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Abstract— This paper focuses on failure rate identification
of a multi-state reparable system. The mathematical model is
governed by coupled transport and integro-differential equa-
tions, which describe the probabilities of the system in good
and failure modes. The objective of this work is to identify the
failure rates based on the sampled-data of the probability of
the system in good mode. Rigorous analysis is presented and
numerical tests are conducted to demonstrate the design.

I. INTRODUCTION

Failure rate identification for a multi-state reparable sys-
tem is considered in this paper. A reparable system is one
which can be restored to satisfactory operation by repair
actions whenever a failure occurs (cf. [19], [24]). It often
arises in problems of product design, inventory systems,
computer networking and complex manufacturing processes.
Mathematical models governed by distributed parameter sys-
tems of coupled transport and integro-differential equations
have been widely used to study the reparable systems (cf. [2],
[3], [4], [6], [7], [8], [9], [23]). Especially, for given failure
rates the well-posedness and asymptotic behavior of this type
of models with arbitrarily distributed repair have been well-
studied using C0-semigroup theory in the aforementioned
references. Lately, optimal maintenance policies interpreted
as control inputs of the system are discussed in (cf. [1], [11],
[12]). Our current interest is on the identification of system
failure rates, which is crucial in understanding and evaluating
system performance.

In this paper, we consider a reparable multi-state system
introduced by Chung [2], which represents general features
of reparable systems. Consider that there are M modes of
failure associated with a device. The state of the device is
given by its failure mode number j, j = 1,2, . . . ,M, and
0 represents the good state. The device is good at time
zero and transitions are permitted only between states 0
and j. The failure rates are constants and all statistically
independent. The repair time is arbitrarily distributed. The
transition diagram for the system is demonstrated by Fig. 1.
The precise model of system equations reads

d p0(t)
dt

=−
M

∑
j=1

λ j p0(t)+
M

∑
j=1

∫
∞

0
µ j(x)p j(x, t)dx, (1)

∂ p j(x, t)
∂ t

+
∂ p j(x, t)

∂x
=−µ j(x)p j(x, t), (2)
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∫ l

0

p1(x, t)dx = p̂1(t)

∫ l

0

pM (x, t)dx = p̂M (t)

Fig. 1. Transition diagram of the reparable multi-state system

with boundary condition

p j(0, t) = λ j p0(t), j = 1,2, . . . ,M, t > 0, (3)

and initial conditions

p0(0) = 1, p j(x,0) = 0, j = 1,2, . . . ,M. (4)

Here
1) p0(t): probability that the device is in good mode 0 at

time t. It also represents the pointwise availability of
the system;

2) p j(x, t): probability density (with respect to repair time
x) that the failed device is in failure mode j at time t
and has an elapsed repair time of x. Let p̂ j(t) denote
the probability of the device in failure mode 1 at time
t, then p̂ j(t) is given by

p̂ j(t) =
∫

∞

0
p j(x, t)dx; (5)

3) λ j > 0: constant failure rate of the device for failure
mode j;

4) µ j(x)≥ 0: repair rate when the device is in failure state
at t and has an elapsed repair time of x. Moreover,
assume

0≤ µ j(x)≤ µ̄,
∫ x

0
µ(s)ds < ∞, ∀x < ∞,

and
∫

∞

0
µ j(x)dx = ∞, (6)

where µ̄ > 0 is the maximum repair rate.
Due to the coupling of an integro-differential equation in
the reparable system, equations (1)–(4) can be essentially
formulated as a Volterra integral problem (see Remark 1).
The mathematical approach for modeling the reparable sys-
tem has also been employed in the study of the supply
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chain and queueing network modeling (cf. [5], [7], [8], [22]).
In essence, it describes a birth-death process, which shares
similar features with the population dynamics described by
the first-order hyperbolic equations (cf. [20], [21]). Parameter
identification associated with the population dynamics has
been discussed in (cf. [14], [15], [16]). In the current
work, we aim at using sampled data of the system output
measurements to identify its failure rates.

