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This paper is concerned with the problem of enhancing convection-cooling via active control of the incompress-
ible velocity field, described by a stationary diffusion—convection model. This essentially leads to a bilinear
optimal control problem. A rigorous proof of the existence of an optimal control is presented and the first order
optimality conditions are derived for solving the control using a variational inequality. Moreover, the second
order sufficient conditions are established to characterize the local minimizer. Finally, numerical experiments

are conducted utilizing finite elements methods together with nonlinear iterative schemes, to demonstrate and
validate the effectiveness of our control design.

1. Introduction

Convection-cooling is the mechanism where heat is transferred from
the hot object into the surrounding air or liquid. There are several
factors determining the effectiveness of cooling, including temperature
difference between the surrounding and the hot object, viscosity of the
fluid (air or liquid), and ability of the fluid to move in response to the
density difference, etc. There are two types of convectional cooling,
namely the natural convection cooling and the forced air convection
cooling (cf. [1-3]). In the natural cooling, the air surrounding the
object transfers the heat away from the object and does not use any
fans or blowers. In contrast, forced air convection cooling is used in
designs where the enclosures or environment do not offer an effective
natural cooling performance and areas where natural cooling is not
effective. The forced air convection cooling is the most effective cooling
method in many industrial applications. It can be designed to provide
the required cooling performance while increasing the efficiency of the
related components.

The current work utilizes an optimal control approach for the
forced air convection-cooling. To be more precise, consider a station-
ary diffusion—convection model for a cooling application in an open
bounded and connected domain 2 ¢ R?,d = 2,3, with a Lipschitz
boundary I'. The velocity field is assumed to be divergence-free. The
system of equations reads

kAT +v-VT=f in Q 1.1
V.v=0, 1.2)

with Dirichlet boundary condition for temperature and no-slip bound-
ary condition for velocity

T, =0, v|p=0, (1.3)

* Corresponding author.

where T is the temperature, x > 0 is the thermal diffusivity, v is
the velocity, and f € L*(€) is the external heat source distribution.
The Dirichlet boundary condition is corresponding to a given fixed
surface temperature, for example, when the surface is in contact with a
melting solid or a boiling liquid. Although Neumann type of boundary
conditions are often used in the diffusion—convection problems for
describing heat flux at the boundaries, the Dirichlet boundary condi-
tion is also commonly employed in the study of natural convection
and heat transfer in enclosures, which may be simultaneously heated
from below and cooled from above (cf. [4-8]). Linear controls, either
internal (distributed) or boundary controls, of the temperature and the
corresponding numerical schemes have been well studied for diffusion—
convection equations (cf. [9-171). The objective of this work is aimed
at enhancing convection-cooling via active control of the flow velocity.
For example, in high power applications, a cooling fan is used to blow
and direct air toward the electronic components with or without heat
sinks. Most power supply units have built-in fans that provide the
required forced-air convectional cooling. Mathematically, our control
design gives rise to a bilinear optimal control problem.

Optimal control for enhancing heat transfer and fluid mixing or
optic flow control via flow advection, governed by nonstationary
diffusion—convection, has been discussed in (cf. [18-21]). However, to
solve the resulting nonlinear optimality system, one has to solve the
state equations forward in time, coupled with the adjoint system back-
ward in time together with a nonlinear optimality condition. This leads
to extremely high computational costs and intractable problems. Some
preliminary numerical results were obtained in [21] with simplified
conditions. As a first step to tackle such a complex system, our current
work will focus on the stationary case and present a rigorous theoretical
and numerical study of the optimal control design.
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Now denote the spatial average of temperature by

=L
(T) = lgl/Qde.

The objective is to minimize the variance of the temperature with
optimal control cost, that is,

_1 2 L Y2
JW) = SIT = (D)l + SV, (P)

subject to (1.1)-(1.3), where y > 0 is the control weight parameter and
U,q stands for the set of admissible control. The choice of the set of
admissible control is usually dependent on the physical properties and
the need to establish the existence of an optimal control. Due to the
advection term v - VT, the control map v — T is bilinear and hence
problem (P) is non-convex. Establishing the existence of an optimal
velocity field will involve a compactness argument associated with the
control map. Moreover, in order to reduce the effects of rotation on
the flow and the shear stress at the boundary in the cooling process,
we consider to minimize the magnitude of the strain tensor (cf. [22]),
which is equivalent to minimize ||Vv]|,2. To this end, we set

Ugg = (vE Hy(Q): V-v=0}

equipped with H'!-norm

IVlly,g = IVIlg1-

The remainder of this paper is organized as follows. Section 2 fo-
cuses on the existence of an optimal solution to problem (P). Section 3
presents the first and second order optimality conditions for solving
and charactering the optimal solution by using a variational inequality
(cf. [23]). Moreover, it can be shown that there exists a strict local
minimizer if the control weight y is large enough. Section 4 discusses
the numerical implementation of our control design, where the finite
element formulation and nonlinear iterative solvers are used to con-
struct our numerical schemes. In particular, the relation regarding the
solutions of the optimality system associated with different values in
x and y is established. This result provides a practical guidance for
choosing these parameters in our numerical implementation. In Sec-
tion 5, several numerical experiments are conducted to demonstrate the
effectiveness of our control design for convection-cooling. Lastly, this
paper concludes with potential problems for future work in Section 6.

In the sequel, the symbol C denotes a generic positive constant,
which is allowed to depend on the domain as well as on indicated
parameters without ambiguous.

2. Existence of an optimal solution

As a starting point to analyze problem (P), we first recall some basic
properties of the state equations (1.1)-(1.3). The following lemmas will
be often used in this paper.

