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A B S T R A C T

This paper is concerned with the problem of enhancing convection-cooling via active control of the incompress-
ible velocity field, described by a stationary diffusion–convection model. This essentially leads to a bilinear
optimal control problem. A rigorous proof of the existence of an optimal control is presented and the first order
optimality conditions are derived for solving the control using a variational inequality. Moreover, the second
order sufficient conditions are established to characterize the local minimizer. Finally, numerical experiments
are conducted utilizing finite elements methods together with nonlinear iterative schemes, to demonstrate and
validate the effectiveness of our control design.
1. Introduction

Convection-cooling is the mechanism where heat is transferred from
he hot object into the surrounding air or liquid. There are several
actors determining the effectiveness of cooling, including temperature
ifference between the surrounding and the hot object, viscosity of the
luid (air or liquid), and ability of the fluid to move in response to the
ensity difference, etc. There are two types of convectional cooling,
amely the natural convection cooling and the forced air convection
ooling (cf. [1–3]). In the natural cooling, the air surrounding the
bject transfers the heat away from the object and does not use any
ans or blowers. In contrast, forced air convection cooling is used in
esigns where the enclosures or environment do not offer an effective
atural cooling performance and areas where natural cooling is not
ffective. The forced air convection cooling is the most effective cooling
ethod in many industrial applications. It can be designed to provide
he required cooling performance while increasing the efficiency of the
elated components.
The current work utilizes an optimal control approach for the

orced air convection-cooling. To be more precise, consider a station-
ry diffusion–convection model for a cooling application in an open
ounded and connected domain 𝛺 ⊂ R𝑑 , 𝑑 = 2, 3, with a Lipschitz
boundary 𝛤 . The velocity field is assumed to be divergence-free. The
system of equations reads

−𝜅𝛥𝑇 + 𝐯 ⋅ ∇𝑇 = 𝑓 in 𝛺 (1.1)

∇ ⋅ 𝐯 = 0, (1.2)

with Dirichlet boundary condition for temperature and no-slip bound-
ary condition for velocity

𝑇 |𝛤 = 0, 𝐯|𝛤 = 0, (1.3)

∗ Corresponding author.
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where 𝑇 is the temperature, 𝜅 > 0 is the thermal diffusivity, 𝐯 is
the velocity, and 𝑓 ∈ 𝐿∞(𝛺) is the external heat source distribution.
The Dirichlet boundary condition is corresponding to a given fixed
surface temperature, for example, when the surface is in contact with a
melting solid or a boiling liquid. Although Neumann type of boundary
conditions are often used in the diffusion–convection problems for
describing heat flux at the boundaries, the Dirichlet boundary condi-
tion is also commonly employed in the study of natural convection
and heat transfer in enclosures, which may be simultaneously heated
from below and cooled from above (cf. [4–8]). Linear controls, either
internal (distributed) or boundary controls, of the temperature and the
corresponding numerical schemes have been well studied for diffusion–
convection equations (cf. [9–17]). The objective of this work is aimed
at enhancing convection-cooling via active control of the flow velocity.
For example, in high power applications, a cooling fan is used to blow
and direct air toward the electronic components with or without heat
sinks. Most power supply units have built-in fans that provide the
required forced-air convectional cooling. Mathematically, our control
design gives rise to a bilinear optimal control problem.

Optimal control for enhancing heat transfer and fluid mixing or
optic flow control via flow advection, governed by nonstationary
diffusion–convection, has been discussed in (cf. [18–21]). However, to
solve the resulting nonlinear optimality system, one has to solve the
state equations forward in time, coupled with the adjoint system back-
ward in time together with a nonlinear optimality condition. This leads
to extremely high computational costs and intractable problems. Some
preliminary numerical results were obtained in [21] with simplified
conditions. As a first step to tackle such a complex system, our current
work will focus on the stationary case and present a rigorous theoretical
and numerical study of the optimal control design.
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Now denote the spatial average of temperature by

⟨𝑇 ⟩ = 1
|𝛺|

∫𝛺
𝑇 𝑑𝑥.

he objective is to minimize the variance of the temperature with
ptimal control cost, that is,

(𝐯) = 1
2
‖𝑇 − ⟨𝑇 ⟩‖2

𝐿2 +
𝛾
2
‖𝐯‖2𝑈ad , (𝑃 )

subject to (1.1)–(1.3), where 𝛾 > 0 is the control weight parameter and
𝑈ad stands for the set of admissible control. The choice of the set of
admissible control is usually dependent on the physical properties and
the need to establish the existence of an optimal control. Due to the
advection term 𝐯 ⋅ ∇𝑇 , the control map 𝐯 ↦ 𝑇 is bilinear and hence
problem (𝑃 ) is non-convex. Establishing the existence of an optimal
velocity field will involve a compactness argument associated with the
control map. Moreover, in order to reduce the effects of rotation on
the flow and the shear stress at the boundary in the cooling process,
we consider to minimize the magnitude of the strain tensor (cf. [22]),
which is equivalent to minimize ‖∇𝐯‖𝐿2 . To this end, we set

𝑈ad = {𝐯 ∈ 𝐻1
0 (𝛺)∶ ∇ ⋅ 𝐯 = 0}

equipped with 𝐻1-norm

‖𝐯‖𝑈ad = ‖𝐯‖𝐻1 .

The remainder of this paper is organized as follows. Section 2 fo-
cuses on the existence of an optimal solution to problem (𝑃 ). Section 3
presents the first and second order optimality conditions for solving
and charactering the optimal solution by using a variational inequality
(cf. [23]). Moreover, it can be shown that there exists a strict local
minimizer if the control weight 𝛾 is large enough. Section 4 discusses
the numerical implementation of our control design, where the finite
element formulation and nonlinear iterative solvers are used to con-
struct our numerical schemes. In particular, the relation regarding the
solutions of the optimality system associated with different values in
𝜅 and 𝛾 is established. This result provides a practical guidance for
choosing these parameters in our numerical implementation. In Sec-
tion 5, several numerical experiments are conducted to demonstrate the
effectiveness of our control design for convection-cooling. Lastly, this
paper concludes with potential problems for future work in Section 6.

In the sequel, the symbol 𝐶 denotes a generic positive constant,
which is allowed to depend on the domain as well as on indicated
parameters without ambiguous.

2. Existence of an optimal solution

As a starting point to analyze problem (𝑃 ), we first recall some basic
properties of the state equations (1.1)–(1.3). The following lemmas will
be often used in this paper.

Lemma 2.1. Let 𝐰 ∈ (𝐻1(𝛺))𝑑 , 𝑑 = 2, 3, and 𝜙, 𝜓 ∈ 𝐻1(𝛺). Then we
have
|

|

|

|

∫𝛺
(𝐰 ⋅ ∇𝜙)𝜓 𝑑𝑥

|

|

|

|

≤ ‖𝐰‖𝐿4‖∇𝜙‖𝐿2‖𝜓‖𝐿4 ≤ 𝐶‖∇𝐰‖𝐿2‖∇𝜙‖𝐿2‖∇𝜓‖𝐿2 .

(2.1)

Moreover, if ∇ ⋅ 𝐰 = 0 and 𝐰|𝛤 = 0, then

∫𝛺
(𝐰 ⋅ ∇𝜙)𝜓 𝑑𝑥 = −∫𝛺

𝜙(𝐰 ⋅ ∇𝜓) 𝑑𝑥. (2.2)

Proof. Inequalities in (2.1) are direct results of Hölder’s inequality and
obolev embedding theorem (cf. [24]). To see (2.2), applying Stokes
ormula together with ∇ ⋅ 𝐰 = 0 and 𝐰|𝛤 = 0 follows

(𝐰 ⋅ ∇𝜙)𝜓 𝑑𝑥 = 𝐰 ⋅ ∇(𝜙𝜓) 𝑑𝑥 − 𝜙(𝐰 ⋅ ∇𝜓) 𝑑𝑥

𝛺 ∫𝛺 ∫𝛺 𝑇
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= ∫𝛤
(𝐰 ⋅ 𝑛)𝜙𝜓 𝑑𝑥 − ∫𝛺

(∇ ⋅ 𝐰)𝜙𝜓 𝑑𝑥 − ∫𝛺
𝜙(𝐰 ⋅ ∇𝜓) 𝑑𝑥

= −∫𝛺
𝜙(𝐰 ⋅ ∇𝜓) 𝑑𝑥. □

emma 2.2. Let 𝑓 ∈ 𝐿∞(𝛺). For 𝐯 ∈ 𝐿2(𝛺) with ∇ ⋅ 𝐯 = 0 and 𝐯|𝛤 = 0,
here exists a unique weak solution to Eq. (1.1) with Dirichlet boundary
ondition 𝑇 |𝛤 = 0, which satisfies 𝑇 ∈ 𝐻1

0 (𝛺) ∩ 𝐿∞(𝛺). Moreover,

𝑇 ‖𝐿2 + ‖∇𝑇 ‖𝐿2 ≤ 𝐶
𝜅
‖𝑓‖𝐿2 (2.3)

and

‖𝑇 ‖𝐿∞ ≤ 𝐶‖𝑓‖𝐿∞ , (2.4)

where 𝐶 > 0 depends on 𝛺 but not on 𝑓 .