II. SAMPLED-DATA BASED FAILURE RATE
IDENTIFICATION

Consider that there are N pointwise measurements of the
system output

~PN = C p0(t,~λ ) = [p0(t1), p0(t2), . . . , p0(tN)]T ∈ RN , (7)

where ti ∈ [0,T ], i = 1,2, . . . ,N, and

C = [
∫ T

0
δt1(t) · dt,

∫ T

0
δt2(t) · dt, . . . ,

∫ T

0
δtN (t) · dt]T .

In particular, let tN = T . The objective of the present work is
to identify the failure rate λ j, j = 1,2, . . . ,M, of the model
based on the sampled data. We formulate this problem as a
constrained least squares fit to data. To be more precise, we
seek for ~λ = [λ1,λ2, . . . ,λM]T which minimizes:

J(~λ ) =
1
2

N

∑
k=1
|p0(tk,~λ )− p̃0(tk)|2 (P)

for a given sampled data set

[p̃0(t1), p̃0(t2), . . . , p̃0(tN)]T ,

subject to the governing system (1)–(4).
In the remainder of this paper, we let Lp

x (0,T ) and Lp
t (0,T )

stand for the Lp-spaces, 1≤ p≤ ∞, with respect to x and t.

A. Sensitivity Analysis

For given failure and repair rates, the well-posedness
and stability issues of system (1)–(4) have been thoroughly
addressed in [9], [10], [23] by using C0-semigroup theory.
To solve problem (P), we first analyze the sensitivity of ~p
with respect to ~λ .

Recall the following basic results regarding the properties
of the solution to (1)–(4) given by [1], [12].

Proposition 1: If ~p(x, t) = (p0(t), p1(x, t), . . . , pM(x, t))T

is the solution to (1)–(4), then

p j(x, t) =
{

λ j p0(t− x)e−
∫ x

0 µ j(s)ds, x < t,
0, x≥ t

(8)

and

p0(t) =e−∑
M
j=1 λ jt p0(0)

+
M

∑
j=1

∫ t

0
e−∑

M
j=1 λ j(t−τ)

∫
τ

0
µ j(x)p j(x,τ)dxdτ. (9)

Moreover, ~p(x, t)= (p0(t), p1(x, t), . . . , pM(x, t))T ≥ 0 for any
x, t > 0,

p0 ∈W 1,∞(0,T ) ↪→C[0,T ] and (10)

p j ∈ L∞(0,T ;W 1,1(0,T ))∩W 1,∞(0,T ;L1(0,T ))

↪→C([0,T ];L1(0,T )), j = 1,2, . . . ,M. (11)
Since p j(x, t) = 0 for x≥ t, we have

∫ T

0

∂ p j(x, t)
∂x

dx = p j(T, t)− p j(0, t) =−λ j p0(t).

Now integrating equation (2) for each j = 1,2, . . . ,M, with
respect to x from 0 to T and adding them all to (1) follow

d p0(t)
dt

+
M

∑
j=1

d
dt

∫ T

0
p j(x, t)dx = 0, ∀0 < t ≤ T, (12)

which together with the initial condition (4) implies

p0(t)+
M

∑
j=1

∫ T

0
p j(x, t)dx = p0(0)+

M

∑
j=1

∫ T

0
p j(x,0)dx = 1,

(13)

for 0 < t ≤ T . Therefore, the sum of the probabilities of
the system in good and failure modes is always 1. In other
words, the system is conservative. Furthermore, based on the
nonnegativeity of the solution, (6) and (13), we know that
p0 in (9) satisfies

p0(t)≤ e−∑
M
j=1 λ jt +

M

∑
j=1

∫ t

0
e−∑

M
j=1 λ j(t−τ)

