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ABSTRACT

This work addresses an optimal bilinear control design representing the corrective maintenance for a
reparable multi-state system. The primary interest is to optimise the availability of the system, which is
defined as the probability that the system is operating properly when it is requested for use. The system
model considered in our current work is governed by coupled transport and integro-differential equations.
A corrective maintenance policy is represented by the repair rate, which depends on the distributed repair
time. The objective is to determine an optimal repair rate that maximises the availability of the system in
good mode over a given system running period. This essentially leads to a bilinear control problem set in
a nonreflexive Banach space using L'-optimisation. A rigorous proof of existence of an optimal controller
and the first-order necessary conditions of optimality are addressed. Numerical experiments are conducted

to demonstrate the theoretical results.

1. Introduction

Reparable systems occur naturally in product design, inven-
tory systems, computer networking and complex manufactur-
ing processes. A reparable system operates under a maintenance
strategy that calls for repair actions whenever a failure occurs.
These actions revise the overall function of the system. There
is an extensive literature on mathematical modelling and anal-
ysis of the reparable systems. In this work, we mainly focus on
the systems with arbitrarily distributed repair time, governed by
distributed parameter systems of coupled transport and integro-
differential equations (cf. Chung, 1981; Gupur, 2003, 2011, 2016;
Haji & Gupur, 2004; Hu et al,, 2007; Xu et al., 2005), where
the methods of Markov chain and supplementary variable tech-
niques are used to derive the general mathematical models.
Interesting applications can be found in reliability engineer-
ing and in the study of supply chain and queueing network
modelling (M/M/1 and M/G/1, etc.) (cf. Gupur, 2010, 2011;
Gupur et al., 2001; Haji & Radl, 2007a, 2007b; Y. Xin, Li,
et al., 2008; Y. H. Xin, Zheng, et al., 2008; Zhao et al., 2009).
In particular, we aim at optimising the availability of repairable
systems through optimal maintenance strategies. Here avail-
ability is defined as the probability that the system is oper-
ating properly when it is requested for use (cf. Bazovsky,
2004).

Although the well-posedness and asymptotic behaviour of
the mathematical models for reparable systems have been thor-
oughly addressed by using the Cy-semigroup approach, there
are few results, to the best of our knowledge, on the design of
optimal maintenance strategies for enhancing the system avail-
ability. Moreover, the repair rate is always assumed to be given
in the aforementioned literature, which is not realistic for most
real-life applications. This work will bring new perspectives to
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investigate this type of systems. We aim at deriving an opti-
mal repair action for providing practical and efficient mainte-
nance strategies to improve the availability of reparable systems.
Numerical schemes will be constructed to implement and val-
idate our design. To demonstrate our idea, we shall focus on
the discussion on a multi-state reparable system introduced
by Chung (1981), which represents the general features of this
type of models. Our theoretical and numerical approaches are
in sufficient generality to be applied to address other related
problems.

Consider that there are M modes of failure associated with
a device. The state of the device is given by its failure mode
number j, j = 1,2,..., M, and 0 represents the good state. The
device is good at time zero and transitions are permitted only
between states 0 and j. The failure rates are constant and repair
times are arbitrarily distributed. The transition diagram for the
system is demonstrated by Figure 1. The following assumptions
are associated with the device:

(1) All fajlures are statistically independent;

(2) Repair is to like-new and it does not cause damage to any
other part of the system.

(3) The repair process begins soon after the device is in failure
state;

(4) No further failure can occur while the device is down.

The precise model of system equations reads
dpo(t) M M oo
pc(l)t == hipo() + Z/O wi(opi(x ) dx, (1)
j=1 j=1

apj(x, ) N apj(x, )
ot dx

= _M](x)p](x) t)) (2)
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Figure 1. Transition diagram of the reparable two-state system.

with boundary condition

pj(0,t) = Ajpo(t), j=1,2,...,M, t>0, (3)
and initial conditions
po(0) =1, pj(x,00=0, j=12,...,M. (4)

Here the involved variables and parameters are defined as
follows:

(a) po(#): probability that the device is in good mode 0 at time
£

(b) pj(x, t): probability density (with respect to repair time x)
that the failed device is in failure mode j at time t and has
an elapsed repair time of x. Let p;(t) denote the probability
of the device in failure mode 1 at time ¢, then p;(¢) is given
by

pi(t) =/0 pi(x,t) dx; (5)

(c) Aj > 0: constant failure rate of the device for failure mode
B

(d) wj(x) = 0: repair rate when the device is in failure state j
and has an elapsed repair time of x.

The pointwise availability of the system is defined as the
probability that the system is in a good state, i.e. A(t) = po(t)
and the steady-state availability is given by A* = lim;_, o, po(t).

The mathematical model (1)-(4) for the reparable system
in essence describes a birth-death process, which shares some
common features as the population dynamics discussed in
(cf. Barbu et al., 2001; Hegoburu et al., 2018; Song, 1980; Song
et al., 1988; Webb, 1985; Yu et al., 1999). However, the repara-
ble system considered in our work has the unique property that
the system is conservative and the problem is naturally set in an
L'-based nonreflexive Banach space. Moreover, the repair rate
wj(x) will play a role as the control input of the system and
can be interpreted as a corrective maintenance policy. Math-
ematically, this leads to a bilinear control problem, which is
intrinsically different from those studied in the literature for the
population dynamics.

As a starting point to understand the problem of opti-
mal control design for system (1)-(4), we first introduce some

basic mathematical results regarding the well-posedness of this
model.

1.1 Well-posedness of the model

For given failure and repair rates A; > 0 and p;(x) > 0,j =
1,2,...,M, the well-posedness and stability issues of system
(1)-(4) have been discussed in Hu et al. (2007), Hu (2016)
and Xu et al. (2005) by using Cp-semigroup theory. For the
convenience of the reader, we recall the following results.

Define the state space X = R x (L!(0,00)) with || - |x =
T+ X2 o0y Let p=(po,p1s--.»pa)" € X. The
system operator .4 and its domain are defined by

o, v
=Y Mpo+ Y / 1) pj(x) dx
j=1 j=1"0

d
- (a +M1(X)> p1(x%) (6)

; :
- <_d + MM(X)> Pm(x)
X

and
. dpj(x) *
D(A) = {p e X‘ lz—x e L}(0,00), fo wj()p(x) dx
< 00, and p;j(0) = Ajpo, j = 1,2,...,M}.