Lemma 2.1. Letw e (H'(Q))4,d = 2,3, and ¢,y € H'(R2). Then we
have

‘/(w- Ve dx
Q

SAwllpa VOl 2 llwli s < CUVWI 2 VRNl 2 VYl g2
2.1)
Moreover, if V-w =0 and w|; =0, then

/(w Vo) dx = —/ d(w - Vy)dx. (2.2)
Q Q

Proof. Inequalities in (2.1) are direct results of Holder’s inequality and
Sobolev embedding theorem (cf. [24]). To see (2.2), applying Stokes
formula together with V- w =0 and w|, = 0 follows

/(W~V¢)de=/W~V(¢ll/)dx—/¢(w~vv/)dx
Q Q Q
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= [ovnpvax— [ -wpwax- [ g viax
r Q Q

=—/¢<w-vwdx. 0
Q

Lemma 2.2. Let f € L®(). For ve L*(Q) with V-v =0 and v|; =0,
there exists a unique weak solution to Eq. (1.1) with Dirichlet boundary
condition T| = 0, which satisfies T € Hé (22) N L*®(£2). Moreover,

C
ITN 2 + VT |2 < ;”f”LZ (2.3)
and
1Tl e <CllfllLeo, (2.4)

where C > 0 depends on 2 but not on f.

Proof. The existence of a unique solution follows the standard ap-
proaches for the elliptic equations (cf. [25]). To see (2.3), taking the
inner product of (1.1) with T and integrating by parts using (1.3), we
have

K||VT||2L2 =— Q(v-VT)de+/Qdex

B
2

/v-v<T2)dx+||f||Lz||T||Lz
Q

= —%(/(w)ﬂ :bc—/(V-v)T2 dx)+ 1 f 21Tl 2
r Q

=1 N2 TN g2 < CUAN 2 VT 26 (2.5

which follows
C
19Tl < 0712

Note that in (2.5) we have used Poncaré inequality ||T'||;2 < C||VT|| 2,
where C > 0 is a constant dependent on domain 2 but not f.

Analogously, taking the inner product of (1.1) with TN¥~! for a
positive even integer N and then letting N — oo we get (2.4). In fact, a
finer estimate of f in (2.4) can be achieved by using the Stampacchia
theory. The reader is referred to [26] for details. This completes the
proof. []

To show the existence of an optimal control to problem (P), we first
introduce the weak solution to (1.1)-(1.3).

Definition 2.3. Let f € L¥(Q)andve Uy. T € Hé (Q) is said to be
a weak solution to system (1.1)—(1.3), if T satisfies

k(VT,Vy) = (Tv,Vy) =(f.y), Vy € Hé (£2). (2.6)
Theorem 2.4. For f € L®(R), there exists an optimal velocity v € Uy
to problem (P).

Proof. Since J is bounded from below, we may choose a minimizing
sequence {v,,} C Uyq, such that

lim J(v,)= inf J(v). 2.7)
m— oo veUyq

This also indicates that {v,,} is uniformly bounded in U,4, and hence
there exists a weakly convergent subsequence, still denoted by {v,,},
such that

s

vV, oV (2.8)

(2.9)

- weakly in  H'(Q), as m - oo,

v, - v* strongly in L*(Q), as m — .

Let {T,,} be the solutions corresponding to {v,,}. Then {T,,} is uniformly
bounded in H'(2) n L*(2) according to (2.3) and (2.4). Thus there
exists a subsequence, still denoted by {T,,}, satisfying

(2.10)
(2.11)

T, - T* weakly in H'(Q), as m — oo,

T, —» T* weakly* in L®(Q), as m - oo.
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Next we show that 7* is the solution corresponding to v°” by Defini-
tion 2.3. Recall that v,, and 7,, satisfy

K(VT,, V) = (T, 9,0, VW) = (f,9),  Vw € Hy (), (2.12)

With the help of (2.10), it is easy to pass to the limit in the first term
on the left hand of (2.12). Next we show that applying (2.8)-(2.9) and
(2.11) makes passing to the limit in the nonlinear term v,,7,, — v*T*
possible.

In fact, for the second term on the left hand of (2.12), we have for
78S HJ(-Q),

|/ vam~Vy/dx—/ T*v* - Vydx
Q Q

< '/ TV - Vy =T, v - Vydx
Q

+ ‘/ T,V -Vy —T*V* - Vy dx
Q

=1+ 1, 2.13)

where
I < IT,llzeo IV, = Vil 2 VYl 2 = 0 as m — oo,

due to (2.9) and the uniform boundedness of ||7,,|| ;~. Moreover, I, — 0
due to (2.11) and v*Vy € LY(Q). Clearly, T* € Hé(.Q) is the solution
corresponding to v* based on Definition 2.3.

