Research 9: Query Processing & Optimization 2

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Visual Road: A Video Data Management Benchmark

Brandon Haynes, Amrita Mazumdar
Magdalena Balazinska, Luis Ceze, Alvin Cheung

{bhaynes,amrita,magda,luisceze,akcheung}@cs.washington.edu
Paul G. Allen Center for Computer Science
University of Washington

http://visualroad.uwdb.io

ABSTRACT

Recently, video database management systems (VDBMSs)
have re-emerged as an active area of research and
development. To accelerate innovation in this area, we
present Visual Road, a benchmark that evaluates the
performance of these systems. Visual Road comes with a
data generator and a suite of queries over cameras positioned
within a simulated metropolitan environment. Visual Road’s
video data is automatically generated with a high degree
of realism, and annotated using a modern simulation and
visualization engine. This allows for VDBMS performance
evaluation while scaling up the size of the input data. Visual
Road is designed to evaluate a broad variety of VDBMSs: real-
time systems, systems for longitudinal analytical queries,
systems processing traditional videos, and systems designed
for 360° videos. We use the benchmark to evaluate three
recent VDBMSs both in capabilities and performance.

KEYWORDS

Benchmarking and performance evaluation; multimedia
databases; video data management; virtual reality video

ACM Reference Format:

Brandon Haynes, Amrita Mazumdar and Magdalena Balazinska,
Luis Ceze, Alvin Cheung. 2019. Visual Road: A Video Data
Management Benchmark. In 2019 International Conference on
Management of Data (SIGMOD °19), June 30-Fuly 5, 2019, Amsterdam,
Netherlands. ACM, New York, NY, USA, 16 pages. https://doi.org/
10.1145/3299869.3324955

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SIGMOD 19, June 30-July 5, 2019, Amsterdam, Netherlands

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06....$15.00
https://doi.org/10.1145/3299869.3324955

972

(b) Overcast skies at sunset
Figure 1: Two frames from Visual Road cameras
illustrate the realism and variety of the benchmark.
Some depicted assets copyright [13] and [14]. Complete
videos available at visualroad.uwdb.io/datasets.

1 INTRODUCTION

Video data management has recently re-emerged as an
active research area due to advances in machine learning
and graphics hardware, as well as the emergence of
applications such as adaptive streaming and virtual reality.
This technology push and application pull have led the
community to develop many new systems to efficiently
process and manage video data [1, 20, 26, 32, 33, 35, 44].
Existing systems quantify their performance by reporting
their efficiency when processing various ad hoc workloads
both in terms of the input videos selected and the executed
queries. However, comprehensive and easily reproducible
system comparisons are missing. A key challenge is
that there is currently no clear way to reliably and
objectively benchmark performance among the various

http://visualroad.uwdb.io
https://doi.org/10.1145/3299869.3324955
https://doi.org/10.1145/3299869.3324955
https://doi.org/10.1145/3299869.3324955
visualroad.uwdb.io/datasets

Research 9: Query Processing & Optimization 2

recently proposed video database management systems
(VDBMSs). This deficiency is due to a lack of: (i) a robust,
sufficiently-complex video dataset (in terms of resolution,
quantity, duration, and variety of content); and (ii) an
architecture-agnostic specification of a common set of
queries that may be executed on current and future VDBMSs.

Analogous to standardized benchmarks for other areas
of data management research (such as transaction [53] and
analytical processing [55]), any benchmark for video data
processing needs the ability to test systems at different
scales and in a repeatable manner. To achieve this, short
video segments or ad hoc video streams will not suffice.
However, as shown in Table 1, such inputs have been typical
in the evaluation of recent VDBMSs (with the exception of
Scanner [44], which comes with multiple video streams but
has no way to scale input data size). While such data may
be used in isolation to evaluate properties such as prediction
accuracy or query planning performance of a specific system,
it does not allow conclusions about VDBMS performance
(e.g., in terms of throughput) when executing thousands
of such queries. It also complicates the comparison of the
various systems in terms of the types of queries they support.

To address this deficiency, we develop a new benchmark
aimed specifically at VDBMSs. As we describe in Section 2,
evaluating video database management systems poses a
number of unique challenges that do not arise in data
management benchmarks for other domains. For example,
using randomized inputs—as is common in benchmarks
for relational database systems—is infeasible due to the
inherent semantic structure of video, as algorithms such
as motion detection require consecutive video frames to
contain coherent features.

Equally difficult is determining whether a VDBMS
produces a correct answer to a query, which requires accurate
ground truth. Existing datasets are manually annotated with
this metadata, but manually annotating the hundreds of
thousands of inputs required to evaluate performance under
load, scalability, and other similar metrics is impractical.

To address these challenges, we develop Visual Road?,
a benchmark designed to evaluate the performance of
VDBMSs in the face of a diverse query workload. Visual Road
reproducibly and objectively measures how well a VDBMS
executes a battery of video-oriented workloads. Visual Road
includes a set of evaluation queries and a data generator. The
queries are divided into “microbenchmark” operations that
test isolated features found in current VDBMSs, along with
larger “composite” queries that measure a VDBMS’s ability
to execute typical end-to-end applications drawn from the
recent literature.

!Name inspired by Linear Road [2], a benchmark for streaming database
management systems.

973

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Table 1: Many recent video database systems evaluate
using only a small number of distinct inputs. In
Section 6 we evaluate the subset that have source
available and can be installed on our hardware.

Name # Distinct Inputs
Optasia [35] 3

LightDB [20] 4
Chameleon [31] 5
Blazelt [32] 6
NoScope [33] 7
Focus [25] 14
Scanner [44] >100

Visual Road comes with a data generator that produces
input videos for the benchmark. To allow the creation of
a virtually unlimited number of these input videos, Visual
Road uses a modern simulation, visualization, and gaming
engine [13] to deterministically generate realistic videos
within a simulated metropolitan world (see Figure 1). Visual
Road allows users to vary the city size, number of cameras,
and length of video in its simulation to arbitrarily large
sizes. Additionally, its simulation allows for the automatic
calculation of precise ground truth and other metadata about
generated videos, without the need for manual annotation.
Finally, the cameras used in Visual Road are extremely
flexible. In addition to generating ordinary two-dimensional
video, they can also produce more complex video types
(e.g., panoramic 360° video) that are used with a more
complex category of virtual reality (VR)-oriented benchmark
queries. Overall, Visual Road’s generated video datasets
are rich and highly realistic. They can serve to execute
various real-world applications such as vehicle tracking and
compute meaningful results. The queries provided with the
benchmark include a variety of both simple queries and
complex applications to exercise benchmarked systems along
various dimensions.

Visual Road is designed to be implementable across
a wide variety of VDBMS architectures, including those
that perform video querying at scale (e.g., Scanner [44],
Optasia [35], Chameleon [31]), operate on emerging forms
of video data (e.g., LightDB [20]), and perform deep learning
inference (e.g., NoScope [33], Blazelt [32], Focus [25]). In the
same way that relational database systems target subsets
of benchmarks (e.g., a specific TPC query), Visual Road is
designed to be flexible: a user may either select specific
applicable queries or groups of queries appropriate for their
systems or execute the entire benchmark to demonstrate
broad functionality.

Research 9: Query Processing & Optimization 2

Visual Road is also extensible, such that future innovations
and workload types can be easily incorporated into
subsequent versions. This includes both the ability to
introduce new and unexpected elements into the video
simulation, and also to increase the complexity of the
benchmark queries (e.g., by increasing the number of
cameras, range of benchmark parameters, or available
machine learning algorithms).

Each benchmark query is specified in a VDBMS-agnostic
manner adaptable to a wide variety of VDBMS types and
architectures. To illustrate this wide applicability, we have
implemented the benchmark on three recent VDBMSs. We
discuss how Visual Road leads to objective and reproducible
results that can serve as a fair comparison between VDBMSs.

In summary, we make the following contributions:

e We develop Visual Road, a benchmark for video
database management systems. The benchmark
includes a data generator, along with microbenchmark
and composite queries (Sections 3 to 5).

e We show that the videos generated by Visual Road
produce results of sufficient quality to match existing,
manually-curated video datasets (Section 6).

e We implement Visual Road on several VDBMSs and
show how it helps to compare the systems both in
terms of capabilities and performance (Section 6).

The remainder of this paper is organized as follows. We
first describe the challenges associated with evaluating
VDBMSs at scale (Section 2). We then introduce the
Visual Road benchmark (Sections 3 and 4) and describe
its implementation (Section 5). We evaluate the quality of
the benchmark videos, the data generation performance,
and the ability of the benchmark to compare three modern
VDBMSs (Section 6). We conclude with related work and
future directions.

2 CHALLENGES

Designing a benchmark that targets VDBMSs poses
several unique challenges not found in existing database
benchmarks. These include:

Creating sufficiently large datasets. Many existing
video corpora (e.g., VIRAT [40], UA-DETRAC [56],
PETS04 [17], Okutama-Action [5]) consist of a modest
amount (< 30 hours) of curated videos. Such videos
cannot sufficiently scale without massive duplication
and redundancy. As we show in Section 6, executing
video workloads with a small number of distinct inputs
(reasonably) allows systems to optimize (e.g., by aggressive
caching) in ways that would not be possible with a
large number of video inputs. This optimization leads
to performance results that are skewed and impair
comparisons between systems. While duplicating or

974

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

randomly generating video might avoid this issue, these
approaches suffer from other challenges that we describe
below (and show to be problematic in Section 6).