Proof. The existence of a unique solution follows the standard ap-
proaches for the elliptic equations (cf. [25]). To see (2.3), taking the
inner product of (1.1) with 𝑇 and integrating by parts using (1.3), we
have

𝜅‖∇𝑇 ‖2
𝐿2 = −∫𝛺

(𝐯 ⋅ ∇𝑇 )𝑇 𝑑𝑥 + ∫𝛺
𝑓𝑇 𝑑𝑥

≤ −1
2 ∫𝛺

𝐯 ⋅ ∇(𝑇 2) 𝑑𝑥 + ‖𝑓‖𝐿2‖𝑇 ‖𝐿2

= −1
2
(∫𝛤

(𝐯 ⋅ 𝑛) 𝑇 2 𝑑𝑥 − ∫𝛺
(∇ ⋅ 𝐯) 𝑇 2 𝑑𝑥) + ‖𝑓‖𝐿2‖𝑇 ‖𝐿2

= ‖𝑓‖𝐿2‖𝑇 ‖𝐿2 ≤ 𝐶‖𝑓‖𝐿2‖∇𝑇 ‖𝐿2 , (2.5)

hich follows

∇𝑇 ‖𝐿2 ≤ 𝐶
𝜅
‖𝑓‖𝐿2 .

Note that in (2.5) we have used Poncaré inequality ‖𝑇 ‖𝐿2 ≤ 𝐶‖∇𝑇 ‖𝐿2 ,
where 𝐶 > 0 is a constant dependent on domain 𝛺 but not 𝑓 .

Analogously, taking the inner product of (1.1) with 𝑇𝑁−1 for a
positive even integer 𝑁 and then letting 𝑁 → ∞ we get (2.4). In fact, a
finer estimate of 𝑓 in (2.4) can be achieved by using the Stampacchia
theory. The reader is referred to [26] for details. This completes the
proof. □

To show the existence of an optimal control to problem (𝑃 ), we first
introduce the weak solution to (1.1)–(1.3).

Definition 2.3. Let 𝑓 ∈ 𝐿∞(𝛺) and 𝐯 ∈ 𝑈ad. 𝑇 ∈ 𝐻1
0 (𝛺) is said to be

a weak solution to system (1.1)–(1.3), if 𝑇 satisfies

𝜅(∇𝑇 ,∇𝜓) − (𝑇 𝐯,∇𝜓) = (𝑓, 𝜓), ∀𝜓 ∈ 𝐻1
0 (𝛺). (2.6)

Theorem 2.4. For 𝑓 ∈ 𝐿∞(𝛺), there exists an optimal velocity 𝐯 ∈ 𝑈ad
to problem (𝑃 ).

Proof. Since 𝐽 is bounded from below, we may choose a minimizing
sequence {𝐯𝑚} ⊂ 𝑈ad1 such that

lim
𝑚→∞

𝐽 (𝐯𝑚) = inf
𝐯∈𝑈ad

𝐽 (𝐯). (2.7)

This also indicates that {𝐯𝑚} is uniformly bounded in 𝑈ad, and hence
there exists a weakly convergent subsequence, still denoted by {𝐯𝑚},
such that

𝐯𝑚 → 𝐯∗ weakly in 𝐻1(𝛺), as 𝑚 → ∞, (2.8)

𝐯𝑚 → 𝐯∗ strongly in 𝐿2(𝛺), as 𝑚→ ∞. (2.9)

et {𝑇𝑚} be the solutions corresponding to {𝐯𝑚}. Then {𝑇𝑚} is uniformly
ounded in 𝐻1(𝛺) ∩ 𝐿∞(𝛺) according to (2.3) and (2.4). Thus there
xists a subsequence, still denoted by {𝑇𝑚}, satisfying

𝑚 → 𝑇 ∗ weakly in 𝐻1(𝛺), as 𝑚 → ∞, (2.10)
∗ ∞
𝑚 → 𝑇 weakly* in 𝐿 (𝛺), as 𝑚→ ∞. (2.11)
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Next we show that 𝑇 ∗ is the solution corresponding to 𝐯𝑜𝑝𝑡 by Defini-
tion 2.3. Recall that 𝐯𝑚 and 𝑇𝑚 satisfy

𝜅(∇𝑇𝑚,∇𝜓) − (𝑇𝑚𝐯𝑚,∇𝜓) = (𝑓, 𝜓), ∀𝜓 ∈ 𝐻1
0 (𝛺), (2.12)

With the help of (2.10), it is easy to pass to the limit in the first term
on the left hand of (2.12). Next we show that applying (2.8)–(2.9) and
(2.11) makes passing to the limit in the nonlinear term 𝐯𝑚𝑇𝑚 → 𝐯∗𝑇 ∗

ossible.
In fact, for the second term on the left hand of (2.12), we have for

𝜓 ∈ 𝐻1
0 (𝛺),

|

|

|

|

∫𝛺
𝑇𝑚𝐯𝑚 ⋅ ∇𝜓 𝑑𝑥 − ∫𝛺

𝑇 ∗𝐯∗ ⋅ ∇𝜓 𝑑𝑥
|

|

|

|

≤
|

|

|

|

∫𝛺
𝑇𝑚𝐯𝑚 ⋅ ∇𝜓 − 𝑇𝑚𝐯∗ ⋅ ∇𝜓 𝑑𝑥

|

|

|

|

+
|

|

|

|

∫𝛺
𝑇𝑚𝐯∗ ⋅ ∇𝜓 − 𝑇 ∗𝐯∗ ⋅ ∇𝜓 𝑑𝑥

|

|

|

|

= 𝐼1 + 𝐼2, (2.13)

where

𝐼1 ≤ ‖𝑇𝑚‖𝐿∞‖𝐯𝑚 − 𝐯∗‖𝐿2‖∇𝜓‖𝐿2 → 0 as 𝑚→ ∞,

due to (2.9) and the uniform boundedness of ‖𝑇𝑚‖𝐿∞ . Moreover, 𝐼2 → 0
due to (2.11) and 𝐯∗∇𝜓 ∈ 𝐿1(𝛺). Clearly, 𝑇 ∗ ∈ 𝐻1

0 (𝛺) is the solution
corresponding to 𝐯∗ based on Definition 2.3.

Lastly, using the weakly lower semicontinuity property of norms
yields

‖𝐯∗‖𝑈ad ≤ lim
𝑚→∞

‖𝐯𝑚‖𝑈ad and ‖𝑇 ∗ − ⟨𝑇 ∗
⟩‖𝐿2 ≤ lim

𝑚→∞
‖𝑇𝑚 − ⟨𝑇𝑚⟩‖𝐿2 .

n other words,

(𝐯∗) ≤ lim
𝑚→∞

𝐽 (𝐯𝑚) = inf
𝐯∈𝑈ad

𝐽 (𝐯),

hich indicates that 𝐯∗ is an optimal solution to problem (𝑃 ). □

3. Optimality conditions

Now we derive the first order necessary optimality conditions for
problem (𝑃 ) by using a variational inequality (cf. [23]), that is, if 𝐯 is
an optimal solution to problem (𝑃 ), then
′(𝐯) ⋅ (𝜓 − 𝐯) ≥ 0, 𝜓 ∈ 𝑈ad. (3.1)

To establish the Gâteaux differentiability of 𝐽 (𝐯), we first check the
âteaux differentiability of 𝑇 with respect to 𝐯. Let 𝑧 be the Gâteaux of

𝑇 with respect to 𝐯 in the direction of ℎ ∈ 𝑈ad, i.e., 𝑧 = 𝑇 ′(𝐯) ⋅ ℎ. Then
𝑧 satisfies
−𝜅𝛥𝑧 + 𝐯 ⋅ ∇𝑧 + ℎ ⋅ ∇𝑇 = 0,

𝑧|𝛤 = 0.
(3.2)

Using the 𝐿2-estimate as in Lemma 2.2 with the help of Lemma 2.1 and
2.3), we get

‖∇𝑧‖2
𝐿2 ≤

|

|

|

|

∫𝛺
(ℎ ⋅ ∇𝑇 )𝑧 𝑑𝑥

|

|

|

|

≤ 𝐶‖∇ℎ‖𝐿2‖∇𝑇 ‖𝐿2‖∇𝑧‖𝐿2 , (3.3)

hich implies

∇𝑧‖𝐿2 ≤ 𝐶
𝜅
‖∇ℎ‖𝐿2‖∇𝑇 ‖𝐿2 ≤ 𝐶

𝜅2
‖𝑓‖𝐿2‖∇ℎ‖𝐿2 . (3.4)

Therefore, 𝑇 (𝐯) is Gâteaux differentiable for 𝐯 ∈ 𝑈ad, so is 𝐽 (𝐯).

3.1. First order optimality conditions

Let 𝐴 = −P𝛥 be the Stokes operator with

𝐷(𝐴) = {𝐻1
0 (𝛺) ∩𝐻2(𝛺)∶ ∇ ⋅ 𝐯 = 0},

where P∶ 𝐿2(𝛺) → {𝐯 ∈ 𝐿2(𝛺)∶ ∇ ⋅ 𝐯 = 0 and 𝐯 ⋅ n|𝛤 = 0} is the Leray

rojector. Note that 𝐴 is a strictly positive and self-adjoint operator.
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oreover, define operator 𝐷∶ 𝐿2(𝛺) → 𝐿2(𝛺) by 𝐷𝑇 = 𝑇 −⟨𝑇 ⟩. Then 𝐷
s a bounded linear operator. The cost functional now can be rewritten
s

(𝐯) = 1
2
(𝐷∗𝐷𝑇 , 𝑇 ) +

𝛾
2
(𝐴𝐯, 𝐯), (3.5)

here 𝐷∗ is the 𝐿2-adjoint operator of 𝐷.

emark 3.1. Here we present some basic properties of operator 𝐷.
For any 𝑇 , 𝜓 ∈ 𝐿2(𝛺), since ⟨𝑇 ⟩ and ⟨𝜓⟩ are constants, we have

1
|𝛺|

∫𝛺
𝑇 ⟨𝜓⟩ 𝑑𝑥 = ⟨𝑇 ⟩⟨𝜓⟩ = 1

|𝛺|
∫𝛺

⟨𝑇 ⟩𝜓 𝑑𝑥.

