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A B S T R A C T   

Landsat time series (LTS) and associated change detection algorithms are useful for monitoring the effects of 
global change on Earth’s ecosystems. Because LTS algorithms can be easily applied across broad areas, they are 
commonly used to map changes in forest structure due to wildfire, insect attack, and other important drivers of 
tree mortality. But factors such as initial forest density, tree mortality agent, and disturbance severity (i.e., 
percent tree mortality) influence patterns of surface reflectance and may influence the accuracy of LTS algo-
rithms. And while LTS algorithms are widely used in areas with a history of multiple disturbance events during 
the Landsat record, the effectiveness of LTS algorithms in these conditions is not well understood. We compared 
products from the LTS algorithm LandTrendr (Landsat-based Detection of Trends in Disturbance and Recovery) 
with a unique field dataset from a landscape heavily influenced by both wildfire and spruce beetles (Dendroctonus 
rufipennis) since c. 2000. We also compared LandTrendr to other common methods of mapping fire- and spruce 
beetle-affected areas. We found that LandTrendr more accurately detected wildfire than spruce beetle-induced 
tree mortality, and both mortality agents were more easily detected when they occurred at high severity. Sur-
prisingly, prior spruce beetle outbreaks did not influence the detectability of subsequent wildfire. Compared to 
alternative disturbance mapping approaches, LandTrendr predicted a c. 40% lower area affected by wildfire or 
spruce beetle outbreaks. Our findings indicate that disturbance type- and severity-specific differences in omission 
error may have broad implications for disturbance mapping efforts that utilize Landsat data. Gradual, low- 
severity disturbances (e.g., background tree mortality and non-stand replacing disturbance) are pervasive in 
forest ecosystems, yet they can be difficult to detect using automated LTS algorithms. Whenever possible, 
methods to account for these biases should be incorporated in LTS-based mapping efforts, including the use of 
multispectral ensembles and ancillary spatial data to refine predictions. However, our findings also indicate that 
LTS algorithms appear to be robust in areas with multiple disturbance events, which is important because these 
areas will increase as new acquisitions extend the length of the Landsat record.   

1. Introduction 

Climate change is altering patterns of ecological disturbance across 
Earth’s forested ecosystems (McDowell et al., 2020; Turner, 2010). As 
relatively discrete events that reduce plant biomass (Grime, 1979), 
disturbances can have lasting influences on forest structure, with 
cascading effects on carbon storage and other important ecosystem 
services (Bonan, 2008; Thom and Seidl, 2016). Remotely sensed data 
play a key role in monitoring forest disturbances because they provide a 
consistent record across expansive areas (Trumbore et al., 2015). In 
particular, imagery from the Landsat program has been widely used in 

studies of forest ecosystems because these data have a relatively high 
spatial resolution (c. 30–60 m) and an unmatched temporal extent (c. 50 
years) (Wulder et al., 2019). To leverage this extended data record, 
several algorithms have been recently developed to detect changes in 
surface cover using Landsat image time series (LTS) (e.g., Hermosilla 
et al., 2016; Huang et al., 2010; Hughes et al., 2017; Kennedy et al., 
2010; Zhu et al., 2020). Common goals for LTS algorithms are to 1) 
separate distinct change events (i.e., signal) from inter- or sub-annual 
spectral variation (i.e., noise) with little direct input from the analyst 
and 2) characterize the timing, duration, and spectral magnitude of 
events (Banskota et al., 2014; Zhu, 2017). By quantifying the timing and 
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magnitude of spectral changes, LTS methods can improve the repre-
sentation of ecological processes such as disturbance and recovery 
(Kennedy et al., 2014). 

Though LTS algorithms offer a promising approach for forest 
ecosystem monitoring, validation is critical for characterizing patterns 
of change and making inferences about ecological processes (Pengra 
et al., 2016; Thomas et al., 2011). The most common validation ap-
proaches for LTS algorithms include comparisons with simulated data 
(Awty-Carroll et al., 2019) and analyst interpretations of LTS trajectories 
alongside high-resolution imagery (Cohen et al., 2017). When available, 
field data are highly valuable, particularly in identifying agents of tree 
mortality, quantifying disturbance severity (i.e., percent tree mortality), 
and characterizing subcanopy effects that are not always apparent in 
imagery (Schroeder et al., 2014). However, comparisons with field data 
are uncommon because data collection costs are high and field surveys 
rarely capture consistent information before and after individual 
disturbance events (Cohen et al., 2010; Thomas et al., 2011). Field data 
provide an important and underutilized supplement to other reference 
data by connecting spectral trajectories in LTS with the ecological 

processes that are occurring throughout forested ecosystems. 
Forest structure and the characteristics of individual disturbance 

events influence the spectral signal associated with tree mortality and 
have the potential to affect LTS detection (Fig. 1a). For instance, 
observed spectral change increases with disturbance severity and initial 
forest density (Harvey et al., 2019; Meigs et al., 2015; Miller et al., 
2009); low levels of tree mortality typically cause minimal spectral 
change that is difficult to distinguish from interannual variability and 
may go undetected by LTS algorithms (Cohen et al., 2010). Additionally, 
different disturbance types have unique spectral characteristics and 
varying durations at the scale of a Landsat cell (Fig. 1a). Tree mortality 
caused by rapid and temporally-discrete disturbances (e.g., wildfire or 
timber harvest) may be more easily detected than mortality caused by 
disturbances that unfold over several years or more (e.g., tree-killing 
insects) (Schleeweis et al., 2020). Furthermore, when multiple distur-
bance events occur in the same location within the Landsat record (i.e., 
the 1970s to present), their interaction has the potential to influence LTS 
detection. For instance, initial forest disturbances may alter the spectral 
characteristics of subsequent disturbances (Harvey et al., 2019; Parks 

