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ABSTRACT
This work addresses an optimal bilinear control design representing the corrective maintenance for a
reparable multi-state system. The primary interest is to optimise the availability of the system, which is
defined as the probability that the system is operating properly when it is requested for use. The system
model considered in our current work is governed by coupled transport and integro-differential equations.
A corrective maintenance policy is represented by the repair rate, which depends on the distributed repair
time. The objective is to determine an optimal repair rate that maximises the availability of the system in
good mode over a given system running period. This essentially leads to a bilinear control problem set in
a nonreflexive Banach space using L1-optimisation. A rigorous proof of existence of an optimal controller
and the first-order necessary conditions of optimality are addressed. Numerical experiments are conducted
to demonstrate the theoretical results.
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1. Introduction

Reparable systems occur naturally in product design, inven-
tory systems, computer networking and complex manufactur-
ing processes. A reparable system operates under amaintenance
strategy that calls for repair actions whenever a failure occurs.
These actions revise the overall function of the system. There
is an extensive literature on mathematical modelling and anal-
ysis of the reparable systems. In this work, we mainly focus on
the systems with arbitrarily distributed repair time, governed by
distributed parameter systems of coupled transport and integro-
differential equations (cf. Chung, 1981;Gupur, 2003, 2011, 2016;
Haji & Gupur, 2004; Hu et al., 2007; Xu et al., 2005), where
the methods of Markov chain and supplementary variable tech-
niques are used to derive the general mathematical models.
Interesting applications can be found in reliability engineer-
ing and in the study of supply chain and queueing network
modelling (M/M/1 and M/G/1, etc.) (cf. Gupur, 2010, 2011;
Gupur et al., 2001; Haji & Radl, 2007a, 2007b; Y. Xin, Li,
et al., 2008; Y. H. Xin, Zheng, et al., 2008; Zhao et al., 2009).
In particular, we aim at optimising the availability of repairable
systems through optimal maintenance strategies. Here avail-
ability is defined as the probability that the system is oper-
ating properly when it is requested for use (cf. Bazovsky,
2004).

Although the well-posedness and asymptotic behaviour of
the mathematical models for reparable systems have been thor-
oughly addressed by using the C0-semigroup approach, there
are few results, to the best of our knowledge, on the design of
optimal maintenance strategies for enhancing the system avail-
ability. Moreover, the repair rate is always assumed to be given
in the aforementioned literature, which is not realistic for most
real-life applications. This work will bring new perspectives to
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investigate this type of systems. We aim at deriving an opti-
mal repair action for providing practical and efficient mainte-
nance strategies to improve the availability of reparable systems.
Numerical schemes will be constructed to implement and val-
idate our design. To demonstrate our idea, we shall focus on
the discussion on a multi-state reparable system introduced
by Chung (1981), which represents the general features of this
type of models. Our theoretical and numerical approaches are
in sufficient generality to be applied to address other related
problems.

Consider that there are M modes of failure associated with
a device. The state of the device is given by its failure mode
number j, j = 1, 2, . . . ,M, and 0 represents the good state. The
device is good at time zero and transitions are permitted only
between states 0 and j. The failure rates are constant and repair
times are arbitrarily distributed. The transition diagram for the
system is demonstrated by Figure 1. The following assumptions
are associated with the device:

(1) All failures are statistically independent;
(2) Repair is to like-new and it does not cause damage to any

other part of the system.
(3) The repair process begins soon after the device is in failure

state;
(4) No further failure can occur while the device is down.

The precise model of system equations reads

dp0(t)
dt

= −
M∑
j=1

λjp0(t) +
M∑
j=1

∫ ∞

0
μj(x)pj(x, t) dx, (1)

∂pj(x, t)
∂t

+ ∂pj(x, t)
∂x

= −μj(x)pj(x, t), (2)
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Figure 1. Transition diagram of the reparable two-state system.

with boundary condition

pj(0, t) = λjp0(t), j = 1, 2, . . . ,M, t > 0, (3)

and initial conditions

p0(0) = 1, pj(x, 0) = 0, j = 1, 2, . . . ,M. (4)

Here the involved variables and parameters are defined as
follows:

(a) p0(t): probability that the device is in good mode 0 at time
t;

(b) pj(x, t): probability density (with respect to repair time x)
that the failed device is in failure mode j at time t and has
an elapsed repair time of x. Let p̂j(t) denote the probability
of the device in failure mode 1 at time t, then p̂j(t) is given
by

p̂j(t) =
∫ ∞

0
pj(x, t) dx; (5)

(c) λj > 0: constant failure rate of the device for failure mode
j;

(d) μj(x) ≥ 0: repair rate when the device is in failure state j
and has an elapsed repair time of x.

The pointwise availability of the system is defined as the
probability that the system is in a good state, i.e. A(t) = p0(t)
and the steady-state availability is given by A∗ = limt→∞ p0(t).

The mathematical model (1)–(4) for the reparable system
in essence describes a birth-death process, which shares some
common features as the population dynamics discussed in
(cf. Barbu et al., 2001; Hegoburu et al., 2018; Song, 1980; Song
et al., 1988; Webb, 1985; Yu et al., 1999). However, the repara-
ble system considered in our work has the unique property that
the system is conservative and the problem is naturally set in an
L1-based nonreflexive Banach space. Moreover, the repair rate
μj(x) will play a role as the control input of the system and
can be interpreted as a corrective maintenance policy. Math-
ematically, this leads to a bilinear control problem, which is
intrinsically different from those studied in the literature for the
population dynamics.

As a starting point to understand the problem of opti-
mal control design for system (1)–(4), we first introduce some

basic mathematical results regarding the well-posedness of this
model.

1.1 Well-posedness of themodel

For given failure and repair rates λj > 0 and μj(x) ≥ 0, j =
1, 2, . . . ,M, the well-posedness and stability issues of system
(1)–(4) have been discussed in Hu et al. (2007), Hu (2016)
and Xu et al. (2005) by using C0-semigroup theory. For the
convenience of the reader, we recall the following results.

Define the state space X = R × (L1(0,∞))M with ‖ · ‖X =
| · | +∑M

j=1 ‖ · ‖L1(0,∞). Let �p = (p0, p1, . . . , pM)T ∈ X. The
system operatorA and its domain are defined by

A�p =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
M∑
j=1

λjp0 +
M∑
j=1

∫ ∞

0
μj(x)pj(x) dx

−
(

d
dx

+ μ1(x)
)
p1(x)

...

−
(

d
dx

+ μM(x)
)
pM(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

and

D(A) =
{
�p ∈ X

∣∣∣∣ dpj(x)dx
∈ L1(0,∞),

∫ ∞

0
μj(x)pj(x) dx

< ∞, and pj(0) = λjp0, j = 1, 2, . . . ,M
}
.

System (1)–(4) can be rewritten as an abstract Cauchy problem
in Banach space X

�̇p(t) = A�p(t), t > 0, (7)

�p(0) = �p0 = (1, 0, . . . , 0)T. (8)

It is proven in Xu et al. (2005) that system operatorA generates
a positive C0-semigroup of contraction, denoted by S(t), t ≥ 0.
Thus the solution to (1)–(4) is nonnegative if the initial data
are nonnegative. Moreover, 0 is a simple eigenvalue of the sys-
tem operator and also a unique spectral point on the imaginary
axis. Under appropriate assumptions on repair rate μj(x), it
can be shown that the time-dependent solution, i.e. the point-
wise availability of the system, exponentially converges to the
steady-state availability, which is the eigenfunction associated
with eigenvalue 0 (Hu, 2016; Hu et al., 2007).

