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Abstract: Since the late 1990s, extensive outbreaks of native bark beetles (Curculionidae: Scolytinae) 
have affected coniferous forests throughout Europe and North America, driving changes in carbon 
storage, wildlife habitat, nutrient cycling, and water resource provisioning. Remote sensing is a cru-
cial tool for quantifying the effects of these disturbances across broad landscapes. In particular, 
Landsat time series (LTS) are increasingly used to characterize outbreak dynamics, including the 
presence and severity of bark beetle-caused tree mortality, though broad-scale LTS-based maps are 
rarely informed by detailed field validation. Here we used spatial and temporal information from 
LTS products, in combination with extensive field data and Random Forest (RF) models, to develop 
30-m maps of the presence (i.e., any occurrence) and severity (i.e., cumulative percent basal area 
mortality) of beetle-caused tree mortality 1997–2019 in subalpine forests throughout the Southern 
Rocky Mountains, USA. Using resultant maps, we also quantified spatial patterns of cumulative 
tree mortality throughout the region, an important yet poorly understood concept in beetle-affected 
forests. RF models using LTS products to predict presence and severity performed well, with 80.3% 
correctly classified (Kappa = 0.61) and R2 = 0.68 (RMSE = 17.3), respectively. We found that ≥10,256 
km2 of subalpine forest area (39.5% of the study area) was affected by bark beetles and 19.3% of the 
study area experienced ≥70% tree mortality over the twenty-three year period. Variograms indi-
cated that severity was autocorrelated at scales < 250 km. Interestingly, cumulative patch-size dis-
tributions showed that areas with a near-total loss of the overstory canopy (i.e., ≥90% mortality) 
were relatively small (<0.24 km2) and isolated throughout the study area. Our findings help to in-
form an understanding of the variable effects of bark beetle outbreaks across complex forested re-
gions and provide insight into patterns of disturbance legacies, landscape connectivity, and suscep-
tibility to future disturbance. 
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1. Introduction 
Native bark beetles (Curculionidae: Scolytinae) are key drivers of ecosystem struc-

ture and function in Earth’s temperate and boreal forests [1–3]. Bark beetles can cause 
extensive tree mortality through coordinated mass attacks, altering important ecosystem 
services such as carbon storage, wildlife habitat, nutrient cycling, and water resource pro-
visioning [4–6]. For instance, in the western U.S., c. 3.8 × 109 trees were killed by bark 
beetles since the late 1990s [7], nearly twice that killed by wildfire during the same period 
[8]. Yet despite the ubiquity of these insects and their importance for forest dynamics, 
characterizing even basic attributes such as the affected area and severity of effects re-
mains challenging, particularly at relatively fine (c. 30 m) spatial grains and across broad 
extents. While the spatial patterns of ecological disturbances are known to influence veg-
etation dynamics and a wide range of ecosystem processes [9–11], the spatial patterns of 
bark beetle outbreaks have rarely been explored, particularly across regions with irrup-
tions of multiple beetle species. Improved mapping efforts that combine detailed field 
data and remotely sensed products are critical to refining understanding of the extent, 
severity, and spatial patterns of outbreaks. 

Most bark beetles are specialist herbivores that target only a single host-tree species 
or genus [12–14]. Typically, bark beetles persist at low population levels and attack dam-
aged or weakened trees (i.e., endemic conditions); outbreaks are initiated by population 
irruptions that require abundant susceptible hosts as well as suitable climate conditions 
[3,15,16]. Beetles in the genera Dendroctonus and Dryocoetes, which are responsible for 
much of the recent tree mortality in U.S. Rocky Mountain forests, preferentially target 
denser stands with larger trees, higher stem density, and greater host-tree abundance [17–
20]. Given a suitable landscape, outbreaks may be incited by warm temperatures and 
drought conditions which increase tree susceptibility to attack and enhance larval devel-
opment and overwinter survival [20–23]. Further climate warming is expected to amplify 
bark beetle activity [24,25], but with the potential for negative feedbacks as beetle attacks 
and climatic limitations deplete suitable host trees [26–28]. Climate, tree species composi-
tion, and forest structure vary dynamically across mountainous regions, and these factors 
establish the template for spatially heterogeneous patterns of bark beetle outbreaks. 