Lastly, using the weakly lower semicontinuity property of norms
yields

IV lly,y < lim [Iv,,lly,, and
m—o0

IT* = (T2 < lim 1T, = (T2

m—oo
In other words,
J(v*) < lim J(v,) = inf J(v),

Moo VEUad

which indicates that v* is an optimal solution to problem (P). []
3. Optimality conditions

Now we derive the first order necessary optimality conditions for
problem (P) by using a variational inequality (cf. [23]), that is, if v is
an optimal solution to problem (P), then

JW - w=-v)20, y€EUy. 3.1

To establish the Gateaux differentiability of J(v), we first check the
Géteaux differentiability of T with respect to v. Let z be the Gateaux of
T with respect to v in the direction of h € Uy, i.e., z=T’(v) - h. Then
z satisfies
—kAdz+v-Vz+h-VT =0,
3.2)

zlr =0.
Using the L?-estimate as in Lemma 2.2 with the help of Lemma 2.1 and
(2.3), we get

/ (h-VT)zdx
Q

which implies

KlIvzll?, < S CIVAN VT (| 211V 2] 2, (3.3)

Is}

C
IVzllz < ZIVAILIVT Iz < S 1A VA B4

[N

K

Therefore, T'(v) is Gateaux differentiable for v € Uy, so is J(V).
3.1. First order optimality conditions
Let A = —PA be the Stokes operator with

D(A) = (Hy(2)nH*(Q): V-v=0},

where P: L?(Q) —» (ve L*(Q): V-v=0and v-n|, =0} is the Leray
projector. Note that A is a strictly positive and self-adjoint operator.
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Moreover, define operator D : L*(2) — L*(2) by DT = T—(T). Then D
is a bounded linear operator. The cost functional now can be rewritten
as

Jv) = %(D* DT.T)+ g(Av, v, (3.5)

where D* is the L?-adjoint operator of D.

Remark 3.1. Here we present some basic properties of operator D.
For any T,y € L*(£2), since (T') and (y) are constants, we have

1 1
o [T ax =) = L [ rwax.

Therefore,
(DT,W)=/(T—(T))WdX=/dex—/(T>de
Q Q Q
=/dex—/T(w>dx=(T,w—(w))=(T,Dw),
Q Q

which says that D is a self-adjoint operator on L2(), i.e., D = D*.
Moreover, since

1
(T =)=k [(@=(ryax= )1 =0.
2] Ja
it is straightforward to verify that
D*DT = D(DT) = D(T —(T)) =T — (T} — (T —(T)) = DT,
which implies that D? = D, and hence the operator norm || D|| < 1.

Now let g be the adjoint state associated with 7. Then it is easy to
verify that ¢ satisfies

—xAq—v-Vq=D"DT in Q,

(3.6)
qlr =0.
Moreover, thanks to (2.3) and ||D|| < 1, we have
C C
IVallzz < =Tl 2 < = 1/ 2 (3.7)
K K

The following theorem establishes the first order necessary optimal-
ity conditions for solving the optimal solution.

Theorem 3.2. Assume that v°P! is an optimal solution to problem (P). Let
(TP, q°P") be the corresponding solution to the state equations (1.1)-(1.3)
and the adjoint system (3.6). Then (voPt, T q°"") satisfies

—kAT +v-VT =f and T|yo=0,
—kAqg—v-Vq=D*DT and ¢q|;o=0, (3.8)

—yAv+Vp=¢qVT, V-v=0 and v|;o=0.

Proof. In light of (3.5), (3.6), and (2.2), the Gateaux derivative of J
becomes

J' (V) - h =(D*DT, z) + y(Av, h)
=(—xAq—v-Vq,z)+y(Av, h)
=(q,—xAz + Vv - Vz)+y(Av, h).

Using (3.2) we get
J'W)-h=—(q.h-VT)+y(Av, h).

If vOPt is the optimal solution, then J'(v°P')- A > O for any h € U,q. This
yields the following optimality condition

yAVPt — P(¢qVT) = 0. (3.9
In other words, there exists p € L2(2) with f (o pdx =0 such that
—yAVOP 4 Vp = qVT,

which completes the proof. []
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3.2. Second order optimality conditions

In this section, we discuss the second order optimality conditions for
characterizing the optimal velocity field. In particular, it can be shown
that the cost functional J has a strict local minimizer when the control
weight y > 0 is sufficiently large.

Theorem 3.3. Let (v,T,q) satisfy the first order necessary optimality
system (3.8). If y > 0 is sufficiently large, then there exists some constant
& > 0 such that

J" () - (h,h) 2 8IIAIIG, . (3.10)
for h € Uy,.
Proof. Let h; € U,q and z; = T'(v) - h;,i = 1,2. Then we have
—kAz; +v-Vz;+ h,-VT =0 in Q,
zi|lr =0.
Moreover, let Z = z’1 (V) - hy. Then Z satisfies
—kAZ +hy-Vz;+Vv-VZ+h;-Vz, =0 in Q, (3.11)

Z|, =0.

Again applying an L*-estimate for Z and using (3.4), we can easily
verify that

A

C
IVZIl2 < = UVAll V20l 2 + VA2 IV 22 2)

IA

C
FIIfIILz VA2 VAy 2, (3.12)

which implies that T'(v) is twice Gateaux differentiable for v € U,q4, so
is J(v).

Now differentiating J'(v) - h; once again in the direction h, € Uyq
gives
J"'() - (hy, hy) = (D*Dzy, 2y) + (D*DT, Z) + y(Ahy, hy). (3.13)

To further analyze the second term involving Z, we take the inner
product of (3.11) with ¢ and apply (2.2). We get

—k(Z,Aq) = (z;,hy - Vq) = (Z,v-Vq) = (25,h| - Vgq) = 0.

With the help of the adjoint equation (3.6), we obtain

(z1,hy - Vq) + (20, hy - Vq) = (Z, D*DT).

Therefore,

J"(W) - (hy, hy) = (D*Dzy, 21) + (21, hy - V) + (23, by - V) + y(Ahy, hy).