System (1)-(4) can be rewritten as an abstract Cauchy problem
in Banach space X

B(6) = Ap(b),
7(0) =po = (1,0,...,0)". (8)

t>0, (7)

It is proven in Xu et al. (2005) that system operator .A generates
a positive Co-semigroup of contraction, denoted by S(¢), ¢ > 0.
Thus the solution to (1)-(4) is nonnegative if the initial data
are nonnegative. Moreover, 0 is a simple eigenvalue of the sys-
tem operator and also a unique spectral point on the imaginary
axis. Under appropriate assumptions on repair rate i;(x), it
can be shown that the time-dependent solution, i.e. the point-
wise availability of the system, exponentially converges to the
steady-state availability, which is the eigenfunction associated
with eigenvalue 0 (Hu, 2016; Hu et al., 2007).

The remainder of this paper is organised as follows. In
Section 2, we formulate an optimal control problem to seek for
an optimal repair policy. In Section 3, we present a rigorous
mathematical proof for the existence of an optimal solution, and
then drive the first-order optimality conditions for solving such
a solution in Section 4. Finally, we construct numerical algo-
rithms and conduct numerical experiments for implementing
and validating our design in Sections 5 and 6.

2. Optimal repair rate design

The present work will mainly focus on optimal maintenance
designs for optimising the availability of the system over a finite



time interval, i.e. 0 < t < T < co. Maintenance plays a crucial
role in the lifetime behaviour of a reparable system. It revises the
system’s overall reliability, availability, downtime, cost of oper-
ation, etc. (cf. Bazovsky, 2004; Gilardoni & Colosimo, 2007;
Moubray, 2001; Sandler, 2012). In general, there are three
types of maintenance actions: corrective maintenance, preven-
tive maintenance and inspections (cf. Sandler, 2012). Some pre-
liminary study on the optimal preventive maintenance for the
current model can be found in Boardman et al. (2019), Hu
and Khong (2017) and Wei et al. (2016), in which the inter-
nal (or distributed) linear control design was considered under
the assumption that j4;(x) are prescribed. In contrast, this work
develops an optimal corrective maintenance policy by taking
repair functions u;(x), j = 1,2,. .., as the control inputs. Cor-
rective maintenance serves to restore a failed system to oper-
ational status. This usually involves replacing or repairing the
component that is responsible for the failure of the overall sys-
tem. Since the components failure time is not known a priori,
repair is performed at unpredictable (i.e. random) intervals. Our
objective of corrective maintenance is to restore the system to be
properly operational over a given system running period with
an optimal repair cost, as to improve the pointwise availability
of the system.

For a given T > 0,let Z=L>(0, T) x (L*°(0, T; L' (0, T))HM.
Assume that initially the system is brand new, i.e. initial condi-
tion (4) holds.

We seek for the optimal repair rates u;(x), j = 1,2,..., M,
that maximise the overall performance of the system in good
mode for ¢ € [0, T] as well as at the final time ¢ = T, with opti-
mal repair costs. In addition, we utilise the L!-penalisation for
the repair rates to build in the spatial sparsity. Thereby, the
objective is to minimise the following cost functional

T M .r
@ == [ poorde—tpo(n) +a Y [y ds
0 oo

Bk (T
2
+5j§:1: /0 W@dx (P

subject to the governing system (1)-(4), where [(x) =
(U1 (%), ..., ()T >0 and the parameters a,b > 0 and
o, 8 > 0 are constants and stand for the state and control
weight, respectively. Assume that neither a and b nor o and 8
vanish simultaneously. The penalisation of a quadratic term in
J usually helps to improve the regularity of the problem. Other
penalisations can be also properly introduced to the cost func-
tional depending on the relevant applications. Now consider the
set of admissible controls to be

Uad = {A(x) = (110, ..., ()" € (L0, THM:
0<ujx)<pj=12...,M} 9

where [ is some maximum feasible repair rate. Realistically
speaking, although the maximum repair rate of each p; may
vary with respect to different failure modes, without loss of gen-
erality, we assume that their maximum is uniformly bounded by
some feasible repair rate ji.

Note that our formulation gives rise to a bilinear control
problem due to the product terms in (1)-(2). As a consequence,
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problem (P) is nonconvex, and this creates some technical dif-
ficulties in studying the existence and uniqueness of an optimal
control. In fact, uniqueness does not hold in general. Further-
more, the optimality conditions must be derived from differ-
entiability arguments, which require some technical analysis.
In addition, to solve the resulting optimality system, one has
to solve the governing system forward in time, coupled with
the adjoint system backward in time together with a nonlinear
optimality condition. This results in extremely high computa-
tional costs and often intractable problems, especially, when the
system is of large scale upon suitable discretisation.

In the sequel, we shall rigorously address these issues and
develop numerical schemes specific to the treatment for our
problem. We also examine the system responses with respect
to different setup of the state and control parameters. Some
preliminary theoretical results on the case with M = 1 have
been presented in Boardman et al. (2019), where no numerical
algorithms were developed.

3. Existence of an optimal repair rate

To show the existence of an optimal repair rate to problem
(P), it is necessary to understand the regularity of the solution
to (1)-(4).

Let IX(0,T) and Lf (0,T) stand for the LP-spaces, 1 <
p < oo, with respect to x and t, and W*P(0,T) = {¢ €
LP(0,T): D*¢p € LP(0,T), Ya < k} be the standard Sobolev
space. The following results holds.

Proposition 3.1: If p(x,t) = (po(£), p1(x: 1), ..., par(x, )T is

the solution to (1)-(4), then

plxt)
M Moot M
Po(0) e_zf="\"t+2/ e~ =1 HT)
j=1 "0

/0 wj(x)pj(x, T) dx dr
Apo(t — x) e~ Jo m@ds

Jnpo(t — x) e Jo u()ds

My

po(0)e” Tt ) f e D AT
— Jo
j=1

/0 wi(x)pj(x, 7) dxdr
0

(10)

Moreover, (po(t), p1(x, 1), ..., pm(x, t))T > 0 for any x, t> 0,

M T
Po(t)+Z/ pixdx=1, Vi>0, (1)
j=1 "0

and

po € Wh®(0,T) and
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pj € L0, T; Wh(0, T)) N Wh*°(0, T; L1 (0, T)),

j=12,...,M. (12)
Proof: We first solve pj(x, t) by using the method of character-
istics., Let & = x — tand p;(t) = p;(§ + t,t). Then

oy, o
dt ox Ot

=—ujE +0pj¢ +tt) = —pi€ +0pj(t).  (13)
For¢ < 0,i.e.x <t,thenintegrating (13) from —£ to t and using
pi(—&) = pj(0, —&) = p;(0,t — x), we obtain

Dint) = Bi() = pi(—&) e [ e rETDr

= pj(0,t —x) e Jo O, (14)

where p;(0,t — x) = Aipo(t — x) byboundary condition (3). For
bj P y y

& >0, i.e. x > t, then integrating (13) from 0 to t and using

pj(0) = p;j(£,0) = pj(x — t,0), we have

pi(x,£) = pi(t) = pj(0) e o mE T dr

X

=pi(x—t0)e" S i) ds _ 0,

where pj(x — t,0) = 0 for x > ¢ due to initial condition (4).