Remote sensing techniques are the most effective means of mapping insect-caused 
tree mortality across large areas [29,30]. One such approach is the US Forest Service Aerial 
Detection Survey (ADS), an airborne monitoring program in which trained observers 
manually identify areas with tree damage, defoliation, or mortality [31,32]. Though ADS 
data are widely used to monitor coarse-scale patterns of insect activity [7,33], locational 
error, uncertain locations of tree mortality within mapped perimeters, and temporal gaps 
in data acquisition limit their utility for detailed fine-grain mapping of bark beetle out-
breaks. To address this need, a number of semi-automated remote sensing approaches 
have been used to quantify the presence and severity of bark beetle attack. Landsat im-
agery has emerged as the most widely used data for these purposes because of their ex-
tended temporal record and relatively fine spatial grain [29]. In particular, Landsat image 
time series (LTS), which combine data from successive time steps, are increasingly used 
to characterize the effects of bark beetles and defoliators [34–36]. Annual LTS products 
can be used to effectively quantify the progression of outbreaks [22,37]. Temporal seg-
mentation or post-classification correction of LTS products can also reduce image irregu-
larities in individual scenes and help to isolate the effects of specific mortality agents 
[35,36,38]. While past LTS-based approaches have proven effective for mapping bark bee-
tle outbreaks, the use of multispectral ensembles [39], inclusion of spatial context sur-
rounding individual pixels [40,41], and high-quality field validation have not been widely 
used in past studies, but are likely to improve mapping efforts. 

To quantify the extent, severity, and spatial patterns of recent (c. 1997–2019) bark 
beetle outbreaks throughout the Southern Rocky Mountains, USA (SRM; EPA Level III 
Ecoregion 21; Figure 1), we used extensive field data, LTS-based mapping products, and 
Random Forest models to map bark beetle-caused tree mortality at a regional scale. We 
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focused on subalpine forests in the SRM, where bark beetle-caused mortality has been the 
most severe and widespread [7,21,22]. Our specific objectives were to: (1) develop and 
evaluate models to predict the presence and severity of bark beetle-caused tree mortality 
from spectral characteristics, (2) use these models to create maps of beetle-caused mortal-
ity at a regional extent and 30-m resolution, and (3) quantify the spatial patterns of bark 
beetle attack. Our study advances prior research because of the inclusion of a robust field 
validation dataset (n = 239 plots), the focus on the cumulative effects of multiple bark bee-
tle species rather than a single mortality agent, and the characterization of patch-size dis-
tributions and spatial autocorrelation of beetle-caused tree mortality across a broad, het-
erogeneous region. 

 
Figure 1. Study area and the locations of 239 field plots used to inform remotely sensed estimates 
of cumulative tree mortality due to bark beetle attack (1997–2019) in the Southern Rocky Moun-
tains, USA. We focused specifically on subalpine forests dominated by Engelmann spruce, limber 
pine, lodgepole pine, and/or subalpine fir. Background shading (light grey [absent] to black [prev-
alent]) illustrates the abundance of these subalpine tree species [42]. 

2. Methods 
2.1. Study Area, Bark Beetles, and Host Tree Species 

This study focuses on the effects of tree-killing bark beetles in subalpine forests of the 
SRM, a mountainous area with complex topography (elevations 1450 to 4400 m) spanning 
145,000 km2 in southern Wyoming, Colorado, and northern New Mexico, USA (Figure 1). 
The SRM has a temperate continental climate with warm summers (mean [range] July 
maximum temperature 24.1 °C [12.5 to 32.9]), cold winters (January minimum tempera-
ture −12.3 °C [−21.3 to −5.4]), and a bimodal distribution of precipitation (annual precipi-
tation 625 mm [214 to 1875]), with peaks in March-May and July-August [43]. Forests 
cover 55% of the SRM [44] and subalpine forests lie at the highest forested elevations c. 
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2700–3600 m [45,46], making up 51% of the total forest area (40,000 km2) [47]. Common 
tree species in subalpine forests include Engelmann spruce (Picea engelmannii Parry ex 
Engelm.), lodgepole pine (Pinus contorta Dougl. ex. Loud.), quaking aspen (Populus trem-
uloides Michx.), subalpine fir (Abies lasiocarpa (Hook.) Nutt.), and five-needle pines (i.e., 
bristlecone pine–Pinus aristata Engelm., limber pine–Pinus flexilis James, and southwestern 
white pine–Pinus strobiformis Engelm.) [42], though composition varies throughout the re-
gion. In subalpine forests, the most important tree-killing bark beetles are the mountain 
pine beetle (MPB; Dendroctonus ponderosae Hopkins), spruce beetle (SB; Dendroctonus ru-
fipennis (Kirby)), and western balsam bark beetle (WBBB; Dryocoetes confusus Swaine) (Ta-
ble S1). The primary hosts for MPB include lodgepole pine and five-needle pines, Engel-
mann spruce is commonly attacked by SB, and subalpine fir is attacked by WBBB [13]. 
Other insects and pathogens have contributed to more limited tree mortality in the SRM 
(Table S1) and were not a focus of our analyses. 