Fig. 1. Examples of (a) correct and incorrect disturbance detection using temporal segmentation of Landsat time series (LTS), and (b) the potential influence of LTS 
detection error on broad-scale disturbance mapping. In (a), line graphs give observed (grey) and segmented (black) spectral values from example LTS trajectories in 
subalpine forests throughout southwestern Colorado, USA. The true year of disturbance occurrence is indicated by triangles above LTS trajectories, and the timing of 
pre/post image acquisition is indicated by dashed lines. Image panels are false-colour composites (red highlights live vegetation) of 1-m aerial photography from the 
National Agriculture Imagery Program (NAIP; USFS NAIP, 2020) collected before and after individual disturbances; white boxes in NAIP images correspond to the 
location of each LTS trajectory. We expected that (a) sources of detection error in LTS algorithms would lead to lower estimates of disturbed area when compared to 
(b) alternative approaches such as mapped perimeters of the total affected area (e.g., fire perimeters) or analyst-supervised detection methods such as image 
classification or two-date change indices. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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et al., 2014) and thereby influence detectability in LTS. Similarly, when 
two or more disturbance events occur in short succession, the spectral 
trajectory may appear similar to a single disturbance spanning several 
years (Fig. 1a), masking potentially meaningful differences in distur-
bance effects (e.g., compound effects; Paine et al., 1998). Though LTS 
methods are widely applied in areas with overlapping disturbances (e.g., 
Hermosilla et al., 2019; Schleeweis et al., 2020; White et al., 2017), the 
ability of LTS algorithms to detect these events is poorly understood. 

In forests of the western United States, wildfire and bark beetle 
(Curculionidae: Scolytinae) outbreaks are two of the most important 
drivers of tree mortality, where they have affected at least 6.3% and 
7.1% of the total forested area over the past three decades (Hicke et al., 
2016). Because fire and bark beetle outbreaks can have major influences 
on forest ecosystems, LTS detection and other mapping methods are 
commonly used to quantify disturbance-affected areas at a range of 
spatial scales (e.g., Meigs et al., 2015; Schroeder et al., 2011; Senf et al., 
2015). Previously mapped fire perimeters (e.g., Canadian National Fire 
Database, Monitoring Trends in Burn Severity) or aerial sketches of 
insect-affected area (e.g., Aerial Detection Surveys, Aerial Overview 
Surveys) can help to characterize disturbance extent at national or 
regional levels (e.g., Bentz et al., 2009; Hanes et al., 2019). Though this 
extent-based approach permits rapid calculations across broad areas, 
mapped perimeters typically include areas without tree mortality, 
leading to notable overestimates of the affected area (Kolden et al., 
2012; Meddens et al., 2016). Alternatively, approaches such as image 
classification (e.g., Hart and Veblen, 2015; Meddens et al., 2013; 
Schroeder et al., 2014) or two-date change indices (e.g., Meddens et al., 
2016; Meigs et al., 2020) can be used to map finer-grain estimates of tree 
mortality, but these approaches require more direct input from analysts 
and thus a greater investment of time. Different mapping methods – 
including LTS detection, extent-based approaches, and analyst- 
supervised detection – may give substantial differences in estimates of 
disturbance-affected area (Fig. 1b). 

Using a unique field dataset describing forest structure, causes of tree 
mortality, and disturbance severity in a landscape affected by bark 
beetle outbreaks and wildfire since c. 2000, we evaluated the ability of 
the LTS algorithm LandTrendr (Landsat-based Detection of Trends in 
Disturbance and Recovery; Kennedy et al., 2010) to identify the occur-
rence and timing of individual disturbance events. Given our focus on 
disturbance detection, we used LandTrendr, one of the most widely 
applied LTS algorithms (Zhu, 2017) because it has lower rates of omis-
sion than many comparable tools (Cohen et al., 2017). To determine the 
extent to which LTS disturbance detection matched other estimates of 
disturbed area, we also compared LandTrendr products with additional 
mapping methods (i.e., fire perimeters, aerial surveys of insect-induced 
tree mortality, two-date change indices of fire severity, and a supervised 
classification of insect-affected area) available in the study area. Spe-
cifically, we asked the following questions: 

Q1. How do pre-disturbance forest density, mortality agent, disturbance 
severity, and time between overlapping disturbances influence detectability in 
LTS? We expected that overlapping disturbances would be easiest to 
detect in LTS when they occurred in areas with dense forest cover, were 
temporally abrupt, occurred at high severity, and were separated by 
longer intervals. 

Q2. How do estimates of disturbance occurrence and overlap differ among 
common methods of detection? We expected that extent-based approaches 
using wildfire perimeters and aerial surveys of bark beetle outbreaks 
would give the largest estimates of disturbance-affected area, and LTS 
products would give the smallest estimates because of partial omission. 

2. Methods 

2.1. 2.1. Study area and focal disturbance types 

Our study area is within the boundaries of five wildfires that 

occurred in 2012 and 2013 throughout the San Juan Mountains in 
southwestern Colorado, U.S.A. (Table 1, Fig. 2). Forests in the San Juan 
Mountains span a broad elevational range (c. 1500–3600 m); subalpine 
forests (2700–3600 m) comprise the core of the mountain range 
(Romme et al., 2009) and make up 87% of the total area within the 
studied fires (Rollins, 2009). The dominant tree species in subalpine 
forests of the San Juan Mountains include Engelmann spruce (Picea 
engelmannii), subalpine fir (Abies lasiocarpa), and quaking aspen (Populus 
tremuloides) (Wilson et al., 2013). Climate varies dramatically across 
elevational gradients in the study area. Average annual precipitation 
ranges from 400 to 1600 mm year −1, January minimum temperatures 
range − 20 to −11 ◦C, and July maximum temperatures range 17 to 
28 ◦C (1981–2010 normals; PRISM, 2020). 