Therefore,

(𝐷𝑇 ,𝜓) = ∫𝛺
(𝑇 − ⟨𝑇 ⟩)𝜓 𝑑𝑥 = ∫𝛺

𝑇𝜓 𝑑𝑥 − ∫𝛺
⟨𝑇 ⟩𝜓 𝑑𝑥

= ∫𝛺
𝑇𝜓 𝑑𝑥 − ∫𝛺

𝑇 ⟨𝜓⟩ 𝑑𝑥 = (𝑇 , 𝜓 − ⟨𝜓⟩) = (𝑇 ,𝐷𝜓),

hich says that 𝐷 is a self-adjoint operator on 𝐿2(𝛺), i.e., 𝐷 = 𝐷∗.
Moreover, since

⟨𝑇 − ⟨𝑇 ⟩⟩ = 1
|𝛺|

∫𝛺
(𝑇 − ⟨𝑇 ⟩) 𝑑𝑥 = ⟨𝑇 ⟩ − ⟨𝑇 ⟩ = 0,

t is straightforward to verify that
∗𝐷𝑇 = 𝐷(𝐷𝑇 ) = 𝐷(𝑇 − ⟨𝑇 ⟩) = 𝑇 − ⟨𝑇 ⟩ − ⟨𝑇 − ⟨𝑇 ⟩⟩ = 𝐷𝑇 ,

hich implies that 𝐷2 = 𝐷, and hence the operator norm ‖𝐷‖ ≤ 1.

Now let 𝑞 be the adjoint state associated with 𝑇 . Then it is easy to
erify that 𝑞 satisfies

−𝜅𝛥𝑞 − 𝐯 ⋅ ∇𝑞 = 𝐷∗𝐷𝑇 in 𝛺,
𝑞|𝛤 = 0.

(3.6)

oreover, thanks to (2.3) and ‖𝐷‖ ≤ 1, we have

‖∇𝑞‖𝐿2 ≤ 𝐶
𝜅
‖𝑇 ‖𝐿2 ≤ 𝐶

𝜅2
‖𝑓‖𝐿2 . (3.7)

The following theorem establishes the first order necessary optimal-
ity conditions for solving the optimal solution.

Theorem 3.2. Assume that 𝐯opt is an optimal solution to problem (𝑃 ). Let
(𝑇 𝑜𝑝𝑡, 𝑞𝑜𝑝𝑡) be the corresponding solution to the state equations (1.1)–(1.3)
and the adjoint system (3.6). Then (𝐯opt, 𝑇 𝑜𝑝𝑡, 𝑞𝑜𝑝𝑡) satisfies

⎧

⎪

⎨

⎪

⎩

−𝜅𝛥𝑇 + 𝐯 ⋅ ∇𝑇 = 𝑓 and 𝑇 |𝜕𝛺 = 0,
−𝜅𝛥𝑞 − 𝐯 ⋅ ∇𝑞 = 𝐷∗𝐷𝑇 and 𝑞|𝜕𝛺 = 0,
−𝛾𝛥𝐯 + ∇𝑝 = 𝑞∇𝑇 , ∇ ⋅ 𝐯 = 0 and 𝐯|𝜕𝛺 = 0.

(3.8)

Proof. In light of (3.5), (3.6), and (2.2), the Gâteaux derivative of 𝐽
becomes

𝐽 ′(𝐯) ⋅ ℎ =(𝐷∗𝐷𝑇 , 𝑧) + 𝛾(𝐴𝐯, ℎ)
=(−𝜅𝛥𝑞 − 𝐯 ⋅ ∇𝑞, 𝑧) + 𝛾(𝐴𝐯, ℎ)
=(𝑞,−𝜅𝛥𝑧 + 𝐯 ⋅ ∇𝑧) + 𝛾(𝐴𝐯, ℎ).

Using (3.2) we get

𝐽 ′(𝐯) ⋅ ℎ = −(𝑞, ℎ ⋅ ∇𝑇 ) + 𝛾(𝐴𝐯, ℎ).

If 𝐯opt is the optimal solution, then 𝐽 ′(𝐯opt) ⋅ℎ ≥ 0 for any ℎ ∈ 𝑈ad. This
yields the following optimality condition

𝛾𝐴𝐯opt − P(𝑞∇𝑇 ) = 0. (3.9)

In other words, there exists 𝑝 ∈ 𝐿2(𝛺) with ∫𝛺 𝑝 𝑑𝑥 = 0 such that

−𝛾𝛥𝐯opt + ∇𝑝 = 𝑞∇𝑇 ,

which completes the proof. □
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3.2. Second order optimality conditions

In this section, we discuss the second order optimality conditions for
characterizing the optimal velocity field. In particular, it can be shown
that the cost functional 𝐽 has a strict local minimizer when the control
weight 𝛾 > 0 is sufficiently large.

Theorem 3.3. Let (𝐯, 𝑇 , 𝑞) satisfy the first order necessary optimality
system (3.8). If 𝛾 > 0 is sufficiently large, then there exists some constant
𝛿 > 0 such that

𝐽 ′′(𝐯) ⋅ (ℎ, ℎ) ≥ 𝛿‖ℎ‖2𝑈ad , (3.10)

for ℎ ∈ 𝑈ad.

Proof. Let ℎ𝑖 ∈ 𝑈ad and 𝑧𝑖 = 𝑇 ′(𝐯) ⋅ ℎ𝑖, 𝑖 = 1, 2. Then we have

−𝜅𝛥𝑧𝑖 + 𝐯 ⋅ ∇𝑧𝑖 + ℎ𝑖 ⋅ ∇𝑇 = 0 in 𝛺,
𝑧𝑖|𝛤 = 0.

oreover, let 𝑍 = 𝑧′1(𝐯) ⋅ ℎ2. Then 𝑍 satisfies

𝜅𝛥𝑍 + ℎ2 ⋅ ∇𝑧1 + 𝐯 ⋅ ∇𝑍 + ℎ1 ⋅ ∇𝑧2 = 0 in 𝛺, (3.11)
𝑍|𝛤 = 0.

Again applying an 𝐿2-estimate for 𝑍 and using (3.4), we can easily
verify that

‖∇𝑍‖𝐿2 ≤ 𝐶
𝜅
(‖∇ℎ2‖𝐿2‖∇𝑧1‖𝐿2 + ‖∇ℎ1‖𝐿2‖∇𝑧2‖𝐿2 )

≤ 𝐶
𝜅3

‖𝑓‖𝐿2‖∇ℎ1‖𝐿2‖∇ℎ2‖𝐿2 , (3.12)

which implies that 𝑇 (𝐯) is twice Gâteaux differentiable for 𝐯 ∈ 𝑈ad, so
s 𝐽 (𝐯).
Now differentiating 𝐽 ′(𝐯) ⋅ ℎ1 once again in the direction ℎ2 ∈ 𝑈ad

ives
′′(𝐯) ⋅ (ℎ1, ℎ2) = (𝐷∗𝐷𝑧2, 𝑧1) + (𝐷∗𝐷𝑇 ,𝑍) + 𝛾(𝐴ℎ2, ℎ1). (3.13)

To further analyze the second term involving 𝑍, we take the inner
product of (3.11) with 𝑞 and apply (2.2). We get

−𝜅(𝑍, 𝛥𝑞) − (𝑧1, ℎ2 ⋅ ∇𝑞) − (𝑍, 𝐯 ⋅ ∇𝑞) − (𝑧2, ℎ1 ⋅ ∇𝑞) = 0.

With the help of the adjoint equation (3.6), we obtain

(𝑧1, ℎ2 ⋅ ∇𝑞) + (𝑧2, ℎ1 ⋅ ∇𝑞) = (𝑍,𝐷∗𝐷𝑇 ).

Therefore,

𝐽 ′′(𝐯) ⋅ (ℎ1, ℎ2) = (𝐷∗𝐷𝑧2, 𝑧1) + (𝑧1, ℎ2 ⋅ ∇𝑞) + (𝑧2, ℎ1 ⋅ ∇𝑞) + 𝛾(𝐴ℎ2, ℎ1).

Setting ℎ1 = ℎ2 = ℎ and 𝑧1 = 𝑧2 = 𝑧 = 𝑇 ′(𝐯) ⋅ ℎ follows

𝐽 ′′(𝐯) ⋅ (ℎ, ℎ) = ‖𝐷𝑧‖2
𝐿2 + 2(𝑧, ℎ ⋅ ∇𝑞) + 𝛾‖𝐴1∕2ℎ‖2

𝐿2 . (3.14)

Furthermore, by (2.1), (3.4) and (3.7), we get

|∫𝛺
𝑧ℎ ⋅ ∇𝑞 𝑑𝑥| ≤ 𝐶‖∇𝑧‖𝐿2‖∇ℎ‖𝐿2‖∇𝑞‖𝐿2 ≤ 𝐶

𝜅4
‖𝑓‖2

𝐿2‖𝐴
1∕2ℎ‖2

𝐿2

and

‖𝐷𝑧‖𝐿2 ≤ 𝐶‖∇𝑧‖𝐿2 ≤ 𝐶
𝜅2

‖𝑓‖𝐿2‖𝐴1∕2ℎ‖𝐿2 .

onsequently,

𝐽 ′′(𝐯) ⋅ (ℎ, ℎ)| ≤ 𝐶
𝜅4

‖𝑓‖2
𝐿2‖𝐴

1∕2ℎ‖2
𝐿2 + 𝛾‖𝐴

1∕2ℎ‖2
𝐿2

= ( 𝐶
𝜅4

‖𝑓‖2
𝐿2 + 𝛾)‖𝐴

1∕2ℎ‖2
𝐿2 (3.15)

and

𝐽 ′′(𝐯) ⋅ (ℎ, ℎ) ≥ −2|(𝑧, ℎ ⋅ ∇𝑞)| + 𝛾‖𝐴1∕2ℎ‖2
𝐿2 = (𝛾 − 𝐶

𝜅4
‖𝑓‖2

𝐿2 )‖𝐴
1∕2ℎ‖2

𝐿2 .