Manual annotation. Existing video datasets are typically
hand-annotated with ground truth and other metadata.
Prior work has utilized such annotations to measure system
performance (e.g., classification accuracy). This manual
“human-in-the-loop” process does not scale well to allow
for the large datasets that are needed to evaluate system
performance at scale.

Semantic structure. Randomly-generated datasets, which
are commonly used in relational DBMS benchmarks
(e.g., TPC-C [53], TPC-H [55], TPC-E [54]), are ill-suited
for video-oriented workloads. Videos are inherently highly-
structured (e.g., pixels in adjacent video frames are highly
correlated), and both video encoders and VDBMSs take
advantage of these characteristics to speed up processing.
For instance, encoders exploit redundancies in adjacent
video frames for efficient compression. Because of this, a
benchmark that relies on noise or other randomly-generated
inputs will produce unrealistic results.

No universal language or functionality. To date, no
standard query language, data model, or functionality exists
across all VDBMSs (however, some work has recently
explored this space [20]). Expressing a set of queries that
can be implemented and executed across a wide variety of
VDBMSs remains a challenge.

Visual Road is designed to address the challenges described
above. Its simulation-oriented approach lets users to place
an arbitrary number of cameras, each with configurable
position, resolution, and field of view. This configurability
allows for the generation of a practically unlimited number
of input videos. Further, the resulting corpus is realistic—for
example, videos contain semantically-valid objects (e.g., cars,
buildings, pedestrians), and cameras with overlapping fields
of view both show the same objects (albeit from differing
perspectives).

Visual Road’s approach also allows for automatic
generation of ground truth and other metadata. If a VDBMS
query result indicates that a pedestrian is present in frame i
of video j, Visual Road is able to evaluate the geometry of the
scene that produced the video and automatically determine
whether this result is correct.

Finally, we have taken care to express each query in a
VDBMS- and architecture-agnostic manner. VDBMSs are free
to implement each such query in any manner is appropriate
for that system.

Research 9: Query Processing & Optimization 2

7
18 © @ T52
Q] T21
A A
T10 T24 _“%I+
T31
==
O 7 ——
160 © 78 T46 V
=,
v Traffic Camera @ Panoramic Camera == Road

Figure 2: Overhead view of a randomized Visual Road
configuration with L = 9.

3 THE VISUAL ROAD BENCHMARK

Video used for the Visual Road benchmark is generated
in Visual City, a pseudorandomly-generated, simulated
metropolitan area. Visual City currently contains road
networks, vehicles, pedestrians, landscaping, buildings,
bridges, traffic, ground-based cameras, and other features
found in real-world cities. Visual City is also affected by
a number of conditions such as cloud cover, precipitation,
and sun position. Sample photos taken from Visual City
are shown in Figure 1. We posit that this environmental
complexity is both important and sufficient to ensure that
benchmarked VDBMSs are exercised in interesting ways.
The features of the generated city could also be extended in
subsequent versions of the benchmark (e.g., by incorporating
wildlife, tunnels, or lakes) to increase the complexity, variety,
and unexpectedness of the simulation.

3.1 Benchmark Data

As shown in Figure 2, Visual City is laid out as a disconnected
set of tiles. Each tile is drawn uniformly with replacement
from a pool of tiles associated with a particular version of
Visual Road. The version described in this paper contains 72
tiles (see Section 5) and each tile is several square kilometers
in size. Each tile contains different weather conditions,
pedestrian and vehicle densities, and geography.

Video data is captured in Visual City via a number of
cameras. Each tile is associated with a camera configuration
C that specifies various types and numbers of cameras. To
monitor traffic conditions, each tile contains ¢; randomly-
oriented traffic cameras positioned 10-20 meters above
a roadway, along with ¢, randomly-oriented panoramic
cameras positioned 5-10 meters above sidewalks. Each

975

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

panoramic camera is composed of four ordinary cameras
with overlapping 120°fields of view positioned so that they
overlap to capture a 360°field of view. The current Visual
Road prototype sets C = {cs,c,} = {4, 1} for each tile.

When generating video data, a user provides values
for four hyperparameters. A scale factor L determines the
number of tiles in the city. A user also selects a resolution (e.g.,
3840x2160) and a simulation duration that is globally applied
to each of the cameras. Finally, a random seed s allows other
users to deterministically reproduce datasets by reinitializing
the pseudorandom number generator with the same seed.

In addition to providing city size, the scale factor also
determines the number of queries generated throughout a
Visual City. The Visual Road prototype currently generates
4L queries for each type detailed in this section. This
batch size allows for a reasonable balance between dataset
generation time and benchmark execution time.

The Visual City Generator (VCG) is used to generate
input videos captured within Visual City. It accepts the
hyperparameters described above and uses these values to
construct a Visual City. First, it randomly chooses L tiles
from the available set of tiles (with replacement). Each tile is
configured and populated using a tile-specific configuration
(e.g., pedestrians and vehicles are randomly spawned in
number and locations specific to that tile). Cameras are then
randomly positioned in each tile subject to the constraints
described above. The VCG then executes the simulation and
captures videos generated by each camera. These videos are
encoded using the H264 codec [51] and stored as flat files (see
Section 6). The VCG also generates additional supporting
metadata required for verifying the results of specific queries
(e.g., Q6 in Section 4).

A VDBMS reports performance by executing the
benchmark using videos captured in a Visual City as input.
The benchmark comes with a set of pregenerated datasets
for immediate use (see Table 2); users may report results
using these datasets when comparing to other systems
(e.g., “We evaluate using version 1.0 of the 4k-sHORT dataset”).
Alternatively, users may deterministically generate their own
datasets (see below) and report the configuration along the
results (e.g., “We generated and executed the Visual Road 1.0
benchmark using scale L, resolution R, duration ¢, and seed
s”). By using the same configuration, competing VDBMSs
can reproduce the identical dataset and compare results.

In this first version of the benchmark, we choose to only
allow users to adjust the scale factor, resolution, duration, and
seed parameters. This choice keeps the benchmark easy to
use. If the community finds it useful, however, future versions
could easily expose other parameters, such as testing only
on tiles with sunny weather or changing the density of the
cameras in individual tiles.

Research 9: Query Processing & Optimization 2

Table 2: Pregenerated datasets available at
visualroad.uwdb.io/datasets.

Name Hyperparameters
1K-sHORT {L=2,R= 960 X 540,t = 15 min}
1K-LoNG {L=4,R= 960 X 540,t = 60 min}
2K-sHORT {L = 2,R = 1920 X 1080, t = 15 min}
2k-LoNG {L = 4,R = 1920 X 1080, t = 60 min}
4k-sHORT {L = 2,R = 3840 X 2160, t = 15 min}
4K-LONG {L = 4,R = 3840 X 2160, t = 60 min}

3.2 Benchmark Execution

A VDBMS can execute the benchmark either offline or online.
Offline processing simulates batch processing of historical
video streams, where the VDBMS has random access to
entire video files on persistent storage. Online processing
simulates real-time video processing, where data is exposed
via a forward-only iterator with unknown total duration.

A separate Visual City Driver (VCD) is provided with
the benchmark and is responsible for reading the input
videos, exposing encoded video data to a VDBMS, submitting
queries to the VDBMS being measured, and evaluating the
correctness of a VDBMS’s query results.

When benchmarking in online mode, a VDBMS may
access each video using either a named pipe (on a single
local file system) or via the RTP protocol [49]. In this mode,
video data is throttled to a simulated real-time throughput
(i.e., the VCD exposes video frames at the corresponding
camera’s capture rate). The VCD blocks on attempts to read
video data beyond this rate. For a VDBMS benchmarking in
offline mode, the VCD additionally ensures each input video
is available on the local file system (on a single node, if the
VDBMS supports distributed execution) or a distributed file
system (we currently support HDFS).

The VCD uses the scale factor to simulate submission of
simultaneous instances (a “query batch”) of each benchmark
query to the VDBMS. The VCD submits batches in
benchmark query order (i.e., Q1 is submitted before Q2).
A VDBMS may execute each batch in a manner that is most
performant (e.g., serially or in parallel), and may optionally
quiesce or restart upon completing a batch.

Each benchmark query is a template with one or more
parameters (see Table 3). The VCD creates each instance
in a query batch by assigning values selected uniformly at
random for each parameter from their respective domains.
The VDBMS is only responsible for executing the query
instance, and does not participate in selecting the parameter
values.

A VDBMS may do one of two things with the H264- or
HEvVC-encoded result of a query. First, in write mode, as a
VDBMS completes each instance in a query batch, it should
write the result to a VCD-specified location on the local file

976

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

system (or on a VCD-specified node for distributed systems)
so the VCD can verify the correctness of each output. In
this mode the time to persist results is included in the total
execution time for the query batch. Alternatively, streaming
mode allows a VDBMS to discard the results of a query
and avoid the write overhead. However, in this mode a
user must ensure that the results of the queries are correct,
either by executing a second time in write mode or by doing
so manually. We show in Section 6.4 that the performance
differences between these two modes are negligible.