To restrict analyses to subalpine forests that may have been affected by bark beetles, 
we defined the study area using the following criteria: (1) within 500 m of ADS-mapped 
tree mortality attributed to bark beetles (subalpine tree species hosts only) from 1997 to 
2019 [48], (2) forested areas in the 1992 National Land Cover Dataset (NLCD) [49] and any 
vegetation type in 2016 NLCD [44], (3) at least 1 m2 ha−1 combined basal area of the dom-
inant subalpine conifer species [42], (4) having no recorded fires [50,51] or timber harvests 
[52,53] from 1996 to 2019, and (5) within US Forest Service boundaries, where records of 
timber harvest are most complete (Supplementary Materials). Following these re-
strictions, our final study area was 25,946 km2 at a 30-m grain size. While removing burned 
and harvested areas and restricting analyses to US Forest Service Lands excludes c. 30% 
of subalpine forests in the SRM that may have experienced bark beetle outbreaks, these 
restrictions were necessary to limit the influence of tree mortality due to other causes 
(Supplementary Materials). 

2.2. Data Sources—Field Data and Image Interpretation 
To inform remotely sensed estimates of the extent and severity of bark beetle attack 

throughout the study area, we compiled data from 239 field plots throughout the SRM 
(Figures 1 and 2, Table S3). Field data were collected from 2010 to 2019 in previous studies 
of tree mortality, forest structure, and tree regeneration following bark beetle outbreaks 
in the subalpine zone [20,38,54–58]. Because all field plots had evidence of bark beetle 
presence (i.e., 0.7–99.7% basal area mortality), we also supplemented the 239 field plots 
with an equal number of ‘control’ points, in which we used interpretation of aerial im-
agery, Landsat image time series (LTS), and ancillary spatial data describing the locations 
of fire and timber harvest to identify forested sites with the absence of visible tree mortal-
ity from bark beetles or other causes from 1996 to 2019. Using field data, we quantified 
the severity of tree mortality within each plot as the percentage of pre-disturbance live 
basal area for all tree species killed c. 1990s–2010s. Because of incomplete records of the 
causal agents of tree mortality in a subset of field plots (Table S3), we included a small 
amount of mortality unrelated to bark beetles (e.g., competition, drought stress). How-
ever, where causes were identified, beetles were the primary tree mortality agent, driving 
>90% of total basal area mortality in plots with severe outbreaks [57,59]. Thus, we assumed 
that the majority of the tree mortality identified in the field plots and final maps could be 
attributed to bark beetles. 
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Figure 2. Flowchart of image processing and statistical modeling steps involved in developing 
regional maps of the presence and severity of bark beetle attack in the SRM. Steps performed in 
Google Earth Engine [60] are represented with dashed boxes, and steps performed in the R envi-
ronment [61] are represented with solid boxes. LandTrendr (Landsat-based detection of trends in 
disturbance and recovery) is a pixel-based temporal segmentation algorithm used to identify ho-
mogeneous periods of spectral increase, stability, and decline [62,63]. 

2.3. Data Sources—Landsat Time Series 
We used LTS to quantify spectral changes indicative of tree mortality in subalpine 

forests throughout the SRM (Figure 2). First, we extracted and processed all Landsat Tier 
1 Surface Reflectance scenes from 1996–2019 (i.e., the 1997–2019 study period and 1996 to 
capture initial conditions) using Google Earth Engine (GEE) [60]. These data included im-
agery from the Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper 
Plus (ETM+), and Landsat 8 Operation Land Imager (OLI); ETM+ images collected 2003–
2019 were excluded to remove striping artifacts in final maps (Figure S2). To account for 
wavelength differences among sensors, OLI-derived images were harmonized to 
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TM/ETM+ equivalents using coefficients from [64]. In each scene, we used the CFMask-
derived quality assurance band to remove pixels obstructed by clouds, shadows, snow, 
and surface water [65]. We then developed annual image composites for the summer 
growing season (June 1–September 30) using the multi-dimensional median of all un-
masked pixels [66]. From annual image composites, we extracted values from TM-equiv-
alent bands 1–5, and 7, and calculated nine spectral indices sensitive to plant photosyn-
thesis and foliar moisture content (Figure 2, Table 1). Because spectral indices from the 
winter season may help to isolate the signals of mortality and growth of evergreen coni-
fers [67–69], we also developed annual composites of the Normalized Difference Vegeta-
tion Index (NDVI) from December 1focal yr to April 1focal yr+1 (Table 1; Supplementary Mate-
rials). 