To solve po(t), we first note that p;(x, t) = 0 for x > ¢, indi-
cates

e8] t
/; wj(0pj(x, 1) dx = /0 Wi (0pj(x, t) dx (15)

in (1). Then it is straightforward to derive po(¢) by using
the variation of parameters formula. This completes the proof
of (10). The nonnegativity of the solution has been addressed in
Section 1.1 due to the positivity of the Cy-semigroup generated
by the system operator.

We now proceed to derive (11). Taking the integral of (2) with
respect to x from 0 to T, and then adding it to (1) follow

dpo(t) —nd (T
7 +;Ef0 pj(x, 1) dx

M
==Y p(T,)=0, YO<t=<T,
j=1

(16)
which implies
M .T
Po(t)+2/0 pi(x, 1) dx
j=1

M .7
=p0(0)+2f pi(x,0)dx=1, VYo<t<T, (17)
j=1 "0

and hence the summation of the probability of the system in
good and failure modes is always 1. In other words, the system

is conservative. Consequently,

M
sup |pol <1 and Y sup lpjlpon <1 (18)
te[0,T] j=1 te[0,T]

To show the regularity of the solution, with the help of (1), (9),
and (18) we have

dpo
sup |d_|
tefo,1] At
M M T
< lpollzeory Y 2+ ) sup / 1 (0pj (x, 1) dx
j=1 j=1 te[0,T] Y0
M
=1

which yields pg € W20, T). Moreover, for x < t, using (10)
follows

9pjeD) 5 dpolt— %) M s ds
0x T
— Apo(t =0 e o HOS0. (20)
Combining (20) with (18)-(19) yields
T apj(x, t
sup / ISR ' dx
te[0,7] J0 dx
T — X
< sup / Aj ‘de(t =l e Jo 9 ds gy
tef0,1] Jo dt
T X
+ sup / Aipo(t —x)e” Jo 1 ® dsuj(x) dx
te[0,T] YO
T "X
<Xj| sup dpo / e Jo 19 ds gy
refor) | 4t 1) Jo
T X
+Aj | sup po(t) f e o “f(s)dsuj(x) dx
t€(0,T] 0
M
<[ Don+a| T+
j=1
where in the last step we used
T X
/ e fO wi(s) dsuj(_x) dx
0
T y r
= —f deJomi®ds — 1 _ o= Jo mi©ds _ .
0
Therefore, p; € L>(0, T; W10, T)).
This completes the proof. |

Now we introduce the mapping S: U,y — Z by S(ji) = p,
which maps the repair rate ji to the corresponding solution p
of (1)-(4). Then the range of S, denoted by R(S), satisfies

R(S) - {}3 = (P()»Pl) ce ,pM)T eZ: Po € WI’OO(O, T),



pj € L®(0, T; WH(0, 7)) and

dpy

3 € L™, T;L10,T)), j = 1,2,...,M}.

Corollary 3.2: The embedding R(S) — CI[0, T] x (C([0, T;

LYo, T))YM is compact.

Proof: Since the embeddings
Wb (0, T) = C[0,T] and W10, T) — L'(0,T)

are compact for 0 < T < 0o (cf. Adams & Fournier, 2003, p.
144), by Aubin-Lions-Simon lemma (cf. Boyer & Fabrie, 2012)
the embedding

L%°(0, T; WhL(0, T))
N Wb, T; L' (0, T)) — C([0, T]; L' (0, T))

is compact. This immediately establishes the desired result. W

The following theorem establishes the existence of an opti-
mal solution to problem (P).

Theorem 3.3: There exists an optimal repair rate pi* =
(750 75 M}k\/[)T € Uy to problem (P).

Proof: According to (9), (11) and nonnegativity of po(#), it is
clear thatfor0 < T < oo,

—aT— b < J() < aMTji + gMTﬁZ.

Since ] is bounded from below, we may choose a minimising
sequence {jin} = {(i1,> U2,»- - -»p,) "} C Ugg such that

hm J (i) = lnf ](u)
nel,

21)

Since 0 < pnj<p for j=1,2,...,M, {ji,} is uniformly
bounded in (L*°(0, T))M and (L%(0, T))™. Thus, there exists a
convergent subsequence, still denoted by {fi,,}, such that

fin — i* weak x in (L%°(0, )M (22)

fn — i weakly in (L*(0, T))M (23)
Let sequence {pn} = {(po,, P1,>- - - ,pM”)T} be the solutions cor-
responding to {ji,} with the same initial condition

Pn(%,0) = (p(0), p1(x,0),. .., par(x,0)T.

With the help of Corollary 3.2, we may extract a subsequence,
still denoted by {p,}, such that

stronglyin  C[0, T] x (C([0, T]; L* (0, T)))™.
(24)
Next, we verify that p* is the solution corresponding to ji* based
on (10). In fact, we shall show that sup, o 1} |po, — py| — Oand
SUP;c0,7] 12, _pf”L}c(O»T) — 0asn — oo. To this end, we first

f’n _>I3*

check
M t M T
sup Z/ e*Zj=1)»j(t*f)/ Mjn(x)Pjn(x’T)dxdT
t€[0,T] 0 0

j=1

INTERNATIONAL JOURNAL OF CONTROL e 5

M t T
- Z/ e_ZJAil )‘f'(t_’)/ M]f"(x)p]’-"(x,r)dxdr
iz Jo 0

< sup
te[o, T]

/ ZJ_ Aj(t— ‘E)/ (M]n(x)(P]n(x’f)

— p;»k(x, 7)) dxdr

/ Z] )L(t T)/ (/“L]n(x)

— W (0)p; (x,7) dxdr

+ sup
te(o, T]

:Il +12>

where by (24)