(3.16)
51
herefore, if 𝛾 is large enough such that

− 𝐶
𝜅4

‖𝑓‖2
𝐿2 ≥ 𝛿 > 0, (3.17)

then (3.10) holds. □

Lemma 3.4. There exists a constant 𝐶 > 0 such that

|(𝐽 ′′(𝐯1) − 𝐽 ′′(𝐯2)) ⋅ (ℎ, ℎ)| ≤
𝐶
𝜅5

‖𝐯1 − 𝐯2‖𝐻1‖𝑓‖2𝐿2‖ℎ‖
2
𝐻1 , (3.18)

or any ℎ, 𝐯𝑖 ∈ 𝑈ad, 𝑖 = 1, 2.

Proof. Let ℎ, 𝐯𝑖 ∈ 𝑈ad and 𝑧𝑖 = 𝑇 ′
𝑖 (𝐯𝑖) ⋅ ℎ, 𝑖 = 1, 2. Here 𝑇𝑖 is the

emperature corresponding to 𝐯𝑖. Then 𝑧𝑖 satisfies

−𝜅𝛥𝑧𝑖 + 𝐯𝑖 ⋅ ∇𝑧𝑖 + ℎ ⋅ ∇𝑇𝑖 = 0 in 𝛺,
𝑧𝑖|𝛤 = 0.

urther let 𝑧̃ = 𝑧1 − 𝑧2, 𝐯̃ = 𝐯1 − 𝐯2 and 𝑇̃ = 𝑇1 − 𝑇2. Then

−𝜅𝛥𝑧̃ + 𝐯̃ ⋅ ∇𝑧1 + 𝐯2 ⋅ ∇𝑧̃ + ℎ ⋅ ∇𝑇̃ = 0 in 𝛺,
𝑧̃|𝛤 = 0.

(3.19)

y (1.1)–(1.3) and (2.3) it is easy to check that

𝑇̃ ‖𝐻1 ≤ 𝐶
𝜅
‖𝐯̃‖𝐻1‖𝑇 ‖𝐻1 ≤ 𝐶

𝜅2
‖𝐯̃‖𝐻1‖𝑓‖𝐿2 . (3.20)

oreover, applying an 𝐿2-estimate to (3.19) yields

‖∇𝑧̃‖𝐿2 ≤ 𝐶
𝑘
(‖𝐯̃‖𝐻1‖𝑧1‖𝐻1 + ‖ℎ‖𝐻1‖𝑇̃ ‖𝐻1 )

≤ 𝐶
𝑘

(

‖𝐯̃‖𝐻1
𝐶
𝜅2

‖𝑓‖𝐿2‖ℎ‖𝐻1 + ‖ℎ‖𝐻1
𝐶
𝜅2

‖𝐯̃‖𝐻1‖𝑓‖𝐿2

)

≤ 𝐶
𝜅3

‖𝐯̃‖𝐻1‖𝑓‖𝐿2‖ℎ‖𝐻1 . (3.21)

Now let 𝑍𝑖 = 𝑧′𝑖(𝐯𝑖) ⋅ ℎ, 𝑖 = 1, 2,. Then

−𝜅𝛥𝑍𝑖 + 2ℎ ⋅ ∇𝑧𝑖 + 𝐯𝑖 ⋅ ∇𝑍𝑖 = 0 in 𝛺,
𝑍𝑖|𝛤 = 0.

n light of (3.12), we have

∇𝑍𝑖‖𝐿2 ≤ 𝐶
𝜅3

‖𝑓‖𝐿2‖∇ℎ‖2𝐿2 . (3.22)

Furthermore, let 𝑍̃ = 𝑍1 −𝑍2. Then

−𝜅𝛥𝑍̃ + 2ℎ ⋅ ∇𝑧̃ + 𝐯̃ ⋅ ∇𝑍1 + 𝐯2 ⋅ ∇𝑍̃ = 0 in 𝛺,
𝑍̃|𝛤 = 0.

(3.23)

gain applying an 𝐿2-estimate to (3.23) and using (3.21)–(3.22) follow

∇𝑍̃‖𝐿2 ≤ 𝐶
𝜅
(2‖ℎ‖𝐻1‖𝑧̃‖𝐻1 + ‖𝐯̃‖𝐻1‖𝑍1‖𝐻1 )

≤ 𝐶
𝜅

(

2‖ℎ‖𝐻1
𝐶
𝜅3

‖𝐯̃‖𝐻1‖𝑓‖𝐿2‖ℎ‖𝐻1 + ‖𝐯̃‖𝐻1
𝐶
𝜅3

‖𝑓‖𝐿2‖ℎ‖2𝐻1

)

≤ 𝐶
𝜅4

‖𝐯̃‖𝐻1‖𝑓‖𝐿2‖ℎ‖2𝐻1 . (3.24)

Finally, using (3.13) together with (2.3), (3.4), (3.21)–(3.22), (3.24)
and ‖𝐷‖ ≤ 1, we get

|(𝐽 ′′(𝐯1) − 𝐽 ′′(𝐯2)) ⋅ (ℎ, ℎ)| = ‖𝐷𝑧1‖
2
𝐿2 + (𝐷∗𝐷𝑇 ,𝑍1) + 𝛾‖𝐴1∕2ℎ‖2

𝐿2

− (‖𝐷𝑧2‖2𝐿2 + (𝐷∗𝐷𝑇 ,𝑍2) + 𝛾‖𝐴1∕2ℎ‖2
𝐿2 )

= (‖𝐷𝑧1‖2𝐿2 − ‖𝐷𝑧2‖
2
𝐿2 ) + (𝐷∗𝐷𝑇 ,𝑍1 −𝑍2)

≤ (‖𝑧1‖𝐿2 + ‖𝑧2‖𝐿2 )‖𝑧1 − 𝑧2‖𝐿2 + ‖𝑇 ‖𝐿2‖𝑍1 −𝑍2‖𝐿2

≤ 𝐶
𝜅2

‖𝑓‖𝐿2‖ℎ‖𝐻1
𝐶
𝜅3

‖𝐯̃‖𝐻1‖𝑓‖𝐿2‖ℎ‖𝐻1

+ 𝐶
𝜅
‖𝑓‖𝐿2

𝐶
𝜅4

‖𝐯̃‖𝐻1‖𝑓‖𝐿2‖ℎ‖2𝐻1

≤ 𝐶
𝜅5

‖𝐯̃‖𝐻1‖𝑓‖2𝐿2‖ℎ‖
2
𝐻1 ,

which establishes the desired result. □

Now we are in a position to address the second order sufficient
conditions.
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Corollary 3.5. Let 𝐯∗ satisfy the optimality condition (3.9). If 𝛾 > 0 is
sufficiently large, then there exist 𝜖, 𝛿0 > 0 such that the quadratic growth
ondition

(𝐯∗) + 𝛿0‖𝐯 − 𝐯∗‖2𝑈ad ≤ 𝐽 (𝐯) (3.25)

holds for all 𝐯 ∈ 𝑈ad satisfying ‖𝐯 − 𝐯∗‖𝐻1 ≤ 𝜖. In other words, 𝐽 has a
local minimum at 𝐯∗.

Proof. To see the gap between 𝐽 (𝐯∗) and 𝐽 (𝐯) for 𝐯 ∈ 𝑈ad satisfying
‖𝐯 − 𝐯∗‖𝐻1 ≤ 𝜖, we apply a Taylor expansion of 𝐽 (𝐯) around 𝐯∗. With
he help of Theorem 3.3 and setting ℎ = 𝐯− 𝐯∗ in Lemma 3.4, we have
or 𝜉 ∈ (0, 1),

(𝐯) − 𝐽 (𝐯∗) = 𝐽 ′(𝐯∗) ⋅ (𝐯 − 𝐯∗) + 1
2
𝐽 ′′(𝐯∗ + 𝜉(𝐯 − 𝐯∗)) ⋅ (𝐯 − 𝐯∗, 𝐯 − 𝐯∗)

= 1
2
𝐽 ′′(𝐯∗) ⋅ (𝐯 − 𝐯∗, 𝐯 − 𝐯∗)

+ 1
2
(𝐽 ′′(𝐯∗ + 𝜉(𝐯 − 𝐯∗)) − 𝐽 ′′(𝐯∗)) ⋅ (𝐯 − 𝐯∗, 𝐯 − 𝐯∗)

≥ 1
2
𝛿‖𝐯 − 𝐯∗‖2

𝐻1 −
1
2
𝐶
𝜅5

‖𝜉(𝐯 − 𝐯∗)‖𝐻1‖𝑓‖2𝐿2‖𝐯 − 𝐯∗‖2
𝐻1

= 1
2

(

𝛿 − 𝐶
𝜅5

‖𝜉(𝐯 − 𝐯∗)‖𝐻1‖𝑓‖2𝐿2

)

‖𝐯 − 𝐯∗‖2
𝐻1

≥ 1
2

(

𝛿 − 𝐶𝜖
𝜅5

‖𝑓‖2
𝐿2

)

‖𝐯 − 𝐯∗‖2
𝐻1 .