To develop predictors of bark beetle activity from yearly time series of the selected 
spectral bands and indices, we used the GEE implementation of LandTrendr (Landsat-
based detection of trends in disturbance and recovery), a temporal segmentation algo-
rithm that partitions LTS into homogeneous periods of spectral increase, stability, and 
decline [62,63] (Figure 2). For each band and index, we used LandTrendr to identify spec-
tral decline events (i.e., disturbance segments) from 1996 to 2019, and calculated the total 
magnitude of all declines, consistent with our focus on cumulative tree mortality through-
out the study period. To limit the effects of tree mortality unrelated to bark beetles, we 
used a maximum slope filter following [36] to exclude spectral declines that occurred with 
a greater rate of change than is typical of bark beetle attack (Table S5). Because Land-
Trendr is a pixel-based algorithm that does not incorporate spatial context from the sur-
rounding area, we developed three additional predictors from each band and index that 
incorporated neighborhood information (Figure 2). Specifically, we used Simple Non-It-
erative Clustering [70] at three different spatial scales (5-, 10-, and 20-pixel spacing of seed 
locations) to perform an object-based smoothing of annual band/index values prior to con-
structing yearly time series and using LandTrendr (Figure S1). In total, we developed four 
LTS predictors from each of the 16 spectral bands and indices (for a total of 64 predictors), 
one using raw values from annual maps, and three using spatial smoothing at a range of 
scales prior to temporal segmentation using LandTrendr. For comparison with field data, 
we extracted values of each LTS predictor at each plot center location. Though the foot-
prints of our field plots sometimes intersected multiple pixels, this approach maintains 
raw values in the LTS data. 

Table 1. Description of individual spectral bands and indices used in developing Landsat time series. Note that all formu-
las and band numbers refer to Landsat TM (Thematic Mapper) equivalents. 

Band/Index Calculation 
Expected Relation-

ship with Tree Mor-
tality 

B1 (Blue), B2 (Green), B3 (Red), B4 (Near 
Infrared), B5 (Shortwave Infrared), B7 

(Shortwave Infrared) 
Surface Reflectance Values 

Increase in B1–B3, B5, 
and B7; Decrease in B4 

EVI (Enhanced Vegetation Index) (B4 − B3)/(B4 + 6 × B3 − 7.5 × B1 + 1) Decrease 
GRI (Normalized Green-Red Index) (B2 − B3)/(B2 + B3) Decrease 

NBR (Normalized Burn Ratio) (B4 − B7)/(B4 + B7) Decrease 
NDMI (Normalized Difference Moisture 

Index) 
(B4 − B5)/(B4 + B5) Decrease 

NDVI (Normalized Difference Vegetation 
Index) 

(B4 − B3)/(B4 + B3) Decrease 

TCA (Tasseled Cap Angle) arctan(TCG/TCB) Decrease 

TCB (Tasseled Cap Brightness) 
(B1 × 0.2043) + (B2 × 0.4158) + (B3 × 0.5524) +  
(B4 × 0.5741) + (B5 × 0.3124) + (B7 × 0.2303) 

Increase 
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TCG (Tasseled Cap Greenness) 
(B1 × −0.1603) + (B2 × −0.2819) + (B3 × −0.4934) +  

(B4 × 0.7940) + (B5 × −0.0002) + (B7 × −0.1446) 
Decrease 

TCW (Tasseled Cap Wetness) 
(B1 × 0.0315) + (B2 × 0.2021) + (B3 × 0.3102) +  
(B4 × 0.1594) + (B5 × −0.6806) + (B7 × −0.6109) 

Decrease 

Winter NDVI a (B4 − B3)/(B4 + B3) Decrease 
a Winter NDVI was calculated using snow-on imagery from Dec 1 (focal year)–Apr 30 (focal year+1). All other spectral 
bands and indices were calculated using Jun 1–Sep 30 imagery. 

2.4. Objectives 1 and 2—Predicting Presence and Severity of Bark Beetle-Caused Tree Mortality 
 We developed two Random Forest (RF) models to link field data to LTS predictors 

(Figure 2). The response variables in RF models were the presence (i.e., any tree mortality 
due to bark beetles) and severity of bark beetle-caused tree mortality (i.e., the percent of 
cumulative tree basal area loss c. 1990s to 2010s). While presence models are useful for 
identifying areas most likely to have been affected, severity models provide insight into 
the ranges of potential ecological effects. We used Variable Selection Using Random For-
ests (VSURF) [71] to identify a parsimonious subset of c. 10 LTS predictors for inclusion 
in each RF model and tested for multicollinearity using the ‘rfUtilities’ package [72]. With 
the VSURF-selected predictors, we fit final RF models using the ‘ranger’ package [73] and 
used 10-fold cross-validation in the ‘caret’ package [74] to optimize hyperparameters. To 
compare the relative influences of different bands and indices in final models, we calcu-
lated variable importance using the permutation-based mean decrease in accuracy statis-
tic. Because RF regression can reduce predicted values toward the mean of the response, 
biasing predictions of extreme values [75,76], we corrected RF predictions of severity us-
ing the following equation: 