Wildfire and bark beetles (e.g., Dendroctonus spp., Ips spp., Dryocoetes 
spp.) have long shaped the structure of subalpine forests in the southern 
Rocky Mountains, U.S.A. (Baker and Veblen, 1990). Fires are typically 
infrequent and stand-replacing in subalpine forests, constrained to 
exceptionally dry conditions that are suitable for widespread burning 
(Buechling and Baker, 2004; Sibold and Veblen, 2006), such as the 
weather conditions that occurred during the 2012–2013 fires studied 
here (Andrus et al., 2016). Spruce beetle (Dendroctonus rufipennis) is the 
most important tree-killing insect in subalpine forests of the San Juan 
Mountains, where it primarily attacks Engelmann spruce and occa-
sionally blue spruce (Picea pungens). Stands composed of abundant 
large-diameter spruce are most susceptible to spruce beetle attack 
(Jenkins et al., 2014; Schmid and Frye, 1977; Temperli et al., 2014), and 
warm, dry periods can initiate epidemic-level outbreaks across broad 
areas (Hart et al., 2014; Raffa et al., 2008). Western balsam bark beetle 
(WBBB; Dryocoetes confusus) is another notable tree-killing insect in 
subalpine forests of the San Juan Mountains, where it primarily affects 
subalpine fir; though widespread, WBBB outbreaks typically occur at 
lower severity than do spruce beetle outbreaks (Andrus et al., 2020; 
Lalande et al., 2020) and were not a focus of this study. Recently, the 
combined effects of spruce beetle and fire have led to notable changes in 
forest structure throughout the San Juan Mountains (Andrus et al., 2020; 
Carlson et al., 2017; Savage et al., 2017). In our study area, a spruce 
beetle outbreak began in the early 2000s (Hart et al., 2017) and the 
stand-scale effects of the outbreak ranged from minor mortality to near- 
total mortality of mature trees (Table 1). Similarly, the 2012 and 2013 
fires had a range of effects on stand structure, though severity was 
generally high (Table 1). 

Table 1 
Fire name, number of field plots, year of fire occurrence, fire severity, years of 
the initial detection of spruce beetle-induced tree mortality, and pre-fire spruce 
beetle severity in each of the five surveyed sites in southwestern Colorado, USA. 
Fire severity, years of spruce beetle detection, and spruce beetle severity are 
summarized for field plots, not at the extent of each site.  

Fire 
Name 

No. 
Field 
Plots 

Fire 
Year 

Fire 
Size 
(ha)  

Fire 
Severityc 

Years of 
Spruce Beetle 
Detectiond  

Spruce 
Beetle 
Severityc 

East 
Fork 

2 2013 142 58 
(16–100) 

2005–2008 52 
(28–77) 

Little 
Sand 

11 2012 10,089 66 
(29–100) 

2000–2009 23 (7–91) 

Papoose 39 2013 19,978 95 
(3−100) 

2000–2010 73 (9–96) 

West 
Fork 

50 2013 22,895 95 
(0−100) 

2000–2010 79 
(34–99) 

Windy 
Pass 

11 2013 574 89 
(11−100) 

2001–2010 68 
(22–95)  

c Fire severity and spruce beetle severity are the median (min-max) percent-
age of pre-disturbance live tree basal area killed in field plots 

d Years of spruce beetle activity were determined for each field plot based on 
analyst interpretation of Landsat time series from 1984 to 2019, US Forest 
Service Aerial Detection Survey data from 1996 to 2019, and high resolution (1- 
m) aerial photography collected in 2005, 2009, 2011, 2013, 2015, and 2017 
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2.2. Datasets 

2.2.1. Development of Landsat time series 
We used Google Earth Engine (GEE; Gorelick et al., 2017) to extract 

and process all Landsat Tier 1 Surface Reflectance scenes (geometrically 
and atmospherically corrected) from 1984 to 2019 that overlapped the 
study area and were collected during the growing season of the subal-
pine zone (i.e., July 1–September 30). These data included imagery from 
the Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic 
Mapper Plus (ETM+), and Landsat 8 Operation Land Imager (OLI). 
Because of reflective wavelength differences between TM/ETM+ and 
OLI sensors, we harmonized Landsat 8 OLI bands to TM/ETM+ equiv-
alents following Roy et al. (2016). Within each scene, we masked pixels 
obstructed by clouds, shadows, and snow using the CFMask-derived 
quality assurance band (Foga et al., 2017). We created annual com-
posite images from the individual scenes using medoid selection (Flood, 

2013). Because LandTrendr operates on a single band or spectral index, 
we used annual composite images to develop 1984–2019 time series of 
the Normalized Burn Ratio (NBR) (Key and Benson, 2006). NBR, the 
normalized difference between TM-equivalent bands four (0.76–0.90 
μm) and seven (2.09–2.35 μm), has been widely used in prior studies of 
fire and tree-killing insects (Meigs et al., 2015; Senf et al., 2017, 2015). 