Therefore, if letting 0 < 𝛿0 ≤ 1
2 (𝛿 −

𝐶𝜖
𝜅5

‖𝑓‖2
𝐿2 ) or 𝛾 ≥ 2𝛿0 +

𝐶
𝜅4
‖𝑓‖2

𝐿2 +
𝐶𝜖
𝜅5

‖𝑓‖2
𝐿2 for some constants 𝛿0, 𝐶 > 0, then (3.25) holds, which

completes the proof. □

4. Numerical implementation

In this section, we shall present a detailed numerical implementa-
tion for solving the optimality system (3.8) based on a 2D problem.
he following lemma establishes the relation between the diffusivity
oefficient 𝜅 and the control weight parameter 𝛾, which indicates that
t is sufficient to test the numerical examples for 𝜅 = 1. The results for
ther 𝜅 values can then be obtained by this relation.

emma 4.1. Let [𝑇𝛾 , 𝑞𝛾 , 𝐯𝛾 , 𝑝𝛾 ] be the solution to (3.8) corresponding
= 1 and 𝛾. Let [𝑇𝜅,𝛾̃ , 𝑞𝜅,𝛾̃ , 𝐯𝜅,𝛾̃ , 𝑝𝜅,𝛾̃ ] be the solution to (3.8) corresponding
and 𝛾̃ where 𝛾̃ = 1

𝜅4
𝛾. Then the following relation holds:

𝜅,𝛾̃ =
1
𝜅
𝑇𝛾 , 𝑞𝜅,𝛾̃ =

1
𝜅2
𝑞𝛾 , 𝐯𝜅,𝛾̃ = 𝜅𝐯𝛾 , and 𝑝𝜅,𝛾̃ =

1
𝜅3
𝑝𝛾 .

roof. Based on (3.8), it is straightforward to verify that

𝜅𝛥𝑇𝜅,𝛾̃ + 𝐯𝜅,𝛾̃ ⋅ ∇𝑇𝜅,𝛾̃ = −𝛥𝑇𝛾 + 𝐯𝛾 ⋅ ∇𝑇𝛾 = 𝑓,

− 𝜅𝛥𝑞𝜅,𝛾̃ − 𝐯𝜅,𝛾̃ ⋅ ∇𝑞𝜅,𝛾̃ =
1
𝜅
(

−𝛥𝑞𝛾 − 𝐯𝛾 ⋅ ∇𝑞𝛾
)

= 1
𝜅
𝐷∗𝐷𝑇𝛾 = 𝐷∗𝐷𝑇𝜅,𝛾̃ ,

nd

𝛾̃𝛥𝐯𝜅,𝛾̃ + ∇𝑝𝜅,𝛾̃ =
1
𝜅3

(

−𝛾𝛥𝐯𝛾 + ∇𝑝𝛾
)

= 1
𝜅3

(𝑞𝛾∇𝑇𝛾 ) = 𝑞𝜅,𝛾̃∇𝑇𝜅,𝛾̃ .

his completes the proof. □

As a byproduct of the above lemma, we also have the following
esult

(𝜅, 𝛾̃) = 1
𝜅2
𝐽 (𝛾),

and therefore,
log(𝐽 (𝜅, 𝛾̃1)∕𝐽 (𝜅, 𝛾̃2))

log(𝛾̃1∕𝛾̃2)
=

log(𝐽 (𝛾1)∕𝐽 (𝛾2))
log(𝛾1∕𝛾2)

.
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4.1. Finite element formulation

The weak formulation for the nonlinear system (3.8) is to find
∈ 𝐻1

0 (𝛺), 𝑞 ∈ 𝐻1
0 (𝛺), 𝐯 ∈ [𝐻1

0 (𝛺)]2 and 𝑝 ∈ 𝐿2(𝛺) such that:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝜅∇𝑇 ,∇𝜙) + (𝐯 ⋅ ∇𝑇 , 𝜙) = (𝑓, 𝜙), ∀𝜙 ∈ 𝐻1
0 ,

(𝜅∇𝑞,∇𝜓) − (𝐯 ⋅ ∇𝑞, 𝜓) − (𝐷𝑇 , 𝜙) = 0, ∀𝜓 ∈ 𝐻1
0 ,

(𝛾∇𝐯ℎ,w) − (𝑝,∇ ⋅w) − (𝑞∇𝑇 ,w) = 0, ∀w ∈ [𝐻1
0 (𝛺)]2,

(∇ ⋅ 𝐯, 𝜃) = 0, ∀ 𝜃 ∈ 𝐿2(𝛺).

(4.1)

e aim to use finite element method to approximate the system.
et ℎ be a partition of the domain 𝛺 consisting of triangles in two
imensions. For every element 𝜏 ∈ ℎ, we denote by ℎ𝜏 its diameter
nd define the mesh size ℎ = max𝜏∈ℎ ℎ𝜏 for ℎ. On the mesh ℎ, we
efine the continuous finite element spaces as follows,

𝑉ℎ = {𝑣 ∈ 𝐻1(𝛺) ∶ 𝑣|𝜏 ∈ P2(𝜏),∀𝜏 ∈ ℎ},

𝐕ℎ = {𝐯 ∈ [𝐻1(𝛺)]2 ∶ 𝐯|𝜏 ∈ [P2(𝜏)]2,∀𝜏 ∈ ℎ},

ℎ = {𝑞 ∈ 𝐻1(𝛺) ∩ 𝐿2
0(𝛺) ∶ 𝑞|𝜏 ∈ P1(𝜏),∀𝜏 ∈ ℎ}.

ere P𝓁 denotes the space of polynomials with degree less than or equal
o 𝓁 and 𝐿2

0(𝛺) ∶= {𝜃 ∈ 𝐿2(𝛺) ∶ ∫𝛺 𝜃𝑑x = 0}. The corresponding
inite element spaces with homogeneous Dirichlet boundary condition
re denoted by 𝑉 0

ℎ and 𝐕0
ℎ. For the Stokes solver, we apply the inf–sup

table Taylor–Hood element [27,28].
Below we introduce the bilinear and trilinear forms. For 𝜙, 𝜓 ∈ 𝑉ℎ,

,w ∈ 𝐕ℎ, 𝜃 ∈ 𝑄ℎ, let

(𝜙, 𝜓) =
∑

𝜏∈ℎ
∫𝜏
𝜅∇𝜙 ⋅ ∇𝜓𝑑x,

(w;𝜙, 𝜓) =
∑

𝜏∈ℎ
∫𝜏

(w ⋅ ∇𝜙)𝜓𝑑x,

(𝐯,w) =
∑

𝜏∈ℎ
∫𝜏
𝛾∇𝐯 ∶ ∇w𝑑x,

(w, 𝜃) =
∑

𝜏∈ℎ
∫𝜏

(∇ ⋅w)𝜃𝑑x.

Now, we are ready to propose the finite element schemes for system
3.8) with 𝐷∗𝐷𝑇 = 𝑇 − ⟨𝑇 ⟩. The finite element scheme for the system
3.8) is to solve: 𝑇ℎ ∈ 𝑉 0

ℎ , 𝑞ℎ ∈ 𝑉 0
ℎ , 𝐯ℎ ∈ 𝐕0

ℎ and 𝑝ℎ ∈ 𝑄ℎ, such that:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝑇ℎ, 𝜙) − (𝐯ℎ; 𝑇ℎ, 𝜙) = (𝑓, 𝜙), ∀𝜙 ∈ 𝑉 0
ℎ ,

(𝑞ℎ, 𝜓) + (𝐯ℎ; 𝑞ℎ, 𝜓) − (𝑇ℎ − ⟨𝑇ℎ⟩, 𝜓) = 0, ∀𝜓 ∈ 𝑉 0
ℎ ,

(𝐯ℎ,w) − (w, 𝑝ℎ) − (𝑞ℎ∇𝑇ℎ,w) = 0, ∀w ∈ 𝐕0
ℎ,

(𝐯ℎ, 𝜃) = 0, ∀ 𝜃 ∈ 𝑄ℎ.

(4.2)

.2. Picard and Newton iterative solvers

Note that (4.2) is a nonlinear system involving a Stokes problem.
o tackle the nonlinearity, we combine both the Picard and Newton
terative solvers to achieve the required computational efficiency.
For the Picard iterative method, we seek to find (𝑇 𝑘+1, 𝑞𝑘+1, 𝐯𝑘+1,

𝑘+1) based on the previously given approximation (𝑇 𝑘, 𝑞𝑘, 𝐯𝑘, 𝑝𝑘). The
dea simply replaces the unknown nonlinear terms by the known solu-
ions in the previous step. The nonlinear system can be linearized as
ollows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−𝜅𝛥𝑇 𝑘+1 + 𝐯𝑘 ⋅ ∇𝑇 𝑘+1 = 𝑓, and 𝑇 𝑘+1|𝜕𝛺 = 0,

−𝜅𝛥𝑞𝑘+1 − 𝐯𝑘 ⋅ ∇𝑞𝑘+1 = 𝑇 𝑘+1 − 1
|𝛺|

∫𝛺 𝑇
𝑘+1𝑑x, and 𝑞𝑘+1|𝜕𝛺 = 0,

−𝛾𝛥𝐯𝑘+1 + ∇𝑝𝑘+1 = 𝑞𝑘+1∇𝑇 𝑘+1, ∇ ⋅ 𝐯𝑘+1 = 0, and 𝐯𝑘+1|𝜕𝛺 = 0.