µ̄dτ

= e−∑
M
j=1 λ jt +

1− e−∑
M
j=1 λ jt

∑
M
j=1 λ j

µ̄M,

which converges to zero as ~λ converges to infinity.
Proposition 2: The solution ~p to (1)–(4) is absolutely

continuous in ~λ , uniformly in x and t.
Proof: Due to (8), it suffices to show that the probability

of the system in good mode p0 : R+ × (R+)M → R is
absolutely continuous in ~λ , and uniformly in t. With the
help of (8), (9) and p0(0) = 1, we get

p0(t,~λ ) =e−∑
M
j=1 λ jt +

∫ t

0

M

∑
j=1

λ je
−∑

M
j=1 λ j(t−τ)

·
∫

τ

0
µ j(x)p0(τ− x)e−

∫ x
0 µ j(s)ds dxdτ

=e−∑
M
j=1 λ jt +

∫ t

0

M

∑
j=1

λ je
−∑

M
j=1 λ j(t−τ)

·
∫

τ

0
µ j(τ−η)p0(η)e−

∫ τ−η

0 µ j(s)ds dηdτ. (14)
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Let ~λ (1) > 0 and ~λ (2) > 0. We have

sup
t∈[0,T ]

|p0(t,~λ (1))− p0(t,~λ (2))|

≤ sup
t∈[0,T ]

|e−∑
M
j=1 λ

(1)
j t − e−∑

M
j=1 λ

(2)
j t |

+ sup
t∈[0,T ]

∫ t

0
|

M

∑
j=1

λ
(1)
j e−∑

M
j=1 λ

(1)
j (t−τ)−

M

∑
j=1

λ
(2)
j e−∑

M
j=1 λ

(2)
j (t−τ)|

·
∫

τ

0
µ j(τ−η)p0(η ,~λ (1))e−

∫ τ−η

0 µ j(s)ds dηdτ

+ sup
t∈[0,T ]

∫ t

0

M

∑
j=1

λ
(2)
j e−∑

M
j=1 λ

(2)
j (t−τ)

·
∫

τ

0
µ j(τ−η)e−

∫ τ−η

0 µ j(s)ds|p0(η ,~λ (1))− p0(η ,~λ (2))|dηdτ

= I1 + I2 + I3. (15)

It is clear that I1 → 0 as |~λ (1)−~λ (2)| → 0. For the second
term I2, we get

∫
τ

0
µ j(τ−η)p0(η ,~λ (1))e−

∫ τ−η

0 µ j(s)ds dη

≤
∫

τ

0
µ j(τ−η)e−

∫ τ−η

0 µ j(s)ds dη

=
∫

τ

0
de−

∫ τ−η

0 µ j(s) = 1− e−
∫

τ
0 µ j(s) < 1,

for τ > 0. Thus I2→ 0 as |~λ (1)−~λ (2)| → 0. Furthermore,

I3 ≤ sup
t∈[0,T ]

∫ t

0

M

∑
j=1

λ
(2)
j e−∑

M
j=1 λ

(2)
j (t−τ)

·
∫

τ

0
µ j(τ−η)e−

∫ τ−η

0 µ j(s)ds dηdτ

· ‖p0(·,~λ (1))− p0(·,~λ (2))‖L∞
t

≤ sup
t∈[0,T ]

∫ t

0

M

∑
j=1

λ
(2)
j e−∑

M
j=1 λ

(2)
j (t−τ)

·
∫

τ

0
de−

∫ τ−η

0 µ j(s)dτ‖p0(·,~λ (1))− p0(·,~λ (2))‖L∞
t

≤ sup
t∈[0,T ]

∫ t

0

M

∑
j=1

λ
(2)
j e−∑

M
j=1 λ

(2)
j (t−τ)(1− e−

∫
τ
0 µ j(s))dτ

· ‖p0(·,~λ (1))− p0(·,~λ (2))‖L∞
t

≤ sup
t∈[0,T ]

(1− e−∑
M
j=1 λ

(2)
j t)‖p0(·,~λ (1))− p0(·,~λ (2))‖L∞

t

= (1− e−∑
M
j=1 λ

(2)
j T )‖p0(·,~λ (1))− p0(·,~λ (2))‖L∞

t . (16)

Combining (15) with (16) yields

‖p0(·, ,~λ (1))− p0(·,~λ (2))‖L∞
t ≤ I1 + I2

+(1− e−∑
M
j=1 λ

(2)
j T )‖p0(·,~λ (1))− p0(·,~λ (2))‖L∞

t .