Finally, the VCD also validates the correctness of the
results generated by a VDBMS. Depending on the query,
it does so either by frame validation, which compares
VDBMS output videos to reference output videos, or
semantic validation, which compares a query result with
the actual scene geometry used in its input(s). In Visual
Road, most microbenchmark queries are verified using frame
validation. For these queries, the VCD executes its reference
implementation and compares each frame with the VDBMS’s
output using a validation metric. While future versions of
Visual Road may allow for different metrics, the one used in
the present version is the peak signal-to-noise ratio (PSNR).
The PSNR is a frequently-used image comparison metric, and
values > 40 dB are considered to be near-lossless [23, 28].
Visual Road adopts this threshold as a cutoff for validation.

Query Q2(c) and Q2(d) are verified using semantic
validation. In this case, the VCD compares a VDBMS’s
response to the actual objects that were present in the frames
used as input to the query. For example, if a VDBMS indicates
a car i is present in frame j, the VCD queries the simulation
engine to determine if car i was visible to the camera at the
instant the frame was captured.

When reporting results, an evaluator must report
validation descriptive statistics for each query. For queries
executed in online mode, this should be reported in frames
per second. A VDBMS executing offline analytical queries
should report total query runtime or frames per second. The
evaluator should also report other global elections such as
scale factor, resolution, duration, and execution mode.

4 VISUAL ROAD QUERIES

The Visual Road benchmark aims to evaluate VDBMS
performance by executing a varied workload. It does so by
measuring performance using microbenchmark (Table 5)
and composite macrobenchmark queries (Section 4.2).
Microbenchmark queries target the performance
of individual VDBMS operations in isolation. Each
microbenchmark involves a single, basic operation exposed
by recent VDBMSs that are common in video applications.
Composite queries, drawn from recent literature (see
Section 7), utilize two or more microbenchmarks to
implement more complex tasks.

visualroad.uwdb.io/datasets

Research 9: Query Processing & Optimization 2

Table 3: Microbenchmark parameters and domains.

Query Parameter Domain
Q1 X1, X2 0<x; <x3 <R,
Y1, Y2 0<y1 <y <Ry
t1, I 0<ti <ty <D
Q2(b) d [3..20]
Q2(c) A YOLO [46]
o {Pedestrian, Vehicle}
Q2(d) m [2..60]
€ (0,1)
Q3 Ax {Rx/yn|n € [1..3]}
Ay {Ro/onIn € [1..3]}
b; {2",n € [16..22]}
04,05 « {2"|n € [1..5]}
B {2"|n € [1..5]}

A VDBMS individually measures its performance for each
query. As detailed previously, for a given query Q;, the VCD
uses the scale factor L to submit a query batch containing 4L
instances of Q; to the VDBMS. The free parameters for each
instance Q{ , summarized in Table 3, are uniformly selected
(by the VCD) at random from their domain. Below we
describe each microbenchmark query. Each query operates
on a randomly-selected input video.

Several queries include ML-based computer vision
algorithms, such as object detection. The benchmark requires
that all VDBMSs use specified, state-of-the-art algorithms,
and focuses on evaluating the execution performance of
queries that need to apply those algorithms rather than
their quality. For the same reason, the benchmark videos
do not purposefully include unusual scenarios designed to
challenge computer vision methods. In case query accuracy
or algorithm selection becomes a concern, users of the
benchmark could be required to publish the F1 scores of
their query results.

4.1 Microbenchmarks

The following microbenchmark queries, formally defined
in Table 5, measure a VDBMS’s ability to repeatedly perform
small operations over input videos. Each is defined in terms
of familiar database operations (e.g., load, window, aggregate)
along with the convenience operations defined in Table 4.
Each video is composed of a sequence of frames that are
temporal samples of visual data with resolution R, X Ry.
At coordinate (x,y) of each frame is a pixel that contains
a color in a color space (e.g., RGB, YUV). Each executing
VDBMS stores the query result on disk (when executed
in write mode), or streams the result (when executed in
streaming mode). In Section 4.2 we compose many of
these microbenchmarks to form more substantial, real-world
applications drawn from recent literature.

977

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Table 4: Convenience operators used in
microbenchmark queries.

Name Type
PMap video — (pixel — pixel) — video
Map over individual pixels in a video
FMap video — (frame — frame) — video
Map over video frames
] video — video — (pixel — pixel — pixel)
JoinP — video
Join (by pixel coordinate) over video inputs
and apply a projection on each joined pair
video — (frame — N* — frame) —
Interpolate N2 — video
Interpolate a video to a new resolution
Sample video — N? — video
Downsample a video at a lower resolution
4.1.1 Video Manipulation.

Spatial & Temporal Selection (Q1). A VDBMS must
be able to efficiently spatially and temporally select
subregions of videos. This ability is exercised, for example,
in applications that select highlights containing relevant
data, construct cinematographic montages, or apply object
detection to a region of interest. Query Q1 measures a
VDBMS'’s ability to perform this type of operation.

Given a cropping rectangle bounded by the respective
upper-left and lower-right points (x1,y;) and (x2, y2) and
a temporal range (t1, t2), query Q1 crops the frames and
duration of a random input video V;. The cropping rectangle
points and temporal range are chosen uniformly at random.

Transformation (Q2) & Subquery (Q3). A VDBMS
must be able to efficiently perform transformations at various
granularities (e.g., per-pixel, using a stencil, over regions, and
for entire frames). Queries Q2 and Q3 test a VDBMS’s ability
to transform input videos at these scales.

The first transformation, Q2(a), requires that a
VDBMS convert a video to grayscale. The VCD reference
implementation does this by dropping chroma information
(i.e., the U and V channels in YUV color space) and leaves
luminescence (Y) unchanged.

Query Q2(b) performs a Gaussian blur convolution [48]
over an input video by applying a d X d kernel over the pixels
of each video. It does so by invoking a user-defined function
blur that is parameterized by the kernel size.

Next, query Q2(c) generates rectangular bounding boxes
for objects in an input video. It does so by applying an object-
detection algorithm A to each input video frame (in the
present version A is a singleton consisting of the YOLO [46]
algorithm). This algorithm associates each pixel p; in each
frame with zero or more object classes O = {o, ..., 0, }. The
VDBMS associates a constant color ¢; with each class 0j and a
“null” black color w for regions not associated with any class.

Research 9: Query Processing & Optimization 2

Table 5: Visual Road microbenchmark queries. See
Table 4 for the types of non-standard database
operations. The function w-coalesce is defined in
Equation 1.

Name Pseudocode
Q1 Select Load(V;).Select(x; < x < x2,
Y1 =y =yz,
1 <t<t)
Crop video frames to a rectangle at (x1,y1) and
(x2, y2) and between time #; and t5.

Q2 Transform

(a) Grayscale Load(V;).PMap(f)

Convert a video to grayscale using f that takes
in a YUV pixel (y, u, v) and returns (y, 0, 0).

(b) Blur f = blur(d); Load(V;).FMap(f)
blur generates a d X d Gaussian convolution
function f, which is applied to each frame of a
video.

(c) Boxes f = boxes(A,0); Load(V;).FMap(f)
boxes returns a function f that identifies object
classes O using algorithm A. f is applied to the
video to produce boxes for detected instances.

(d) Masking w is a func. that creates a window of m points.
a is a func. that computes the mean of m pixels.
p is a func. that takes in two pixels p, pp and
returns o if Im’p;vpr < €, or py, otherwise.

B = Load(V;).Window(w)
.Aggregate(a)
Load(V;).JoinP(B, p)
Apply an m-frame mean-filter to each frame in
a video, and set pixels below threshold € to w.

Q3 Subquery f = encoder(B)

Load(V;) .Partition(Ax, Ay).Subquery(f)
Cut each video frame into tiles of size (Ax, Ay)
and re-encode each tile using f at bitrate B, as
generated by encoder.

Q4 Upsample Load(V;).Interpolate(bilin, aRy, fRy)
Upsample each frame to size (aRx, fRy) using
bilinear interpolation.

Q5 Downsample Load(V;).Sample(¥x/,, Ry//;)

Reduce each video frame to size (%‘, %).
Q6 Union
(a) Boxes B = Q2.(V3)
Load(V;).JoinP (B, w-coalesce)
Overlay bounding rectangles B (see Q2c) on
top of an input video V;.
(b) Captions Load(V;) .JoinP(Load(C;), w-coalesce)

Overlay captions defined in C; on top of an
input video V;.

978

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

It finally produces an output video with frames containing
pixels given by:

pi =

w otherwise

, {cmino when O # 0

Q2(c) is verified using semantic validation, where each
detected object is mapped back to an actual object in
the scene geometry that produced the input video, and a
reference bounding box is generated for the object. The
maximum Jaccard distance between the VDBMS-generated
and reference boxes must not exceed €. In the prototype
version of Visual Road we describe in Section 5, we have
adopted the PASCAL VOC [16] threshold of € = 0.5.