L < /,LTZ sup ||pj, — p] ||L1(0 r — 0, asn— oo, (25)

j= 1te[0 T]
and
M
Iz= sup / (1), () — 15 (x))
] 1[6[0 T]

M
« / e~ 2jm1 A=) *(x,r)drdx — 0 asn— oo,
X
(26)

due to (22) and

t M
f e~ Lj=t Xt pixr)dr € LL0,T) uniformlyin ¢.
X

(27)
In fact, with the help of (10) and nonnegativity of p;* we have

sup/
te[0,T]

//pj(x,t)drdx
t€[0,T]

< sup
= sup/ ijpé(r—x)e‘fb O gr dy
te[0,T] J 0 X

T
sup/ Aj(t — x) dx
te[0, 7] Y0

)\'.

e

-2

/ - D 4j(-m) P} (x,7)de|dx

IA

Thus (27) holds and sup,c (o 77 [po, — Pyl — 0 follows immedi-

ately. Next,

T X
tef0,11J0
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* —fox wi(s)ds
— Ajpo(t—x)e j dx

T "X
< Sup/ (o, (t — %) — pi(t — x)) e o 1n 985 g
te[0,T] YO

T
+1j sup / |ps(t — x)
te[0,T] YO
% (e— fgujn(s) ds _ e* fox /Lf(s) d5)| dx

T .
<Aj sup |po,(t) — py (D) / e Jo i @ds g
t€[0,T] 0

T
+ )»j/ = Jo 1in®©ds _ = J5 min(©) s g

0
<nT sup |po, () — po (1)
te[0,T
+ 4T sup lem R ©d el @dy (28)
x€[0,T]
—-0+0, j=12,...,M, (29)

where from (28) to (29) we used (22) and (24). This establishes

that sup;eo, 1y 12j, — Pj lLL0,1) = 0.

As a result of (25)-(26) and (29), p* is the solution corre-
sponding to i* in light of (10). Lastly, by (23) and the weak
lower semicontinuity of norms, we have

T T
/ I 24 < lim ,ujz dt.
0 n

n—o00 J0

Combining this with (22) and (24) gives

T M T
J(ﬁ*)=—af0 pé(t)dt—pr(THaZfo p; dx
j=1

+ﬂj§:/

which indicates that /i* is an optimal solution to problem (P).
This completes the proof. [ |

I 2dx < lim J(ji,) = lnf ](u)
HE

n—oo

4. First-order optimality conditions

We now derive the first-order necessary optimality conditions
for the problem (P) by using a variational inequality (cf. Mit-
ter & Lions, 2011), that is, if u* is an optimal solution of the
problem (P), then

() - (h— ji*)

M
=Y J) - (=) =0, h=(h,....,h)" € Una.
j=1
(30)
Let 2o = py(ii) - h= 1%, pp (i) - by and z = pl(ji) - h =

M p](’i([i) -hi,j=1,2,..., M, be the Gateaux derivatives of
po and pj, respectively, with respect to ji in every direction

h in U,y. Note that ,u]'»(ﬂ) h= Zf\il ,u]'»,i(ﬁ) - hi = hj. Then

by (1)-(4) and (15), Z = (20, 21, - . ., 2m) " satisfies

dz (t)
° Z Azo(t) + Z [ 6
t
+Z / 0y (3, 1) b, (31)
j=1"°
dzj(x,t)  09zj(x,t)
ot T Tax = —uj(X)zj(x, t) — hj(x)pj(x, 1), (32)
with boundary condition
2(0,0) = Ajzo(t), j=1,2,...,M, >0, (33)
and initial conditions
z0(0) =0, z(x0) =0, j=12,...,M. (34)
Forfz € U,
. T M T
J (i) -h= —a/ zodt—bzo(T)—i-aZ/ hjdx
0 — Jo
j=1
M .T
+8 Z/ ik dx. (35)
=170

Before introducing the adjoint system associated with (1)-(4),
we recall the duality between nonreflexive Banach spaces. Let
X=Rx (L}C(O, T))M. Then its dual space is given by X* = R x
(L2(0, T))M and the duality between X and X* is defined by

M T
B> Dx.x+ = poqo + Z/o pjqj dx
j=1

for p = (po,p1,....pm)" € Xand g = (qo.q1,---,qm)" € X*.
If g is the adjoint state associated with p solving (1)-(4), using
a duality argument between Z and g, we can show that g satisfies

d® _ %A-( (5 — gi(0,0) +a (36)
dt - ] qO q] > >
j=1
agj(x, ) 9gj(x, 1)
57 T Tax —wj(x)(qo(t) — gj(x, 1)), (37)
with boundary conditions
gG(T,H) =0, j=12...,M,t>0, (38)
and final conditions
qo(T) = =b, gj(x,T) =0, j=12,...,M. (39)

Moreover, it is easy to verify that g € L*°(0, T) x (L*°(0, T; L™
0, T))™M.

The following theorem establishes the optimality conditions
for characterising the optimal repair rate for problem (P).



Theorem 4.1: Let ji* = (uf, i13,.

..,,LL}(,I)T € U,q be the opti-
mal solution to (P).

()IfB > 0, then

1 T
1 (x) = max {0, min {E (/(; (1) (gj(x, t)

- qom)dt—a) u}}
1 T
-

(qj(x, ) — qo(t)) dt — a) } , (40)
forj=1,2,...,M and B > 0, where pj, qo and q; are the
solutions to the governing system (1)-(4) and its adjoint
system (36)-(39), respectively. Here, for real numbers ¢ <
d, P[.q) denotes the projection of R onto [c,d], that is,
Pre.q)(f) := min{d, max{c,f}}.

(2)If B =0, then

T
0, if / Pi(e 1) (qo(t) — gj(x, 1)) df > —a,
i (x) = p

T
w, if / Pj(x’ t)(‘lo(t) - ‘1j(x) ) dt < —a.
0

If there exists x* € [0, T] such that fOij(x*,t)(qo(t) -
gj(x*, 1)) dt = —a, then M]’."(x*) can any value in [0, [1].

Proof: First taking the duality between (zp,z1, . .