The remainder of this paper is organised as follows. In
Section 2, we formulate an optimal control problem to seek for
an optimal repair policy. In Section 3, we present a rigorous
mathematical proof for the existence of an optimal solution, and
then drive the first-order optimality conditions for solving such
a solution in Section 4. Finally, we construct numerical algo-
rithms and conduct numerical experiments for implementing
and validating our design in Sections 5 and 6.

2. Optimal repair rate design

The present work will mainly focus on optimal maintenance
designs for optimising the availability of the system over a finite
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time interval, i.e. 0 < t ≤ T < ∞. Maintenance plays a crucial
role in the lifetime behaviour of a reparable system. It revises the
system’s overall reliability, availability, downtime, cost of oper-
ation, etc. (cf. Bazovsky, 2004; Gilardoni & Colosimo, 2007;
Moubray, 2001; Sandler, 2012). In general, there are three
types of maintenance actions: corrective maintenance, preven-
tive maintenance and inspections (cf. Sandler, 2012). Some pre-
liminary study on the optimal preventive maintenance for the
current model can be found in Boardman et al. (2019), Hu
and Khong (2017) and Wei et al. (2016), in which the inter-
nal (or distributed) linear control design was considered under
the assumption that μj(x) are prescribed. In contrast, this work
develops an optimal corrective maintenance policy by taking
repair functions μj(x), j = 1, 2, . . . , as the control inputs. Cor-
rective maintenance serves to restore a failed system to oper-
ational status. This usually involves replacing or repairing the
component that is responsible for the failure of the overall sys-
tem. Since the component’s failure time is not known a priori,
repair is performed at unpredictable (i.e. random) intervals.Our
objective of correctivemaintenance is to restore the system to be
properly operational over a given system running period with
an optimal repair cost, as to improve the pointwise availability
of the system.

For a given T> 0, let Z= L∞(0,T)× (L∞(0,T; L1(0,T)))M .
Assume that initially the system is brand new, i.e. initial condi-
tion (4) holds.

We seek for the optimal repair rates μj(x), j = 1, 2, . . . ,M,
that maximise the overall performance of the system in good
mode for t ∈ [0,T] as well as at the final time t = T, with opti-
mal repair costs. In addition, we utilise the L1-penalisation for
the repair rates to build in the spatial sparsity. Thereby, the
objective is to minimise the following cost functional

J( �μ) = −a
∫ T

0
p0(t) dt − bp0(T) + α

M∑
j=1

∫ T

0
μj(x) dx

+ β

2

M∑
j=1

∫ T

0
μ2
j (x) dx, (P)

subject to the governing system (1)–(4), where �μ(x) =
(μ1(x), . . . ,μM(x))T ≥ 0 and the parameters a, b ≥ 0 and
α,β ≥ 0 are constants and stand for the state and control
weight, respectively. Assume that neither a and b nor α and β

vanish simultaneously. The penalisation of a quadratic term in
J usually helps to improve the regularity of the problem. Other
penalisations can be also properly introduced to the cost func-
tional depending on the relevant applications. Now consider the
set of admissible controls to be

Uad = {�μ(x) = (μ1(x), . . . ,μM(x))T ∈ (L∞(0,T))M :

0 ≤ μj(x) ≤ μ̄, j = 1, 2, . . . ,M}, (9)

where μ̄ is some maximum feasible repair rate. Realistically
speaking, although the maximum repair rate of each μj may
vary with respect to different failure modes, without loss of gen-
erality, we assume that theirmaximum is uniformly bounded by
some feasible repair rate μ̄.

Note that our formulation gives rise to a bilinear control
problem due to the product terms in (1)–(2). As a consequence,

problem (P) is nonconvex, and this creates some technical dif-
ficulties in studying the existence and uniqueness of an optimal
control. In fact, uniqueness does not hold in general. Further-
more, the optimality conditions must be derived from differ-
entiability arguments, which require some technical analysis.
In addition, to solve the resulting optimality system, one has
to solve the governing system forward in time, coupled with
the adjoint system backward in time together with a nonlinear
optimality condition. This results in extremely high computa-
tional costs and often intractable problems, especially, when the
system is of large scale upon suitable discretisation.

In the sequel, we shall rigorously address these issues and
develop numerical schemes specific to the treatment for our
problem. We also examine the system responses with respect
to different setup of the state and control parameters. Some
preliminary theoretical results on the case with M = 1 have
been presented in Boardman et al. (2019), where no numerical
algorithms were developed.

3. Existence of an optimal repair rate

To show the existence of an optimal repair rate to problem
(P), it is necessary to understand the regularity of the solution
to (1)–(4).

Let Lpx(0,T) and Lpt (0,T) stand for the Lp-spaces, 1 ≤
p ≤ ∞, with respect to x and t, and Wk,p(0,T) = {φ ∈
Lp(0,T) : Dαφ ∈ Lp(0,T), ∀α ≤ k} be the standard Sobolev
space. The following results holds.

Proposition 3.1: If �p(x, t) = (p0(t), p1(x, t), . . . , pM(x, t))T is
the solution to (1)–(4), then

�p(x, t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0(0) e−
∑M

j=1 λjt +
M∑
j=1

∫ t

0
e−

∑M
j=1 λj(t−τ)

∫ τ

0
μj(x)pj(x, τ) dx dτ

λ1p0(t − x) e−
∫ x
0 μ1(s) ds

...
λMp0(t − x) e−

∫ x
0 μM(s) ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, x < t,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0(0) e−
∑M

j=1 λjt +
M∑
j=1

∫ t

0
e−

∑M
j=1 λj(t−τ)

∫ τ

0
μj(x)pj(x, τ) dx dτ

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, x ≥ t.

(10)

Moreover, (p0(t), p1(x, t), . . . , pM(x, t))T ≥ 0 for any x, t> 0,

p0(t) +
M∑
j=1

∫ T

0
pj(x, t) dx = 1, ∀t > 0, (11)

and

p0 ∈ W1,∞(0,T) and
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pj ∈ L∞(0,T;W1,1(0,T)) ∩ W1,∞(0,T; L1(0,T)),

j = 1, 2, . . . ,M. (12)

Proof: We first solve pj(x, t) by using the method of character-
istics., Let ξ = x − t and p̃j(t) = pj(ξ + t, t). Then

dp̃j
dt

= ∂pj
∂x

+ ∂pj
∂t

= −μj(ξ + t)pj(ξ + t, t) = −μj(ξ + t)p̃j(t). (13)

For ξ < 0, i.e. x< t, then integrating (13) from−ξ to t and using
p̃j(−ξ) = pj(0,−ξ) = pj(0, t − x), we obtain

pj(x, t) = p̃j(t) = p̃j(−ξ) e−
∫ t
−ξ μ(ξ+τ) dτ

= pj(0, t − x) e−
∫ x
0 μj(s) ds, (14)

where pj(0, t − x) = λjp0(t − x) by boundary condition (3). For
ξ ≥ 0, i.e. x ≥ t, then integrating (13) from 0 to t and using
p̃j(0) = pj(ξ , 0) = pj(x − t, 0), we have

pj(x, t) = p̃j(t) = p̃j(0) e−
∫ t
0 μj(ξ+τ) dτ

= pj(x − t, 0) e−
∫ x
x−t μj(s) ds = 0,

where pj(x − t, 0) = 0 for x ≥ t due to initial condition (4).
To solve p0(t), we first note that pj(x, t) = 0 for x ≥ t, indi-

cates ∫ ∞

0
μj(x)pj(x, t) dx =

∫ t

0
μj(x)pj(x, t) dx (15)

in (1). Then it is straightforward to derive p0(t) by using
the variation of parameters formula. This completes the proof
of (10). The nonnegativity of the solution has been addressed in
Section 1.1 due to the positivity of the C0-semigroup generated
by the system operator.