�
^
� = ��

�
^
��� − ���
���

� × ����� + ���� (1)

where ŷunc and ŷc are the predicted pixel values at a given field plot, before and after bias 
correction, respectively. μrf and μobs are the means and σrf and σobs are the standard devia-
tions of RF-predicted and observed pixel values across all field plots in 10-fold cross-val-
idation (Supplementary Materials). Finally, we assessed the influences of potential con-
founding variables not included in RF models such as pre-outbreak forest density, data 
contributor, bark beetle species, and co-occurring outbreaks of defoliating insects (i.e., 
non-lethal defoliation of conifers), by comparing RF model residuals with field data. Fol-
lowing model fitting and evaluation, we used final RF models and LTS products to make 
predictive maps of the presence and severity of bark beetle attack at a 30-m grain size 
throughout the study area. All variable selection, model fitting, validation, and spatial 
predictions were performed in R v. 3.6.0 [61]. 

2.5. Objective 3—Quantifying Spatial Patterns of Beetle-Caused Tree Mortality 
We used the newly developed maps of bark beetle presence and severity to quantify 

spatial patterns of bark beetle-induced tree mortality throughout the study area. To de-
scribe the spatial relationships of severity with distance, we created empirical variograms 
in the ‘gstat’ package [77] in R. For computational feasibility in variogram calculations, 
we used a sample of 100,000 individual pixels (mean [min] nearest neighbor distance = 
301 [30] m). We used an omnidirectional variogram with a lag width of 150 m (a minimum 
of 12,096 point pairs in the smallest bin) and a maximum distance cutoff of 300 km (ap-
proximately 1/3 of the maximum diagonal of the bounding box) [78]. To characterize 
patch-size distributions of more severely affected forests, we calculated the cumulative 
proportion of total area with ≥50%, ≥60%, ≥70%, ≥80%, and ≥90% basal area mortality in 
patches of different sizes (using eight-neighbor connectivity). 
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2.6. Additional Information 
Additional information regarding research methods is provided in the Supplemen-

tary Materials. Additionally, all field data, spatial data, statistical code, and model outputs 
are available through Dryad Digital Repository [79]. 

3. Results 
3.1. Objective 1—Models of the Presence and Severity of Bark Beetle-Caused Tree Mortality 

 Using predictors derived from LTS, RF models were able to predict field-derived 
measures of the presence and severity of tree mortality due to bark beetle attack. Based 
on 10-fold cross-validation, the RF presence model had a classification accuracy of 80.3% 
and Cohen’s Kappa of 0.61; the RF severity model had an R2 value of 0.68 and a root-mean-
squared-error (RMSE) of 17.3. LTS predictors in final models included shortwave infrared 
bands (TM-equivalent B5 and B7), spectral indices sensitive to foliar moisture (NBR, 
NDMI), Tasseled Cap indices (TCA, TCB, TCW), and winter NDVI (Figure 3). LTS varia-
bles without spatial segmentation were the highest-ranked predictors, though predictors 
that included spatial segmentation of annual maps were also retained in each RF model 
(Figure 3). Importantly, there were no substantial biases in RF predictions based on pre-
outbreak forest density, data contributor, or dominant bark beetle species (Supplementary 
Materials). Non-lethal defoliation by other insect species led to modest overestimates of 
the severity of beetle-caused tree mortality (Supplementary Materials), but these effects 
were only notable at the highest defoliation intensities, and defoliation attributed to any 
agent (e.g., Choristoneura freemani Razowski, Malacosoma spp.) was present in just 15.5% of 
the study area [48]. Overall, RF presence and severity models appeared robust for use in 
predictions throughout the SRM. 

 
Figure 3. Variable importance plots for final Random Forest models of (a) presence and (b) sever-
ity of bark beetle-induced tree mortality in the Southern Rocky Mountains, USA. Individual pre-
dictors, representing the magnitude of spectral decline from specific Landsat bands or spectral 
indices 1996–2019, are ordered based on their contribution to model performance. Definitions of 
each band or spectral index are provided in Table 1. Subscripts refer to the scale of spatial segmen-
tation (i.e., 5-, 10-, and 20-pixel seed spacing in Simple Non-Iterative Clustering) of annual maps 
prior to temporal segmentation, where higher values refer to a coarser-scale segmentation with 
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larger image objects. Variables without subscripts were not spatially segmented, and thus repre-
sent the total disturbance in a 30-m voxel without accounting for neighborhood context. 