(QO> qis. ..
to T yield

ST and
,qm)"T and then integrating with respect to ¢ from 0

M

T t
+f Z/ Hizj dx | qo dt
o \iZ /o

T ( M t
+/ Z/ hipjdx | qo dt,
0 \j=170
% Nars [ (250 ar
/0 E)% /0 a’%

T
:/ (—njzj — hjpj,gj)dt, j=1,2,...,M.
0

and

Using integration by parts together with (34) and (38)-(39), we
get

d
20(T)qo(T) — (zo, %)

T M T (M
= —/ ijzoqo dt—i—/ Z/ w;izj dx | go dt
(e o \j= /o
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T (M .t
+ / > / hipj dx | qo dt,
o \im /o
and
T da: T T da;
qj qgj
— L= — (0, — L —
/0 (z] 8t)dt ]/0 z0q;(0, t) dt /0 (ZJ 8x>dt

T T
= / (Zj,—pquj) dt — / (hj])j,é]j) dt, j=L2,...,M.
0 0
(42)

(41)

Now taking the summation of both sides of (42) with respect to j
from 1 to M and then adding the resulting equation to (41) give

us
T T (M
20(T)qo(T) =a/ 20 dt—i—/ Z/ hipj dx | qo dt
0 0 — Jo
j=1

T M T
— / Z </ hjquj dx) dt,
0 = \Jo

where we utilised (36)-(37). Further invoking (39) follows

T T (M
—a/ zo dt — bzy(T) =/ Z[ hjpjdx q()dl‘
0 o \imJo
T M
-,

T
> < f hipigj dx) dr, (43)
j=t 0
t T .
where [ hipjdx = [; hjpjdx due to (14). Next replacing
—a fOT zp dt — bzp(T) in (35) by the right hand of (43), we derive

that if fi* is the optimal solution to problem (P), then for any
U= (u,uz,...,up)t € Ung,

M
JE*) - G— %) = Y T - (= )
j=1

T (M T
=/ Z/ (uj — ui)pjdx | qodt
o \i=1Jo
T M T
—f > <f (uj — 17)p;qj dx) dt
0 = Vo

M T
+OlZ/ (uj—u;‘)dx
j=1 "0

(44)

M T
+ﬁ2f0 (j — ) dx
j=1

M

T
=Z</O pj<qo—qj)dt+wj—uf)

j=1

M
+BY (Wuj— ) =0,
j=1

(45)
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which indicates that the optimality condition (40) holds if
B > 0.
In addition, if B = 0, then 12 (x) = 0 for i pie (qo(t) —

gi(%, ) dt > —o and pf (x) = i for fif pj(x, H(qo(t) — 4j(x, 1))
dt < —a. If there exists x* € [0, T] such that fOT pi(x*,1)(qo(t)
— gj(x*,t)) dt = —a, then ;L;-‘ (x*) can take any value between 0
and jt. This results in a bang-bang type of control. The proof is
complete. [ ]

In the reminder of the paper, we mainly discuss the case that
the system has one failure mode, i.e. M = 1, which will be suffi-
cient to capture the essence of the problem and to demonstrate
the design of our numerical algorithms.

4.1 Asimple example: M = 1 with constant repair rate

As a simple example to understand the relation between the
optimal repair rate and the system state, we consider the sys-
tem with one failure mode and the repair rate is constant, i.e.
M =1 and pi(x) = 1 > 0. Then (1)-(4) are reduced to an
ODE system

dpo(t)

e —A1po(t) + 11 (t) (46)
dp (¢ R
P 5apo6) — i o), (47)
with initial conditions
po(0) =1, p1(0) =0, (48)

where py is defined by (5) for j = 1. The objective functional
now becomes

T
J(u1) = —a/ podt — bpo(T) +aui T + g,u%T. (49)
0

Recall p; = 1 — py. We can further reduce (46)-(47) to

dpo (1)
PLZ = —1po(®) + a1 = po(t), (50)
and hence zg = p{(i1) - hy satisfies where z satisfies
dzo (1)
3: = —A120(t) + h1 — hipo(t) — m1zo(t),  20(0) = 0.
(51)
Accordingly, the adjoint equation is given by
dqo(t)
- q((i)t = —Xt1q0(f) — n1qo(t) — a, (52)
with final condition
qo(T) = —b. (53)
Furthermore,
dzo(t) dqo(t)
, = zo(T)qo(T) — | 20, 54
( T %) 20(T)qo(T) (Zo m ) (54)
= (20, —*190) + (h1,q0) — (h1po, q0) — (20, 4190)  (55)

which follows

— (20, a) — bzo(T) = (h1,90) — (h1po>q0) = (1 — po, qo)h1,

(56)
and thus
J (1) - (1 — )
= —a/(;Tzo dt — bzo(T) + «T(u; — p1)
+ BT — p1)
_ (fOT(l ~ po)qodt + aT) (11— 1)
+ BurT(up — 1) >0, (57)

for 0 < u; < . The optimality condition becomes
: {0 i { ! /T(p 1)qodt — = ” (58)
My = max >IN § —— 0 — 0 - M .
! BT Jo ©E 8

T
If B = 0, then pu} :0f0rw < oand py = @ for

T T
Jo ®o®—Dao(®) dt > . If Jo ®o®—Dao(®) dt (pO(t)_Tl)qO(t) a_ o, then p17 can take

any ValuTe between 0 and f.

Since pg and g can be solved explicitly in this simple case, we
are able to further investigate the properties of u}. Solving (50)
with (48) and (52) with (53), receptively, gives

M —Gorunt M

O(t) = > (59)
P A+ A1+ 1
and
a a
o) = < _ b) = O+ (T=t) _ (60)
1 AL+ A+

: : )
It is evident that Tt
from (59) we get

<po <1 and ¢qo < 0. Moreover,

A+
e~ Ot (T= _ poop M TR

Al A
and hence,
a A+ M1>
) = —-b T—t)—— — —
o) (M + 11 ) ((Po( ) Al Al
a
AL+
— b —-b
_ MPO(T —f)— a— o
)\1 )¥1

Now if « = 1 and 8 > 0, we can remove the upper bound for
i1, then (58) becomes

1T
i — —1 dt, 61
7 ﬂT/(; (po — Dqo (61)

and thus

1 T
g -1
125 ﬂT,/(; (po )



— b(n _
« <MPO(T—1‘)—‘1 bul)dt
)Ll )\1

which depends on pg only. In particular, ifa = 1and b = 0, we
have

1 T
ui = BT, /0 (1 = po®)(1 = po(T — 1)) dt = 0.

5. A projected gradient descent algorithm

To implement the theoretical results established in the previ-
ous sections, we will use a projected gradient descent algorithm
(De los Reyes, 2015) based on the temporal method of lines
(Schiesser, 2012), for solving the spatially semi-discretised for-
ward state equations and backward adjoint state equations,
respectively. Without loss of generality we set M = 1 and let
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the upwind scheme (LeVeque, 2007) to discretise the spatial
first-order partial derivative term in (2), which lead to the
semi-discretised state equations

dpo() N

arrake —Aipo(t) +h ; wip1,i(t), (62)

dpui(t i(t) — pri—1(t .