(4.3)
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N
m
(

l

The finite element solution to (4.3) is then to find (𝑇 𝑘+1ℎ , 𝑞𝑘+1ℎ , 𝐯𝑘+1ℎ , 𝑝𝑘+1ℎ )
∈ 𝑉 0

ℎ × 𝑉 0
ℎ × 𝐕0

ℎ ×𝑄ℎ such that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝑇 𝑘+1ℎ , 𝜙) − (𝐯𝑘ℎ; 𝑇
𝑘+1
ℎ , 𝜙) = (𝑓, 𝜙), ∀𝜙 ∈ 𝑉 0

ℎ ,
(𝑞𝑘+1ℎ , 𝜓) + (𝐯𝑘ℎ; 𝑞

𝑘+1
ℎ , 𝜓) − (𝑇 𝑘+1ℎ − ⟨𝑇 𝑘+1ℎ ⟩, 𝜓) = 0, ∀𝜓 ∈ 𝑉 0

ℎ ,
(𝐯𝑘+1ℎ ,w) − (w, 𝑝𝑘+1ℎ ) − (𝑞𝑘+1ℎ ∇𝑇 𝑘+1ℎ ,w) = 0, ∀w ∈ 𝐕0

ℎ,
(𝐯𝑘+1ℎ , 𝜃) = 0, ∀ 𝜃 ∈ 𝑄ℎ.

(4.4)

ote that the system (4.4) can be solved sequentially. For the Picard’s
ethod in the finite element scheme, we set the following initial guess:
𝑇 0
ℎ , 𝑞

0
ℎ, 𝐯

0
ℎ, 𝑝

0
ℎ) such that

⎧

⎪

⎨

⎪

⎩

𝐯0ℎ = 0, 𝑝0ℎ = 0,

(𝑇 0
ℎ , 𝜙) = (𝑓, 𝜙), ∀𝜙 ∈ 𝑉 0

ℎ ,

(𝑞0ℎ, 𝜓) = (𝑇 0
ℎ − ⟨𝑇 0

ℎ ⟩, 𝜓) = 0, ∀𝜓 ∈ 𝑉 0
ℎ .

(4.5)

We now derive the formulation for the Newton’s method in the PDE
evel. Given an approximation to the solution field, {𝑇 𝑘, 𝑞𝑘, 𝐯𝑘, 𝑝𝑘}, we
aim to find a perturbation {𝛿𝑇 , 𝛿𝑞, 𝛿𝐯, 𝛿𝑝} so that

{𝑇 𝑘+1, 𝑞𝑘+1, 𝐯𝑘+1, 𝑝𝑘+1} = {𝑇 𝑘, 𝑞𝑘, 𝐯𝑘, 𝑝𝑘} + {𝛿𝑇 , 𝛿𝑞, 𝛿𝐯, 𝛿𝑝}.

and that

⎧

⎪

⎨

⎪

⎩

−𝜅𝛥𝑇 𝑘+1 + 𝐯𝑘+1 ⋅ ∇𝑇 𝑘+1 = 𝑓,∀𝑥 ∈ 𝛺, and 𝑇 𝑘+1|𝜕𝛺 = 0,

−𝜅𝛥𝑞𝑘+1 − 𝐯𝑘+1 ⋅ ∇𝑞𝑘+1 − 𝑇 𝑘+1 + ⟨𝑇 𝑘+1⟩ = 0,∀𝑥 ∈ 𝛺 and 𝑞𝑘+1|𝜕𝛺 = 0,

−𝛾𝛥𝐯𝑘+1 + ∇𝑝𝑘+1 − 𝑞𝑘+1∇𝑇 𝑘+1 = 0, ∇ ⋅ 𝐯𝑘+1|𝛺 = 0 ∀𝑥 ∈ 𝛺 and 𝐯𝑘+1|𝜕𝛺 = 0.

This above PDE system is still a nonlinear system. The idea to obtain a
linear system is to assume that 𝛿⋅ quantities are sufficiently small so that
we can linearize the problem with respect to those 𝛿⋅ quantities using
Taylor’s expansion. Eventually we obtain the following linear system
by dropping the higher order nonlinear terms in terms of 𝛿⋅ quantities.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−𝜅𝛥𝑇 𝑘+1 + 𝐯𝑘+1 ⋅ ∇𝑇 𝑘 + 𝐯𝑘 ⋅ ∇𝑇 𝑘+1 = 𝑓 + 𝐯𝑘 ⋅ ∇𝑇 𝑘, 𝑇 𝑘+1|𝜕𝛺 = 0,

−𝜅𝛥𝑞𝑘+1 − 𝐯𝑘+1 ⋅ ∇𝑞𝑘 − 𝐯𝑘 ⋅ ∇𝑞𝑘+1 − 𝑇 𝑘+1 + ⟨𝑇 𝑘+1⟩ = −𝐯𝑘 ⋅ ∇𝑞𝑘, 𝑞𝑘+1|𝜕𝛺 = 0,

−𝛾𝛥𝐯𝑘+1 + ∇𝑝𝑘+1 − 𝑞𝑘+1∇𝑇 𝑘 − 𝑞𝑘∇𝑇 𝑘+1 = −𝑞𝑘∇𝑇 𝑘, 𝐯𝑘+1|𝜕𝛺 = 0

∇ ⋅ 𝐯𝑘+1 = 0.

(4.6)

The finite element solution to (4.6) is then to find (𝑇 𝑘+1ℎ , 𝑞𝑘+1ℎ , 𝐯𝑘+1ℎ , 𝑝𝑘+1ℎ )
∈ 𝑉 0

ℎ × 𝑉 0
ℎ × 𝐕0

ℎ ×𝑄ℎ such that

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(𝑇 𝑘+1ℎ , 𝜙) + (𝐯𝑘ℎ; 𝑇
𝑘+1
ℎ , 𝜙) + (𝐯𝑘+1ℎ ; 𝑇 𝑘ℎ , 𝜙) = (𝑓, 𝜙) + (𝐯𝑘ℎ; 𝑇

𝑘
ℎ , 𝜙),

∀𝜙 ∈ 𝑉 0
ℎ ,

(𝑞𝑘+1ℎ , 𝜓) − (𝐯𝑘ℎ; 𝑞
𝑘+1
ℎ , 𝜓) − (𝐯𝑘+1ℎ ; 𝑞𝑘ℎ , 𝜓) − (𝑇 𝑘+1ℎ − ⟨𝑇 𝑘+1ℎ ⟩, 𝜓) = −(𝐯𝑘ℎ; 𝑞

𝑘
ℎ , 𝜓),

∀𝜓 ∈ 𝑉 0
ℎ ,

(𝐯𝑘+1ℎ ,w) − (w, 𝑝𝑘+1ℎ ) − (𝑞𝑘ℎ∇𝑇
𝑘+1
ℎ ,w) − (𝑞𝑘+1ℎ ∇𝑇 𝑘ℎ ,w) = −(𝑞𝑘ℎ∇𝑇

𝑘
ℎ ,w),

∀w ∈ 𝐕0
ℎ,

(𝐯𝑘+1ℎ , 𝜃) = 0, ∀ 𝜃 ∈ 𝑄ℎ.

(4.7)

Remark 4.2. Comparing to Picard’s method, Newton’s method has a
faster convergence rate. However, its initial condition should be chosen
wisely. For Picard’s method, our numerical experiments show that it
can yield a satisfactory initial solution for the Newton’s method very
quickly. This suggests that we can use Picard’s method at the first
stage to obtain a good initial guess and then apply Newton’s method to
obtain the converged numerical solutions. The numerical experiments
presented in the rest of this work are conducted using the combined
Picard–Newton solver.
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4.3. Numerical algorithm

In this subsection, we summarize our numerical method in the
following algorithm.

Algorithm 4.1 Finite Element Scheme for system (3.8)

• Choose values in 𝜖1, 𝜖2, 𝑛1, and 𝑛2.
• Set the initial guess (𝑇 0

ℎ , 𝑞
0
ℎ, 𝐯

0
ℎ, 𝑝

0
ℎ) as in (4.5).

• Compute the cost functional:

𝐽0 =
𝛾‖∇𝐯0ℎ‖

2

2
+

‖𝑇 0
ℎ − ⟨𝑇 0

ℎ ⟩‖
2

2
. (4.8)

• For 𝑘 = 0,… , 𝑛1, perform the Picard iteration as below:

– Solve (𝑇 𝑘+1ℎ , 𝑞𝑘+1ℎ , 𝐯𝑘+1ℎ , 𝑝𝑘+1ℎ ) ∈ 𝑉 0
ℎ × 𝑉 0

ℎ × 𝐕0
ℎ ×𝑄ℎ for (4.4).

– Compute the cost functional:

𝐽𝑘 =
𝛾‖∇𝐯𝑘ℎ‖

2

2
+

‖𝑇 𝑘ℎ − ⟨𝑇 𝑘ℎ ⟩‖
2

2
. (4.9)

– If
|𝐽𝑘 − 𝐽𝑘−1|

𝐽𝑘−1
< 𝜖1, STOP and OUTPUT 𝑇 𝑘ℎ , 𝑞

𝑘
ℎ , 𝐯

𝑘
ℎ, and 𝑝

𝑘
ℎ.

• Set (𝑇 0
ℎ , 𝑞

0
ℎ, 𝐯

0
ℎ, 𝑝

0
ℎ) = (𝑇 𝑘ℎ , 𝑞

𝑘
ℎ , 𝐯

𝑘
ℎ, 𝑝

𝑘
ℎ).