2.2.2. LTS disturbance detection 
To test the ability of LTS methods to identify tree mortality due to 

wildfire and spruce beetle outbreaks throughout the study area, we used 
the GEE implementation of LandTrendr (Kennedy et al., 2018). Land-
Trendr is a pixel-based algorithm that uses temporal segmentation of 
LTS to identify important features (i.e., segments; homogenous periods 
of change or stability) while excluding noise due to atmospheric and 
geometric distortion, interannual climate variability, vegetation 
phenology, and changes in illumination (Kennedy et al., 2010). For 

Fig. 2. Site map showing the locations of the five studied fires in southwestern Colorado, USA. Pre-fire spruce beetle (Dendroctonus rufipennis) extent is based on US 
Forest Service Aerial Detection Surveys (USFS ADS, 2020) of tree mortality 1996–2012 (i.e., before all fires except for the 2012 Little Sand). Each fire was surveyed in 
the field for tree mortality due to spruce beetle and wildfire (Andrus et al., 2016). 
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segmentation parameters in LandTrendr (e.g., spike threshold, p-value 
threshold, the maximum number of segments), we used values in Table 1 
of Kennedy et al. (2018). Rather than optimizing parameters for the 
study area, our goal was to compare LandTrendr products developed 
using standard practices with reference data. A sensitivity analysis of the 
effect of parameter values on segmentation accuracy confirmed that 
results were relatively insensitive to parameter selection (Appendix A). 
A minimum mapping unit (MMU) filter by detection year is sometimes 
used as a noise-reduction technique to account for the spatial context 
surrounding each voxel (e.g., Kennedy et al., 2012). We did not use an 
MMU filter because insect outbreaks can spread gradually through a 
stand, leading to slight differences in the timing of detection in adjacent 
30-m pixels. For comparison with field data and alternative methods of 
mapping disturbance, we extracted the year of detection as well as the 
direction and magnitude of spectral change from each LandTrendr- 
derived segment in each 30-m cell. 

2.2.3. Field data 
We compared LandTrendr products with previously collected field 

data from 141 plots (20 × 20 m) in Engelmann spruce- and subalpine fir- 
dominated forests throughout the study area (Fig. 2, Table 1) (Andrus 
et al., 2016). These data, collected using established methods (Harvey 
et al., 2013), are field surveys of pre-fire tree mortality due to spruce 
beetle (e.g., reconstructed primarily from tree attributes and cambial 
evidence of spruce beetle attack) as well as fire effects (e.g., tree mor-
tality, percent surface charring). For analyses, we used a subset of 113 
plots that 1) had at least some (i.e., greater than zero) pre-fire tree 
mortality due to spruce beetle, 2) had wildfire activity observed on the 
plot, either through tree mortality or surface charring, and 3) had three 
or more years between the onset of tree mortality due to spruce beetle 
and wildfire occurrence. Three or more years between outbreak onset 
and wildfire occurrence allowed for non-overlapping one-year buffers 
surrounding the year of each disturbance to account for uncertainty in 
the detection year (discussed further in 2.3.1. Statistical Comparisons of 
Field Data and LTS Detection). Using these data, we calculated pre-spruce 
beetle (c. 2000) and pre-fire (c. 2012) live basal area for all trees 
exceeding 4 cm in diameter at breast height (DBH, 1.37 m above ground 
level). We then calculated plot-level spruce beetle severity and fire 
severity as the percentage of pre-outbreak basal area killed by spruce 
beetle, and the percentage of live pre-fire basal area killed by fire, 
respectively. The severity of each disturbance type ranged widely 
(7–99% for spruce beetle and 0–100% for fire; Table 1) and these metrics 
were not correlated at the plot-level (Pearson’s r < 0.01). 

2.2.4. Identifying the timing of spruce beetle outbreak in field plots 
Bark beetle outbreaks have a typical duration of c. 3–4 years at the 

30-m scale of a Landsat cell (Meddens and Hicke, 2014), and the timing 
of disturbance is not easily defined without repeated field surveys or 
detailed interpretation of multi-temporal data. Herein, a single analyst 
assigned a year of spruce beetle “outbreak detection” to each field plot, 
in which the onset of tree mortality could be visually identified based on 
the following reference datasets: 1) 1-m imagery from the National 
Agriculture Imagery Program (NAIP; USFS NAIP, 2020) collected in 
2005, 2009, 2011, 2013, 2015, and 2017, 2) US Forest Service Aerial 
Detection Surveys (ADS; USFS ADS, 2020) conducted each year for the 
period 1996–2019, and 3) 1984–2019 trajectories of NBR and Landsat 
TM-equivalent band 7 (sensitive to outbreak initiation; Foster et al., 
2017). To account for uncertainty in the timing of outbreak detection 
and disagreement among the reference datasets, the analyst also 
assigned a confidence rating of high (± 0 years), medium (± 2 years), or 
low (± 4 years) for each detection year estimate. We included this 
confidence rating in later statistical models because the confidence of 
the interpreter in assigning a detection year is related to the quality of 
the reference data and thus the ability of LandTrendr to match the 
reference. We note that our definition of outbreak detection refers to the 
onset of visible tree mortality rather than the timing of initial spruce 

beetle infestation, as visible signs of tree mortality often lag infestation 
(Foster et al., 2017; Meddens and Hicke, 2014). A further description of 
methods used in determining the timing of spruce beetle outbreak in 
field plot locations is provided in Appendix B. 

