(body,), Feem (0,bodyn’), Ferm (0, bodya’) })
where y; are vars modified by the loop body s and Xx; are fresh
WLP(fold p (), $) = a({ max { ¢’ € SatFormuLA | ¢" * p(e) = O A ¢ = p(e) € SATFORMULA A
Frem (@” * bodya’(p) (€),bodya”) } = bodya’(p) (€) € SATFORMULA
|0 € y($), bodyr” € y(bodyy), Ferm (6, bodya’) })

Fig. 14. GVLgp: Weakest liberal precondition calculus (select rules).

6.5 Lifting Functions

Functions that operate over formulas in SVLgp must also be lifted to handle gradual formulas in
GVLgp. The resulting GVLgp functions should approximate consistent liftings of corresponding
SVLgp functions. Following AGT [Garcia et al. 2016], given a partial function f : Formura —

FORMULA, its consistent lifting f : FoRMULA — FORMULA is defined as:

F@) =al{f@)1ey@ ).
Notice, the definition of a consistent function lifting requires an abstraction function @, which
glven a set of formulas produces the most precise gradual formula representing this set. We define
: pForMULA . FormuLA as a(¢) mm { (/’J € Formu1A | gb C y(gé) }, eg. a({acc(1ls.head),

acc(1i.head) * acc(lp.head)}) = 2 acc(ll.head). Then, « clearly creates a Galois connection with y
from Def. 6.1. -

Figure 14 shows select rules for WLP (complete rules are in the supplement [Wise et al. 2020]),
which approximate the consistent function lifting of WLP. Rules for method call, while loop, and if
statements lift the corresponding WLP rules with respect to two (while loop and if statements) or
three (method call statements) formula parameters instead of one formula parameter as in other
rules. These corresponding WLP rules rely on extra (often implicit) formula parameters that may be
imprecise in GVLgp, and therefore, must be accounted for in the lifting. Similarly, WLP implicitly
exposes predicate definitions in body,, through self-framing (§6.2) and in fold and unfold rules. In
GVLgp, predicate definitions may be imprecise, so non-sequence statement WLP rules are lifted
with respect to body,. The WLP rules are applied to a program in §3.1.

6.6 Lifting the Verification Judgment

We define static verification in GVLgp using lifted formula implication ( = , §6.4) and lifted WLP
(WLP, §6.5):
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Definition 6.7 (Valid Method). A method with contract requires g;p ensures aq, parameters X,
and body s is considered valid if ¢, = WLP(s, ¢g) [x/01d(x)] holds.

Definition 6.8 (Valid Program). A program with entry point statement s is considered valid if
true = WLP(s, true) holds, ¢; A acc(e) A (e = true) = WLP(r, ¢; A acc(e)) holds for all loops
with condition e, body r, and invariant ¢;, and all methods are valid.

7 GVLgp: DYNAMIC SEMANTICS

A valid GVLgp program will plausibly remain valid during each step of execution. To ensure that it
does, the dynamic semantics of SVLgp are extended with runtime checks and considerations for
imprecise specifications.

7.1 Footprint Splitting
To split dynamic footprints at method calls and loop entries in GVLgp’s small-step semantics, we

use [ mp:

L0)rbrp = ((LO0]Hp VH [? * @lamp=7

This definition relies on (( II )), g : PERMISsIONS X DYNFPRINT X HEAP — DyNFPRINT, which
returns the given dynamic footprint when any predicate bodies analyzed by the function are im-
precise. Otherwise, the function returns the dynamic footprint generated from unrolling predicates
in IT%:
(I Nmr = {{0.f) | {o. f) e} U’
T if 3{p,v1,....0n) € I1.3$ € Formura.body,(p)(v1,....0n) =? * ¢
where 7/ =1{((I' Y H otherwise

for I' = U(p,o,.....on)en Lbody,(p) (01, ..., vn) JH [

Therefore, L(EJ x.H,p returns the given dynamic footprint 7 when 5 is imprecise or contains nested im-
precision, and it returns a more precise dynamic footprint computed when ¢ is semantically precise.
Example, if acyclic’sbody s ?, then |acyclic(1) * unfolding acyclic(l) in lhead !=null|,p,
will return 7. It will return all of list 1’s heap locations when acyclic is defined as in Figures 2 & 5.

7.2 Small-Step Semantics

We give an augmented version of SVLgp’s small-step semantics (- — - C STATE X (STATE U
{error})) for GVLgp. We make considerations for imprecision and for runtime verification. Repre-
sentative rules are given in Figure 15 (complete rules are in the supplement [Wise et al. 2020]).