Wenowproceed to derive (11). Taking the integral of (2)with
respect to x from 0 to T, and then adding it to (1) follow

dp0(t)
dt

+
M∑
j=1

d
dt

∫ T

0
pj(x, t) dx

= −
M∑
j=1

pj(T, t) = 0, ∀0 < t ≤ T, (16)

which implies

p0(t) +
M∑
j=1

∫ T

0
pj(x, t) dx

= p0(0) +
M∑
j=1

∫ T

0
pj(x, 0) dx = 1, ∀0 < t ≤ T, (17)

and hence the summation of the probability of the system in
good and failure modes is always 1. In other words, the system

is conservative. Consequently,

sup
t∈[0,T]

|p0| ≤ 1 and
M∑
j=1

sup
t∈[0,T]

‖pj‖L1x(0,T) ≤ 1. (18)

To show the regularity of the solution, with the help of (1), (9),
and (18) we have

sup
t∈[0,T]

|dp0
dt

|

≤ ‖p0‖L∞
t (0,T)

M∑
j=1

λj +
M∑
j=1

sup
t∈[0,T]

∫ T

0
μj(x)pj(x, t) dx

≤
M∑
j=1

λj + μ̄, (19)

which yields p0 ∈ W1,∞(0,T). Moreover, for x< t, using (10)
follows

∂pj(x, t)
∂x

= −λj
dp0(t − x)

dt
e−

∑M
j=1
∫ x
0 μj(s) ds

− λjp0(t − x) e−
∫ x
0 μj(s) dsμj(x). (20)

Combining (20) with (18)–(19) yields

sup
t∈[0,T]

∫ T

0

∣∣∣∣∂pj(x, t)∂x

∣∣∣∣ dx
≤ sup

t∈[0,T]

∫ T

0
λj

∣∣∣∣dp0(t − x)
dt

∣∣∣∣ e− ∫ x0 μj(s) ds dx

+ sup
t∈[0,T]

∫ T

0
λjp0(t − x) e−

∫ x
0 μj(s) dsμj(x) dx

≤ λj

(
sup

t∈[0,T]

∣∣∣∣dp0dt

∣∣∣∣
) ∫ T

0
e−

∫ x
0 μj(s) ds dx

+ λj

(
sup

t∈[0,T]
p0(t)

)∫ T

0
e−

∫ x
0 μj(s) dsμj(x) dx

≤ λj

⎛⎝ M∑
j=1

λj + μ̄

⎞⎠T + λj

where in the last step we used∫ T

0
e−

∫ x
0 μj(s) dsμj(x) dx

= −
∫ T

0
de−

∫ x
0 μj(s) ds = 1 − e−

∫ T
0 μj(s) ds < 1.

Therefore, p1 ∈ L∞(0,T;W1,1(0,T)).
This completes the proof. �

Now we introduce the mapping S : Uad → Z by S( �μ) = �p,
which maps the repair rate �μ to the corresponding solution �p
of (1)–(4). Then the range of S , denoted byR(S), satisfies

R(S) ⊆
{
�p = (p0, p1, . . . , pM)T ∈ Z : p0 ∈ W1,∞(0,T),
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pj ∈ L∞(0,T;W1,1(0,T)) and

dpj
dt

∈ L∞(0,T; L1(0,T)), j = 1, 2, . . . ,M
}
.

Corollary 3.2: The embedding R(S) ↪→ C[0,T] × (C([0,T];
L1(0,T)))M is compact.

Proof: Since the embeddings

W1,∞(0,T) ↪→ C[0,T] and W1,1(0,T) ↪→ L1(0,T)

are compact for 0 < T < ∞ (cf. Adams & Fournier, 2003, p.
144), by Aubin–Lions–Simon lemma (cf. Boyer & Fabrie, 2012)
the embedding

L∞(0,T;W1,1(0,T))

∩ W1,∞(0,T; L1(0,T)) ↪→ C([0,T]; L1(0,T))

is compact. This immediately establishes the desired result. �

The following theorem establishes the existence of an opti-
mal solution to problem (P).

Theorem 3.3: There exists an optimal repair rate �μ∗ =
(μ∗

1,μ
∗
2, . . . ,μ

∗
M)T ∈ Uad to problem (P).

Proof: According to (9), (11) and nonnegativity of p0(t), it is
clear that for 0 < T < ∞,

−aT − b ≤ J( �μ) ≤ αMTμ̄ + β

2
MTμ̄2.

Since J is bounded from below, we may choose a minimising
sequence { �μn} = {(μ1n ,μ2n , . . . ,μMn)

T} ⊂ Uad such that

lim
n→∞ J( �μn) = inf

�μ∈Uad
J( �μ). (21)

Since 0 ≤ μn,j ≤ μ̄ for j = 1, 2, . . . ,M, { �μn} is uniformly
bounded in (L∞(0,T))M and (L2(0,T))M . Thus, there exists a
convergent subsequence, still denoted by { �μn}, such that

�μn → �μ∗ weak ∗ in (L∞(0,T))M . (22)

�μn → �μ∗ weakly in (L2(0,T))M . (23)

Let sequence {�pn} = {(p0n , p1n , . . . , pMn)
T} be the solutions cor-

responding to { �μn} with the same initial condition

�pn(x, 0) = (p0(0), p1(x, 0), . . . , pM(x, 0))T.

With the help of Corollary 3.2, we may extract a subsequence,
still denoted by {�pn}, such that

�pn → �p∗ strongly in C[0,T] × (C([0,T]; L1(0,T)))M .
(24)

Next, we verify that �p∗ is the solution corresponding to �μ∗ based
on (10). In fact, we shall show that supt∈[0,T] |p0n − p∗

0| → 0 and
supt∈[0,T] ‖pjn − p∗

j ‖L1x(0,T) → 0 as n → ∞. To this end, we first
check

sup
t∈[0,T]

∣∣∣∣∣∣
M∑
j=1

∫ t

0
e−

∑M
j=1 λj(t−τ)

∫ τ

0
μjn(x)pjn(x, τ) dx dτ

−
M∑
j=1

∫ t

0
e−

∑M
j=1 λj(t−τ)

∫ τ

0
μ∗
j (x)p

∗
j (x, τ) dx dτ

∣∣∣∣∣∣
≤ sup

t∈[0,T]

∣∣∣∣∣∣
M∑
j=1

∫ t

0
e−

∑M
j=1 λj(t−τ)

∫ τ

0
(μjn(x)(pjn(x, τ)

− p∗
j (x, τ)) dx dτ

∣∣∣∣∣∣
+ sup

t∈[0,T]

∣∣∣∣∣∣
M∑
j=1

∫ t

0
e−

∑M
j=1 λj(t−τ)

∫ τ

0
(μjn(x)

− μ∗
j (x))p

∗
j (x, τ) dx dτ

∣∣∣∣∣∣
= I1 + I2,

where by (24)

I1 ≤ μ̄T
M∑
j=1

sup
t∈[0,T]

‖pjn − p∗
j ‖L1x(0,T) → 0, as n → ∞, (25)

and

I2 =
M∑
j=1

sup
t∈[0,T]

∣∣∣∣∫ t

0
(μjn(x) − μ∗

j (x))

×
∫ t

x
e−

∑M
j=1 λj(t−τ)p∗

j (x, τ) dτ dx
∣∣∣∣ → 0 as n → ∞,

(26)

due to (22) and∫ t

x
e−

∑M
j=1 λj(t−τ)p∗

j (x, τ) dτ ∈ L1x(0,T) uniformly in t.