3.2. Objective 2—Mapping Beetle-Caused Tree Mortality across the SRM 
Maps derived from RF models and LTS products identified coarse-scale patterns in 

bark beetle-caused tree mortality throughout the SRM (Figure 4a,c) but also provided in-
sight into subregional and local variation in the effects of attack (Figure 4e–g). Beetle-
caused tree mortality was most widespread in northern Colorado, southern Wyoming, 
and southwestern Colorado, and less common in central Colorado (Figure 4a,c). The map 
of bark beetle presence identified 39.5% (10,256 km2) of the total study area as affected by 
bark beetles (Figure 4a,c). However, detection of lower-severity attack was difficult using 
LTS. For example, omission error was just 9.6% in field plots with at least 40% basal area 
mortality, as compared to 70.6% omission for plots below 40% basal area mortality. Thus, 
many places classified as bark beetle absence may have low or moderate levels of tree 
mortality. The map of bark beetle severity indicates substantial variation in tree mortality 
throughout the SRM (Figure 4b,d). Lower levels (0–30%), moderate levels (30–70%), and 
higher levels of tree mortality (70–100%) were predicted across 29.6% (7674 km2), 51.1% 
(13,245 km2), and 19.3% (5017 km2) of the study area, respectively (Figure 4b,d). Therefore, 
low and moderate levels of tree mortality were widespread throughout the region, but 
higher levels were more limited, primarily constrained to forests affected by mountain 
pine beetle and spruce beetle in northern Colorado and southern Wyoming, and forests 
affected by spruce beetle in southwestern Colorado. 

 
Figure 4. Maps of the (a) presence and (b) severity (i.e., percent basal area loss) of bark beetle-caused tree mortality from 
1997 to 2019 throughout the Southern Rocky Mountains, USA. Barplots showing the (c) total area of presence/absence and 
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(d) total area with different outbreak severities summarize maps (a,b), respectively. (e–g) Inset maps give an example of 
an area that experienced a high-severity spruce beetle outbreak c. 2010 (37.75 N and 106.91 W). (e) A false-color composite 
of 1-m aerial photography from the National Agriculture Imagery Program from 2019 alongside maps of (f) presence and 
(g) severity in the same area, shows the ability of maps to identify within-stand variation in beetle-caused tree mortality. 
In (e) the false-color composite, red represents live vegetation while grey represents standing dead trees or a lack of veg-
etation. 

3.3. Objective 3—Spatial Patterns of Beetle-Caused Tree Mortality 
Spatial patterns of bark beetle-caused tree mortality throughout subalpine forests in 

the SRM reflect the complex and heterogeneous nature of these biotic disturbances (Figure 
5). The severity of beetle-caused tree mortality was most strongly autocorrelated at lag 
distances of 0–5 km. However, 30-m pixels were increasingly dissimilar up to distances of 
250 km, indicating spatial dependence in patterns of tree mortality across extremely broad 
extents (Figure 5a). Cumulative patch-size distributions varied markedly for forests ex-
ceeding different mortality thresholds in the SRM (Figure 5b). For example, while half of 
the area exceeding 50% tree mortality was contained in patches larger than 7.74 km2, half 
of the area exceeding 90% tree mortality was in patches smaller than 0.24 km2. Thus, areas 
exceeding 50% tree mortality were relatively large, widespread, and contiguous, but areas 
exceeding 90% mortality (i.e., with a near-total loss of the overstory tree canopy) tended 
to be small and disconnected throughout the region. 

 
Figure 5. Spatial patterns of bark beetle-caused tree mortality in the Southern Rocky Mountains, 
USA. (a) Sample variogram shows the relationship of tree mortality (i.e., percent basal area loss) 
among sites at distances from 0 to 300 km, where higher values on the y-axis indicate greater dis-
similarity among sites at a given distance. Note that the x-axis in (a) is broken with different scales 
for greater interpretability from 0 to 50 km. (b) The cumulative patch-size distribution gives the 
proportion of the total area exceeding different mortality thresholds contained within patches of 
different sizes. In (b), a convex line shape indicates that the majority of the area is contained 
within small patches (e.g., ≥90% basal area loss), while a concave shape indicates that large patches 
are more common (e.g., ≥50% basal area loss). 
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4. Discussion 
We integrated field data and remotely sensed products to develop seamless maps of 

the presence and severity of bark beetle outbreaks in the subalpine zone of the SRM, an 
area that has experienced extensive tree mortality since the late 1990s. The methods used 
in the present study provide a framework that can be extended to other regions by lever-
aging freely available spatial data (e.g., Landsat imagery, land cover maps, insect and dis-
ease surveys) and existing field datasets to quantify the effects of biotic disturbances on 
forest structure and landscape pattern. Herein, we noted four key findings: (1) the pres-
ence and severity of bark beetle outbreaks of multiple species could be reliably mapped 
across a complex region using remotely sensed data, (2) at least 10,256 km2 of subalpine 
forests (39.5% of the study area) experienced bark beetle-caused tree mortality from 1997 
to 2019, (3) low to moderate levels of tree mortality (i.e., <70% basal area loss) were the 
most common in the SRM, while the most heavily affected areas were primarily in north-
ern and southwestern Colorado, and (4) severity was autocorrelated at broad distances of 
up to 250 km, and areas with ≥ 90% tree mortality were relatively small (<0.24 km2) and 
isolated. 