Imprecision in Specifications. Method preconditions, postconditions, and loop invariants are now
checked with gradual formula evaluation (SsCALL, SSCALLFINISH). Asserted formulas must also
be checked with gradual formula evaluation due to potentially hidden imprecision (SSASSERT).
Additionally, we must ensure that introducing imprecision will not introduce a runtime error caused
by lack of accessibility (dynamic gradual guarantee, Prop. 8.6). Therefore, if a method precondition
in SsCaLL (or loop invariant) is imprecise or contains nested imprecision, then all owned heap
locations are forwarded from the call site to the callee (or loop body) for execution. Otherwise,
the call site’s owned heap locations can be precisely transferred to the callee (or loop body) as in

2Note that ({ I )),; 7 is a partial function, as it may not be well-defined if a predicate instance held in IT has an infinite
completely unrolling and no nested imprecise predicates.
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(H,p,m) E (2 % ¢,body,)
(H, {p,m, assert ¢ ; s)-S) — (H,{p,m,s)-S)

SSASSERT

method(m) = T, m(T x’) requires ‘Ep ensures $q{r} H,przlo H,prxlo

= [this = 0,x’ = 1,01d(x’) 0] 7' = dp lahp ' Cn (H,p, ') E (qu, body, )
SsCAaLL

(H,{p,m,y:=2z.m(x) ; s)-S) = (H,{p/,n',r; skip) - {p,m\n',y :=2.m(X) ; s) - S)

mpost(m) = ¢q  (H,p/,7') F ($g,body,)  p” =ply— p(result)]

’ : — — ” 7 SSCALLFINISH
(H,(p’, 7', skip) - (p,m,y :=z.m(x) ; s)-S) — (H,(p",nux,s)-S)

Fig. 15. GVLgp: Small-step semantics adjusted from Fig. 13 (select rules)

SVLgp. Heap locations held after the callee’s (or loop body’s) execution are returned as usual to the
call site.

Runtime Verification. Even for valid GVLgp programs, when specifications are imprecise the
formula evaluation premises in GVLgp’s small-step semantics are not guaranteed to hold. Therefore,
these premises are turned into runtime checks. If an assertion, accessibility predicate, method
precondition, method postcondition, or loop invariant does not hold in a program state where it
should, then program execution steps into a dedicated error state (extra rules illustrating this can
be found in the supplement [Wise et al. 2020]).

8 PROPERTIES OF GVLgp

GVLgp is a sound gradually-verified language that conservatively extends SVLgp and adheres to
gradual guarantees. GVLgp is a conservative extension of SVLgp—meaning that GVLgp and SVLgp
coincide on fully precise programs—by construction following the Abstracting Gradual Typing
methodology [Bader et al. 2018; Garcia et al. 2016].

Soundness. Soundness for GVLgp is conceptually similar to soundness for SVLgp except that a
GVLgp program may step to a dedicated error state when runtime verification fails. We establish
soundness via progress and preservation.

Definition 8.1 (Valid State, Final State). We call the state (H, {pn, 7Tn, Sn)-...-{p1, 71, $1)-nil) € STATE
validif's,, = s ; skip or Sklp for some s € STMT si =s; ; skip for some s; € STMTV .1 < i < n,and
s; = s1 ;S 2 for some sl 2 ¢ STMT where s isa method call or while loop statementV .1 <i<n.

A state Vi 1s finalif = (H, {p, m, skip) - n|l) for some H, p, &

ProPOSITION 8.2 (GVLgp PROGRESS). If Y is a valid non-final state then y = ' for some ' or
{y = error.

ProPOSITION 8.3 (GVLgp PRESERVATION). If is a valid state and y = i’ for some y’ then '’ is
a valid state.

Gradual Guarantees. GVLgp satisfies both the static and the dynamic gradual guarantees, origi-
nally formulated for gradual type systems [Siek et al. 2015], and first adapted to gradual verification
by Bader et al. [2018]. These properties ensure in GVLgp that decreasing the precision of specifica-
tions never breaks the verifiability and reducibility of a program, i.e. losing precision is harmless.

These properties rely on a notion of precision for programs. We say a program p; is more precise
than program ps (p1 E p2) if 1) p1 and po are equivalent except in terms of contracts, loop invariants,
and/or predicate definitions, and 2) p;’s contracts, loop invariants, and predicate definitions are
more precise than py’s corresponding contracts, loop invariants, and predicate definitions. A
contract requires g{)p ensures (;Sq is more precise than contract requires g{)p ensures (;Sq if ¢p ¢p
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and {5; cC $§ Similarly,~a locl? inviriant (predicate definition) q?il is more precise than loop invariant
(predicate definition) ¢? if ¢! C §2.
Using this notion of program precision, the static gradual guarantee can now be stated as follows:

PROPOSITION 8.4 (GVLRp STATIC GRADUAL GUARANTEE).
Let p1, p2 € PROGRAM such that p1 T po. If p1 is valid then ps is valid.

In general, the static gradual guarantee ensures that reducing the precision of specifications
never breaks static verification (i.e. makes a valid program invalid).