(27)
In fact, with the help of (10) and nonnegativity of p∗

j we have

sup
t∈[0,T]

∫ T

0

∣∣∣∣∫ t

x
e−

∑M
j=1 λj(t−τ)p∗

j (x, τ) dτ
∣∣∣∣ dx

≤ sup
t∈[0,T]

∫ T

0

∫ t

x
p∗
j (x, τ) dτ dx

= sup
t∈[0,T]

∫ T

0

∫ t

x
λjp∗

0(τ − x) e−
∫ x
0 μ∗

j (s) ds dτ dx

≤ sup
t∈[0,T]

∫ T

0
λj(t − x) dx

≤ λj

2
T2.

Thus (27) holds and supt∈[0,T] |p0n − p∗
0| → 0 follows immedi-

ately. Next,

sup
t∈[0,T]

∫ T

0

∣∣∣λjp0n(t − x) e−
∫ x
0 μjn (s) ds
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− λjp∗
0(t − x) e−

∫ x
0 μ∗

j (s) ds
∣∣∣ dx

≤ λj sup
t∈[0,T]

∫ T

0
|(p0n(t − x) − p∗

0(t − x)) e−
∫ x
0 μjn (s) ds| dx

+ λj sup
t∈[0,T]

∫ T

0
|p∗

0(t − x)

× (e−
∫ x
0 μjn (s) ds − e−

∫ x
0 μ∗

j (s) ds)| dx

≤ λj sup
t∈[0,T]

|p0n(t) − p∗
0(t)|

∫ T

0
e−

∫ x
0 μ∗

j (s) ds dx

+ λj

∫ T

0
|e−

∫ x
0 μjn (s) ds − e−

∫ x
0 μjn (s) ds| dx

≤ λjT sup
t∈[0,T]

|p0n(t) − p∗
0(t)|

+ λjT sup
x∈[0,T]

|e−
∫ x
0 μjn (s) ds − e−

∫ x
0 μ∗(s) ds| (28)

→ 0 + 0, j = 1, 2, . . . ,M, (29)

where from (28) to (29) we used (22) and (24). This establishes
that supt∈[0,T] ‖pjn − p∗

j ‖L1x(0,T) → 0.
As a result of (25)–(26) and (29), �p∗ is the solution corre-

sponding to �μ∗ in light of (10). Lastly, by (23) and the weak
lower semicontinuity of norms, we have∫ T

0
μ∗
j
2 dt ≤ lim

n→∞

∫ T

0
μ2
jn dt.

Combining this with (22) and (24) gives

J( �μ∗) = −a
∫ T

0
p∗
0(t) dt − bp∗

0(T) + α

M∑
j=1

∫ T

0
μ∗
j dx

+ β

M∑
j=1

∫ T

0
μ∗
j
2 dx ≤ lim

n→∞
J( �μn) = inf

μ∈Uad
J( �μ∗),

which indicates that �μ∗ is an optimal solution to problem (P).
This completes the proof. �

4. First-order optimality conditions

We now derive the first-order necessary optimality conditions
for the problem (P) by using a variational inequality (cf. Mit-
ter & Lions, 2011), that is, if μ∗ is an optimal solution of the
problem (P), then

J′( �μ) · (�h − �μ∗)

=
M∑
j=1

J′j( �μ) · (hj − μj
∗) ≥ 0, �h = (h1, . . . , hM)T ∈ Uad.

(30)

Let z0 = p′
0( �μ) · �h = ∑M

j=1 p
′
0,j( �μ) · hj and zj = p′

j( �μ) · �h =∑M
i=1 p

′
j,i( �μ) · hi, j = 1, 2, . . . ,M, be the Gâteaux derivatives of

p0 and pj, respectively, with respect to �μ in every direction

�h in Uad. Note that μ′
j( �μ) · �h = ∑M

i=1 μ′
j,i( �μ) · hi = hj. Then

by (1)–(4) and (15), �z = (z0, z1, . . . , zM)T satisfies

dz0(t)
dt

= −
M∑
j=1

λjz0(t) +
M∑
j=1

∫ t

0
μj(x)zj(x, t) dx

+
M∑
j=1

∫ t

0
hj(x)pj(x, t) dx, (31)

∂zj(x, t)
∂t

+ ∂zj(x, t)
∂x

= −μj(x)zj(x, t) − hj(x)pj(x, t), (32)

with boundary condition

zj(0, t) = λjz0(t), j = 1, 2, . . . ,M, t > 0, (33)

and initial conditions

z0(0) = 0, zj(x, 0) = 0, j = 1, 2, . . . ,M. (34)

For �h ∈ Uad,

J′( �μ) · �h = −a
∫ T

0
z0 dt − bz0(T) + α

M∑
j=1

∫ T

0
hj dx

+ β

M∑
j=1

∫ T

0
μjhj dx. (35)

Before introducing the adjoint system associated with (1)–(4),
we recall the duality between nonreflexive Banach spaces. Let
X = R × (L1x(0,T))M . Then its dual space is given byX∗ = R ×
(L∞

x (0,T))M and the duality between X and X∗ is defined by

(�p, �q)X,X∗ = p0q0 +
M∑
j=1

∫ T

0
pjqj dx,

for �p = (p0, p1, . . . , pM)T ∈ X and �q = (q0, q1, . . . , qM)T ∈ X∗.
If �q is the adjoint state associatedwith �p solving (1)–(4), using

a duality argument between �z and �q, we can show that �q satisfies

dq0(t)
dt

=
M∑
j=1

λj(q0(t) − qj(0, t)) + a, (36)

∂qj(x, t)
∂t

+ ∂qj(x, t)
∂x

= −μj(x)(q0(t) − qj(x, t)), (37)

with boundary conditions

qj(T, t) = 0, j = 1, 2, . . . ,M, t > 0, (38)

and final conditions

q0(T) = −b, qj(x,T) = 0, j = 1, 2, . . . ,M. (39)

Moreover, it is easy to verify that �q ∈ L∞(0,T) × (L∞(0,T; L∞
(0,T)))M .

The following theorem establishes the optimality conditions
for characterising the optimal repair rate for problem (P).
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Theorem 4.1: Let �μ∗ = (μ∗
1,μ

∗
2, . . . ,μ

∗
M)T ∈ Uad be the opti-

mal solution to (P).

(1) If β > 0, then

μ∗
j (x) = max

{
0,min

{
1
β

(∫ T

0
pj(x, t)(qj(x, t)

− q0(t)) dt − α

)
, μ̄
}}

=: P[0,μ̄]

{
1
β

(∫ T

0
pj(x, t)

(qj(x, t) − q0(t)) dt − α

)}
, (40)

for j = 1, 2, . . . ,M and β > 0, where pj, q0 and qj are the
solutions to the governing system (1)–(4) and its adjoint
system (36)–(39), respectively. Here, for real numbers c ≤
d, P[c,d] denotes the projection of R onto [c, d], that is,
P[c,d](f ) := min{d, max{c, f }}.

(2) If β = 0, then

μ∗
j (x) =

⎧⎪⎪⎨⎪⎪⎩
0, if

∫ T

0
pj(x, t)(q0(t) − qj(x, t)) dt > −α,

μ̄, if
∫ T

0
pj(x, t)(q0(t) − qj(x, t)) dt < −α.