Query Q2(d) performs background masking on each
input video by applying a mean filter [3] to each video
frame. Background masking is useful for removing static,
unchanging regions of a frame (e.g., sidewalks and buildings)
and leaving the dynamic “foreground” areas untouched. For
each window of m video frames f;, ..., fj+m in an input video,
a VDBMS should compute a background reference frame
b; = % 2keli..i+m] fk- Next, for each pixel p, in frame f;
and pj, in background reference frame b;, the VDBMS should
output a black pixel w when their difference is below the
threshold |p”p;vm’| < € and p,, otherwise.

Finally, query Q3 performs an operation on individual
regions of each frame in an input video. For example, an
application might deliver less-important regions at lower
bitrates (see Q10) or blur regions of a video frame that contain
faces or other sensitive information. Q3 performs the former
operation by segmenting input frames into regions of size
(Ax, Ay). Each resulting region u; is re-encoded at a bitrate
given by b;. The resulting regions should then be recombined.
4.1.2 Computer Vision.

Interpolation & Resampling (Q4, Q5). Computer
vision algorithms and machine learning models frequently
require an input image sampled at a particular resolution.
These queries test a VDBMS’s ability to perform this
sampling by asking it to perform interpolation and
resampling operations on input videos. First, query Q4
increases each input video’s resolution to (aRy, fR,) using
bilinear interpolation. Query Q5 performs the inverse
operation: given an input video, the VDBMS downsamples
each frame to a lower resolution (%x, %).

Union (Q6). Modern video applications frequently
require combining two or more data streams. For example,
an augmented reality application might overlay advertising
or informational text on a user’s display. Queries Q6(a) and
Q6(b) test a VDBMS’s ability to perform these operations by
merging and combining data stored in various formats.

Research 9: Query Processing & Optimization 2

In particular, query Q6(a) merges an input video V; with a
bounding box video B = Q,.(V;) by performing an outer join
on the corresponding pixels within each video. The bounding
box video is generated offline by the VCD by applying the
reference implementation of query Q2(c) to the associated
input video. For each pair of corresponding pixels (p; €
Vi,bj € B;), a VDBMS produces an output pixel using a
w-coalesce projection given by:

;)b
p .=
! {Pj

The VCD exposes B in two formats: as an encoded video
and as a serialized sequence of bounding box class identifiers
and coordinates. VDBMSs may consume either format when
executing the query. As in Q2(c), the VCD uses the black
sentinel color w to represent null pixels in the encoded
variant.

Query Q6(b) overlays a set of text annotations C; onto an
input video. Like query Q6(a), this query uses Equation 1 to
generate output pixel colors. However, here the input C; is
a WebVTT [43] file embedded as a metadata track within
the input video’s container. The VCD randomly generates
the WebVTT file and randomly varies position and non-
overlapping duration of each annotation. Benchmarking
VDBMSs may render the annotations using any font, and
need only support the line and position cue settings.

when b; # w
! (1)

otherwise

4.2 Composite Benchmarks

This section describes more complex, real-world
workloads that we call composite benchmarks. Each
composite benchmark leverages one or more of the
microbenchmarks introduced in the previous section.
Composite benchmarks are drawn from recent examples and
applications in the computer vision and machine learning
literature (see Section 7).

4.2.1 Computer Vision.

Object Detection (Q7). This query leverages Visual City
cameras to identify instances of a given object class o € O
(e.g., pedestrians or vehicles). To draw attention to identified
objects, it also removes extraneous “background” portions
of each video frame that do not contain visual information
about the class and persists or streams the results.

At a high level, a VDBMS implementing this query first
applies the classification query Q2(c) to every input video.
Next, for each object type, it overlays the resulting bounding
boxes onto the input videos using query Q6(a). Finally, it
refines the results by performing background removal as
defined in Q2(d). Figure 3 illustrates this process applied to
a single video frame.

979

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

(a) Input video frame

(b) Output video frame

Figure 3: Sample input and output for one frame of the
object detection query (Q7).

Table 6: Object detection query (Q7).

Input Input videos {Vi, ..., V,,}
Object detection function A(V, O)
Object classes O = {oy, ..., 01}
Output Videos {V.}, ..., V,;”" } where

V' = 02(QsalVis Q2 (Vs A {0:))))

As formalized in Table 6, the inputs to the object
detection query are the videos generated by the traffic
cameras scattered throughout Visual City. A VDBMS may
report results using additional object classes or detection
algorithms, so long as it also includes results for those defined
in Table 3.

Vehicle Tracking (Q8). Query 8 simulates the tracking of
vehicle sightings throughout Visual City. Each automobile in
Visual City has a unique front-facing license plate containing
six random alphanumeric digits.

A vehicle sighting instance is defined by the period in
which it is identifiable by one or more traffic cameras.
Initially, a vehicle enters a traffic camera’s field of view when
its license plate is unobscured relative to that camera. It exits
the traffic camera’s field of view when one or both of these
conditions is no longer met. The video frames occurring
between a vehicle entering and exiting a camera is a vehicle
tracking segment (VTS).

The VCD simulates searching for vehicles by issuing
vehicle tracking queries to the VDMBS. The input to this
query is the license plate of a random vehicle. As illustrated
in Figure 4, the output is a tracking video of temporally-
ordered (by entry time), concatenated VTSs for the vehicle
associated with that license plate.

This query is formalized in Table 7 as a recurrence. Its
output is defined by repeated application of Q2(c). Each
application uses a license plate recognition function £ to
identify the next VTS; in the input video. Query Q1 is used to
select the temporal range [¢;, t;+1] and the output is appended
to the previous iteration until a fixpoint is reached.

Research 9: Query Processing & Optimization 2

Time 0
VTS 1

Input Videos

Output Video

Figure 4: Illustration of the vehicle tracking query
(Q8) on a Visual Road dataset (scale = 1) that contains
three vehicle tracking segments (VISs). Each VTS is
temporally-ordered, concatenated, and output.

Table 7: Vehicle tracking query (Q8)

Input Traffic camera videos {V, ..., V, }

License plate [= (i, ..., ls)

License plate recognition function £ (OpenAPLR)
Output Video Vo = VTS & --- @ VTS,, where

t; = Zje[1..i—1] Duration(VTS;)
VTS; = 01(Qsa(Vi, Q2c(Vi, L, {1}))
(ti, tiv1)))

4.2.2 Virtual Reality.

Virtual reality (VR) video is an important, emerging
subclass of video data. Panoramic VR videos (a.k.a 360°
videos) are one popular member of this subclass. Visual
Road includes two benchmark queries that target the VR
360° data format. We include these queries because VR video
operations exercise sophisticated features possible only in
the most recent VDBMSs, and evaluating their performance
at scale is an important differentiating factor between such
systems. Operations on VR videos are also useful to test a
VDBMS’s ability to use higher resolutions than typically seen
in ordinary 2D video.

The following queries are more open-ended than the
previous benchmark categories, allowing an implementing
VDBMS additional freedom to optimize their execution.

Panoramic Stitching (Q9). Modern panoramic cameras
produce video panoramas by “stitching” together two
or more ordinary 2D videos into a 360° video. To take
advantage of modern video compression, the spherical video
is reprojected onto a plane and encoded as if it were an
ordinary 2D video. Query Q9 requires that a VDBMS perform
this process by stitching video data from the panoramic
cameras scattered throughout Visual City. Recall from
Section 3 that each panoramic camera is composed of four
ordinary 2D cameras with a 120° field of view. A VDBMS
implementing Q9 should accept the video streams from the
constituent 2D cameras, execute a function to convert the
four images into a single 360° video, and output it. This
process should be repeated for every panoramic camera in
Visual City.

980

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Table 8: Tile-Based Streaming (Q10).

Input 360° videos {Uy, ..., U, }, U; = Qo(V;)
Bitrates B = (b1, ..., by), b; € {bn, b;}
Client resolution R, = {ry, ..., rn}
Output Videos {V/, ..., V,/} where

Vi = 05(Qs(Vi,j = bj).ri)

A VDBMS is free to implement the conversion in any
manner that is most efficient, with the constraints that
(i) the resulting 360° videos should be equirectangularly
projected [48] and (ii) the result should be moderately similar
(i.e., within 30 dB PSNR) of the reference implementation.

Tile-Based Encoding (Q10). Recent research has
suggested that streaming “unimportant” areas of a 360°
video in lower resolution may yield substantial bandwidth
savings [21, 24, 59]. Additional savings may be achieved by
reducing the resolution of a VR video to match the resolution
of the VR headset or viewing device. This query, formalized in
Table 8, measures a VDBMS’s ability to use both techniques
to reduce bandwidth costs. To execute this query, a VDBMS
should use Q3 to decompose each video frame into nine
equal-sized “tiles” and encode high-importance tiles at a high-
quality bitrate b;, and the remaining tiles at a low-quality
bitrate b;. The VDBMS should also use Q5 to downsample
the video to a lower resolution that matches the viewing
device. For simplicity, we treat these parameters as global
values that are applied over the entire duration of the input
360° video.