P;t( N hpl’ 0 wipri(t), 1<i<N,
(63)

marching forward with the boundary condition p; o = A;po(t)
and the initial conditions py(0) = 1, p1,;(0) = 0. By defining

Po(®) Mo
p1,1(t) “1

i = 1. The generalisation to the case M > 1 is straightforward, pt) = pi2®) | o= M2 |,
but the computational cost will be scaled up for a larger M. : :
In the spatial domain [0, T], we define a uniform mesh p”\'](t) M.N
{x; = ih}f\io with the step size h = T/N. Let py,i(t) = p1(xi> 1), ’
q1,i(t) = q1(x;,t) and w; = p(x;). We use the (right) rectan- and
gular rule to approximate the integral term in (1) and apply
[ 1 huy hus hus  hug hun
)\.O/h —/Jq—l/]’l 0 0 0 0
0 1/h —ur—1/h 0 0 e 0
An(p) = ) ) ,
0 . . . ‘. 0
0 0 0 l/h —,l,LN_l—l/h 0
0 0 0 0 1/h —un — 1/h ]

the above scheme (62)-(63) can be formulated into an initial
value problem of (stift) ODE system

d
PO~ awpe, (64)
p(0) = [1,0,...,0]". (65)

It can be shown that the solution to (64)-(65) strongly

dg91i® _ _ qui+1(®) — qui0)
dt h
0<i<N-1,

— wi(go(t) — qu,i(t)),
(67)

which march backward with the boundary condition p; 5y = 0,
the final conditions qo(T) = —b and q,;(T) = 0. By defining

convergences to (7)-(8) as N — oo by using Trotter-Kato qo(t) 1
Theorem (Xu & Hu, 2013). Moreover, (64)-(65) can be effi- a10(0) 0
ciently solved by MATLAB’s ODE solvers (e.g.ode15s) for any q@) = q1.1() o= 01,
given control . :
Using the similar approach for discretising the backward qiN-1(t) 0
adjoint state equations follows and
MO @o® — o) +a (66)
RS —A1 0 0 0 0 ]
—uo  po+1/h =1/ 0 0 0
— 1 0 ur+1/h —1/h 0 0
By(n) = . . . . g
. . ‘. ‘. 0
—IN-2 0 : 0 0 pun—2+1/h —1/h
| —UN-1 0 0 0 0 uN-1+ 1/h |

the above equations (66) and (67) can be written as a final value
problem of (stiff) ODE system

da(® = By(n)q(¢) + ae,

dt (68)

q(T) = [-b,0,...,0]T, (69)
which, upon reversing the time via a change of variable 7 =
T — t, can also be efficiently solved by MATLAB’s ODE solvers
(e.g. odel5s).
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For the time interval [0, T] with a general (possibly nonuni-
form) mesh {tj}jlio, we define 1771,1' = pri(t) = p1(xi> tj), q’l)i =

q1,i(t) = q1(xis tj), and q6 = qo(tj). With numerical quadra-
ture, the first-order optimality condition (40) of optimal control
Wi = p(x;) can be pointwisely approximated by

N N
Brei =Proy \h Y _with i —h ) withdy— et
=0 =i
0<i=<N, (70)

where w; and w; denote appropriate quadrature weights (e.g.
based on the trapezoidal rule).

Algorithm 1 A projected gradient descent (PGD) algorithm:
Input: T, o, 8,a,b,y,N,h = T/N, tol, kmax
Output: optimal control vector j;, = [to, i1, - - » N]T

1: procedure u,=PGD(T,«, B,a,b,y,N,h = T/N, tol, kmax)

2 choose an initial guess of control u(?;
3: for k = 0 to kpax do
4 solve the forward semi-discrete state ODE system:
dp(t) .
L = anw®p(o),  with p(0)
= [1)0)' te )0]T7
5 solve the backward semi-discrete adjoint state ODE
system:
dq(t
MO — 5y u)q(0) +aer, with (1)
= [_b>0) tee )O]T)
6: approximate the integral terms appeared in (70):

N N
Q=h) wpd, Q=h)y wphg, 0<i<N,
=0 =

7: update the control u**1 based on projected gradi-
ent descent iteration

(k1) _

7% P[o,ﬁ]{ligk) - yk(ﬁuﬁk) —(Qi— Qi — )},

0<i<N,

where y; > 0 is the step size computed with the
Armijo rule (or other line search rules);

8: if | ®tD — @ < rol then
9: return u;, = <0,

10: end if

11: end for

12: end procedure

Based on the described schemes above, a projection gradient
descent (PGD) algorithm for solving the fully coupled opti-
mality system (64)-(65), (68)-(69), and (70), is to construct a

fixed point iteration for iteratively updating u along the gradi-
ent descent direction, which is followed by a projection step. In
each iteration, it requires forward and backward time-marching
to solve the decoupled state and adjoint state ODEs for p(t) and
q(t), respectively. Both ODEs can be accurately and efficiently
solved with MATLAB’s built-in ODE solvers (i.e.ode45 and
odel5s) for aselected tolerance. The complete PGD algorithm
is summarised in Algorithm 1, where the stopping tolerance fol
should be appropriately chosen based on the level of finite differ-
ence discretisation and quadrature approximation errors. Such
a PGD algorithm can also be easily tailored to handle the sim-
ple case with constant repair rate, which will be demonstrated
by a numerical example. Based on our following numerical sim-
ulations, we have observed a rough linear convergence rate of
the proposed PGD algorithm. However, we remark that a rig-
orous convergence analysis of such a PGD algorithm is beyond
the scope of this paper, which will be left as our future work.

6. Numerical examples

In this section, we provide several numerical examples to val-
idate the theoretical results and to demonstrate the efficiency
of our proposed PGD algorithm. The approximation errors are
measured in the discrete L°°-norm. All simulations are imple-
mented using MATLAB 2017b on a Dell Precision Worksta-
tion with Intel(R) Core(TM) i7-7700K CPU@4.2GHz and 32GB
RAM. The CPU time (in seconds) is estimated using the timing
functions tic/toc.