If there exists x∗ ∈ [0,T] such that
∫ T
0 pj(x∗, t)(q0(t) −

qj(x∗, t)) dt = −α, then μ∗
j (x

∗) can any value in [0, μ̄].

Proof: First taking the duality between (z0, z1, . . . , zM)T and
(q0, q1, . . . , qM)T and then integrating with respect to t from 0
to T yield∫ T

0

dz0
dt

q0 dt = −
∫ T

0

M∑
j=1

λjz0q0 dt

+
∫ T

0

⎛⎝ M∑
j=1

∫ t

0
μjzj dx

⎞⎠ q0 dt

+
∫ T

0

⎛⎝ M∑
j=1

∫ t

0
hjpj dx

⎞⎠ q0 dt,

and ∫ T

0

(
∂zj
∂t

, qj
)

dt +
∫ T

0

(
∂zj
∂x

, qj
)

dt

=
∫ T

0
(−μjzj − hjpj, qj) dt, j = 1, 2, . . . ,M.

Using integration by parts together with (34) and (38)–(39), we
get

z0(T)q0(T) −
(
z0,

dq0
dt

)

= −
∫ T

0

M∑
j=1

λjz0q0 dt +
∫ T

0

⎛⎝ M∑
j=1

∫ t

0
μjzj dx

⎞⎠ q0 dt

+
∫ T

0

⎛⎝ M∑
j=1

∫ t

0
hjpj dx

⎞⎠ q0 dt, (41)

and

−
∫ T

0

(
zj,

∂qj
∂t

)
dt − λj

∫ T

0
z0qj(0, t) dt −

∫ T

0

(
zj,

∂qj
∂x

)
dt

=
∫ T

0
(zj,−μjqj) dt −

∫ T

0
(hjpj, qj) dt, j = 1, 2, . . . ,M.

(42)

Now taking the summation of both sides of (42) with respect to j
from 1 toM and then adding the resulting equation to (41) give
us

z0(T)q0(T) = a
∫ T

0
z0 dt +

∫ T

0

⎛⎝ M∑
j=1

∫ t

0
hjpj dx

⎞⎠ q0 dt

−
∫ T

0

M∑
j=1

(∫ T

0
hjpjqj dx

)
dt,

where we utilised (36)–(37). Further invoking (39) follows

−a
∫ T

0
z0 dt − bz0(T) =

∫ T

0

⎛⎝ M∑
j=1

∫ t

0
hjpj dx

⎞⎠ q0 dt

−
∫ T

0

M∑
j=1

(∫ T

0
hjpjqj dx

)
dt, (43)

where
∫ t
0 hjpj dx = ∫ T

0 hjpj dx due to (14). Next replacing
−a
∫ T
0 z0 dt − bz0(T) in (35) by the right hand of (43), we derive

that if �μ∗ is the optimal solution to problem (P), then for any
�u = (u1, u2, . . . , uM)T ∈ Uad,

J′( �μ∗) · (�u − �μ∗) =
M∑
j=1

J′j( �μ∗) · (uj − μ∗
j ) (44)

=
∫ T

0

⎛⎝ M∑
j=1

∫ T

0
(uj − μ∗

j )pj dx

⎞⎠ q0 dt

−
∫ T

0

M∑
j=1

(∫ T

0
(uj − μ∗

j )pjqj dx
)
dt

+ α

M∑
j=1

∫ T

0
(uj − μ∗

j ) dx

+ β

M∑
j=1

∫ T

0
(uj − μ∗

j )μ
∗
j dx

=
M∑
j=1

(∫ T

0
pj(q0 − qj) dt + α, uj − μ∗

j

)

+ β

M∑
j=1

(μ∗
j , uj − μ∗

j ) ≥ 0, (45)
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which indicates that the optimality condition (40) holds if
β > 0.

In addition, if β = 0, then μ∗
j (x) = 0 for

∫ T
0 pj(x, t)(q0(t) −

qj(x, t)) dt > −α and μ∗
j (x)= μ̄ for

∫ T
0 pj(x, t)(q0(t)− qj(x, t))

dt < −α. If there exists x∗ ∈ [0,T] such that
∫ T
0 pj(x∗, t)(q0(t)

− qj(x∗, t)) dt = −α, thenμ∗
j (x

∗) can take any value between 0
and μ̄. This results in a bang-bang type of control. The proof is
complete. �

In the reminder of the paper, we mainly discuss the case that
the system has one failure mode, i.e.M = 1, which will be suffi-
cient to capture the essence of the problem and to demonstrate
the design of our numerical algorithms.

4.1 A simple example: M = 1with constant repair rate

As a simple example to understand the relation between the
optimal repair rate and the system state, we consider the sys-
tem with one failure mode and the repair rate is constant, i.e.
M = 1 and μ1(x) = μ1 ≥ 0. Then (1)–(4) are reduced to an
ODE system

dp0(t)
dt

= −λ1p0(t) + μ1p̂1(t) (46)

dp̂1(t)
dt

= λ1p0(t) − μ1p̂1(t), (47)

with initial conditions

p0(0) = 1, p̂1(0) = 0, (48)

where p̂1 is defined by (5) for j = 1. The objective functional J
now becomes

J(μ1) = −a
∫ T

0
p0 dt − bp0(T) + αμ1T + β

2
μ2
1T. (49)

Recall p̂1 = 1 − p0. We can further reduce (46)–(47) to

dp0(t)
dt

= −λ1p0(t) + μ1(1 − p0(t)), (50)

and hence z0 = p′
0(μ1) · h1 satisfies where z0 satisfies

dz0(t)
dt

= −λ1z0(t) + h1 − h1p0(t) − μ1z0(t), z0(0) = 0.
(51)

Accordingly, the adjoint equation is given by

− dq0(t)
dt

= −λ1q0(t) − μ1q0(t) − a, (52)

with final condition

q0(T) = −b. (53)

Furthermore,(
dz0(t)
dt

, q0
)

= z0(T)q0(T) −
(
z0,

dq0(t)
dt

)
(54)

= (z0,−λ1q0) + (h1, q0) − (h1p0, q0) − (z0,μ1q0) (55)

which follows

− (z0, a) − bz0(T) = (h1, q0) − (h1p0, q0) = (1 − p0, q0)h1,
(56)

and thus

J′(μ1) · (u1 − μ1)

= −a
∫ T

0
z0 dt − bz0(T) + αT(u1 − μ1)

+ βμ1T(u1 − μ1)

=
(∫ T

0
(1 − p0)q0 dt + αT

)
(u1 − μ1)

+ βμ1T(u1 − μ1) ≥ 0, (57)

for 0 < u1 ≤ μ̄. The optimality condition becomes

μ∗
1 = max

{
0,min

{
1

βT

∫ T

0
(p0 − 1)q0 dt − α

β
, μ̄
}}

. (58)

If β = 0, thenμ∗
1 = 0 for

∫ T
0 (p0(t)−1)q0(t) dt

T < α andμ∗
1 = μ̄ for∫ T

0 (p0(t)−1)q0(t) dt
T > α. If

∫ T
0 (p0(t)−1)q0(t) dt

T = α, thenμ∗
1 can take

any value between 0 and μ̄.
Since p0 and q0 can be solved explicitly in this simple case, we

are able to further investigate the properties of μ∗
1. Solving (50)

with (48) and (52) with (53), receptively, gives

p0(t) = λ1

λ1 + μ1
e−(λ0+μ1)t + μ1

λ1 + μ1
, (59)

and

q0(t) =
(

a
λ1 + μ1

− b
)
e−(λ1+μ1)(T−t) − a

λ1 + μ1
. (60)