• For 𝑘 = 0,… , 𝑛2, perform the Newton’s iterations as below:

– Solve (𝑇 𝑘+1ℎ , 𝑞𝑘+1ℎ , 𝐯𝑘+1ℎ , 𝑝𝑘+1ℎ ) ∈ 𝑉 0
ℎ × 𝑉 0

ℎ × 𝐕0
ℎ ×𝑄ℎ for (4.7).

– Compute the cost functional:

𝐽𝑘 =
𝛾‖∇𝐯𝑘ℎ‖

2

2
+

‖𝑇 𝑘ℎ − ⟨𝑇 𝑘ℎ ⟩‖
2

2
. (4.10)

– If
|𝐽𝑘 − 𝐽𝑘−1|

𝐽𝑘−1
< 𝜖2, STOP and OUTPUT 𝑇 𝑘ℎ , 𝑞

𝑘
ℎ , 𝐯

𝑘
ℎ, and 𝑝

𝑘
ℎ.

5. Numerical experiments

In this section, we shall present several numerical experiments
by employing different heat source profiles to validate the proposed
numerical schemes in Algorithm 4.1. The domain for all test problems
is set to be the unit square, i.e., 𝛺 = (0, 1)×(0, 1). Thanks to Lemma 4.1,
it is sufficient to test for one 𝜅 value. Without loss of generality,
we perform all our numerical tests only for 𝜅 = 1. The numerical
experiments are performed using the FENICS package [29] on the
uniform triangular mesh with ℎ = 1∕100.

Recall that as proven in Corollary 3.5, a local minimizer can be
obtained if the control weight 𝛾 is sufficiently large. However, a large
control weight may result in a minor convective effect. Our first ex-
ample shows that if 𝛾 is set to be too large, ‘‘doing nothing’’ might be
optimal.

Example 5.1. We first test a symmetric heat distribution. Let

𝑓 (𝑥, 𝑦) = 2𝜋2 sin(𝜋𝑥) sin(𝜋𝑦).

Set 𝜅 = 1 and 𝛾 = 1. The stop criterion is met at the ninth iteration
as shown in Fig. 1, where Fig. 1a. presents the optimal temperature
distribution and Fig. 1b. presents the cost functional values with respect
to 𝛾 for each iteration. However, the cost functional does not seem
to decay at all. In this case, 𝛾 = 1 may be too large so that the
convective effect becomes minor and hence, the thermal diffusion plays
a dominant role. Based on this observation, we proceed to test smaller
𝛾 values and note that convection becomes effective when 𝛾 ∈ [E−7,
E−5]. Using the optimal convection-cooling design, the cost functional
value can be reduced by about 40% for the current heat source term.
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Fig. 1. Example 5.1: Plots of temperature 𝑇ℎ of 𝜅 = 1.0 and 𝛾 = 1.0 for (a) Optimal heat distribution 𝑇 9
ℎ ; and (b) Convergence profiles for cost functional.
Fig. 2. Example 5.1: Plots of temperature 𝑇ℎ of 𝜅 = 1.0 for (a) Initial heat distribution 𝑇 0
ℎ ; and with (b) 𝛾 = 3.6E−6; (c) 𝛾 = 8.5E−7; (d) 𝛾 = 3.9E−7.
𝑟

T
o

The results are illustrated in Figs. 2–4. Moreover, we also test how
the cost functional, the variance of the temperature, and the velocity
change with respect to different 𝛾. The results are plotted in Fig. 5a. The
corresponding convergence rates are plotted, respectively, in Fig. 5b.,
which are computed using the following standard formulas

𝑟𝐽 (𝛾𝑖) =
ln(𝐽 (𝛾𝑖+1)∕𝐽 (𝛾𝑖))

ln(𝛾𝑖+1∕𝛾𝑖)
(5.1)

𝑟𝑇 (𝛾𝑖) =
ln(‖𝑇 (𝛾𝑖+1) − ⟨𝑇 (𝛾𝑖+1)⟩‖𝐿2∕‖𝑇 (𝛾𝑖) − ⟨𝑇 (𝛾𝑖)⟩‖𝐿2 )

, and (5.2)

ln(𝛾𝑖+1∕𝛾𝑖) s
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𝐯(𝛾𝑖) =
ln(𝛾𝑖+1‖∇𝐯(𝛾𝑖+1)‖2𝐿2∕𝛾𝑖‖∇𝐯(𝛾𝑖)‖

2
𝐿2 )

ln(𝛾𝑖+1∕𝛾𝑖)
. (5.3)

The initial heat distribution 𝑇 0
ℎ corresponding to 𝐯 = 0 is shown

in Fig. 2a. The optimal heat distribution 𝑇ℎ corresponding to 𝛾 =
3.6E−6, 8.5E−7, and 3.9E−7 are plotted in Fig. 2b-d. For the initial
heat distribution, one can observe that the maximum of 𝑇 0

ℎ is 1.0.
hanks to advection effect, the ‘‘hot’’ region, which is at the center
f the domain initially, is now spread out, but still inherits certain
ymmetric pattern. As a result, the heat distribution over the entire
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Fig. 3. Example 5.1: Plots of velocity field 𝐯ℎ for 𝜅 = 1.0 and (a) 𝛾 = 3.6E−6; (b) 𝛾 = 8.5E−7; (c) 𝛾 = 3.9E−7. Here, the color illustrates the magnitude of velocity 𝐯ℎ and the vector

lots the field of 𝐯ℎ.
Fig. 4. Example 5.1: Plots of streamlines of 𝐯ℎ for 𝜅 = 1.0 and (a) 𝛾 = 3.6E−6; (b) 𝛾 = 8.5E−7; (c) 𝛾 = 3.9E−7. Here, the color illustrates the magnitude of velocity 𝐯ℎ and the

urve plots the streamline of 𝐯ℎ.
Fig. 5. Example 5.1: Illustration of results for 𝜅 = 1.0 (a) Plot of profiles in the cost functional with respect to 𝛾 (here ‖𝑇 0
ℎ − ⟨𝑇 0

ℎ ⟩‖
2∕2 =4.287E−2); (b) Convergence rates 𝑟𝐽 , 𝑟𝑇

nd 𝑟 computed by (5.1)–(5.3).
𝐯

i
w

omain is evened out. Note that the maximum of 𝑇ℎ is reduced to
.8E−1, 7.8E−1, and 6.8E−1 corresponding to 𝛾 = 3.6E−6, 8.5E−7,
nd 3.9E−7, respectively. Also, it is shown from these plots that the
maller value in 𝛾 (which indicates less penalty on the control), the
ore effective is the convection-cooling.
On the other hand, as shown in Figs. 3–4, the optimal velocity fields

ℎ and their streamlines computed by our algorithm for different 𝛾
well preserve the divergence-free condition and also present symmetric
patterns. This also explains the symmetric pattern of the temperature
distribution shown in Fig. 2. Moreover, the patterns for 𝐯 are very
ℎ

55
similar for different 𝛾 values. However, the magnitude of 𝐯ℎ increases
as the 𝛾 value decreases.

Next, we investigate the behavior of the cost functional with respect
to 𝛾 ∈[3.9E−7, 4.1E−6]. In Fig. 5a, we plot the cost values versus
various 𝛾 values. It shows that smaller values in 𝛾 lead to smaller cost
functional values. When 𝛾 = 4E−7, we obtain 𝐽min = 2.60E−2, which
s 39% smaller than the initial value (which is 4.287E−2). In Fig. 5b,
e plot the convergence rates 𝑟𝐽 , 𝑟𝑇 and 𝑟𝐯 computed by (5.1)–(5.3).

In particular, it can be seen that the convergence rate 𝑟𝐽 gradually
decreases from 0.35 to almost 0 as increasing the values in 𝛾.
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𝑓

Fig. 6. Example 5.3: Plots of optimal 𝑇 for 𝜅 = 1.0 and (a) Initial heat distribution 𝑇 0; (b) 𝛾 = 1.8E−6; (c) 𝛾 = 8E−7; (d) 𝛾 = 4E−7.
ℎ ℎ
Fig. 7. Example 5.3: Plots of temperature 𝑇ℎ and vector field 𝐯 for 𝜅 = 1.0 and (a) 𝛾 = 1.8E−6; (b) 𝛾 = 8E−7; (c) 𝛾 = 4E−7. Here, the color illustrates the magnitude of velocity
𝐯 and the vector plots the field of 𝐯 .
ℎ ℎ

i
4
𝛾

Remark 5.2. We have tested different 𝜅 and mesh sizes ℎ for Exam-
ple 5.1 to demonstrate the numerical robustness, where different initial
guesses for velocity are also tested. The numerical results are robust on
𝜅 and refined ℎ for almost all 𝛾 in the active region. To reduce the
redundancy of the figures, they are omitted in the paper. However, the
performance is slightly different when 𝛾 is close to its lower limit. This
s likely due to the fact that the continuous problem may fail to have
he existence of an optimal control when 𝛾 = 0. In this case, the cost
unctional loses its coercivity in the control input.

xample 5.3. In this example, we consider an asymmetric distribution
f the hear source. Let

(𝑥, 𝑦) = 1000((𝑥 − 0.5)2 + (𝑦 − 0.75)2)𝑥(1 − 𝑥)𝑦(1 − 𝑦).
56
The initial heat distribution corresponding to 𝛾 = 1.0 and 𝐯 = 0
s plotted in Fig. 6a. As shown in this figure, the maximum of 𝑇 0

ℎ is
.6E−1. The optimal heat distributions corresponding various values in
are plotted in Fig. 6b–c. We observe similar results as in Example 5.1,

i.e., the smaller value in 𝛾 will yield the lower maximum of the optimal
temperature.