2.2.5. Alternative disturbance mapping methods for comparison with LTS 
detection 

To understand how LTS algorithm biases influence the character-
ization of disturbance-affected area, we also compared LandTrendr 
disturbance detection to two additional mapping methods that are 
commonly used for quantifying the area affected by wildfire and bark 
beetle outbreaks. First, we obtained perimeters for each of the five 
studied fires from the Wildland Fire Support Geospatial Multi-agency 
Coordinating Group (GeoMAC, 2020), and ADS-mapped boundaries of 
spruce beetle affected area between 1996 (the first year in which this 
portion of the San Juan Mountains was mapped) and 2011 (prior to the 
occurrence of fires in 2012 and 2013). Using these data, we calculated 
the area burned as the total area within GeoMAC fire perimeters, and the 
area of spruce beetle outbreak as the total area of ADS spruce beetle 
polygons, restricted to areas within fire perimeters. Our second 
approach, which better identifies undisturbed areas within mapped 
perimeters (Kolden et al., 2012; Meddens et al., 2016), was to identify 
burned area using the Relative differenced Normalized Burn Ratio 
(RdNBR), and spruce beetle presence using a previous NAIP-based 
classification of grey-stage tree mortality (i.e., greater than c. two 
years since infestation; Schmid and Frye, 1977). RdNBR is an index of 
fire severity based on the two-date changes in the Normalized Burn 
Ratio, relativized by the initial spectral values (Miller and Thode, 2007). 
The NAIP-based classification of tree mortality attributed to spruce 
beetle was previously developed at a 3-m spatial resolution using 2011 
NAIP imagery with an overall accuracy of c. 90% (Hart and Veblen, 
2015). 

We calculated RdNBR within each of the studied fires using annual 
composite images from years preceding and following fire occurrence 
(following Meigs and Krawchuk, 2018). This approach improves upon 
standard fire severity products (e.g., Eidenshink et al., 2007) by mini-
mizing the influence of clouds, snow, and shadows in individuals scenes, 
as well as data gaps caused by the Scan Line Corrector failure in ETM+
(Parks et al., 2018). Because two-date change indices are sensitive to 
phenological differences between images (Kolden et al., 2015), we 
applied a phenology offset using unburned forest pixels (identified using 
the 2016 National Land Cover Dataset; Homer et al., 2020) in a 300-m 
outward buffer from each fire perimeter. We defined the burned area 
as all 30-m cells within each fire perimeter with positive RdNBR values, 
thus excluding unburned cells. To identify areas affected by spruce 
beetle using the NAIP-based classification, we aggregated these data to a 
30-m spatial resolution (aligned with LandTrendr products and RdNBR 
maps of fire extent). To account for classification uncertainty, we 
defined spruce beetle presence as all 30-m cells with at least 10% clas-
sified cover of grey-stage tree mortality. Because these NAIP-based maps 
did not overlap with the East Fork fire or the southern portion of the 
Little Sand fire (8.75% of total fire area), we excluded these areas from 
all broad-scale spatial analyses. A sensitivity analysis describing the 
influence of different definitions of disturbance presence on RdNBR- and 
NAIP-mapped disturbance area is presented in Appendix C. 

2.3. Analytical methods 

2.3.1. Statistical comparisons of field data and LTS detection 
We extracted LandTrendr outputs at the location of each field plot 

and compared these records to field data describing vegetation structure 
and disturbance characteristics using two generalized linear mixed 
models (GLMMs) (Bolker et al., 2009). We developed the first GLMM to 
examine the influences of initial forest cover, tree mortality agent, 
disturbance severity, and analyst-interpreted time between events on 
LandTrendr detection of wildfire and spruce beetle outbreak (hereafter 
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“two-disturbance model”). We hypothesized that the timing and severity 
of prior disturbance may have a one-directional influence on the 
detection of subsequent disturbance. Thus, we developed a second 
GLMM to quantify the effect of spruce beetle outbreaks on the detection 
of wildfire (hereafter “fire model”). In each GLMM, the response vari-
able represented correct or incorrect disturbance detection by Land-
Trendr. Detection was considered correct if LandTrendr identified the 
initiation of disturbance within one year of the observed (i.e., fire) or 
analyst-interpreted (i.e., spruce beetle) detection year. Allowing for a 
one-year offset helps to account for differences in image collection dates 
or a lack of clear-sky imagery in portions of annual composites (Cohen 
et al., 2017, 2010). We used a Bernoulli distribution in each GLMM; we 
selected a logit link function for the two-disturbance model and a 
complementary log-log link function for the fire model to account for 
class imbalance (Zuur et al., 2009). For the two-disturbance model (n =
226; two observations in 113 plots), we included a nested random 
intercept term of plot within fire to account for dependence between 
observations within a plot and among plots within each fire. For the fire 
model (n = 113), we included a random intercept term of fire. We 
developed GLMMs using the ‘glmmTMB’ package (Brooks et al., 2017) 
and all statistical analyses were performed in R (R Core Team, 2018) 
(Appendix D). 

We used a model selection approach to identify the most important 
predictors of LandTrendr disturbance detection. For the two-disturbance 
model, we included as potential predictors: 1) live basal area of all tree 
species prior to disturbance occurrence, 2) percent basal area mortality 
in the disturbance event, 3) the mortality agent (i.e., fire or spruce 
beetle), 4) the number of years between spruce beetle detection and fire 
occurrence, and 5) analyst confidence in assigning a specific detection 
year. For the fire model, we included: 1) live basal area prior to spruce 
beetle outbreak, 2) live basal area after spruce beetle outbreak but prior 
to fire, 3) percent of pre-outbreak basal area killed by spruce beetle, 4) 
percent of pre-fire basal area killed during fire, and 5) the number of 
years between spruce beetle detection and fire occurrence. Relevant 
bivariate interaction terms were also included in each set of statistical 
models (Appendix D). For comparison of effect sizes of categorical (i.e., 
binary contrasts) and continuous predictors, we scaled all continuous 
predictors by subtracting the mean and dividing by two standard de-
viations (Gelman, 2008). For final models, we retained predictors that 
minimized the sample size-corrected Akaike Information Criterion 
(AICc) in all possible subsets model selection (the ‘dredge’ function in 
the ‘MuMIn’ package; Bartón, 2018). Following model selection and 
fitting, we used the ‘DHARMa’ package (Hartig, 2018) to test residual 
distributions, and spline correlograms in the ‘ncf’ package (Bjornstad, 
2019) to test for spatial autocorrelation in the residuals. Residuals from 
final GLMMs met all necessary assumptions (Appendix D). 