Setting h; = h, = h and z, = z, = z =T'(v) - h follows

J"() - (h,h) = D213, +2(z. h - V@) + 7| A1, 314
Furthermore, by (2.1), (3.4) and (3.7), we get
C
|/ zh-Vqdx| < CIIVzll 2 IVAl 211Vl 2 < Z U712, 1A 2RI,
Q K
and
C
1Dzl 2 < ClIVzl2 < S UF 2 ARl 2.
Consequently,
1 c 2 1 Al/2502 /27112
177 ) - ()L < IS A VPRI, + LAY Al
C
= (IS5 + A 2AIE, (3.15)

and
C

T"W) - (h 1) 2 =2z k- Vo)l + 7 ARG, = (v = SIS IEDNAY RN,
K

(3.16)

51
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Therefore, if y is large enough such that

C
r==IF1%, 28>0, (3.17)
K

then (3.10) holds. [

Lemma 3.4. There exists a constant C > 0 such that

C
") = ") - (B < Vs = Vall g I NI

(3.18)

forany h,v; e Uy,i=1,2.

T; is the

1

Proof. Let h,v; € Uy and z; = T/(v;) - h,i = 1,2. Here
temperature corresponding to v;. Then z; satisfies
—kAz; +v;-Vz; + h-VT; =0 in Q,
zilr =0.
Further let Z = z; — z,, ¥=v, — v, and T = T} — T5. Then
—KkAZ+V-Vz;+Vv,-VZ+h-VT =0 inQ,
(3.19)

Z|r =0.

By (1.1)-(1.3) and (2.3) it is easy to check that

=~ C . C .
1Tl < =¥ Tl < EIIVIIHI AN g2 (3.20)
Moreover, applying an L?-estimate to (3.19) yields
= C - =
IVZll 2 < AT izl + IRl Tl )

<<
k

C -
< S A2 12l g
K

Now let Z; = z/(v;) - h,i = 1,2,. Then

- C C .
(IIVIIHI S LA 2Bl gy + 12l e = 1V g IIfIILz)
K K

(3.21)

—kAZ;+2h-Vz;+v;-VZ; =0
Zilr =0.
In light of (3.12), we have

in Q,

C
IVZill2 < EIIfIImIIVhIIZLT (3.22)

Furthermore, let Z = Z, — Z,. Then
~KAZ +2h-VZ+¥-VZ +V,-VZ =0
Z|r=0.

in £,
(3.23)

Again applying an L?-estimate to (3.23) and using (3.21)-(3.22) follow

- C = -
IVZI2 < = @lAlL g I + 191 120l )

IN

C C - - C
= (2||h||H1 SVl A 2 2l g + 19 g = IIfIILzIIhIIf,])
K K K

IA

C .
FIIVIIHI IS 12 1Al - (3.24)

Finally, using (3.13) together with (2.3), (3.4), (3.21)—(3.22), (3.24)
and ||D|| < 1, we get

(" (V) = I (v) - (h, )| = 1Dz, I3, + (D* DT, Z}) + 7| A2 hl[%,

—(IDz,]2, +(D*DT, Z,) + 7| A'?h]12,)

= (I1Dz1I3, = I1Dz,I3,) + (D* DT, Z, ~ Z,)

< lzillg2 + izl 2)llz = 22l 2 + 1T 212y = Zol 2
C C .

< S Il = 190 11 2 Al g
K K-

C C .

Sl P P2 [ PPRY A PRI
C e 2 2

< Sl I A,

which establishes the desired result.

|

Now we are in a position to address the second order sufficient
conditions.
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Corollary 3.5. Let v* satisfy the optimality condition (3.9). If y > 0 is
sufficiently large, then there exist e,5, > 0 such that the quadratic growth

condition
€2
J(v*)+50||V—v*||Uad < J(v) (3.25)

holds for all v € U,y satisfying ||v — v¥|| g1 < e. In other words, J has a
local minimum at v*.

Proof. To see the gap between J(v*) and J(v) for v € U,y satisfying
[lv—v*|l;;1 <€, we apply a Taylor expansion of J(v) around v*. With
the help of Theorem 3.3 and setting 2 = v — v* in Lemma 3.4, we have
for £ € (0, 1),

J(V)—J(V*)=J,(V*)~(V—V*)+%J"(V*+§(V—V*))-(V—V*,V—V*)
| - * «
_EJ V) - (v=v ,v—=v")

+ %(.I”(v* +EV=VN =T (v=v,v=V")

\%

1 1C «
SNV = VI = 5 IGO0 =Vl I I = VI,

=1 C . 5 -

= E((S—Fllf(v—v )”Hlllf”Lz)”V—V 2,
1 Ce

> (5= SEITIR ) IV -v'IE, -

. . 1 C C
Therefore, if letting 0 < 6, < 56— SI/1%,) or v = 28, + S I /1%, +

%” f ”sz for some constants §,,C > 0, then (3.25) holds, which
completes the proof. []

4. Numerical implementation

In this section, we shall present a detailed numerical implementa-
tion for solving the optimality system (3.8) based on a 2D problem.
The following lemma establishes the relation between the diffusivity
coefficient x and the control weight parameter y, which indicates that
it is sufficient to test the numerical examples for x = 1. The results for
other x values can then be obtained by this relation.