Therefore,

‖p0(·, ,~λ (1))− p0(·,~λ (2))‖L∞
t ≤ e∑

M
j=1 λ

(2)
j T (I1 + I2)→ 0,

as |~λ (1)−~λ (2)| → 0, which establishes the desired result.

Remark 1: By changing the order of integration we can
further write (14) as a Volterra equation

p0(t,~λ ) = f (t,~λ )+
∫ t

0
K(t−η ,~λ )p0(η ,~λ )dη , (17)

where f (t,~λ ) = e−∑
M
j=1 λ jt p0(0) and

K(t−η ,~λ ) =
M

∑
j=1

λ je
−∑

M
j=1 λ j(t−η)

·
∫ t−η

0
µ j(ξ )e∑

M
j=1 λ jξ−

∫ ξ

0 µ j(s)ds dξ .

Next we discuss the sensitivity of ~p with respect to the
failure rate ~λ . Let ~yi =

δ~p
δλi

,i = 1,2, . . . ,M. Then

~yi = (y0i,y1i, . . . ,yMi)
T = (

δ p0

δλi
,

δ p1

δλi
, . . . ,

δ pM

δλi
)T

satisfies

dy0i(t)
dt

=−(p0(t)+
M

∑
j=1

λ jy0i(t))+
M

∑
j=1

∫ T

0
µ j(x)y ji(x, t)dx,

(18)
∂y ji(x, t)

∂ t
+

∂y ji(x, t)
∂x

=−µ j(x)y ji(x, t), (19)

with boundary condition

y ji(0, t) = δ ji p0(t)+λ jy0i(t), j = 1,2, . . . ,M, t > 0,
(20)

and initial conditions

y0i(0) = 0, y ji(x,0) = 0, j = 1,2, . . . ,M. (21)

Using the similar procedure as in the proof of Proposition 1,
we can verify that y0i satisfies

y0i(t,~λ ) =−
∫ t

0
e−∑

M
j=1 λ j(t−τ)p0(τ)dτ

+
M

∑
j=1

∫ t

0
e−∑

M
j=1 λ j(t−τ)

∫
τ

0
µ j(x)y ji(x,τ)dxdτ

and y ji satisfies

y ji(x, t) =
{

δ ji p0(t− x)+λ jy0i(t− x)e−
∫ x

0 µ j(s)ds, x < t,
0, x≥ t

for i = 1,2, . . . ,N and j = 1,2, . . . ,M.
It can be shown that ~y is continuous in ~λ , thus ~p is

continuously differentiable with respect to~λ . Due to limited
space, we shall leave the detailed proof in our future paper.

To reduce the dimension of computation of the sensitivity
equations, we shall employ the adjoint method to derive an
efficient way to evaluate δJ(~λ )

δ~λ
. To this end, we first introduce

the adjoint sensitivity equations. Recall the duality between
nonreflexive Banach spaces. Let X =R× (L1

x(0,T ))
M . Then

its dual space is given by X∗ = R× (L∞
x (0,T ))

M and the
duality between X and X∗ is defined by

(~p,~q)X ,X∗ = p0q0 +
M

∑
j=1

∫ T

0
p jq j dx,

for ~p= (p0, p1, . . . , pM)T ∈ X and ~q= (q0,q1, . . . ,qM)T ∈ X∗.
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Let ~q be the adjoint state. It is straightforward to verify
that ~q satisfies the adjoint sensitivity equations

dq0(t)
dt

=
M

∑
j=1

(λ j + p0(t))(q0(t)−q j(0, t))

−
N−1

∑
k=1

δtk(t)(p0(tk)− p̃0(tk)), (22)