For the dynamic gradual guarantee, the fact that footprint tracking and splitting is influenced by
increasing imprecision (i.e. increasing imprecision results in larger parts of footprints being passed
up the stack) means that we must define an asymmetric state precision relation <:

Definition 8.5 (State Precision). Let {1, 2 € STATE. Then ¥ is more precise than i, written

1 < i, if and only if all of the following applies:

a) Y and Y, have stacks of size n and identical heaps.

b) Y1 and i, have stacks of variable environments that are identical.

c)Lets , ands]  be the stack of statements of y/; and o, respectively. Thenfor 1 < i < n,s; C s
s C s’ if and only if s is a fold or unfold statement and s’ is a skip statement or equal to s,
s=while (¢) inv ¢ { r } and s’ = while (e) inv ¢/ { r } where §; C ¢/,

$ =Sc,;;Sc, and s" =s; ;s, wheres,, Cs; andsc, Cs, ,ors=s".

d)Let 7{ and 7  be the stack of footprints of 1; and s, respectively. Then the following holds

forl<m<n:
n n
Ve
i=m i=m

Additionally, as long as it does not break the static gradual guarantee, we allow increased
imprecision through dropped fold and unfold statements from one program to the next. This is
reflected in condition c) in Definition 8.5 and an adjusted program precision definition C,4. That is,
a program p; is more precise than a program p- if 1) the programs are equivalent except for in
terms of contracts, loop invariants, and/or predicate definitions and fold and unfold statements in
p1 may be replaced with skip statements in po, and 2) p1’s contracts, loop invariants, and predicate
definitions are more precise than p,’s corresponding contracts, loop invariants, and predicate
definitions. Now, the dynamic gradual guarantee can be given:

PROPOSITION 8.6 (GVLrp DYNAMIC GRADUAL GUARANTEE).
Let p1, po € PROGRAM such that p1 Ty p2, and Yn, Yo € STATE such that Y1 < Ya.

If Yy —p, Yy, then Yo —p, Y5, with ¢} S .

Since GVLgp adheres to the dynamic gradual guarantee, reducing the precision of specifications
and/or dropping fold and unfold statements does not affect the program’s observable behavior.

9 RELATED WORK

We have already discussed the most-closely related research, including the underlying logics [Parkin-
son and Bierman 2005; Reynolds 2002; Smans et al. 2009] and foundational work on gradual typing
and gradual verification [Bader et al. 2018; Garcia et al. 2016; Siek and Taha 2007, 2006; Siek et al.
2015]. The contribution of this work compared to [Bader et al. 2018] is to identify and solve key
technical challenges related to recursive heap data structures, namely semantically connecting
iso- and equi-recursive interpretations of abstract predicates, and dynamically checking heap
ownership.
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Lehmann and Tanter [2017] extend the gradual typing paradigm to logical specifications in the
form of refinement types. Their language setting is quite different from the one considered here:
they deal with higher-order, purely functional programs, while we deal with first-order imperative
programs. Therefore they do not have to consider heap ownership. Also, they do not deal with
abstract recursive predicates. Combining both approaches in order to account for higher-order
stateful programs is a challenging venue for future work.

Prior work on gradual typestate [Garcia et al. 2014; Wolff et al. 2011] and gradual owner-
ship [Sergey and Clarke 2012] integrates static and dynamic checking of ownership of heap data
structures. Neither of these efforts considered verifying logical assertions. Both predate the AGT
framework that guided our design [Garcia et al. 2016], and the formulation of the gradual guaran-
tees Siek et al. [2015]; it is unclear whether these guarantees are hold in these proposals.

Nguyen et al. [2008] leveraged static information to reduce the overhead of their runtime checking
approach for separation logic. They do not try to report static verification failures, because their
technique cannot not distinguish between failures due to inconsistent specifications and failures
due to incomplete specifications. Also, their runtime checking approach forces developers to specify
matching heap footprints in pre- and postconditions to avoid false negatives.

There is also related work focused on making static verification more usable. In particular, Furia
and Meyer [2010] infer candidate loop invariants by using heuristics to weaken postconditions into
invariants. Their approach cannot infer invariants not expressible as weakenings of postconditions;
in contrast, our work can always insert run-time checks where specifications are insufficient
for static verification. Additionally, developers can use Dafny’s [Leino 2010] assume and assert
statements to debug specifications similar to how they debug programs with print statements [Lucio
2017]. Unlike gradual verification, this approach does not reduce specification burden and requires
manual elicitation of missing specifications needed for verification. Similarly, StaDy [Petiot et al.
2014] relies on a combination of static and dynamic analysis techniques to aide developers with
debugging specifications. But, it does not reduce specification burden and does not support recursive
data structures. Several tools (Smallfoot [Berdine et al. 2005], jStar [Distefano and Parkinson J 2008],
Chalice [Leino et al. 2009]) rely on heuristics to infer fold and unfold statements for verification.
Incorporating these heuristics in our setting may be challenging due to imprecise specifications,
but it is a promising direction for future work.

10  CONCLUSION

Gradual verification is a promising way to enable more incrementality in proofs of programs:
developers can focus on the most critical specifications first, benefiting from a combination of
static and dynamic checking, and increase the scope of verification over time. By extending sound
gradual verification to support programs that manipulate recursive heap data structures, we lay
the groundwork for the application of these ideas to realistic programs. Our paper describes how
we overcame several key technical challenges, including the semantics of imprecise formulas in
the presence of accessibility predicates and recursive predicates, and consistency between iso-
recursive static checking and equi-recursive dynamic checking. This opens the door to future work
developing prototype gradual verifiers based on our theory, and exploring practical questions such
as the efficiency of run-time verification in this setting.
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