Lemma 4.1. Let [T,,q,,v,,p,] be the solution to (3.8) corresponding
k= 1andy. Let [T, 5,4y 5, Vx5 Py 7] De the solution to (3.8) corresponding

k and y where 7 = =7 Then the following relation holds:
K

1 1

1
Tey==Ty dey=—3
KT 2

K.y P

Proof. Based on (3.8), it is straightforward to verify that
—KkAT 5+ V5 - VI, 5 =—AT, +v, - VT, = f,

Lprpr, = o
K

~KAqy = Vey Vaey = — (=4g,~v, - Vgq,) =

1
* K7

and

- 1 1
P&y +Vpey = 5 (—r4v, +Vp,) = 5@ V) = 45T,y
This completes the proof. []

As a byproduct of the above lemma, we also have the following
result

J(k.7) = %Jm,

and therefore,

log(J (k,71)/J (x5, 7)) _ log(J(ry )/ JI(12))
log(¥,/7>) log(y1/72)
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4.1. Finite element formulation

The weak formulation for the nonlinear system (3.8) is to find
Te H(;(Q),q IS H(}(.Q),v IS [H(;(Q)]2 and p € L%(Q) such that:

(kVT.V$)+(v-VT.$) = (f.¢), V€ H),

(kVq,Vy) = (v-Vq,y) = (DT, ¢) =0, Vy € H),
VW) = (p, V- W) = (qVT, W) =0, VYw e [Hj (7P,
(V-v,0)=0, Ve L*Q).

4.1

We aim to use finite element method to approximate the system.
Let 7, be a partition of the domain £ consisting of triangles in two
dimensions. For every element r € 7,, we denote by A, its diameter
and define the mesh size h = max ¢z, h, for 7. On the mesh 7;,, we
define the continuous finite element spaces as follows,

V, = {ve H'(Q) : v|, € P,(r),V7 € T},
V, = {(ve [H' @) : v|, € [P,(0)%Vr €T} ).
0, = {qe H\(@N L) : ql, €P\(2).VT €T, }.

Here P, denotes the space of polynomials with degree less than or equal
to ¢ and Lg(.Q) = {0 € L*Q) : [,0dx = 0}. The corresponding
finite element spaces with homogeneous Dirichlet boundary condition
are denoted by Vp? and V?l. For the Stokes solver, we apply the inf-sup
stable Taylor-Hood element [27,28].

Below we introduce the bilinear and trilinear forms. For ¢,y € V),
vwwWeV,,0ecQ,,let

Abw)= Y, [ £V Vydx,
€T 7

cow:ipy)= ) | (W-Vydx,

€T U7

Dv,w)= Y [ yVv: Vwax,
€T 7

Bw,0)= Y [(V-w)dx.
€T T

Now, we are ready to propose the finite element schemes for system
(3.8) with D*DT =T — (T). The finite element scheme for the system
(3.8) is to solve: T;, € V)2, g, € V), v, € V) and pj, € @y, such that:

AT, ) — COvii Ty ) = (f . h), VeV,

Alqpw) + COvsqp, @) — (T, = (T),),w) =0, Vye V}?,
D(vj, W) — B(W, p) — (¢, VT, W) =0, Vwe V)
B(v,,0)=0, VO€Q,.

(4.2)

4.2. Picard and Newton iterative solvers

Note that (4.2) is a nonlinear system involving a Stokes problem.
To tackle the nonlinearity, we combine both the Picard and Newton
iterative solvers to achieve the required computational efficiency.

For the Picard iterative method, we seek to find (T**!, gkt!, vk+1,
p**1) based on the previously given approximation (T, g%, v¥, p*). The
idea simply replaces the unknown nonlinear terms by the known solu-
tions in the previous step. The nonlinear system can be linearized as
follows:

—KkAT**1 4 vk . VT, = £ and TF|,, =0,

Ll Jo T*dx, and ¢*1],, =0,

|2

e+l — Kl
V.v¥th =0, and v*t|;, = 0.

K AGt! — vk L yghtl = TRl
ZyAVRHL L Ykt = gkl gk

(4.3)
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The finite element solution to (4.3) is then to find (Té‘*l , q’;“ , v’;l“ R pﬁ“)
€ V) x V) x V) x Q) such that

AT, ) = COM TN )y = (f,9), VeV,
A y) + COE g ) = (@ (T ) =0, vy e VY,
DV, w) — Bw, pith) — (gfH I vTi wy =0, vwe VY,

BVit0)=0, V0€OQ,
4.9

Note that the system (4.4) can be solved sequentially. For the Picard’s
method in the finite element scheme, we set the following initial guess:
(T, 4),¥0, p)) such that

vp=0, pp=0,

AT =(f.¢). VeV,

Algy.y) = (T = (T).y) =0, Yy eV).

(4.5)

We now derive the formulation for the Newton’s method in the PDE
level. Given an approximation to the solution field, {T%, g¥, v¥, p¥}, we
aim to find a perturbation {47, 6q, 6v,p} so that

[ThH, gFH yhH phtly = Tk gk vE pkY + (8T, 84, 6, 6p).
and that

—KAT*1 4 y&+1 YTk = x € @, and T |,, =0,
_KAqk+l —yk+l qu+l _ Thk+l + <Tk+l> =0,Vx e and qk+lldg =0,
—y AV 4 Vpktl _ gkt ly TR = 0, Vv =0 Vx € Q and vF*|,, = 0.

This above PDE system is still a nonlinear system. The idea to obtain a
linear system is to assume that §- quantities are sufficiently small so that
we can linearize the problem with respect to those §- quantities using
Taylor’s expansion. Eventually we obtain the following linear system
by dropping the higher order nonlinear terms in terms of §- quantities.

—KATFH! gkt YTk 4yk VTR = f 4 oyk YTk TR =0,

_KAqk+l —yk+l qu —vk. qu+l _ T+l + (Tk+l> = —vk. qu qk+] |6.(2 =0
_yAvk+l + Vpk+l - qk+]VTk _ quTk+l — _quTk,vk+] |[).(l =0

V.vkl = 0.