5 IMPLEMENTATION

We implement the video generators for Visual Road 1.0
by adapting CARLA 0.84 [13], an open-source simulator
designed for autonomous driving research. CARLA itself
is designed as a “plugin” for the Unreal Engine 4.18, a
commercial gaming engine that provides physics, simulation,
and other graphics-oriented features. CARLA includes
resources, textures, and geometry, which form the basis of
the tiles used in Visual Road. It also exposes a configuration-
driven API that facilitates camera placement, rendering,
and other convenience functionality. We modify CARLA
to support efficient video encoding, camera rendering at
varying resolutions and frame rates, and multiple tiles and
configurations. All artifacts are developed using C++.

Version 1.0 of Visual Road contains a tile pool consisting
of 72 tiles. Each tile is constructed from one of two maps
(TownN01 and TowNO02), both drawn from the set of CARLA
resources. Each is also associated with one of twelve different
weather configurations and one of three different vehicle
and pedestrian densities (e.g., a “rush hour” tile contains 120
vehicles and 512 pedestrians). Each tile is configured with 4
traffic cameras and 1 panoramic camera, both capturing at
30 frames per second.

Research 9: Query Processing & Optimization 2

z 3600
=
=
s 60
£
1
PRSP IR F R
3 &
Query
B Scanner LightDB NoScope

Figure 5: Visual Road log-scale performance by query
with scale factor L = 4 at 1K and 60 minutes.

We also develop a Visual Road reference implementation
for use in verifying benchmark results using PSNR
comparisons. The reference implementation was written in
C++ and depends on FFmpeg [6] for video-related operations.
For semantic verification, the reference implementation
interacts with the Unreal Engine to generate metadata
relating to objects in a camera’s frame of view.

To generate the videos that serve as benchmark, the VCG
(see Section 3) produces a sequence of video frames for
each camera in the city. These frames are periodic temporal
samples of visual data. Each element of a frame at (x, y) is
a pixel containing a color in a given color space (e.g., RGB,
YUV). Frames are physically sequenced using a constant
temporal period (i.e., a frame rate). Each video has a duration
D and constant frame resolution R = (Ry, Ry). Finally, video
codecs compress each frame to produce an encoded video,
and each encoded input video is separately muxed using the
MP4 container format [29].

The current version of Visual Road includes support for
H264 [57] and HEVC [51], and each query result must be
encoded using either of these codecs. Visual Road also
currently supports frame rates in the range of 15-90 frames
per second (FPS) and resolutions at 1k (960 X 540), 2K
(1920 x 1080), and 4K (3840 X 2160). However, we anticipate
that future versions will extend support to additional codecs,
containers, frame rates, and resolutions.

The VCG supports single-node and distributed modes
of input video generation. In distributed mode, the VCG
uses the Amazon Elastic Compute Cloud (EC2) to launch
multiple instances of the Unreal Engine in parallel. Each
node independently configures the Visual Road environment,
launches an Unreal Engine instance, simulates the tile for
which it is responsible, and collects video output.

6 EVALUATION

We experimentally evaluate Visual Road in three ways. First,
in Section 6.1, we demonstrate that Visual Road produces
performance results for VDBMSs similar to real-world
datasets and better than alternative synthetic approaches.
Next, in Section 6.2, we apply the benchmark to three recent

981

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

open-source VDBMSs and contrast the results. For these
experiments we show out-of-the-box performance numbers
for all of the experiments. Better results could certainly
be achieved for each system with appropriate tuning. Our
goal is to evaluate the benchmark and not the systems.
Next, in Section 6.3.1 we evaluate the quality of the video
generated by Visual Road, and in Section 6.4 we evaluate
the performance differences between write and streaming
execution modes. Finally, in Section 6.3.2 we evaluate the
scalability of Visual Road when generating large corpora.

Experimental configuration. Except where stated
otherwise, we perform experiments using a hardware
configuration consisting of a single physical machine
running Ubuntu 16.04 and containing an Intel 3.4 Ghz i7-
6800K processor with 6 cores and 32 GB RAM. It is equipped
with a 256 GB SSD drive and an Nvidia Quadro P5000 GPU.

Benchmarked VDBMSs. To show wide applicability, we
execute Visual Road on three recent, open-source VDBMSs:
Scanner [44], LightDB [20], and NoScope [33]. These
VDBMSs cover a variety of target use-cases, respectively
including processing at scale, virtual reality video, and
specialized application of deep learning models.

Scanner is an open-source VDBMS that offers efficient
distributed video processing at scale. We deploy Scanner
using its most recently-published Docker container, which
was built using CUDA 8.0 [39], OpenCV 3.2 [42], and FFmpeg
3.3.1 [6]. Scanner lacks support for video cropping (Q1),
captioning (Q6(b)), and license plate recognition (Q8), so
we add these features as custom C++ operators (respectively)
using a modified resize operator, the libwebvtt [38], and
libopenalpr [41]. We also make minor modifications to
Scanner’s grayscale and resizing kernels so that queries Q2(a)
and Q4-5 can be expressed.

LightDB is a VDBMS specialized for virtual reality
video workloads. We deploy the most recent prototype
of this VDBMS, which depends on CUDA 8.0 and
FFmpeg 2.8. LightDB exposes operations that accept
angles rather than pixel offsets, and so we adapt each
benchmark query by manually mapping between the two
coordinate systems. LightDB also lacks support for Q6(b)
captioning and Q8 license plate recognition, and so we use
LightDB’s C+ “plugin” mechanism—again using libwebvtt
and libopenalpr—to add support for these features.

Finally, NoScope is a specialized VDBMS that improves
the performance of applying deep learning models to video
at scale. We deploy the most recent prototype of NoScope,
which relies on TensorFlow 0.12, CUDA 8.0, and cuDNN 5.1.
Because NoScope is specialized for deep learning and does
not expose support for arbitrary queries or a mechanism
for extensibility, we are only able to express queries Q1 and
Q2(c) using this system.

Research 9: Query Processing & Optimization 2

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Table 9: Visual Road ability to accurately measure VDBMS performance compared with real videos. Values show
total runtime in minutes and speedup relative to the UA-DETRAC baseline for LightDB and Scanner. [Red | cells

indicate a result where the relative performance between systems differs from the baseline, while Yellow cells
show performance discrepancies of an order of magnitude or more relative to the baseline.

UA-DETRAC Visual Road Duplicates Random

Query LightDB Scanner | LightDB Scanner | LightDB Scanner LightDB Scanner
01 1 2 1(0.9x) 2(0.8x) | 1(0.7x) 2(1.0x) | 3 (4x) 61 (26X)
Q2(a) 1 4 1 (0.7%) 3(0.8x) | 1(0.8%) 4(0.9x) 5 (4x) 4 (1x)
02(b) 3 36 5(0.6x) 25(0.7x) | 1(0.2x) 31(0.9x) | 9(1.1x) 43 (1.2%)
0Q2(c) 25 472 | 23(0.9x) 360 (0.8%X) | 3(0.1x) 432(0.9x) | 25 (I1x) 451 (1X)
Q2(d) 32 18 [30(0.9x) 19(1.0X) | 6(0.2x) 19 (1.1x) | 118 (4x) 57 (3x)
03 13 45 9(0.7x) 43(0.9x) | 1(0.1X) 46 (1.0x) | 158 (13X) 313 (7x)
04 26 N/A | 25 (0.9%) N/A 16 (0.6X) N/A 103 (4x) N/A

Q5 1 4 1(0.8x) 3(0.6X) | 1(0.4x) 4(0.9x) | 24(19x) 13 (3%)
06(a) 2 14 2(0.9x) 13(0.9%X) | 1(0.4x) 15(1.1x) | 29(16x) 19 (1.4%)
06(b) 12 11 | 11(0.9x) 8(0.7x) [2(0:2x) 11(09x) | 53 (5X) 66 (6x%)

We execute all queries in this section using VCD’s offline
mode, since neither Scanner nor NoScope support operating
on live-streaming video data. Except where stated otherwise,
for all systems we use default settings and did not attempt to
optimize batch size or leverage other optimization strategies.

6.1 Dataset Validation

In this section, we evaluate whether Visual Road’s
synthetically generated data yields performance numbers
similar to using real videos. We also evaluate whether other
types of synthetic inputs could work as well as Visual Road
to test a VDBMS. Overall, we find that Visual Road-generated
input videos produce runtimes similar to using real-world,
manually-annotated data, whereas other synthetic datasets
may yield misleading or incorrect results.

As a real-world baseline, we use the UA-DETRAC [56]
video dataset. UA-DETRAC is a manually-annotated corpus
composed of recorded traffic camera videos of various
durations. Our experiments in this section utilize the training
subset, which consists of 60 sequences of 1x video recorded
at 25 FPS. The data are provided as 83,791 images, which we
H264-encode to produce approximately two hours of video.

We next use Visual Road 1.0 to create input videos that
match the UA-DETRAC configuration. We execute the VCG
with scale factor L = 16 at 1k resolution to produce 64 traffic
camera videos. From these, we randomly select 60 videos
and re-encode each to 25 FPS. We finally truncate each video
so its duration matches a corresponding video in the UA-
DETRAC dataset.

In addition to comparing with the Visual Road-generated
input videos, we also construct two alternative synthetic
datasets as follows:

Duplicate videos. A user might test a VDBMS by
reproducing one or more manually-annotated videos to
create a larger synthetic corpus. To simulate this process,

982

we select the longest UA-DETRAC video (“MVI_40172”) and
replicate it 60 times. We then truncate each replicated video
to match the duration of a corresponding video in the UA-
DETRAC dataset.