2.3.2. Comparison of LTS detection with other mapping methods 
We compared the total mapped area of fire only, spruce beetle 

outbreak only, fire and spruce beetle overlap, and total undisturbed area 
using three different mapping methods: 1) GeoMAC and ADS perime-
ters, 2) RdNBR and NAIP-based maps, and 3) LandTrendr products. For 
this comparison, we restricted LandTrendr-detected fire events to those 
within fire perimeters that corresponded to the fire year (2012 for Little 
Sand and 2013 for the remaining fires). For LandTrendr detection of 
spruce beetle, we included all disturbance segments initiating 
1996–2011. We excluded 2.4% of the total study area where sanitation 
harvests, salvage logging, and timber harvests were recorded from 1996 
to 2011 (USFS Geodata, 2020) from all spruce beetle layers. Similarly, 
we restricted all maps of spruce beetle activity to forest stands with the 
presence of Engelmann spruce following Hart and Veblen (2015). 
Finally, to determine if LandTrendr detection was related to remotely 
sensed estimates of disturbance severity, we used classification tree 
models (Breiman et al., 1984) in the ‘party’ package (Hothorn et al., 
2014) in R. Specifically, we compared mapped disturbance severity, 
represented here using continuous values of RdNBR and NAIP-derived 

percent grey-stage tree mortality, in pixels identified as disturbed and 
undisturbed in LandTrendr maps. For ease of interpretation and to 
minimize overfitting, we restricted classification trees to a maximum 
depth of 1 (i.e., a single binary split). We weighted individual obser-
vations based on class prevalence to account for imbalanced sampling 
and assessed final classification accuracy using 10-fold cross-validation. 

3. Results 

3.1. Comparing LandTrendr disturbance detection to field data 

In the two-disturbance GLMM, LandTrendr detection was best pre-
dicted by the tree mortality agent (i.e., fire or spruce beetle), percent 
basal area mortality, and interpreter confidence in the year of distur-
bance (Fig. 3a; ΔAICc from second-ranked model = 1.7). LandTrendr 
was less likely to detect spruce beetle outbreak initiation than wildfire 
(ß =−1.02, p = 0.03; Fig. 3a, b). Specifically, 74.3% of fire disturbances 
were correctly identified within one year by LandTrendr, compared to 
just 26.5% for spruce beetle. Though only a portion of spruce beetle 
disturbances could be assigned with confidence to a specific year (n =
34; 30.1% of the total), the detection rate for these “high-confidence” 

Fig. 3. Results of the final ‘two-disturbance’ GLMM of LandTrendr detection of 
wildfire and spruce beetle outbreaks in the San Juan Mountains, CO, USA. (a) 
Scaled coefficients show the direction and effect size of each predictor included 
in the final model, and error bars give ± one standard error of the coefficient 
estimate. In (a), “Medium Confidence” and “High Confidence” give contrasts 
with the “Low Confidence” level for the categorical predictor of interpreter 
confidence when assigning a detection year. In (b), detection probabilities for 
fire (orange) and spruce beetle (purple) disturbances are given across a range of 
disturbance severities. Points show the observed data, jittered vertically for 
clarity. Predicted values (curves with shaded areas representing ± one standard 
error of the prediction) are conditional on the mean value of random effects and 
assume that an interpreter identified a disturbance with high confidence. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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events (i.e., 61.8%) was still 12.5% lower than detection of fire. As ex-
pected, interpreter confidence in the year of disturbance was associated 
with LandTrendr detection (low vs. moderate: ß = 0.57, p = 0.51; low vs. 
high: ß = 2.40, p < 0.01). Probability of disturbance detection by 
LandTrendr was positively related to percent basal area mortality (i.e., 
disturbance severity) for both mortality agents (ß = 0.98, p < 0.01; 
Fig. 3b). Pre-disturbance live basal area, the time between disturbance 
events, and bivariate interaction terms were not included in the most 
parsimonious two-disturbance model. For disturbances that were 
correctly detected, the spectral magnitude of change in the corre-
sponding disturbance segment was weakly correlated with field-derived 
percent basal area mortality (Pearson’s r = 0.25 for spruce beetle; r =
0.21 for fire). In the fire model, we found that LandTrendr detection of 
fire events was primarily related to fire severity (ß = 0.71, p < 0.01; 
Appendix D), and no other predictors were retained in the top model 
(ΔAICc from the second-ranked model = 0.71). Contrary to expecta-
tions, initial forest cover (i.e., basal area) and the timing and severity of 
prior spruce beetle disturbance had little influence on the detection of 
fire. 