(4.6)

The finite element solution to (4.6) is then to find (T}, gf*!, vi+!, pht)

e V) x V) x V) x @, such that
AT, ) + COVE T §) + COELTE, ) = (f. ) + CVE T ),
VeV,
A w) = COEs g o) — COH gl y) — (TF = (T ) w) = —C(vEs gfp),
Vy e VO,
k+1 k+1 k k+1 k+1 k — k k
DV, w) = Bw, pit!) = (g VT, w) = (g, VT, w) = —(g; VT, W),
vwe V),
B 0)=0, VO€Q,.

4.7)

Remark 4.2. Comparing to Picard’s method, Newton’s method has a
faster convergence rate. However, its initial condition should be chosen
wisely. For Picard’s method, our numerical experiments show that it
can yield a satisfactory initial solution for the Newton’s method very
quickly. This suggests that we can use Picard’s method at the first
stage to obtain a good initial guess and then apply Newton’s method to
obtain the converged numerical solutions. The numerical experiments
presented in the rest of this work are conducted using the combined
Picard-Newton solver.
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4.3. Numerical algorithm

In this subsection, we summarize our numerical method in the
following algorithm.

Algorithm 4.1 Finite Element Scheme for system (3.8)

+ Choose values in ¢, €,, ny, and n,.
. o sge 0 0 .0 .0 .
Set the initial guess (T}, g, v,.p,) as in (4.5).
» Compute the cost functional:
012 0 0y (|2
VIR T = (@)l

0= > (4.8)

» For k=0,...,n;, perform the Picard iteration as below:

- Solve (T}*!, g+ vit! pkthy € VO x V) x VO x 0, for (4.4).

— Compute the cost functional:

_ rIVVEIR ITF = (THI? 49
K= ) 3 . (4.9
|k = Jii

- If < ¢, STOP and OUTPUT T}, g, vk, and pf.

Jio1
. 0 0 0 0\_ Tk k ok k
Set (T}, q;,, v, py) = (T}, 4. V. P
» For k=0,...,n,, perform the Newton’s iterations as below:

- Solve (T}*!, g+ vit! pkthy e VO x V) x VO x 0, for (4.7).

— Compute the cost functional:

rIVVEIR ITF = (THI?
= 4.10
k 3 + ) ( )
|k = Jii

- If < €, STOP and OUTPUT T}, g, vk, and pf.

Jk—l

5. Numerical experiments

In this section, we shall present several numerical experiments
by employing different heat source profiles to validate the proposed
numerical schemes in Algorithm 4.1. The domain for all test problems
is set to be the unit square, i.e., 2 = (0, 1)x(0, 1). Thanks to Lemma 4.1,
it is sufficient to test for one x value. Without loss of generality,
we perform all our numerical tests only for x = 1. The numerical
experiments are performed using the FENICS package [29] on the
uniform triangular mesh with 2 = 1/100.

Recall that as proven in Corollary 3.5, a local minimizer can be
obtained if the control weight y is sufficiently large. However, a large
control weight may result in a minor convective effect. Our first ex-
ample shows that if y is set to be too large, “doing nothing” might be
optimal.

Example 5.1. We first test a symmetric heat distribution. Let

F(x,y) = 277 sin(zx) sin(zy).

Set k = 1 and y = 1. The stop criterion is met at the ninth iteration
as shown in Fig. 1, where Fig. la. presents the optimal temperature
distribution and Fig. 1b. presents the cost functional values with respect
to y for each iteration. However, the cost functional does not seem
to decay at all. In this case, y = 1 may be too large so that the
convective effect becomes minor and hence, the thermal diffusion plays
a dominant role. Based on this observation, we proceed to test smaller
y values and note that convection becomes effective when y € [E-7,
E-5]. Using the optimal convection-cooling design, the cost functional
value can be reduced by about 40% for the current heat source term.
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Fig. 1. Example 5.1: Plots of temperature T, of x = 1.0 and y = 1.0 for (a) Optimal heat distribution 7}; and (b) Convergence profiles for cost functional.
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The results are illustrated in Figs. 2-4. Moreover, we also test how
the cost functional, the variance of the temperature, and the velocity
change with respect to different y. The results are plotted in Fig. 5a. The
corresponding convergence rates are plotted, respectively, in Fig. 5b.,
which are computed using the following standard formulas

In(J (y; J(y;
i+ i
re(r) = In(I7 (i) =TGN 2/ IIT ) = (T(J/,-))IILz)’ and 5.2)

In(y;11 /7))
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Fig. 2. Example 5.1: Plots of temperature 7}, of x = 1.0 for (a) Initial heat distribution T,?; and with (b) y = 3.6E-6; (c) y = 8.5E-7; (d) y = 3.9E-7.

(i1 1V DI, /7 19V

5.3
In(i41/7:) 5-3)

"v()’i) =

The initial heat distribution T,? corresponding to v = 0 is shown
in Fig. 2a. The optimal heat distribution T, corresponding to y
3.6E—6, 8.5E—7, and 3.9E—7 are plotted in Fig. 2b-d. For the initial
heat distribution, one can observe that the maximum of T,? is 1.0.
Thanks to advection effect, the “hot” region, which is at the center
of the domain initially, is now spread out, but still inherits certain

symmetric pattern. As a result, the heat distribution over the entire
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Fig. 3. Example 5.1: Plots of velocity field v, for x = 1.0 and (a) y = 3.6E-6; (b) y = 8.5E-7; (c) y = 3.9E-7. Here, the color illustrates the magnitude of velocity v, and the vector
plots the field of v,.
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Fig. 4. Example 5.1: Plots of streamlines of v, for x = 1.0 and (a) y = 3.6E—-6; (b) y = 8.5E-7; (c) y = 3.9E-7. Here, the color illustrates the magnitude of velocity v, and the
curve plots the streamline of v,,.
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Fig. 5. Example 5.1: Illustration of results for x = 1.0 (a) Plot of profiles in the cost functional with respect to y (here [T} — (T)||*/2 =4.287E-2); (b) Convergence rates r,ry
and r, computed by (5.1)-(5.3).