6.1 Numerical simulation with constant repair rate

The optimal control model with constant repair rate is relatively
simple to solve, since both the state and adjoint state equation
are described by simple linear first-order ODEs. We mainly
focus on the case with « = 0 and 8 = 1. For numerical verifi-
cation, it is convenient to reformulate the above optimal control
expression p* as the zero of the following nonlinear equation

1 (T
F(w) ¢=M—/3—Tf0 (po— Dgodt =0

with

1 T
ﬂ_T/(; (po — Dqo dt
Xo |:2(e—(?»o+u)T )

— 4 Te GotT ,
B(ho + p)*T ho+u

where the above expressions of py () and go(t) are used in deriv-
ing the exact integration. Note that F(u) is a monotonically
increasing function, F(i) — 400 as u — 400, and

F(0) =

1 [2(e T —1)
BroT Xo

1 [Q@4+raT)e ™l 40T -2 0
= — < L.
BroT Ao

+ Te T 4 T]
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adjoint state go(t)

0
—computed go(¢)
- - exact qo(t)
At
2 .
0 5 10
t - time
convergence of J(u")
-0.45 | ' ' '
-05¢
-0.55
-0.6 f
0 2 4 6 8

k - iteration

Figure 2. The computed state, adjoint state, and convergence history of our PGD algorithm with T = 10.

Table 1. Convergence of the computed optimal repair rate 1, for a sequence of increasing T with Ao = 0.2, = 0and 8 = 1.

T Points h w leeh — "l J(un) /T Iter CPU

10 148 0.38590082 0.38593398 3.32e—05 —0.642306 8 0.01
102 328 0.45370187 045370418 231e—06 —0.595810 15 0.03
103 1760 0.45905576 0.45905589 1.34e—07 —0.591630 1 0.06
104 16,072 0.45958368 0.45958098 2.70e—06 —0.591216 13 051
10° 159,172 0.45963309 0.45963339 3.02e—07 —0.591174 11 3.93
108 1,590,196 0.45963871 0.45963863 8.38¢—08 —0.591170 11 37.97
107 15,900,400 0.45963924 0.45963915 8.39e—08 —0.591170 1 383.05

To see this, it suffices to show that

Q4+ rT)e ™l 4 1 T—2>0, (71)

for AgT > 0. In fact, if letting f(x) = (2 4+ x) e™* + x, we can
easily verify that f(x) > 2 for x > 0. Therefore, F(t) = 0 has a
unique positive solution.

Upon solving F(u) = 0 to a very high accuracy with any
standard nonlinear solver (Kelley, 2003) (e.g. £solve in MAT-
LAB) would provide an accurate benchmark approximation to
w*, which will be used as reference to estimate the approxima-
tion accuracy of our implemented PGD algorithm. We point
out that approximately solving the nonlinear equation F(u) =
0 does not introduce any discretisation errors in treating the
ODEs and integral terms.

We first check the convergence of our PGD algorithm for
a fixed final time T = 10 and Ao = 0.2. Figure 2 shows the
convergence history of our PGD algorithm and the correspond-
ing computed optimal state and adjoint state, where the initial
guess of control is set to be zero. As expected, we observe a lin-
ear convergence rate of our PGD algorithm based on the used
ode45 solver (with default tolerance 10~°). Smaller errors can
be obtained if we choose to use tighter tolerance in the ODE
solvers and the PGD stopping condition, which, however, will
take more iterations and time stepping points.

Next, we check the influence of the final time T on the com-
puted optimal control . Table 1 reports the convergence of
the approximated optimal control pj and the PGD algorithm

as T increases, where the error term ||y, — u* || indicates the
computed optimal control 1, by our PGD algorithm converges
to (with the given tolerance) the exact optimal control p* that
satisfies F(4*) = 0. The number of iterations used in our PGD
algorithm seems to be very robust with respect to the larger
values of T. It is also interesting to observe the convergence
behaviours of u* and J(uy,)/T as T increases. The experimental
data are shown in Table 1.

6.2 Numerical simulation with distributed repair rate

Let Ap = 0.2 and t = 1. To validate our algorithm, we first
apply it to an extended optimality system with an exact solu-
tion. The detailed construction and accuracy are presented in
the Appendix. We compare the objective functional with various
choice of parameters: a, b, «, and .

In Figures 3 and 4, we compare the computed state py(¢) and
optimal control p(x) over a time interval [0, T] with or with-
out optimising po(T), respectively, by testing different choice of
weight parameters. Again we set T = 10 and N = 400. In our
PGD algorithm, the initial guess of optimal control is taken as

the straight line connecting (0, 1) and (T, 0), i.e. [Lgo) = (T -
x;)/ T. The optimal solution seems to be insensitive to the other
choices of initial guess. Figures 5 and 6 show the adjoint state
and the convergence of the objective functional corresponding
to the selected parameters. Clearly, we observed the expected

factsthat 0 < p; < landq; <0.
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; . I I I
——Case: a=1, b=0, =0, g=1
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1 1 1 1 1 1 1 1 1
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t - time
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Figure 3. The computed state and optimal control by our PGD algorithm for different models with T = 10.
1 T T T T T T 1 ! :
------- Case: a=1, b=1, a=0, =1
— —=—Case: a=1,b=1, o=1, 4=0
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0.6 ! ! ! ! ! ! | | i ke
0
1.
5
—~ 0.5
3
0
0

X - space

Figure 4. The computed state and optimal control by our PGD algorithm for different models with T = 10.
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Figure 5. The computed state, adjoint state and objective functional for a selected case with T = 10.
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Case: a=1,b=1,a=1,5=1
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k - iteration

o 9
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pi(z,t)

=
oo
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t - time X - space

t - time

q(z,t)
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t - time X - space

Figure 6. The computed state, adjoint state and objective functional for a selected case with T = 10.