∂q j(x, t)
∂ t

+
∂q j(x, t)

∂x
=−µ j(x)(q0(t)−q j(x, t)), (23)

with boundary conditions

q j(T, t) = 0, j = 1,2, . . . ,M, t > 0, (24)

and final conditions

q0(T ) = p0(T )− p̃0(T ), q j(x,T ) = 0, j = 1,2, . . . ,M.
(25)

Moreover, ~q ∈ L∞(0,T )× (L∞(0,T ;L∞(0,T )))M .
Theorem 2: If~λ ∗= (λ ∗1 ,λ

∗
2 , . . . ,λ

∗
M)T ∈ (R+)M is the best

fit to (P), then ~λ ∗i satisfies
∫ T

0
p0(t)(qi(0, t)−q0(t))dt = 0, (26)

for i = 1,2, . . . ,M, where p0, (q0,q1, . . . ,qM)T are the so-
lutions to the governing system (1)-(4) and the adjoint
sensitivity equations (22)–(25), respectively.

Proof: Note that if ~λ ∗ = (λ ∗1 ,λ
∗
2 , . . . ,λ

∗
M)T ∈ (R+)M is

an optimal solution to problem (P), it is always an interior
point of (R+)M , and hence

δJ(~λ )
δλi

|λi=λ ∗i
=

N

∑
k=1

(p0(tk,~λ )− p̃0(tk))y0i(tk,λ ∗i ) = 0, (27)

for i = 1,2, . . . ,M.
Next we apply the adjoint sensitivity equations to further

tackle (27). Taking the duality between ~y and ~q and then
integrating with respect to t from 0 to T yield

∫ T

0

dy0i

dt
q0 dt =−

∫ T

0
(p0 +

M

∑
j=1

λ jy0i(t))q0 dt

+
∫ T

0
(

M

∑
j=1

∫ T

0
µ jy ji dx)q0 dt

and
∫ T

0
(

∂y ji

∂ t
,q j)dt +

∫ T

0
(

∂y ji

∂x
,q j)dt =

∫ T

0
(−µ jy ji,q j)dt

for j = 1,2, . . . ,M. Using integration by parts and (24)–(25),
we get

y0i(T )q0(T )−
∫ T

0
y0i

dq0

dt
dt =−

∫ T

0
(p0 +

M

∑
j=1

λ jy0i)q0 dt

+
∫ T

0
(

M

∑
j=1

∫ t

0
µ jy ji dx)q0 dt (28)

and

−
∫ T

0
(y ji,

∂q j

∂ t
)dt−

∫ T

0
(δ ji p0(t)+λ jy0i(t))q j(0, t)dt

−
∫ T

0
(y ji,

∂q j

∂x
)dt =

∫ T

0
(y ji,−µ jq j)dt, j = 1,2, . . . ,M.

(29)

Now taking the summation of both sides of (29) with respect
to j from 1 to M and adding the resulting equation to (28)
give

y0i(T )(p0(T )− p̃0(T ))

=−
∫ T

0

N−1

∑
k=1

δtk(t)y0i(t)(p0(tk)− p̃0(tk))dt

−
∫ T

0
p0(t)q0(t)dt +

∫ T

0
p0(t)qi(0, t)dt

or

N

∑
k=1

y0i(tk)(p0(tk)− p̃0(tk)) =
∫ T

0
p0(t)(qi(0, t)−q0(t))dt,

where we utilized equations (22)–(23). As a result, (27)
becomes

δJ(~λ )
δλi

|λi=λ ∗i
=

N

∑
k=1

(p0(tk,~λ )− p̃0(tk))y0i(tk,~λ )

=
∫ T

0
p0(t)(qi(0, t)−q0(t))dt = 0,

for i = 1,2, . . . ,M, which completes the proof.

III. NUMERICAL SCHEMES BASED ON THE ADJOINT
METHOD

To implement the theoretical results established in the
previous sections, we will use a projected gradient descent
algorithm [18] based on the temporal method of lines, for
solving the spatially semi-discretized forward state equations
and backward adjoint sensitivity equations, respectively. Be-
low we mainly describe our numerical schemes for the case
with M = 1.