Random videos. Alternatively, a user might use
randomly-generated video to evaluate VDBMS performance.
To simulate this approach, we generate a fully-synthetic video
corpus consisting of random noise. As in the previous dataset,
we generate 60 videos matched in duration to UA-DETRAC.

We execute the microbenchmark queries on the Scanner
and LightDB VDBMSs using each of the datasets described
above. Because NoScope is only able to execute two of the
queries, we omit it from this experiment. We were not able to
execute Q4 on Scanner for reasons we describe in Section 6.2.

Table 9 shows the performance results for each VDBMS,
query, and dataset. For each of the queries, VDBMS
performance for the Visual Road input is similar to the UA-
DETRAC input. In no cases does the Visual Road dataset lead
to a result that disagrees with the UA-DETRAC counterpart,
meaning that the benchmark correctly identifies the faster
system for each query. In general, performance for each
query closely tracks the baseline.

The duplicate and random datasets do not consistently
agree with the UA-DETRAC performance results. For these
datasets, at least one query produces a result that disagrees
with the baseline (i.e., where system X performs faster than
system Y on UA-DETRAC but worse on the synthetic input)
and could lead a user to draw an incorrect inference about
the performance of a system when using real-world video.

Equally problematic are the cases where the performance
differences between systems differ by more than an order
of magnitude compared to the baseline dataset. We have
highlighted discrepancies of this magnitude on Table 9. Such
a difference occurs for more than one query in both the

Research 9: Query Processing & Optimization 2

duplicate and random datasets, and could lead a user to
draw an incorrect conclusion about the relative performance
differences between VDBMSs when using one of these
synthetic datasets.

Overall, system performance on Visual Road data is similar
to the real videos with the important advantage that Visual
Road data is synthetically generated and videos can thus be
scaled and parameterized as needed.

6.2 System Comparison

In this section, we apply the benchmark to the comparison
VDBMSs at various scale factors and show that Visual Road
is a useful benchmark for comparing performance between
systems. The time to generate a Visual Road dataset need
only be incurred once since a given configuration determines
the resulting videos.

Our first experiment gives a high-level overview of
VDBMS performance. In this experiment, we hold constant
the scale factor (L = 4), resolution (1x), and duration (1 hour).
We use this configuration and execute applicable benchmark
queries on each VDBMS.

Figure 5 shows the log-scale total runtime for each
system and query combination. NoScope shows excellent
performance on Q2(c)—which closely matches the
workloads it was designed to execute—but its highly
specialized implementation doesn’t support most of the
other benchmark queries. Scanner and LightDB show
similar performance on Q1, Q6(b), and Q7-Q10.

We next vary the scale factor L while holding other
parameters constant at their previous values. To accomplish
this, we used the VCG to generate a series of one-hour
datasets at 1k resolution with increasing the size of the
simulated city. We then execute each query on a VDBMS and
measure the total runtime until completion. As we discussed
previously, the NoScope system only supports Q1 and Q2(c)
and so we show results only for these queries.

Figure 6 shows detailed VDBMS performance for each
benchmark query. At small scale factors, no single system
dominates across all queries. As the scale factor increases,
however, Scanner often falls behind the other comparison
systems. This drop-off appears to be due to memory
thrashing as more video data are introduced. Scanner also
suffers from a poorly-performing resize kernel (Q1) and its
use of the Caffe [30] deep learning framework to execute the
Q2(c) YOLO neutral network.

LightDB performs well across many queries, but suffers
from a CPU-only implementation of the captioning query. As
expected, NoScope excels at efficiently applying the YOLO
neural network in query Q2(c).

983

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Both Scanner and LightDB have memory-related issues
when executing Q4. When we execute this query on Scanner,
it quickly allocates all available memory and thereafter fails
to make progress. This occurs even when we attempt to
execute Q4 on Scanner with one input video or with a custom,
Python-based implementation of the resize operator.

LightDB exhibits similar issues when attempting to
subquery (Q3) or resize (Q4) more than 40 videos, after which
it fails due to lack of GPU memory. We work around this by
issuing these queries in two batches — one with the first 40
videos, and a second with the rest.

We also observe that the composite and VR benchmark
queries took far longer for both systems than did the
microbenchmark queries (with the exception of Q2(c),
which requires executing an expensive convolutional neural
network). This supports that Visual Road is effectively
targeting a wide range of workload complexities.

Our final comparison shows the lines of code (LOC)
required to execute each query on a VDBMS. To calculate
LOC, we construct a file containing the minimal code
required to execute each query, auto-format it, and count the
number of non-empty lines. Scanner and NoScope expose
Python bindings and we use AUTOPEP for formatting; we
similarly use cLANG-FORMAT for LightDB’s C+ APL. We
separately count implementation for queries that required
additional logic (e.g., LightDB’s text caption plugin for Q6(b))
using the same approach.

Figure 7 shows the resulting counts. Here, Scanner and
LightDB have similar LOC counts for many queries. The
same is true for supporting extension implementation,
primarily because both are written in C++. Because NoScope
narrowly targets only a single query, invoking it requires
only a few lines of Python code.

Overall, Visual Road effectively shows that NoScope is
an excellent, highly specialized engine while Scanner and
LightDB are more general purpose. It also exposes the
performance advantages and limitations of each system on
the different query types.

6.3 Video Quality & Generation Time

6.3.1 Quality of Video. In this section we examine the
quality of video produced by Visual Road and how similar it
is to real video. Again, our goal is to provide evidence that
videos are of good enough quality to be used to evaluate
query execution time.

To evaluate this aspect, we use the YOLOv2 [46] model to
identify automobiles (i.e., cars and vans) in both synthetic
Visual Road and real UA-DETRAC video. This model comes
pretrained on the COCO training/validation dataset [34].
Each test set contains 1920 randomly-selected frames.

Research 9: Query Processing & Optimization 2

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Ql Q2(a) Q2(b) Q2(c) Q2(d) Q3 Q4
2 2 8 72 8 8 8
6 48 6 6 6
1 1 4 4 4 4
20 &7 0 0 0 H—0 1 o 0 0
g Qs Q6(a) Q6(b) Q7 Q8 Q9 Q10
v 2 2 2 72 72 72 72
=
[48 48 48 48
1 1 1
r/ 2 2 24 24 /
0 0 0 0 0 0 0
2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Scale Factor
- Scanner LightDB +~ NoScope

Figure 6: VDBMS performance showing, at various scale factors, the total time to execute the benchmark queries.

80

afls =
SH503
» 60
=l
YO
e
< 40
@
&
- ‘ ‘ ‘ |
0
P ORI PO P
v &
Scanner ®LightDB ® NoScope

Figure 7: Lines of code (LOC) required to execute each
supported benchmark query. Solid bars show LOCs
to implement query and hashed bars for supporting
extension code. LOCs over 80 shown in parenthesis.

The average precisions (APs) at 50% IoU for the Visual
Road and UA-DETRAC datasets were respectively 72 and
75%. This is similar to results reported by Redmon & Farhadi
(AP 77% [46]) for this model on the “car” category
of another benchmark dataset [16]. This suggests that
the semantic structure of the synthetic Visual Road video
is similar to that of real video and supports its use for
evaluating the query execution time of a VDBMS at scale.
However, these results notwithstanding, we would like to
again emphasize that Visual Road is not intended to train
machine learning models or evaluate a VDBMS in terms of
prediction accuracy.

6.3.2 Generator Performance. We next explore the
performance of the Visual Road Generator (VCG) when
creating large video datasets. Figure 8 shows the total time
to generate a one-hour dataset with increasing scale factor
and at three resolutions: 1k, 2K, and 4k. For this experiment,
we executed the VCG on a single node using the hardware
configuration described previously.

300

200

100

Time (Hours)

s

1 2 3

Time (Hours)

0
4 1
Scale Factor # Nodes
+ |K ®2K ®4K
Figure 8: Performance
by scale/resolution (4

nodes, 60 minutes)

Figure 9: Performance
by #nodes (scale 2, 1k, 60
minutes).

These results show an approximately linear increase in
single-node generation time as the scale factor increases.
This result is intuitive, since (i) the number of cameras is a
linear function of scale factor, (ii) at a constant resolution
the total number of generated pixels increases linearly with
number of cameras, and (ii) the underlying scene geometry
must be recalculated on a per-camera basis, precluding
opportunities to render in parallel. The 4k generation time
increases more rapidly due to a software limitation related
to the number of cameras that can be simultaneously
instantiated; we plan to further optimize this in the future.

We next evaluate the performance of the VCG in
distributed mode when generating video in parallel using
multiple nodes. We hold constant scale factor (L = 2),
resolution (1k), and duration (1 hour), and vary the number
of nodes used to execute the VCG. For this experiment, we
use p3.2xlarge nodes on the Amazon Elastic Compute Cloud
(EC2) to generate video in parallel. Each instance has one
Nvidia V100 GPU, 8 logical cores, and 61GiB of RAM.