It is evident that μ1
λ1+μ1

< p0 ≤ 1 and q0 ≤ 0. Moreover,
from (59) we get

e−(λ1+μ1)(T−t) = p0(T − t)
λ1 + μ1

λ1
− μ1

λ1
,

and hence,

q0(t) =
(

a
λ1 + μ1

− b
)(

(p0(T − t)
λ1 + μ1

λ1
− μ1

λ1

)
− a

λ1 + μ1

= a − b(λ1 + μ1)

λ1
p0(T − t) − a − bμ1

λ1

Now if α = 1 and β > 0, we can remove the upper bound for
μ1, then (58) becomes

μ∗
1 = 1

βT

∫ T

0
(p0 − 1)q0 dt, (61)

and thus

μ∗
1 = 1

βT

∫ T

0
(p0 − 1)
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×
(
a − b(λ1 + μ1)

λ1
p0(T − t) − a − bμ1

λ1

)
dt

which depends on p0 only. In particular, if a = 1 and b = 0, we
have

μ∗
1 = 1

βTλ1

∫ T

0
(1 − p0(t))(1 − p0(T − t)) dt ≥ 0.

5. A projected gradient descent algorithm

To implement the theoretical results established in the previ-
ous sections, we will use a projected gradient descent algorithm
(De los Reyes, 2015) based on the temporal method of lines
(Schiesser, 2012), for solving the spatially semi-discretised for-
ward state equations and backward adjoint state equations,
respectively. Without loss of generality we set M = 1 and let
μ = μ1. The generalisation to the caseM> 1 is straightforward,
but the computational cost will be scaled up for a largerM.

In the spatial domain [0,T], we define a uniform mesh
{xi = ih}Ni=0 with the step size h = T/N. Let p1,i(t) = p1(xi, t),
q1,i(t) = q1(xi, t) and μi = μ(xi). We use the (right) rectan-
gular rule to approximate the integral term in (1) and apply

the upwind scheme (LeVeque, 2007) to discretise the spatial
first-order partial derivative term in (2), which lead to the
semi-discretised state equations

dp0(t)
dt

= −λ1p0(t) + h
N∑
i=1

μip1,i(t), (62)

dp1,i(t)
dt

= −p1,i(t) − p1,i−1(t)
h

− μip1,i(t), 1 ≤ i ≤ N,

(63)

marching forward with the boundary condition p1,0 = λ1p0(t)
and the initial conditions p0(0) = 1, p1,i(0) = 0. By defining

p(t) =

⎡⎢⎢⎢⎢⎢⎣
p0(t)
p1,1(t)
p1,2(t)

...
p1,N(t)

⎤⎥⎥⎥⎥⎥⎦ , µ =

⎡⎢⎢⎢⎢⎢⎣
μ0
μ1
μ2
...

μN

⎤⎥⎥⎥⎥⎥⎦ ,

and

Ah(µ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−λ1 hμ1 hμ2 hμ3 hμ4 · · · hμN
λ0/h −μ1 − 1/h 0 0 0 · · · 0
0 1/h −μ2 − 1/h 0 0 · · · 0

0
. . . . . . . . . . . . . . . 0

0 0 · · · 0 1/h −μN−1 − 1/h 0
0 0 0 · · · 0 1/h −μN − 1/h

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

the above scheme (62)–(63) can be formulated into an initial
value problem of (stiff) ODE system

dp(t)
dt

= Ah(µ)p(t), (64)

p(0) = [1, 0, . . . , 0]T. (65)

It can be shown that the solution to (64)–(65) strongly
convergences to (7)–(8) as N → ∞ by using Trotter–Kato
Theorem (Xu & Hu, 2013). Moreover, (64)–(65) can be effi-
ciently solved byMATLAB’s ODE solvers (e.g.ode15s) for any
given control µ.

Using the similar approach for discretising the backward
adjoint state equations follows

dq0(t)
dt

= λ1(q0(t) − q1,0(t)) + a, (66)

dq1,i(t)
dt

= −q1,i+1(t) − q1,i(t)
h

− μi(q0(t) − q1,i(t)),

0 ≤ i ≤ N − 1, (67)

which march backward with the boundary condition p1,N = 0,
the final conditions q0(T) = −b and q1,i(T) = 0. By defining

q(t) =

⎡⎢⎢⎢⎢⎢⎣
q0(t)
q1,0(t)
q1,1(t)

...
q1,N−1(t)

⎤⎥⎥⎥⎥⎥⎦ , e1 =

⎡⎢⎢⎢⎢⎢⎣
1
0
0
...
0

⎤⎥⎥⎥⎥⎥⎦ ,

and

Bh(µ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ1 −λ1 0 0 0 · · · 0
−μ0 μ0 + 1/h −1/h 0 0 · · · 0
−μ1 0 μ1 + 1/h −1/h 0 · · · 0
...

. . . . . . . . . . . . . . . 0
−μN−2 0 · · · 0 0 μN−2 + 1/h −1/h
−μN−1 0 0 · · · 0 0 μN−1 + 1/h

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

the above equations (66) and (67) can be written as a final value
problem of (stiff) ODE system

dq(t)
dt

= Bh(µ)q(t) + ae1, (68)

q(T) = [−b, 0, . . . , 0]T, (69)

which, upon reversing the time via a change of variable τ =
T − t, can also be efficiently solved by MATLAB’s ODE solvers
(e.g. ode15s).
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For the time interval [0,T] with a general (possibly nonuni-
form) mesh {tj}Nj=0, we define p

j
1,i = p1,i(tj) = p1(xi, tj), q

j
1,i =

q1,i(tj) = q1(xi, tj), and qj0 = q0(tj). With numerical quadra-
ture, the first-order optimality condition (40) of optimal control
μi = μ(xi) can be pointwisely approximated by

βμi = P[0,μ̄]

⎧⎨⎩h
N∑
j=0

wjp
j
1,iq

j
1,i − h

N∑
j=i

ŵjp
j
1,iq

j
0 − α

⎫⎬⎭ ,

0 ≤ i ≤ N, (70)

where wj and ŵj denote appropriate quadrature weights (e.g.
based on the trapezoidal rule).

Algorithm 1 A projected gradient descent (PGD) algorithm:
Input: T,α,β , a, b, γ ,N, h = T/N, tol, kmax
Output: optimal control vector µh = [μ0,μ1, · · · ,μN]T

1: procedure µh=PGD(T,α,β , a, b, γ ,N, h = T/N, tol, kmax)
2: choose an initial guess of control µ(0);
3: for k = 0 to kmax do
4: solve the forward semi-discrete state ODE system:

dp(t)
dt

= Ah(µ
(k))p(t), with p(0)

= [1, 0, · · · , 0]T,

5: solve the backward semi-discrete adjoint state ODE
system:

dq(t)
dt

= Bh(µ(k))q(t) + ae1, with q(T)

= [−b, 0, · · · , 0]T,

6: approximate the integral terms appeared in (70):

Qi = h
N∑
j=0

wjp
j
1,iq

j
1,i, Q̂i = h

N∑
j=i

ŵjp
j
1,iq

j
0, 0 ≤ i ≤ N,

7: update the controlµ(k+1) based on projected gradi-
ent descent iteration

μ
(k+1)
i = P[0,μ̄]{μ(k)

i − γk(βμ
(k)
i − (Qi − Q̂i − α))},

0 ≤ i ≤ N,

where γk > 0 is the step size computed with the
Armijo rule (or other line search rules);