For the spatial domain [0,T ], we define a uniform mesh
{xi = ih}n

i=0 with the step size h= T/n. Let p1,i(t)= p1(xi, t),
q1,i(t) = q1(xi, t) and µi = µ(xi). We use the (right) rectan-
gular rule to approximate the integral term in (1) and apply
the upwind scheme to discretize the spatial first-order partial
derivative term in (2), which result in the semi-discretized
state equations (1≤ i≤ n)

d p0(t)
dt

= −λ p0(t)+h
n

∑
i=1

µi p1,i(t),

d p1,i(t)
dt

= −
p1,i(t)− p1,i−1(t)

h
−µi p1,i(t),

marching forward with the boundary condition p1,0 =
λ1 p0(t) and the initial conditions p0(0) = 1, p1,i(0) = 0. The
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above scheme (30)–(30) can be formulated into an initial
value problem of (stiff) ODE system

d~p(t)
dt

= Ah(λ )~p(t), (30)

~p(0) = [1,0, · · · ,0]T , (31)

with

~p(t) =
[

p0(t), p1,1(t), p1,2(t), · · · , p1,N(t)
]ᵀ

and

Ah(λ ) =




−λ hµ1 hµ2 hµ3 · · · hµn
λ/h −µ1−1/h 0 0 · · · 0

0 1/h −µ2−1/h 0 · · · 0

0
. . .

. . .
. . .

. . . 0
0 0 0 · · · 1/h −µn−1/h


 ,

which can be efficiently solved by any ODE solvers.
To numerically solve the adjoint sensitivity equations (22)-

(25), we introduce the following change of variables:

q̂0(t) = q0(t)+φ(t) := q0(t)+
N−1

∑
k=1

H(t− tk)(p0(tk)− p̃0(tk))

to eliminate the Dirac delta function within (22) to get

dq̂0(t)
dt

= (λ + p0)(q̂0(t)−φ(t)−q1(0, t))

∂q1(x, t)
∂ t

+
∂q1(x, t)

∂x
=−µ(x)(q̂0(t)−φ(t)−q1(x, t)),

with a modified final condition

q̂0(T ) = p0(T )− p̃0(T )+φ(T ) =
N

∑
k=1

(p0(tk)− p̃0(tk)).

Using the same upwind scheme, the semi-discretized adjoint
sensitivity equations read (i = 0,1,2, · · · ,n−1)

dq̂0(t)
dt

= (λ + p0(t))(q̂0(t)−φ(t)−q1,0(t)), (32)

dq1,i(t)
dt

= −
q1,i+1(t)−q1,i(t)

h
−µi(q̂0(t)−φ(t)−q1,i(t)), (33)

which march backward with the boundary condition q1,n =
0, the final conditions q̂0(T ) = ∑

N
k=1(p0(tk)− p̃0(tk)) and

q1,i(T ) = 0. By defining

~q(t) =
[

q̂0(t),q1,0(t), · · · ,q1,n−1(t)
]ᵀ
,

~b(t) =
[
−λ − p0(t),µ0, , · · · ,µN−1

]ᵀ
,

Bh(λ , t) =




λ + p0(t) −λ − p0(t) 0 0 · · · 0
−µ0 µ0 +1/h −1/h 0 · · · 0

...
. . .

. . .
. . .

. . . −1/h
−µN−1 0 0 · · · 0 µN−1 +1/h


 ,

the above scheme (32)-(33) can be written as a final value
problem of (stiff) time-varying ODE system:

d~q(t)
dt

= Bh(λ , t)~q(t)+φ(t)~b(t), (34)

~q(T ) = [
N

∑
k=1

(p0(tk)− p̃0(tk)),0, · · · ,0]T , (35)

which, upon reversing the time via a change of variable
τ = T − t, can also be efficiently solved by ODE solvers.
After solving q̂0(t), we can recover q0(t) = q̂0(t)− φ(t).
Finally, a gradient descent (GD) algorithm (see Algorithm
1) for solving our least square minimization problem can be
constructed by approximating the gradient (27) for M = 1 by
a quadrature rule (e.g., trapezoidal rule).