4.1. Implications for Remotely Sensed Detection of Tree Mortality 
Previous studies using LTS have effectively quantified the presence and severity of 

bark beetle-caused tree mortality in a range of contexts, with reported accuracies ranging 
75–90% (i.e., classification accuracy in presence/absence models) and R2 values ranging 
from 0.6 to 0.8 (i.e., observed vs. predicted values in severity models) [34–38]. Accuracies 
for our models were within the reported ranges of these prior studies (i.e., presence accu-
racy c. 80%; severity R2 c. 0.7), which is notable considering the large, heterogeneous study 
area and our focus on multiple insect species with differing spectral signals. Still, separat-
ing low-severity tree mortality from unaffected areas remains a difficult challenge when 
using LTS and other remotely sensed data [34,80,81]. For example, the timing and occur-
rence of spruce beetle outbreaks are difficult to identify when <35% of a Landsat pixel is 
affected [82]. Similarly, here, we found that field plots with <40% basal area mortality were 
erroneously omitted at much higher rates in presence maps. Our use of widespread field 
data in model fitting and validation also allowed us to evaluate potential confounding 
factors that are not typically assessed in broad-scale mapping efforts, including pre-out-
break stand density, bark beetle species, and co-occurring outbreaks of defoliators (Sup-
plementary Materials). RF presence and severity models appeared robust to many of these 
factors, though we demonstrated that severe defoliation can lead to overestimates of bee-
tle-caused tree mortality, aligning with prior work that has demonstrated confusion 
among insect agents [35]. Thus, non-lethal defoliation events should be considered in the 
future development of maps characterizing tree mortality. 

This study also provides insight into methods used in future regional and national 
disturbance mapping efforts. We found that shortwave-infrared bands (i.e., B5 and B7) 
and spectral indices that incorporate them (e.g., NBR, NDMI, TCW) were particularly sen-
sitive to tree mortality, in agreement with prior research of bark beetles and other agents 
[29,39,83–86]. We also found that incorporating spatial context in the development of LTS 
predictors led to modest improvements in final RF models. Though we used spatial seg-
mentation of annual maps to reduce within-stand spectral noise in LTS, object-based ap-
proaches may also be helpful for change attribution because they can be used to quantify 
the size and shape of events [87,88]. Still, a combined spatial and temporal segmentation 
approach may be less effective in bark beetle-affected forests where tree mortality can un-
fold gradually over several years [37,82], than in forests affected by discrete events such 
as wildfire and timber harvest. Finally, NDVI during the winter period was retained as a 
predictor in each of the final RF models, as opposed to summer NDVI, which had low 
predictive ability. Thus, winter imagery is a valuable resource for mapping the mortality 
and regrowth of evergreen conifers in temperate forests [67–69]. 
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4.2. Patterns of Bark Beetle-Caused Tree Mortality in the SRM 
Recent bark beetle outbreaks have altered forest ecosystems in the SRM and similar 

ecosystems throughout the Northern Hemisphere [2,21,22,89,90]. By developing a map-
ping approach that links field data with LTS products, we found that over 10,000 km2 of 
subalpine forest area has been affected by three important bark beetle species—mountain 
pine beetle, spruce beetle, and western balsam bark beetle—in just two decades. Further-
more, the total affected area is probably much higher because of omission error in stands 
with <40% mortality. The total extent of this bark beetle-caused tree mortality is striking, 
yet regional maps of severity also illustrate notable variability in the effects of outbreaks 
throughout the region, likely attributed to past disturbances, tree species composition, 
stand structure, landscape connectivity, topography, and climate [21,22,27,91,92]. 