8: if ‖µ(k+1) − µ(k)‖ ≤ tol then
9: return µh = µ(k+1);
10: end if
11: end for
12: end procedure

Based on the described schemes above, a projection gradient
descent (PGD) algorithm for solving the fully coupled opti-
mality system (64)–(65), (68)–(69), and (70), is to construct a

fixed point iteration for iteratively updating µ along the gradi-
ent descent direction, which is followed by a projection step. In
each iteration, it requires forward and backward time-marching
to solve the decoupled state and adjoint state ODEs for p(t) and
q(t), respectively. Both ODEs can be accurately and efficiently
solved with MATLAB’s built-in ODE solvers (i.e.ode45 and
ode15s) for a selected tolerance. The complete PGDalgorithm
is summarised in Algorithm 1, where the stopping tolerance tol
should be appropriately chosen based on the level of finite differ-
ence discretisation and quadrature approximation errors. Such
a PGD algorithm can also be easily tailored to handle the sim-
ple case with constant repair rate, which will be demonstrated
by a numerical example. Based on our following numerical sim-
ulations, we have observed a rough linear convergence rate of
the proposed PGD algorithm. However, we remark that a rig-
orous convergence analysis of such a PGD algorithm is beyond
the scope of this paper, which will be left as our future work.

6. Numerical examples

In this section, we provide several numerical examples to val-
idate the theoretical results and to demonstrate the efficiency
of our proposed PGD algorithm. The approximation errors are
measured in the discrete L∞-norm. All simulations are imple-
mented using MATLAB 2017b on a Dell Precision Worksta-
tionwith Intel(R)Core(TM) i7-7700KCPU@4.2GHz and 32GB
RAM. The CPU time (in seconds) is estimated using the timing
functions tic/toc.

6.1 Numerical simulationwith constant repair rate

The optimal control model with constant repair rate is relatively
simple to solve, since both the state and adjoint state equation
are described by simple linear first-order ODEs. We mainly
focus on the case with α = 0 and β = 1. For numerical verifi-
cation, it is convenient to reformulate the above optimal control
expression μ∗ as the zero of the following nonlinear equation

F(μ) := μ − 1
βT

∫ T

0
(p0 − 1)q0 dt = 0

with

1
βT

∫ T

0
(p0 − 1)q0 dt

= λ0

β(λ0 + μ)2T

[
2(e−(λ0+μ)T − 1)

λ0 + μ
+ T e−(λ0+μ)T + T

]
,

where the above expressions of p0(t) and q0(t) are used in deriv-
ing the exact integration. Note that F(μ) is a monotonically
increasing function, F(μ) → +∞ as μ → +∞, and

F(0) = − 1
βλ0T

[
2(e−λ0T − 1)

λ0
+ T e−λ0T + T

]
= − 1

βλ0T

[
(2 + λ1T) e−λ0T + λ0T − 2

λ0

]
< 0.
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Figure 2. The computed state, adjoint state, and convergence history of our PGD algorithm with T = 10.

Table 1. Convergence of the computed optimal repair rateμh for a sequence of increasing T with λ0 = 0.2,α = 0 and β = 1.

T Points μh μ∗ ‖μh − μ∗‖l∞ J(μh)/T Iter CPU

10 148 0.38590082 0.38593398 3.32e−05 −0.642306 8 0.01
102 328 0.45370187 0.45370418 2.31e−06 −0.595810 15 0.03
103 1760 0.45905576 0.45905589 1.34e−07 −0.591630 11 0.06
104 16,072 0.45958368 0.45958098 2.70e−06 −0.591216 13 0.51
105 159,172 0.45963309 0.45963339 3.02e−07 −0.591174 11 3.93
106 1,590,196 0.45963871 0.45963863 8.38e−08 −0.591170 11 37.97
107 15,900,400 0.45963924 0.45963915 8.39e−08 −0.591170 11 383.05

To see this, it suffices to show that

(2 + λ1T) e−λ0T + λ0T − 2 > 0, (71)

for λ0T > 0. In fact, if letting f (x) = (2 + x) e−x + x, we can
easily verify that f (x) > 2 for x> 0. Therefore, F(μ) = 0 has a
unique positive solution.

Upon solving F(μ) = 0 to a very high accuracy with any
standard nonlinear solver (Kelley, 2003) (e.g. fsolve inMAT-
LAB) would provide an accurate benchmark approximation to
μ∗, which will be used as reference to estimate the approxima-
tion accuracy of our implemented PGD algorithm. We point
out that approximately solving the nonlinear equation F(μ) =
0 does not introduce any discretisation errors in treating the
ODEs and integral terms.

We first check the convergence of our PGD algorithm for
a fixed final time T = 10 and λ0 = 0.2. Figure 2 shows the
convergence history of our PGD algorithm and the correspond-
ing computed optimal state and adjoint state, where the initial
guess of control is set to be zero. As expected, we observe a lin-
ear convergence rate of our PGD algorithm based on the used
ode45 solver (with default tolerance 10−6). Smaller errors can
be obtained if we choose to use tighter tolerance in the ODE
solvers and the PGD stopping condition, which, however, will
take more iterations and time stepping points.

Next, we check the influence of the final time T on the com-
puted optimal control μh. Table 1 reports the convergence of
the approximated optimal control μh and the PGD algorithm

as T increases, where the error term ‖μh − μ∗‖L∞ indicates the
computed optimal control μh by our PGD algorithm converges
to (with the given tolerance) the exact optimal control μ∗ that
satisfies F(μ∗) = 0. The number of iterations used in our PGD
algorithm seems to be very robust with respect to the larger
values of T. It is also interesting to observe the convergence
behaviours ofμ∗ and J(μh)/T as T increases. The experimental
data are shown in Table 1.

6.2 Numerical simulationwith distributed repair rate

Let λ0 = 0.2 and μ̄ = 1. To validate our algorithm, we first
apply it to an extended optimality system with an exact solu-
tion. The detailed construction and accuracy are presented in
theAppendix.We compare the objective functionalwith various
choice of parameters: a, b, α, and β .

In Figures 3 and 4, we compare the computed state p0(t) and
optimal control μ(x) over a time interval [0,T] with or with-
out optimising p0(T), respectively, by testing different choice of
weight parameters. Again we set T = 10 and N = 400. In our
PGD algorithm, the initial guess of optimal control is taken as
the straight line connecting (0, 1) and (T, 0), i.e. µ(0)

i = (T −
xi)/T. The optimal solution seems to be insensitive to the other
choices of initial guess. Figures 5 and 6 show the adjoint state
and the convergence of the objective functional corresponding
to the selected parameters. Clearly, we observed the expected
facts that 0 ≤ p1 ≤ 1 and q1 ≤ 0.
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Figure 3. The computed state and optimal control by our PGD algorithm for different models with T = 10.
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Figure 4. The computed state and optimal control by our PGD algorithm for different models with T = 10.

Figure 5. The computed state, adjoint state and objective functional for a selected case with T = 10.
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Figure 6. The computed state, adjoint state and objective functional for a selected case with T = 10.