domain is evened out. Note that the maximum of T} is reduced to similar for different y values. However, the magnitude of v, increases
9.8E-1, 7.8E-1, and 6.8E—1 corresponding to y = 3.6E—6, 8.5E-7, as the y value decreases.

and 3.9E-7, respectively. Also, it is shown from these plots that the Next, we investigate the behavior of the cost functional with respect
smaller value in y (which indicates less penalty on the control), the to y €[3.9E-7, 4.1E-6]. In Fig. 5a, we plot the cost values versus
more effective is the convection-cooling. various y values. It shows that smaller values in y lead to smaller cost

On the other hand, as shown in Figs. 3-4, the optimal velocity fields functional values. When y = 4E-7, we obtain J,;, = 2.60E-2, which
v, and their streamlines computed by our algorithm for different y is 39% smaller than the initial value (which is 4.287E—2). In Fig. 5b,

well preserve the divergence-free condition and also present symmetric we plot the convergence rates r;,r; and r, computed by (5.1)-(5.3).
patterns. This also explains the symmetric pattern of the temperature In particular, it can be seen that the convergence rate r, gradually
distribution shown in Fig. 2. Moreover, the patterns for v, are very decreases from 0.35 to almost 0 as increasing the values in y.
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Fig. 6. Example 5.3: Plots of optimal T}, for x = 1.0 and (a) Initial heat distribution T?; (b) y = 1.8E—6; (c) y = 8E-7; (d) y = 4E~7.
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Fig. 7. Example 5.3: Plots of temperature 7, and vector field v for ¥ = 1.0 and (a) y = 1.8E-6; (b) y = 8E-7; (c) y = 4E-7. Here, the color illustrates the magnitude of velocity

v, and the vector plots the field of v,.

Remark 5.2. We have tested different ¥ and mesh sizes » for Exam-
ple 5.1 to demonstrate the numerical robustness, where different initial
guesses for velocity are also tested. The numerical results are robust on
x and refined A for almost all y in the active region. To reduce the
redundancy of the figures, they are omitted in the paper. However, the
performance is slightly different when y is close to its lower limit. This
is likely due to the fact that the continuous problem may fail to have
the existence of an optimal control when y = 0. In this case, the cost
functional loses its coercivity in the control input.

Example 5.3. In this example, we consider an asymmetric distribution
of the hear source. Let

f(x,y) = 1000((x — 0.5)> + (y — 0.75)*)x(1 = x)y(1 — ).
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The initial heat distribution corresponding to y = 1.0 and v = 0
is plotted in Fig. 6a. As shown in this figure, the maximum of T,? is
4.6E—1. The optimal heat distributions corresponding various values in
y are plotted in Fig. 6b—c. We observe similar results as in Example 5.1,
i.e., the smaller value in y will yield the lower maximum of the optimal
temperature.

The optimal vector fields and their streamlines are demonstrated in
Figs. 7-8. The profiles of the cost functional are plotted in Fig. 9. For
y = 4E-7, we obtain the cost functional value J;, = 6.76E—3, which
is 25% smaller than the initial value (which is 8.97E-3). In this case,
we observe that the convergence rate r; gradually decreases from 0.22
to almost 0.

Example 5.4. In this example, we continue to examine an asymmetric
distribution of the heat source, where the heat source is centered at the
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Fig. 8. Example 5.3: Plots of temperature 7, and vector field v for ¥ = 1.0 and (a) y = 1.8E-6; (b) y = 8E-7; (c) y = 4E-7. Here, the color illustrates the magnitude of velocity

v, and the curve plots the streamline of v,.
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Fig. 9. Example 5.3: Illustration of results for x = 1.0: (a) Plots of profiles in the cost functional with respect to y (here ”T;? - (T,?)ll2 /2 = 8.97E-3); (b) Convergence rates r,,ry

and r, computed by (5.1)-(5.3).

upper right corner. We especially examine the behavior of the velocity
field subject to such a heat distribution with a sharp peak. Let

F(x, ) = 100 exp(—=100(x — 0.75)*> — 100(y — 0.75)?).

The initial heat distribution corresponding to y = 1.0 and v = 0
is plotted in Fig. 10a. As shown in this figure, the maximum of T}? is
7.7E—1. The numerical optimal solutions for heat distribution T}, are
plotted in Fig. 10 for y =6E-7, 3.7E—8, and 3.3E—8. As we can observe
in Fig. 13a, the maximum value of the heat distribution is reduced
from max T,? = 0.77 to max T, = 0.6, max T, = 0.55, and max 7}, = 0.54
corresponding to y =6E-7, 3.7E—7, and 3.3E-7, respectively. Similar to
former examples, smaller value in y indicates a more effective cooling
process.

Figs. 11-12 illustrate the velocity fields and the corresponding
streamlines. Based on the direction fields we observe that for each
case the velocity tends to “blow” the heat source further to the upper
right corner, however due to divergence-free, the heat distribution is
stretched toward to the cooler region. For this example, the velocity
fields associated with different values of y also share a similar pattern.
The profiles of the cost functional are plotted in Fig. 13. For y
3.3E-7, we obtain the cost function value J.;, = 7.74E-3, which
is 38% smaller than the initial value (1.24E—2). In this case, we
find that the convergence rate r; gradually decreases from 0.29 to
almost 0.