3.2. Comparing LandTrendr to other mapping methods 

When comparing LandTrendr disturbance detection with other 
methods of quantifying spruce beetle- and fire-affected areas, we found 
important differences in areal estimates. The mapping approach using 
GeoMAC fire perimeters and ADS polygons had the greatest area 
affected by only fire (249.0 km2), as well as the greatest area of overlap 
between spruce beetle outbreak and fire (281.8 km2) (Fig. 4a, d). RdNBR 
and NAIP-derived maps of grey-stage tree mortality had the second 
highest areas affected by only fire (213.5 km2) and spruce beetle and fire 
overlap (274.3 km2) (Fig. 4b, d). Importantly, this approach also iden-
tified unburned areas that were affected by only spruce beetle (13.2 
km2) or were unaffected by either disturbance (29.8 km2). Areal esti-
mates derived from thresholding RdNBR and NAIP were relatively 
insensitive to the threshold used to determine disturbance presence/ 
absence (Appendix C). In comparison with ADS and GeoMAC perimeters 
and RdNBR- and NAIP-based maps, LandTrendr estimated a much lower 
area affected by fire or spruce beetle. Specifically, LandTrendr had lower 
areas affected by only fire (178.1 km2) and both disturbances (95.9 
km2), and a substantially higher undisturbed area (216.8 km2) (Fig. 4b, 
d). Overall, the LandTrendr estimate of the area affected by fire or bark 
beetle was 40.8% lower than estimates using ADS and GeoMAC pe-
rimeters and 37.3% lower than RdNBR- and NAIP-based maps. 

LandTrendr detection was also related to RdNBR fire severity and 
percent grey-stage tree mortality attributed to spruce beetle, indices of 
disturbance severity for each mortality agent (Fig. 5). Classification 
trees indicated that LandTrendr was more likely to detect fire occurrence 
when RdNBR exceeded 514 (Fig. 5a), and only 52.6% of the total area 
within fire perimeters exceeded this threshold. Similarly, LandTrendr 
detection of spruce beetle was most likely when grey-stage tree mor-
tality exceeded 35% in a 30-m cell (Fig. 5b), and this threshold was 
exceeded in 45.2% of spruce-dominated stands within fire perimeters. 
Accuracies from cross-validation of classification trees were 79.3% for 
fire detection and 61.9% for spruce beetle detection, both higher than 
the no information rate (Appendix D). 

4. Discussion 

This study builds upon existing literature describing the effectiveness 
of LTS algorithms for disturbance detection (e.g., Cohen et al., 2017; 
Schleeweis et al., 2020; Thomas et al., 2011) by comparing LTS detec-
tion in a landscape influenced by multiple disturbances with extensive 
field data and alternative methods of disturbance mapping. We note 
three key findings: 1) successful detection of the occurrence and timing 
of tree mortality was strongly related to disturbance type and severity, 
2) LandTrendr predicted a substantially lower area affected by distur-
bance than did other mapping methods, particularly when disturbances 
occurred at low severity, and 3) factors related to prior disturbance and 
disturbance overlap had little influence on detection by LandTrendr. 

Ecological disturbances operate across a range of spatiotemporal 
scales and have a broad array of impacts on forest ecosystems. Fire can 
occur in only moments, but insect outbreaks may take several years to 
unfold within a stand (Hart et al., 2017; Meddens and Hicke, 2014). 
Similarly, forest disturbances range from localized removals of plant 
biomass to stand-replacing events that span broad areas (Agee, 1996; 
Turner, 2010). Because disturbances encompass a diversity of ecological 
processes, it is clear that there are certain conditions under which 
disturbance detection is a challenging task for LTS algorithms. Our 
finding that LandTrendr was more likely to correctly detect wildfire than 
spruce beetle outbreaks in field plots, and that detectability of both 
disturbance types increased with severity, has potentially broad impli-
cations for the use of LTS algorithms in disturbance mapping. Gradual, 
low-severity disturbances (e.g., background tree mortality, non-stand 
replacing disturbance) are pervasive throughout many forest systems 
(Cohen et al., 2016; Das et al., 2016; Hermosilla et al., 2019; Shang et al., 
2020), but these events can be difficult to separate from other sources of 

Fig. 4. A comparison of three methods used for mapping fire- and spruce beetle-affected area in the San Juan Mountains, Colorado, USA. In (a), mapped fire pe-
rimeters from Wildland Fire Support Geospatial Multi-Agency Coordination (GeoMAC; GeoMAC, 2020) are overlaid with US Forest Service Aerial Detection Survey 
(ADS; USFS ADS, 2020) polygons that identify tree mortality attributed to spruce beetle. In (b), we used the Relative differenced Normalized Burn Ratio (RdNBR; 
Miller and Thode, 2007) to identify burned areas within each fire perimeter, and a 3-m thematic map of tree mortality (Hart and Veblen, 2015) derived from National 
Agriculture Imagery Program (NAIP; USFS NAIP, 2020) imagery to identify pre-fire spruce beetle activity. In (c), we used LandTrendr (Landsat-based Detection of 
Trends in Disturbance and Recovery; Kennedy et al., 2010) to detect fire and spruce beetle disturbances in the study area. Panel (d) compares the mapped area with 
only fire (orange), fire and spruce beetle overlap (red), only spruce beetle (purple), and undisturbed area (grey) using each mapping method. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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spectral variation in LTS such as unresolved geometric and atmospheric 
effects and variation in vegetation phenology (Kennedy et al., 2010; 
Zhu, 2017). Thus, it is likely that the occurrence and timing of many 
gradual and low-severity disturbances are incorrectly detected in broad- 
scale mapping efforts using automated LTS algorithms. 