6.2.1 Numerical tests for a = 1 and b = 0
Figure 3 demonstrates the results for a = 1 and b = 0. In this
setup, we only consider to maximise the probability distribu-
tion of the system in good mode in term of maximising the
L1-norm of p0(t) over [0,T] over [0,T] without taking into
account its final state. We conducted three experiments by
testing different combinations of the control weight α and β ,
with (α,β) = (0, 1), (1, 0) and (1, 1). Among the three cases
tested, the best performance is given by the blue line, where
only L2-regularisation of the control is employed, i.e. (α,β) =
(0, 1). However, the optimal repair function has a long decreas-
ing nonzero tail and the repair effort is the greatest as shown
in Figure 3. In contrast, including an L1 -penalisation, either
(α,β) = (1, 0) or (α,β) = (1, 1), the control function gains
sparsity over repair intervals, as illustrated by the yellow and
maroon lines, where sharp cuts are presented. In particular,
using L1-penalisation only, i.e. (α,β) = (1, 0), leads to a bang-
bang type of control, which suggests putting the maximum
efforts in repair in the initial stage of the system running period
and doing nothing when certain degree of deterioration is met.
However, once repair stops, i.e. μ = 0, we see from the yellow
and maroon lines that the system deteriorates faster than the
case with nonzero repair rate represented by the blue line, which
agrees with the real-life applications.

6.2.2 Numerical tests for a = 1 and b = 1
The inclusion of the final state p0(T) in the objective func-
tional, i.e. a = 1 and b = 1, can help boost up the value of p0(T)

with slightly more control costs, as readily seen in Figure 4 and
Table 2. Overall, there is a trade-off between system availability
and repair/maintenance cost. The sparse structure of optimal
repair/maintenance rate can be adjusted by choosing appropri-
ateweight parameterα > 0. The other cases are very similar and
hence omitted for briefness.

In summary, all the numerical simulation results suggest
putting the maximum maintenance efforts over the early run-
ning period if the system is brand new initially. In other words,

Table 2. Comparison of optimal control cost and system availability for different
cases with T = 10.

Case
L1-norm
of �μ∗(x)

L2-norm
of �μ∗(x)

L1-norm
of p∗

0(t) p∗
0(T)

a = 1, b = 0,α = 0,β = 1 2.72 1.28 8.04 0.74
a = 1, b = 0,α = 1,β = 0 1.62 1.27 7.62 0.62
a = 1, b = 0,α = 1,β = 1 1.26 0.91 7.10 0.53
a = 1, b = 1,α = 0,β = 1 2.93 1.34 8.11 0.76
a = 1, b = 1,α = 1,β = 0 1.80 1.33 7.79 0.66
a = 1, b = 1,α = 1,β = 1 1.45 0.99 7.35 0.58

those newmachines should receive the best maintenance. In the
cases equipped with L1 -penalisation, the optimal repair policy
suggests no repair necessary for those machines with an elapsed
repair time over a fixed threshold. For example, μ = 0 when
repair time x> 2, indicated by the red lines in Figures 3 and 4.
This observation may help to provide a practical guidance for
making decisions in industrial management.

7. Conclusion

An optimal corrective maintenance design represented by the
repair rate is discussed for optimising the availability of a sim-
ple reparable system in a nonreflexive Banach space. Sparsity of
the optimal repair rate is built in by using L1 -regularisation.
First-order necessary conditions of optimality are derived for
characterising the optimal repair rate. A projected gradient
descent (PGD) algorithm based on the upwind finite differ-
ence scheme is developed for solving the optimality system.
The presented numerical results may shed light on the practi-
cal applications. However, to be more realistic, reparable sys-
tems with time−dependent failure rate and repair rate, and the
associated problems such as parameter identification for failure
rate based on system performance and nonlinear controllabil-
ity of the system with respect to repair rate are worth further
examination. These topics will be considered in our future
work.
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Table A1. Error results of the computed optimal state, adjoint state, and optimal control with T = 2.

N Error of ph0 Error of ph1 Error of qh0 Error of qh1 Error ofµh Iter CPU

40 2.63e−03 1.20e−03 1.32e−02 1.57e−01 6.14e−03 71 7.09
80 1.29e−03 6.34e−04 6.61e−03 8.17e−02 3.16e−03 43 6.29
160 6.39e−04 3.29e−04 3.33e−03 4.20e−02 1.62e−03 40 9.02
320 3.19e−04 1.69e−04 1.52e−03 2.12e−02 8.14e−04 41 20.74
640 1.59e−04 8.61e−05 7.40e−04 1.06e−02 4.02e−04 36 45.71
1280 7.78e−05 4.94e−05 3.14e−04 5.32e−03 2.02e−04 32 139.40
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Figure A1. The state, the adjoint state, and the optimal control (in solid lines) by our PGD algorithm with T = 2 and N = 80. For better comparison, the exact solutions
of p0(t), q0(t), andμ∗(t) are also plotted in dashed lines.

∂q1(x, t)
∂t

+ ∂q1(x, t)
∂x

= −μ(x)(q0(t) − q1(x, t)) + g1(t, x), (A4)

μ(x) = P[0,μ̄]

{
1
β

(∫ T

0
p1(x, t)(q1(x, t) − q0(t)) dt − α

)}
. (A5)

We highlight that such an extended optimality system is only for verify-
ing the accuracy of our finite difference scheme and the convergence of
our PGD algorithm. It may not correspond to the original optimization
problem anymore and hence we will not report the values of objective
functional.

Inspired by the close-form solution expression for the case with con-
stant repair rate, we choose the following exact solution according to the

boundary and initial conditions (with λ0 = 0.2):

p0(t) = e−t , p1(x, t) = λ1 e−x−t , (A6)

q0(t) = 40(e−(T−t) − 1), q1(x, t) = (T − x)(e−x−(T−t) − e−x), (A7)

which can be used in (A5) to obtain the expression of exact optimal con-
trol �μ∗(x). Notice there hold p1(0, t) = λ1p0(t), p0(1) = 1, q0(T) = 0,
q1(x,T) = 0, and q1(T, t) = 0, but p1(x, 0) �= 0. To numerically validate
our proposed PGD algorithm (based on the stiff ODE solver ode15s), we
apply it with tolerance tol = 10−6 to the above optimality system with the
given exact solution.

In Table A1, we report the convergence performance of our PGD
algorithm and the approximation errors (in L∞-norm) of the computed
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optimal state, adjoint state, and optimal control with T = 2 and μ̄ = 1
for a sequence of refined meshes. As expected from our used first-order
finite difference schemes, the estimated approximation errors (reduced
by about half) show about first-order accuracy as the mesh step size h
is halved. Moreover, the iteration number used in our PGD algorithm
seems to bemesh-independent, which iswell-known (Kelley&Sachs, 1992)
for gradient projection method. As an illustration, Figure A1 plots the

computed optimal state, adjoint state, and optimal control, which are
almost overlapped with the given exact solutions. The linear decreasing
of the difference ‖µk+1 − µk‖ implies a typical linear convergence rate of
our PGD algorithm. This constructed extended optimality system indi-
cates our PGD algorithm indeed delivers first-order accurate numerical
solution, although its rigorous convergence analysis is not given in this
paper.


	1. Introduction
	1.1. Well-posedness of the model

	2. Optimal repair rate design
	3. Existence of an optimal repair rate
	4. First-order optimality conditions
	4.1. A simple example: M==1 with constant repair rate

	5. A projected gradient descent algorithm
	6. Numerical examples
	6.1. Numerical simulation with constant repair rate
	6.2. Numerical simulation with distributed repair rate
	6.2.1. Numerical tests for a==1 and b==0
	6.2.2. Numerical tests for a==1 and b==1


	7. Conclusion
	Acknowledgements
	Disclosure statement
	Funding
	ORCID
	References