57

Example 5.5. In the last example, we consider that there is a heat
source as well as a heat sink and examine how the velocity behaves in
an environment with such heat distributions. Let

Fx,y) =75 exp(—(9x—2)? J4—(9y—2)? /4)=T75 exp(—(9x—4)% /4—(9y—T)? /4).

The initial heat distribution corresponding to y = 1.0 and v = 0
is plotted in Fig. 14a. As shown in this figure, the maximum and
minimum values of T,? are 1.0 and —1.4, respectively. The numerical
optimal solutions for heat distribution 7}, are plotted in Fig. 14b-
d for y =5E-5, 1E-5, and 6.9E—6. We observe that the upper and
lower bounds of the initial temperate are reduced from T,;, = —1.4
and Tp,,x = | (shown in Fig. 17a) to (min7, = —1.3,max7T, = 1.0),
(min T}, —0.82,maxT;, = 0.76), and (minT), —0.69,max T, = 0.95)
with respective to y =5E-5, 1E-5, and 6.9E—6. Different from former
examples, it is shown in Figs. 15-16 that the velocity profiles differ
significantly for these three values of y. When y =5E-5, as we can see
in Figs. 16 and 15a, the velocity field seems to steer the cold region
toward the hot region and thus the minimum value is increased from
—1.4 to —1.3, however the maximum value remains at 1. When y =
1E-5, as shown in Figs. 16 and 15a, it seems that the cold and the hot
regions are advected simultaneously, and hence both the maximum and
minimum values are tuned. However, as one further reduces the value
in y from 5E-5 to 6.9E-6, the circulation between the cold and hot
regions becomes disproportional, which results in a smaller minimum
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Fig. 10. Example 5.4: Plots of optimal 7, with x = 1.0 of (a) Initial heat distribution T}?; and (b) y = 6E-7; (c) y =3.7E-7; (d) y = 3.3E-7.
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Fig. 11. Example 5.4: Plots of optimal v, for x = 1.0 and (a) y = 6E-7; (b) y = 3.7E-7; (c) y = 3.3E-7. Here, the color illustrates the magnitude of velocity v, and the vector
plots the field of v,.

3.0e+01

25
—20

| — 15
| .10
f ‘ |5
| ™| 0.0c+00

Fig. 12. Example 5.4: Plots of optimal T, for x = 1.0 and (a) y = 6E-7; (b) y = 3.7E-7; (¢) y = 3.3E-7. Here, the color illustrates the magnitude of velocity v, and the curve plots
the streamline of v,.
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Fig. 13. Example 5.4: Illustration of results for x = 1.0 (a) Plot of initial temperature T}? (here ||T,? - (T,?)ll2 /2 = 1.24E-2); (b) Plot of profiles in the cost functional with respect
to y; (c) Convergence rates r;,r; and r, computed by (5.1)—(5.3).
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Fig. 14. Example 5.5: Plots of optimal 7}, for x = 1.0 of (a) Initial heat distribution T}?; and (b) y = 5E-5; (c) y = 1E-5; (d) y = 6.9E—6.

value of the temperature but a higher maximum compared to the case
with y = 5E-5. This may be due to the disproportional steering effect
of the velocity field shown in Figs. 15-16.

Lastly, the convergence results are plotted in Fig. 17. Similar results
as in the previous tests can be observed from these two figures. For X
y = 6.9E-6, the cost function J;, =9.17E—2, which is 29% smaller 6. Conclusion
than the initial value (1.29E-1). In this case, we observe that the
convergence rate r; gradually decreases from 0.31 to almost 0.

In summary, we have conducted a wide range of tests with differen-
tial values of y for different heat source distributions in this section. The

numerical results demonstrate that using the optimal convection strat-
egy, the cost functional value can be reduced by 25%-40% depending
upon the source terms, when y € [E-5, E-7].

In this paper, we discussed the optimal control design for convection-
cooling via an incompressible velocity field. We presented rigorous
theoretical analysis and conditions for solving and characterizing
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Fig. 15. Example 5.5: Plots of optimal v, for x = 1.0 and (a) y = 5E-5; (b) y = 1E-5; (¢) y = 6.9E—6. Here, the color illustrates the magnitude of velocity v, and the vector plots

the field of v,.
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Fig. 16. Example 5.5: Plots of optimal v, for k = 1.0 and (a) y = 5E-5; (b) y = 1E-5; (c) y = 6.9E—6. Here, the color illustrates the magnitude of velocity v, and the curve plots

the streamline of v,,.
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Fig. 17. Example 5.5: Illustration of results for x = 1.0 (a) Plot of profiles in the cost functional with respect to y (here ||T,? - (T£)||2/2 = 1.29E-1); (b) Convergence rates r,,ry

and r, computed by (5.1)-(5.3).

the optimal controller. Our numerical experiments demonstrate the
effectiveness of the cooling process through flow advection. Moreover,
we observed that to enhance heat transfer, small values in y may
be employed in the convection-cooling design. We shall continue
to address the convergence issues of our current numerical schemes
applied to such nonlinear optimality systems. We shall also extend
our results to study the non-stationary convection-cooling problems for
more physical systems. Specifically, we shall consider to incorporate
the flow dynamics into the velocity field, which will be controlled in
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real-time. How to construct effective numerical schemes to tackle such
problems will be further investigated in our future work.
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