Algorithm 1 A gradient descent (GD) algorithm:
Input: T,n,h = T/n, tol,kmax
Output: estimated failure rate λh

1: choose an initial guess λ (0) > 0;
2: for k = 0 to kmax do
3: solve the forward ODEs (30-31) with λ = λ (k);
4: solve the backward ODEs (34-35) with λ = λ (k);
5: compute the gradient (27): use trapezoidal rule

δJ(λ (k))

δλ
≈ Gk :=

n

∑
j=0

w j p0(τ j)(q1,0(τ j)−q0(τ j),

where τ j and w j are quadrature nodes and weights;
6: update λ (k+1) along gradient descent iteration

λ
(k+1) = λ

(k)−αkGk,

where αk ∈ (0,1] is the appropriate step size;
7: if ‖λ (k+1)−λ (k)‖ ≤ tol then
8: return λh = λ (k+1);
9: end if

10: end for

IV. NUMERICAL RESULTS

In this section, we provide numerical examples to validate
our proposed GD algorithm. All simulations are implemented
using MATLAB. We choose T = 20, n = 200, and λexact =
0.618 in our forward model simulation. The repair rate
µ(x) = 5

10 (
x

10 )
(5−1) is a Weibull distribution. For the GD

algorithm, we take the initial guess λ (0) = 0.5 and the
stopping tolerance tol = 10−4.

A. Noise-free case: influence of number of measurements

In Fig. 2, we compare the simulated p0(t,λh) based on
the estimated failure rate λh with the noise-free N = 1 and
N = 4 measurements data (excluding the initial condition).
It seems that one measurement provides good estimate of
the failure rate, but more measurements help to improve the
estimation accuracy and accelerate the convergence rate of
the GD algorithm.

B. Noise case: influence of noise level

In Fig. 3, we compare the simulated p0(t,λh) based on the
estimated failure rate λh, from N = 1,4,9 measurement data
with noise. The added random noise is normally distributed
with zero mean and standard deviation δ = 1% and δ = 5%,
respectively. The approximation accuracy of the estimated
failure rate λh is comparable to the noise level, which
indicates that our least-square minimization model and the
designed GD algorithm are very stable.
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Fig. 2. The estimated failure rate with 1,2,4 and 9 measurements.

0 5 10 15 20

0.2

0.4

0.6

0.8

1
Measurements
Simulation

0 5 10 15 20

0.2

0.4

0.6

0.8

1
Measurements
Simulation

0 5 10 15 20

0.2

0.4

0.6

0.8

1
Measurements
Simulation

0 5 10 15 20

0.2

0.4

0.6

0.8

1
Measurements
Simulation

0 5 10 15 20

0.2

0.4

0.6

0.8

1
Measurements
Simulation

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Measurements
Simulation

Fig. 3. The estimated failure rate for 1, 4, and 9 measurements with 1%
(left) and 5% (right) noise, respectively.

V. CONCLUSION

We considered the problem of failure rates identification
for a multi-state reparable system using the sampled data
of the system output measurements. We formulated it as a
PDE-constrained least squares problem to find the best fit
to data. To numerically solve this problem, we employed
a gradient descent algorithm based on the adjoint method,
where we established the rigorous sensitivity analysis and
the adjoint sensitivity equations. Numerical results for M =
1 demonstrated the effectivity of our designd algorithm.
However, when increasing the number of failure modes to
M > 1, we observed that our GD algorithm still converges,
but it might converge to a different local minimizer since the
uniqueness is unknown. The questions of what conditions or

extra measurements are needed to uniquely determine the
failure rates and how to provide the optimal repair based
on the failure rates will be further investigated in our future
work.
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