In addition to LTS algorithms, several alternative mapping ap-
proaches can be used to identify tree-killing disturbances in forest eco-
systems. For bark beetle outbreaks and wildfire, perimeters describing 
total extent can be used to quickly calculate disturbed area across broad 
regions (e.g., Bentz et al., 2009; Hanes et al., 2019). Another common 
approach is the use of two-date change indices or image classification 
with input from analysts to refine the location and timing of occurrence 
(e.g., Hart and Veblen, 2015; Meddens et al., 2013). Our findings indi-
cate that LandTrendr predicted a c. 40% lower area of disturbance than 
did either of these alternative approaches. Other studies have effectively 

reduced mapping error of LTS products through the use of multispectral 
ensembles, a combination of algorithms or base learners, or the incor-
poration of additional data from other satellite systems (e.g., Sentinel-1 
and Sentinel-2 missions) (Cohen et al., 2020; Healey et al., 2018; Senf 
and Seidl, 2020; Shimizu et al., 2019). The inclusion of several spectral 
bands and indices, particularly those that target the shortwave-infrared 
portion of the electromagnetic spectrum (e.g., TM-equivalent bands 5 
and 7, the Normalized Difference Moisture Index) will improve mapping 
accuracy in future studies using LTS algorithms (Cohen et al., 2018). 
Supervised image classification and ancillary datasets such as ADS and 
the Forest Inventory and Analysis (FIA) monitoring network can also be 
used to constrain or adjust LTS outputs (Meigs et al., 2015; Schroeder 
et al., 2014). To refine disturbance detection, hybrid approaches are 
being developed that include the initial processing steps of LTS algo-
rithms (e.g., developing cloud- and shadow-free annual image com-
posites), but use alternative data sources (Meigs and Krawchuk, 2018), 
or algorithms tailored to specific disturbance types (Bright et al., 2020). 
Automated LTS algorithms have clear advantages over alternative ap-
proaches when applied across broad areas without detailed knowledge 
of the type, location, and timing of disturbance events. Still, whenever 
possible, incorporating additional data may substantially improve the 
results of LTS-based disturbance detection. 

Overlapping forest disturbances are of broad importance because of 
the potential for linked interactions that influence disturbance proper-
ties (e.g. extent or severity; Simard et al., 2011) or compounded in-
teractions that may limit ecosystem recovery (Paine et al., 1998). 
Remotely sensed data, including LTS products, play an important role in 
understanding linked and compounded disturbance interactions (Her-
mosilla et al., 2019; Meigs et al., 2016). We expected that LTS detection 
might be limited in areas of disturbance overlap because prior distur-
bance would alter forest structure and change the spectral characteris-
tics of subsequent disturbance. Additionally, we expected that two 
disturbance events occurring in short succession might be combined 
during temporal segmentation. Instead, we found that LandTrendr 
detection was unrelated to the time between disturbances or the severity 
of prior disturbances. A warming climate is expected to become 
increasingly suitable for the occurrence and spread of drought-mediated 
disturbances such as wildfire and bark beetle outbreaks (Abatzoglou 
et al., 2019; Bentz et al., 2010), leading to increases in the total area of 
disturbance overlap. Similarly, with the planned launch of Landsat-9 
and the increasing length of the Landsat record (Wulder et al., 2019), 
disturbance overlap in LTS will be an increasingly common issue. Our 
findings support the use of LTS-based approaches for the detection and 
monitoring of overlapping disturbances. Still, we tested only one com-
bination of disturbance events (bark beetle followed by wildfire) and 
additional work is needed to determine if LTS algorithms are similarly 
effective with other sequences and types of disturbance (e.g., wildfire 
followed by insects, insect outbreaks followed by salvage logging), and 
alternative forest types. 

In the present study, we primarily focused on errors of omission, or 
the failure to detect disturbances in areas of known occurrence. Omis-
sion and commission error are inversely related (Cohen et al., 2017; 
Congalton, 1991) and LTS algorithms that are capable of detecting 
disturbances associated with minor spectral changes will inherently 
have a greater number of false detections. Thus, designing increasingly 
sensitive LTS algorithms is not an effective means of reducing mapping 
error unless outputs are paired with ancillary data that can limit false 
positives. We specifically assessed vertex agreement, the agreement of 
LTS-detected occurrence and timing of disturbance with observed or 
analyst-interpreted timing, but many additional accuracy measures can 
also be used to assess the effectiveness of LTS algorithms (Cohen et al., 
2010). However, vertex agreement is a particularly useful measure of 
accuracy in LTS detection because it assesses one of the key advantages 
of LTS over two-date approaches, the accurate representation of the 
timing and rate of events (Kennedy et al., 2014). 

LTS algorithms are commonly used for forest ecosystem monitoring, 

Fig. 5. A comparison of mapped disturbance severity in cells with and without 
detection of disturbance using LandTrendr (Landsat-based Detection of Trends 
in Disturbance and Recovery; Kennedy et al., 2010). Fire severity is represented 
using the Relative differenced Normalized Burn Ratio (RdNBR; Miller and 
Thode, 2007) calculated from annual pre- and post-fire imagery. Spruce beetle 
severity is the percent cover of grey-stage tree mortality within each 30-m pixel 
(Hart and Veblen, 2015). Dashed lines represent a binary split in the data 
(based on a classification tree model) at which LandTrendr is most likely to 
detect a disturbance event. 
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and their use is likely to increase in the future (Banskota et al., 2014; 
Zhu, 2017). An assessment of the causes of mapping error and uncer-
tainty in LTS products aids in methodological refinement, which in turn 
improves the effectiveness of monitoring efforts that have broad impli-
cations for science, policy, and society. Herein, we note that a commonly 
used LTS algorithm more easily detects severe and abrupt disturbances 
than gradual and low-severity disturbances. Users of LTS algorithms 
should be aware of potential biases in derived products, including 
omission of low-severity disturbances, and how these biases may influ-
ence monitoring efforts. Yet we also noted that LTS detection was robust 
to disturbance overlap, an important finding that supports the use of LTS 
algorithms in areas with a complex history of natural and anthropogenic 
disturbances. With the increasing length of the Landsat record and the 
increasing availability of additional data sources (e.g., Sentinel-2, 
MODIS), automated algorithms using image time series will continue 
to play a crucial role in understanding and addressing human impacts 
and ecosystem changes across Earth’s surface. 
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