The spatial patterns of cumulative tree mortality reflect the heterogeneous nature of 
bark beetle attack throughout the SRM, as shaped by factors influencing outbreak initia-
tion and spread. Using maps of the severity of bark beetle attack, we found that individual 
30-m pixels were autocorrelated at broad distances of up to 250 km, but were most closely 
related at distances of 0–5 km. For individual beetle species, regional drivers such as 
drought and warm temperatures can lead to the synchronous development of outbreaks 
that extend far beyond the dispersal limits of individual populations [93,94], leading to 
correlated outbreak dynamics at distances of 80–900 km or more [21,22,95,96]. Yet, stand-
scale variation in the effects of bark beetle outbreaks is also promoted by the abundance 
of host trees and landscape connectivity [21,89]. These same drivers, of broad-scale cli-
mate, and local-scale structure and composition, may also shape patterns of the cumula-
tive effects of multiple bark beetle species in the SRM. Interestingly, we found that areas 
of ≥90% basal area mortality were relatively small and isolated throughout the region, 
with more than 50% of that area contained in patches smaller than 0.24 km2. In contrast, 
c. 50% of the forest area burned at high severity (>90–95% basal area mortality) in recent 
fires throughout the Northern Rocky Mountains, USA, was in patch sizes larger than 10 
km2 [97], a difference of over an order of magnitude when compared with similarly severe 
patches caused by outbreaks presented here. In addition, even in the areas most severely 
affected by beetle-caused tree mortality, seedlings and smaller trees typically survive bee-
tle outbreaks, resulting in a divergent post-disturbance response when compared to 
stand-replacing fires [57,98–101]. Fire and bark beetles, the two dominant disturbance 
types in subalpine forests throughout the SRM [102], have fundamentally different im-
pacts on these important ecosystems. 

The extensive bark beetle-caused tree mortality in forests throughout the SRM raises 
questions about trajectories of these ecosystems in a warmer future. Following bark beetle 
outbreak, abundant advance regeneration and new seedling establishment suggest that 
many forest stands have the potential to return to a similar structural state within a few 
decades [99,103,104]. Still, the composition and density of post-outbreak stands are highly 
variable due to outbreak severity, topography, weather, local microclimatic conditions, 
and prior disturbance by fire or blowdown that influence regeneration dynamics 
[57,101,105–108]. Many of these same factors can also cause differences in individual-level 
growth [57], leading to broad-scale variation in rates of post-disturbance recovery that 
may influence susceptibility to future disturbance [27,109]. While warming climate con-
ditions have the potential to amplify bark beetle activity in the future, these effects will 
also be moderated by the depletion of suitable host trees, shifts in species composition, 
and variable rates of recovery across the landscape [26,28]. Maps of the effects of recent 
bark beetle outbreaks, such as those developed in the present study, can help to inform 
expectations of future forest dynamics in the SRM and similar regions, but future work is 
needed to tie this information to records of post-outbreak successional trajectories, tree 
growth, and the potential for subsequent disturbances. 
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4.3. Study Limitations 
While the maps of the presence and severity of bark beetle outbreaks developed here 

provide a useful resource for understanding the effects of recent biotic disturbances 
throughout the SRM, important limitations of these data should also be recognized. Un-
like active remote sensing products (e.g., lidar, radar) and other data capable of capturing 
three-dimensional forest structure (e.g., structure-from-motion), Landsat imagery charac-
terizes the spectral reflectance of the visible overstory canopy and is limited in its ability 
to monitor subcanopy effects [110,111]. Thus, it is likely that some mortality of subcanopy 
trees has been omitted in our maps, though subcanopy trees are not commonly targeted 
by aggressive bark beetles [12,112] and represent just a small percentage of stand basal 
area. Restricting analyses to US Forest Service lands without recent fires or timber man-
agement activities was necessary to focus on the effects of bark beetle attack. However, 
these restrictions may have led to slight underestimates of patch sizes due to edge effects 
in spatial pattern analyses. While we infer that bark beetles were the primary mortality 
agent in regional maps, we could not fully exclude factors such as competition and 
drought stress, sudden aspen decline, white pine blister rust, and root disease that are 
important in parts of the SRM [58,113,114]. Forested landscapes with a diverse array of 
structural conditions and tree species compositions are likely to be influenced by a wide 
range of mortality agents, which complicates change attribution. 

5. Conclusions 
A warming climate is accelerating tree mortality due to bark beetle outbreaks, wild-

fire, and other drought-mediated forest disturbances. Because disturbances play an im-
portant role in the structure, composition, and spatial patterns of vegetation, an under-
standing of their effects is critical to understanding future trajectories of forest ecosystems. 
To this end, remote sensing and field inventories are two of the most important tools for 
understanding ecosystem dynamics at broad spatial scales. In the present study, we com-
bined extensive field surveys of tree mortality in stands attacked by bark beetles c. 1997–
2019 and LTS products to predict the presence and severity of bark beetle attack at a c. 30-
m resolution throughout the SRM, USA. Bark beetles have driven extensive tree mortality 
in these ecosystems, but their effects were highly variable across the study area. Still, the 
legacies of recent bark beetle outbreaks may influence forest dynamics for decades to cen-
turies in subalpine forests, with crucial implications for wildlife habitat, carbon budgets, 
and other important ecosystem services. 
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