6.2.1 Numerical tests fora = Tandb = 0

Figure 3 demonstrates the results for a = 1 and b = 0. In this
setup, we only consider to maximise the probability distribu-
tion of the system in good mode in term of maximising the
L'-norm of py(t) over [0, T] over [0, T] without taking into
account its final state. We conducted three experiments by
testing different combinations of the control weight o and S,
with (o, ) = (0,1),(1,0) and (1,1). Among the three cases
tested, the best performance is given by the blue line, where
only L?-regularisation of the control is employed, i.e. (a, 8) =
(0, 1). However, the optimal repair function has a long decreas-
ing nonzero tail and the repair effort is the greatest as shown
in Figure 3. In contrast, including an L! -penalisation, either
(o, ) = (1,0) or (o, 8) = (1,1), the control function gains
sparsity over repair intervals, as illustrated by the yellow and
maroon lines, where sharp cuts are presented. In particular,
using L!-penalisation only, i.e. (o, 8) = (1,0), leads to a bang-
bang type of control, which suggests putting the maximum
efforts in repair in the initial stage of the system running period
and doing nothing when certain degree of deterioration is met.
However, once repair stops, i.e. u = 0, we see from the yellow
and maroon lines that the system deteriorates faster than the
case with nonzero repair rate represented by the blue line, which
agrees with the real-life applications.

6.2.2 Numerical testsfora = 1andb = 1
The inclusion of the final state po(T) in the objective func-
tional,i.e.a = 1and b = 1, can help boost up the value of po(T)
with slightly more control costs, as readily seen in Figure 4 and
Table 2. Overall, there is a trade-off between system availability
and repair/maintenance cost. The sparse structure of optimal
repair/maintenance rate can be adjusted by choosing appropri-
ate weight parameter « > 0. The other cases are very similar and
hence omitted for briefness.

In summary, all the numerical simulation results suggest
putting the maximum maintenance efforts over the early run-
ning period if the system is brand new initially. In other words,

Table 2. Comparison of optimal control cost and system availability for different
cases with T = 10.

Ly-norm Ly-norm Ly-norm
Case of ii* (x) of i1* (x) of p§ (t) ps (M
a=1,b=0a=08=1 2.72 1.28 8.04 0.74
a=1,b=0a=18=0 1.62 1.27 7.62 0.62
a=1,b=0a=18=1 1.26 0.91 7.10 0.53
a=1,b=1,a=0p8=1 2.93 134 8.11 0.76
a=1b=1a=1=0 1.80 133 7.79 0.66
a=1b=1a=18=1 1.45 0.99 7.35 0.58

those new machines should receive the best maintenance. In the
cases equipped with L! -penalisation, the optimal repair policy
suggests no repair necessary for those machines with an elapsed
repair time over a fixed threshold. For example, u = 0 when
repair time x > 2, indicated by the red lines in Figures 3 and 4.
This observation may help to provide a practical guidance for
making decisions in industrial management.

7. Conclusion

An optimal corrective maintenance design represented by the
repair rate is discussed for optimising the availability of a sim-
ple reparable system in a nonreflexive Banach space. Sparsity of
the optimal repair rate is built in by using L! -regularisation.
First-order necessary conditions of optimality are derived for
characterising the optimal repair rate. A projected gradient
descent (PGD) algorithm based on the upwind finite differ-
ence scheme is developed for solving the optimality system.
The presented numerical results may shed light on the practi-
cal applications. However, to be more realistic, reparable sys-
tems with time—dependent failure rate and repair rate, and the
associated problems such as parameter identification for failure
rate based on system performance and nonlinear controllabil-
ity of the system with respect to repair rate are worth further
examination. These topics will be considered in our future
work.
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Table A1. Error results of the computed optimal state, adjoint state, and optimal control with T = 2.

N Error ofpg Error ofp’{ Error of qg Error of q’{ Error of Iter CPU
40 2.63e—03 1.20e—03 1.32e—02 1.57e—01 6.14e—03 71 7.09
80 1.29e—03 6.34e—04 6.61e—03 8.17e—02 3.16e—03 43 6.29
160 6.39e—04 3.29e—04 3.33e—-03 4.20e—02 1.62e—03 40 9.02
320 3.19e—04 1.69e—04 1.52e—03 2.12e—02 8.14e—04 41 20.74
640 1.59e—04 8.61e—05 7.40e—04 1.06e—02 4.02e—04 36 45.71
1280 7.78e—05 4.94e—05 3.14e—-04 5.32e—03 2.02e—04 32 139.40
state po(t)
1
I I I I I I I —computed py(t)
- - exact po(t)
0.5 - _
0 1 1 1 1 1 1 1 1 1
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optimal control pp(x) and p*(z)
1
I : I I I I —computed g, ()
- - exact p*(z)
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adjoint state go(t
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=
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k - iteration t - time
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Figure A1. The state, the adjoint state, and the optimal control (in solid lines) by our PGD algorithm with T = 2 and N = 80. For better comparison, the exact solutions

of po(t), go(t), and w*(t) are also plotted in dashed lines.

0 b 0 b
Ml MO0 @@ — 10 0) + 8106,

1 T
w(x) =Pz {B (/0 P1(x)(q1(x, 1) — qo(t)) dt — Ot)} . (A5)

(A4)

We highlight that such an extended optimality system is only for verify-
ing the accuracy of our finite difference scheme and the convergence of
our PGD algorithm. It may not correspond to the original optimization
problem anymore and hence we will not report the values of objective
functional.

Inspired by the close-form solution expression for the case with con-
stant repair rate, we choose the following exact solution according to the

boundary and initial conditions (with 1o = 0.2):

t

po® =€, pixtH)=Arre ¥, (A6)

qo® =40 T - 1), gt =(T—-x)eE TP —e™), (A7)

which can be used in (A5) to obtain the expression of exact optimal con-
trol @*(x). Notice there hold p;(0,£) = A1po(¥), po(1) =1, qo(T) =0,
q1(x, T) =0, and q1(T,t) = 0, but p;(x,0) # 0. To numerically validate
our proposed PGD algorithm (based on the stiff ODE solver ode15s), we
apply it with tolerance tol = 107 to the above optimality system with the
given exact solution.

In Table Al, we report the convergence performance of our PGD
algorithm and the approximation errors (in L°-norm) of the computed
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optimal state, adjoint state, and optimal control with T =2 and i =1
for a sequence of refined meshes. As expected from our used first-order
finite difference schemes, the estimated approximation errors (reduced
by about half) show about first-order accuracy as the mesh step size h
is halved. Moreover, the iteration number used in our PGD algorithm
seems to be mesh-independent, which is well-known (Kelley & Sachs, 1992)
for gradient projection method. As an illustration, Figure Al plots the

computed optimal state, adjoint state, and optimal control, which are
almost overlapped with the given exact solutions. The linear decreasing
of the difference || *! — p*|| implies a typical linear convergence rate of
our PGD algorithm. This constructed extended optimality system indi-
cates our PGD algorithm indeed delivers first-order accurate numerical
solution, although its rigorous convergence analysis is not given in this

paper.
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