The optimal vector fields and their streamlines are demonstrated in
Figs. 7–8. The profiles of the cost functional are plotted in Fig. 9. For
𝛾 = 4E−7, we obtain the cost functional value 𝐽min = 6.76E−3, which
is 25% smaller than the initial value (which is 8.97E−3). In this case,
we observe that the convergence rate 𝑟𝐽 gradually decreases from 0.22
to almost 0.

Example 5.4. In this example, we continue to examine an asymmetric
distribution of the heat source, where the heat source is centered at the
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Fig. 8. Example 5.3: Plots of temperature 𝑇ℎ and vector field 𝐯 for 𝜅 = 1.0 and (a) 𝛾 = 1.8E−6; (b) 𝛾 = 8E−7; (c) 𝛾 = 4E−7. Here, the color illustrates the magnitude of velocity
𝐯ℎ and the curve plots the streamline of 𝐯ℎ.
Fig. 9. Example 5.3: Illustration of results for 𝜅 = 1.0: (a) Plots of profiles in the cost functional with respect to 𝛾 (here ‖𝑇 0
ℎ − ⟨𝑇 0

ℎ ⟩‖
2∕2 = 8.97E−3); (b) Convergence rates 𝑟𝐽 , 𝑟𝑇

nd 𝑟𝐯 computed by (5.1)–(5.3).
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pper right corner. We especially examine the behavior of the velocity
ield subject to such a heat distribution with a sharp peak. Let

(𝑥, 𝑦) = 100 exp(−100(𝑥 − 0.75)2 − 100(𝑦 − 0.75)2).

The initial heat distribution corresponding to 𝛾 = 1.0 and 𝐯 = 0
s plotted in Fig. 10a. As shown in this figure, the maximum of 𝑇 0

ℎ is
.7E−1. The numerical optimal solutions for heat distribution 𝑇ℎ are
lotted in Fig. 10 for 𝛾 =6E−7, 3.7E−8, and 3.3E−8. As we can observe
n Fig. 13a, the maximum value of the heat distribution is reduced
rom max 𝑇 0

ℎ = 0.77 to max 𝑇ℎ = 0.6, max 𝑇ℎ = 0.55, and max 𝑇ℎ = 0.54
orresponding to 𝛾 =6E−7, 3.7E−7, and 3.3E−7, respectively. Similar to
ormer examples, smaller value in 𝛾 indicates a more effective cooling
rocess.
Figs. 11–12 illustrate the velocity fields and the corresponding

treamlines. Based on the direction fields we observe that for each
ase the velocity tends to ‘‘blow’’ the heat source further to the upper
ight corner, however due to divergence-free, the heat distribution is
tretched toward to the cooler region. For this example, the velocity
ields associated with different values of 𝛾 also share a similar pattern.
he profiles of the cost functional are plotted in Fig. 13. For 𝛾 =
.3E−7, we obtain the cost function value 𝐽min = 7.74E−3, which
s 38% smaller than the initial value (1.24E−2). In this case, we
ind that the convergence rate 𝑟𝐽 gradually decreases from 0.29 to
lmost 0.
57
xample 5.5. In the last example, we consider that there is a heat
ource as well as a heat sink and examine how the velocity behaves in
n environment with such heat distributions. Let

(𝑥, 𝑦) = 75 exp(−(9𝑥−2)2∕4−(9𝑦−2)2∕4)−75 exp(−(9𝑥−4)2∕4−(9𝑦−7)2∕4).

The initial heat distribution corresponding to 𝛾 = 1.0 and 𝐯 = 0
s plotted in Fig. 14a. As shown in this figure, the maximum and
inimum values of 𝑇 0

ℎ are 1.0 and −1.4, respectively. The numerical
ptimal solutions for heat distribution 𝑇ℎ are plotted in Fig. 14b–
for 𝛾 =5E−5, 1E−5, and 6.9E−6. We observe that the upper and

ower bounds of the initial temperate are reduced from 𝑇min = −1.4
nd 𝑇max = 1 (shown in Fig. 17a) to (min 𝑇ℎ = −1.3,max 𝑇ℎ = 1.0),
min 𝑇ℎ = −0.82,max 𝑇ℎ = 0.76), and (min 𝑇ℎ = −0.69,max 𝑇ℎ = 0.95)
ith respective to 𝛾 =5E−5, 1E−5, and 6.9E−6. Different from former
xamples, it is shown in Figs. 15–16 that the velocity profiles differ
ignificantly for these three values of 𝛾. When 𝛾 =5E−5, as we can see
n Figs. 16 and 15a, the velocity field seems to steer the cold region
toward the hot region and thus the minimum value is increased from
−1.4 to −1.3, however the maximum value remains at 1. When 𝛾 =
1E−5, as shown in Figs. 16 and 15a, it seems that the cold and the hot
regions are advected simultaneously, and hence both the maximum and
minimum values are tuned. However, as one further reduces the value
in 𝛾 from 5E−5 to 6.9E−6, the circulation between the cold and hot

regions becomes disproportional, which results in a smaller minimum
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Fig. 10. Example 5.4: Plots of optimal 𝑇ℎ with 𝜅 = 1.0 of (a) Initial heat distribution 𝑇 0
ℎ ; and (b) 𝛾 = 6E−7; (c) 𝛾 = 3.7E−7; (d) 𝛾 = 3.3E−7.

Fig. 11. Example 5.4: Plots of optimal 𝐯ℎ for 𝜅 = 1.0 and (a) 𝛾 = 6E−7; (b) 𝛾 = 3.7E−7; (c) 𝛾 = 3.3E−7. Here, the color illustrates the magnitude of velocity 𝐯ℎ and the vector
plots the field of 𝐯ℎ.

Fig. 12. Example 5.4: Plots of optimal 𝑇ℎ for 𝜅 = 1.0 and (a) 𝛾 = 6E−7; (b) 𝛾 = 3.7E−7; (c) 𝛾 = 3.3E−7. Here, the color illustrates the magnitude of velocity 𝐯ℎ and the curve plots
the streamline of 𝐯ℎ.

58
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Fig. 13. Example 5.4: Illustration of results for 𝜅 = 1.0 (a) Plot of initial temperature 𝑇 0
ℎ (here ‖𝑇 0

ℎ − ⟨𝑇 0
ℎ ⟩‖

2∕2 = 1.24E−2); (b) Plot of profiles in the cost functional with respect

to 𝛾; (c) Convergence rates 𝑟𝐽 , 𝑟𝑇 and 𝑟𝐯 computed by (5.1)–(5.3).
0
Fig. 14. Example 5.5: Plots of optimal 𝑇ℎ for 𝜅 = 1.0 of (a) Initial heat distribution 𝑇ℎ ; and (b) 𝛾 = 5E−5; (c) 𝛾 = 1E−5; (d) 𝛾 = 6.9E−6.
value of the temperature but a higher maximum compared to the case
with 𝛾 = 5E−5. This may be due to the disproportional steering effect
of the velocity field shown in Figs. 15–16.

Lastly, the convergence results are plotted in Fig. 17. Similar results
as in the previous tests can be observed from these two figures. For
𝛾 = 6.9E−6, the cost function 𝐽min =9.17E−2, which is 29% smaller
than the initial value (1.29E−1). In this case, we observe that the
convergence rate 𝑟𝐽 gradually decreases from 0.31 to almost 0.

In summary, we have conducted a wide range of tests with differen-
tial values of 𝛾 for different heat source distributions in this section. The
59
numerical results demonstrate that using the optimal convection strat-
egy, the cost functional value can be reduced by 25%–40% depending
upon the source terms, when 𝛾 ∈ [E−5, E−7].

6. Conclusion

In this paper, we discussed the optimal control design for convection-
cooling via an incompressible velocity field. We presented rigorous
theoretical analysis and conditions for solving and characterizing
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Fig. 15. Example 5.5: Plots of optimal 𝐯ℎ for 𝜅 = 1.0 and (a) 𝛾 = 5E−5; (b) 𝛾 = 1E−5; (c) 𝛾 = 6.9E−6. Here, the color illustrates the magnitude of velocity 𝐯ℎ and the vector plots
the field of 𝐯ℎ.
Fig. 16. Example 5.5: Plots of optimal 𝐯ℎ for 𝜅 = 1.0 and (a) 𝛾 = 5E−5; (b) 𝛾 = 1E−5; (c) 𝛾 = 6.9E−6. Here, the color illustrates the magnitude of velocity 𝐯ℎ and the curve plots
the streamline of 𝐯 .
ℎ
Fig. 17. Example 5.5: Illustration of results for 𝜅 = 1.0 (a) Plot of profiles in the cost functional with respect to 𝛾 (here ‖𝑇 0
ℎ − ⟨𝑇 0

ℎ ⟩‖
2∕2 = 1.29E−1); (b) Convergence rates 𝑟𝐽 , 𝑟𝑇

nd 𝑟 computed by (5.1)–(5.3).
𝐯

r
p

A

a

he optimal controller. Our numerical experiments demonstrate the
ffectiveness of the cooling process through flow advection. Moreover,
e observed that to enhance heat transfer, small values in 𝛾 may
e employed in the convection-cooling design. We shall continue
o address the convergence issues of our current numerical schemes
pplied to such nonlinear optimality systems. We shall also extend
ur results to study the non-stationary convection-cooling problems for
ore physical systems. Specifically, we shall consider to incorporate
he flow dynamics into the velocity field, which will be controlled in
 p

60
eal-time. How to construct effective numerical schemes to tackle such
roblems will be further investigated in our future work.
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