Figure 9 shows the time required by the VCG to generate
a dataset with the above configuration and given number
of nodes. Because dataset generation does not require
coordination between cameras, we see an expected linear
decrease in generation time as we increase the number of
nodes available for processing.

984

Research 9: Query Processing & Optimization 2

6.4 Write & Discard Modes

Our final set of experiments evaluate the performance
differences between benchmark execution in write and
streaming modes (see Section 3.2). To do so, we executed
the benchmark on the Scanner and LightDB systems in each
execution mode. To support streaming mode on Scanner, we
modified each query to send results to the null device. We
used LightDB’s sink operator for this operation.

For each query, we found that the performance difference
between the two modes was less than 2.5%. This difference
is in part due to pipelineing and also because disk IO is
inexpensive relative to video compression.

7 RELATED WORK

The database community has a long history of standardizing
on various benchmarks that target a wide range of
data management applications. These applications include
longstanding topics such as OLTP [53], OLAP [44], and
streaming [2]. They also cover more modern areas such as the
Internet of things [4], block chains [12], social networks [15],
and big data analytics [52]. Visual Road complements these
benchmarks by extending robust support for performance
evaluation of video processing at scale and motivates future
work in querying functionality and performance.

To date, we are aware of no video performance benchmark
that scales to an unlimited duration or resolution and does
not require manual annotation, despite the fact that a number
of recent VDBMSs have emerged to support a wide range of
modern applications. We target most of these applications
in this benchmark (e.g., license plate recognition [35,
60] (Q8); background subtraction/masking [35] (Q2(d),
Q6); general object detection [20, 25, 31, 32, 44, 60]
(Q2(c), Q7); decode performance [20, 44], stitching [26,
44] (Q9); up/downsampling [26] (Q4,Q5,Q10); user-defined
transformations [1] (Q2(a-d)); tile-based encoding [20, 21, 24,
59] (Q10)). These VDBMSs differ from previous-generation
VDBMS:s in that they support applications beyond simple
content search and information retrieval. Representative
systems include those shown in Table 1. Other work targets
specific aspects of video data management such as predicate
push-down [36]. Each system benefits from Visual Road, which
enables objective comparison of features and performance.

Several recently-released video-oriented simulation
frameworks target specific aspects of Al model training.
These include CARLA [13]—on which the Visual Road
prototype is built—along with others such as AirSim [50]
and DeepDrive [11]. Other specialized systems target
military (e.g., UTSAF [45]) or medical applications (e.g.,
[8]). While these frameworks all use modern simulation and

985

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

visualization software (e.g., Unreal), they are not designed to
produce large amounts of heterogeneous video, nor do they
come with queries useful for evaluating VDBMS performance.
A number of video-oriented datasets and benchmarks
have also emerged that target various aspects of machine
learning. These include UA-DETRAC [56], BDD100K [58],
ApolloScape [27], WebCamT [61], and ActivityNet [22]. While
these might be used to evaluate VDBMS performance, they are
of fixed, modest size and must be laboriously annotated.
Generalizability and transferability of results is a significant
challenge to applications that leverage synthetic data for use
in real-world applications. Prior work in several areas have
examined this issue. For example, in their survey of robot
simulators, Craighead et al. argued that contemporaneous
simulation software had high physical fidelity [9]. In a
subsequent survey on UAV and robot simulators, Cook et
al. drew similar conclusions in oceanographic robotics with
respect to the physics engines [7]. In the computer vision
domain, researchers have evaluated the transferability of
models learned on synthetic data to real-world applications.
Previous approaches have used various transferability metrics
(e.g., precision/recall [19], multi-object tracking accuracy [18],
collision-free percentage [47], average accuracy [10], ROC
curve [37], observed similarity [50]). Some previous work has
demonstrated that synthetic data leads to superior models when
data is limited or of low variety [19]. Visual Road evaluates
transferability using an approach similar to Hattori et al. [19].

8 CONCLUSION & FUTURE WORK

We presented Visual Road, a benchmark for video data
management systems (VDBMSs). Visual Road comes with a
data generator that produces an unlimited amount of synthetic
video generated by simulating an active metropolitan area,
along with a suite of queries that evaluate VDBMS performance.
Our results show that video generated using Visual Road
closely matches real-world, manually-annotated video
corpora and allows VDBMSs to be evaluated at any scale. We
used an initial implementation of the Visual Road benchmark
to evaluate the performance of several modern VDBMSs
and show that it is a useful tool for capturing meaningful
performance comparisons between systems. As visualization
and simulation tools evolve, future versions of Visual Road
will automatically fuse tiles, track objects across tiles, and
support increasingly complex procedurally-generated tiles.

Acknowledgments. This work is supported by the NSF through grants CCF-
1703051, 1IS-1546083, CCF-1518703, and CNS-1563788; DARPA award FA8750-16-2-
0032; DOE award DE-SC0016260; a Google Faculty Research Award; an award from
the University of Washington Reality Lab; gifts from the Intel Science and Technology
Center for Big Data, Intel Corporation, Adobe, Amazon, Facebook, Huawei, and
Google; and by CRISP, one of six centers in JUMP, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA.

Research 9: Query Processing & Optimization 2

REFERENCES
[1] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter.

—_
(=)
=

—
~
—

=

—
=)
—

(17

(18

[19

[20

[21

[22

=

[t/ A

—

-

—

—

2018. Sprocket: A Serverless Video Processing Framework. In SoCC.
263-274.

Arvind Arasu, Mitch Cherniack, Eduardo F. Galvez, David Maier,
Anurag Maskey, Esther Ryvkina, Michael Stonebraker, and Richard
Tibbetts. 2004. Linear Road: A Stream Data Management Benchmark.
In PVLDB. 480-491.

Gonzalo R. Arce. 2004. Nonlinear Signal Processing - A Statistical
Approach. Wiley.

Martin F. Arlitt, Manish Marwah, Gowtham Bellala, Amip Shah, Jeff
Healey, and Ben Vandiver. 2015. IoTAbench: an Internet of Things
Analytics Benchmark. In ICPE. 133-144.

Mohammadamin Barekatain, Miquel Marti, Hsueh-Fu Shih, Samuel
Murray, Kotaro Nakayama, Yutaka Matsuo, and Helmut Prendinger.
2017. Okutama-Action: An Aerial View Video Dataset for Concurrent
Human Action Detection. In CVPR. 2153-2160.

Fabrice Bellard. 2018. FFmpeg. https://ffmpeg.org.

Daniel Cook, Andrew Vardy, and Ron Lewis. 2014. A survey of AUV
and robot simulators for multi-vehicle operations. In AUV. 1-8.
Brent Cowan, Hamed Sabri, Bill Kapralos, Sayra Cristancho, Fuad
Moussa, and Adam Dubrowski. 2011. SCETF: Serious game surgical
cognitive education and training framework. In IGIC. 130-133.

Jeff Craighead, Robin R. Murphy, Jenny Burke, and Brian F. Goldiez.
2007. A Survey of Commercial & Open Source Unmanned Vehicle
Simulators. In ICRA. 852-857.

César Roberto de Souza, Adrien Gaidon, Yohann Cabon, and Antonio
Manuel Lopez Peiia. 2017. Procedural Generation of Videos to Train
Deep Action Recognition Networks. In CVPR. 2594-2604.

DeepDrive 2018. DeepDrive: Self-Driving Al https://deepdrive.io.
Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi,
and Kian-Lee Tan. 2017. BLOCKBENCH: A Framework for Analyzing
Private Blockchains. In SIGMOD. 1085-1100.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez,
and Vladlen Koltun. 2017. CARLA: An Open Urban Driving Simulator.
In CoRL. 1-16.

Epic Games. 2019. Unreal Engine 4. https://www.unrealengine.com.
Orri Erling, Alex Averbuch, Josep-Lluis Larriba-Pey, Hassan Chafi,
Andrey Gubichev, Arnau Prat-Pérez, Minh-Duc Pham, and Peter A.
Boncz. 2015. The LDBC Social Network Benchmark: Interactive
Workload. In SIGMOD. 619-630.

Mark Everingham, Luc J. Van Gool, Christopher K. I. Williams, John M.
Winn, and Andrew Zisserman. 2010. The Pascal Visual Object Classes
(VOC) Challenge. IJCV 88, 2 (2010), 303-338.

Robert B Fisher. 2004. The PETS04 surveillance ground-truth data sets.
In PETS. 1-5.

Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. 2016.
VirtualWorlds as Proxy for Multi-object Tracking Analysis. In CVPR.
4340-4349.

Hironori Hattori, Vishnu Naresh Boddeti, Kris M. Kitani, and Takeo
Kanade. 2015. Learning scene-specific pedestrian detectors without
real data. In CVPR. 3819-3827.

Brandon Haynes, Amrita Mazumdar, Armin Alaghi, Magdalena
Balazinska, Luis Ceze, and Alvin Cheung. 2018. LightDB: A DBMS for
Virtual Reality Video. PVLDB 11, 10 (2018), 1192-1205.

Brandon Haynes, Artem Minyaylov, Magdalena Balazinska, Luis Ceze,
and Alvin Cheung. 2017. VisualCloud Demonstration: A DBMS for
Virtual Reality. In SIGMOD. 1615-1618.

Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and
Juan Carlos Niebles. 2015. ActivityNet: A large-scale video benchmark
for human activity understanding. In CVPR. 961-970.

986

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Alain Horé and Djemel Ziou. 2010. Image Quality Metrics: PSNR vs.
SSIM. In ICPR. 2366-2369.

Mohammad Hosseini and Viswanathan Swaminathan. 2016. Adaptive
360 VR Video Streaming Based on MPEG-DASH SRD. In ISM. 407-408.
Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shivaram
Venkataraman, Paramvir Bahl, Matthai Philipose, Phillip B. Gibbons,
and Onur Mutlu. 2018. Focus: Querying Large Video Datasets with
Low Latency and Low Cost. In OSDI. 269-286.

Qi Huang, Petchean Ang, Peter Knowles, Tomasz Nykiel, Iaroslav
Tverdokhlib, Amit Yajurvedi, Paul Dapolito IV, Xifan Yan, Maxim
Bykov, Chuen Liang, Mohit Talwar, Abhishek Mathur, Sachin Kulkarni,
Matthew Burke, and Wyatt Lloyd. 2017. SVE: Distributed Video
Processing at Facebook Scale. In SOSP. 87-103.

Xinyu Huang, Xinjing Cheng, Qichuan Geng, Binbin Cao, Dingfu Zhou,
Peng Wang, Yuanqing Lin, and Ruigang Yang. 2018. The ApolloScape
Dataset for Autonomous Driving. CoRR abs/1803.06184 (2018).
Sinisa Ilic, Mile Petrovic, Branimir Jaksic, Petar Spalevic, Ljubomir
Lazic, and Mirko Milosevic. 2013. Experimental analysis of
picture quality after compression by different methods. Przeglad
Elektrotechniczny (2013), 0033-2097.

International Organization for Standardization. 2003. Coding of audio-
visual objects — Part 14: MP4 file format. Standard ISO/IEC 14496-
14:2003.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross B. Girshick, Sergio Guadarrama, and Trevor Darrell. 2014.
Caffe: Convolutional Architecture for Fast Feature Embedding. In
ACMMM. 675-678.

Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha
Sen, and Ion Stoica. 2018. Chameleon: scalable adaptation of video
analytics. In SIGCOMM. 253-266.

Daniel Kang, Peter Bailis, and Matei Zaharia. 2018.
Fast Exploratory Video Queries using Neural Networks.
abs/1805.01046 (2018).

Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei
Zaharia. 2017. NoScope: Optimizing Deep CNN-Based Queries over
Video Streams at Scale. PVLDB 10, 11 (2017), 1586—1597.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro
Perona, Deva Ramanan, Piotr Dollar, and C. Lawrence Zitnick. 2014.
Microsoft COCO: Common Objects in Context. In ECCV. 740-755.
Yao Lu, Aakanksha Chowdhery, and Srikanth Kandula. 2016. Optasia:
A Relational Platform for Efficient Large-Scale Video Analytics. In
SoCC. 57-170.

Yao Lu, Srikanth Kandula, and Surajit Chaudhuri. 2018. Interactive
Demonstration of Probabilistic Predicates. In SIGMOD. 1669-1672.
Javier Marin, David Vazquez, David Gerénimo, and Antonio M. Lopez.
2010. Learning appearance in virtual scenarios for pedestrian detection.
In CVPR. 137-144.

Mozilla Foundation and Contributors 2018. WebVTT parsing library.
https://github.com/hihihippp/webvtt-3.

NVIDIA Corporation. 2007. NVIDIA CUDA Compute Unified Device
Architecture Programming Guide. NVIDIA Corporation.

Sangmin Oh, Anthony Hoogs, A. G. Amitha Perera, Naresh P. Cuntoor,
Chia-Chih Chen, Jong Taek Lee, Saurajit Mukherjee, J. K. Aggarwal,
Hyungtae Lee, Larry S. Davis, Eran Swears, Xiaoyang Wang, Qiang Ji,
Kishore K. Reddy, Mubarak Shah, Carl Vondrick, Hamed Pirsiavash,
Deva Ramanan, Jenny Yuen, Antonio Torralba, Bi Song, Anesco
Fong, Amit K. Roy-Chowdhury, and Mita Desai. 2011. A large-scale
benchmark dataset for event recognition in surveillance video. In CVPR.
3153-3160.

OpenALPR Technology. 2018. Open Automatic License Plate
Recognition Library. http://www.openalpr.com.

OpenCV. 2018. Open Source Computer Vision Library. https://opencv.
org.

Blazelt:
CoRR

https://ffmpeg.org
https://deepdrive.io
https://www.unrealengine.com
https://github.com/hihihippp/webvtt-3
http://www.openalpr.com
https://opencv.org
https://opencv.org

Research 9: Query Processing & Optimization 2

[43] Silvia Pfeiffer. 2018. WebVTT: The Web Video Text Tracks Format.
Candidate Recommendation. W3C. https://www.w3.org/TR/2018/CR-
webvtt1-20180510/.

Alex Poms, Will Crichton, Pat Hanrahan, and Kayvon Fatahalian. 2018.
Scanner: efficient video analysis at scale. TOG 37, 4 (2018), 138:1—
138:13.

Phongsak Prasithsangaree, Joseph Manojlovich, Jinlin Chen, and
Michael Lewis. 2003. UTSAF: a simulation bridge between OneSAF
and the Unreal game engine. In SMC. 1333-1338.

[46] Joseph Redmon and Ali Farhadi. 2017. YOLO9000: Better, Faster,
Stronger. In CVPR. 6517-6525.

Fereshteh Sadeghi and Sergey Levine. 2017. CAD2RL: Real Single-
Image Flight Without a Single Real Image. In RSS.

David Salomon. 2011. The Computer Graphics Manual. Springer.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. 2003. RTP: A
Transport Protocol for Real-Time Applications. RFC 3550.

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. 2017.
AirSim: High-Fidelity Visual and Physical Simulation for Autonomous
Vehicles. In FSR. 621-635.

Gary J. Sullivan, Jens-Rainer Ohm, Woojin Han, and Thomas Wiegand.
2012. Overview of the High Efficiency Video Coding (HEVC) Standard.
TCSVT 22, 12 (2012), 1649-1668.

Xinhui Tian, Shaopeng Dai, Zhihui Du, Wanling Gao, Rui Ren, Yaodong
Cheng, Zhifei Zhang, Zhen Jia, Peijian Wang, and Jianfeng Zhan. 2017.
BigDataBench-S: An Open-Source Scientific Big Data Benchmark Suite.
In IPDPS. 1068-1077.

[44

[l

[45

=

(47

—

(48
[49

—

[50

[t

[51

—

[52

—

987

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

[53] Transaction Processing Performance Council. 2018. TPC-C Benchmark.
http://www.tpc.org/tpcc.

[54] Transaction Processing Performance Council. 2018. TPC-E Benchmark.
http://www.tpc.org/tpce.

[55] Transaction Processing Performance Council. 2018. TPC-H
Benchmark. http://www.tpc.org/tpch.

[56] Longyin Wen, Dawei Du, Zhaowei Cai, Zhen Lei, Ming-Ching Chang,
Honggang Qi, Jongwoo Lim, Ming-Hsuan Yang, and Siwei Lyu. 2015.
UA-DETRAC: A New Benchmark and Protocol for Multi-Object
Detection and Tracking. arXiv CoRR abs/1511.04136 (2015).

[57] Thomas Wiegand, Gary J. Sullivan, Gisle Bjntegaard, and Ajay Luthra.
2003. Overview of the H.264/AVC video coding standard. TCSVT 13,7
(2003), 560-576.

[58] Fisher Yu, Wengi Xian, Yingying Chen, Fangchen Liu, Mike Liao,
Vashisht Madhavan, and Trevor Darrell. 2018. BDD100K: A Diverse
Driving Video Database with Scalable Annotation Tooling. CoRR
abs/1805.04687 (2018).

[59] Alireza Zare, Alireza Aminlou, Miska M. Hannuksela, and Moncef
Gabbouj. 2016. HEVC-compliant Tile-based Streaming of Panoramic
Video for Virtual Reality Applications. In ACMMAM. 601-605.

[60] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai
Philipose, Paramvir Bahl, and Michael J. Freedman. 2017. Live Video
Analytics at Scale with Approximation and Delay-Tolerance. In NSDL
377-392.

[61] Shanghang Zhang, Guanhang Wu, Jodo P. Costeira, and José M. F.
Moura. 2017. Understanding Traffic Density from Large-Scale Web
Camera Data. In CVPR. 4264-4273.

http://www.tpc.org/tpcc
http://www.tpc.org/tpce
http://www.tpc.org/tpch

	Abstract
	1 Introduction
	2 Challenges
	3 The
	3.1 Benchmark Data
	3.2 Benchmark Execution

	4 Visual Road Queries
	4.1 Microbenchmarks
	4.2 Composite Benchmarks

	5 Implementation
	6 Evaluation
	6.1 Dataset Validation
	6.2 System Comparison
	6.3 Video Quality & Generation Time
	6.4 Write & Discard Modes

	7 Related Work
	8 Conclusion & Future Work
	References

