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Landsat time series (LTS) and associated change detection algorithms are useful for monitoring the effects of
global change on Earth’s ecosystems. Because LTS algorithms can be easily applied across broad areas, they are
commonly used to map changes in forest structure due to wildfire, insect attack, and other important drivers of
tree mortality. But factors such as initial forest density, tree mortality agent, and disturbance severity (i.e.,
percent tree mortality) influence patterns of surface reflectance and may influence the accuracy of LTS algo-
rithms. And while LTS algorithms are widely used in areas with a history of multiple disturbance events during
the Landsat record, the effectiveness of LTS algorithms in these conditions is not well understood. We compared
products from the LTS algorithm LandTrendr (Landsat-based Detection of Trends in Disturbance and Recovery)
with a unique field dataset from a landscape heavily influenced by both wildfire and spruce beetles (Dendroctonus
rufipennis) since c. 2000. We also compared LandTrendr to other common methods of mapping fire- and spruce
beetle-affected areas. We found that LandTrendr more accurately detected wildfire than spruce beetle-induced
tree mortality, and both mortality agents were more easily detected when they occurred at high severity. Sur-
prisingly, prior spruce beetle outbreaks did not influence the detectability of subsequent wildfire. Compared to
alternative disturbance mapping approaches, LandTrendr predicted a c. 40% lower area affected by wildfire or
spruce beetle outbreaks. Our findings indicate that disturbance type- and severity-specific differences in omission
error may have broad implications for disturbance mapping efforts that utilize Landsat data. Gradual, low-
severity disturbances (e.g., background tree mortality and non-stand replacing disturbance) are pervasive in
forest ecosystems, yet they can be difficult to detect using automated LTS algorithms. Whenever possible,
methods to account for these biases should be incorporated in LTS-based mapping efforts, including the use of
multispectral ensembles and ancillary spatial data to refine predictions. However, our findings also indicate that
LTS algorithms appear to be robust in areas with multiple disturbance events, which is important because these
areas will increase as new acquisitions extend the length of the Landsat record.

1. Introduction studies of forest ecosystems because these data have a relatively high

spatial resolution (c. 30-60 m) and an unmatched temporal extent (c. 50

Climate change is altering patterns of ecological disturbance across
Earth’s forested ecosystems (McDowell et al., 2020; Turner, 2010). As
relatively discrete events that reduce plant biomass (Grime, 1979),
disturbances can have lasting influences on forest structure, with
cascading effects on carbon storage and other important ecosystem
services (Bonan, 2008; Thom and Seidl, 2016). Remotely sensed data
play a key role in monitoring forest disturbances because they provide a
consistent record across expansive areas (Trumbore et al., 2015). In
particular, imagery from the Landsat program has been widely used in
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years) (Wulder et al., 2019). To leverage this extended data record,
several algorithms have been recently developed to detect changes in
surface cover using Landsat image time series (LTS) (e.g., Hermosilla
et al., 2016; Huang et al., 2010; Hughes et al., 2017; Kennedy et al.,
2010; Zhu et al., 2020). Common goals for LTS algorithms are to 1)
separate distinct change events (i.e., signal) from inter- or sub-annual
spectral variation (i.e., noise) with little direct input from the analyst
and 2) characterize the timing, duration, and spectral magnitude of
events (Banskota et al., 2014; Zhu, 2017). By quantifying the timing and
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magnitude of spectral changes, LTS methods can improve the repre-
sentation of ecological processes such as disturbance and recovery
(Kennedy et al., 2014).

Though LTS algorithms offer a promising approach for forest
ecosystem monitoring, validation is critical for characterizing patterns
of change and making inferences about ecological processes (Pengra
et al., 2016; Thomas et al., 2011). The most common validation ap-
proaches for LTS algorithms include comparisons with simulated data
(Awty-Carroll et al., 2019) and analyst interpretations of LTS trajectories
alongside high-resolution imagery (Cohen et al., 2017). When available,
field data are highly valuable, particularly in identifying agents of tree
mortality, quantifying disturbance severity (i.e., percent tree mortality),
and characterizing subcanopy effects that are not always apparent in
imagery (Schroeder et al., 2014). However, comparisons with field data
are uncommon because data collection costs are high and field surveys
rarely capture consistent information before and after individual
disturbance events (Cohen et al., 2010; Thomas et al., 2011). Field data
provide an important and underutilized supplement to other reference
data by connecting spectral trajectories in LTS with the ecological
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processes that are occurring throughout forested ecosystems.

Forest structure and the characteristics of individual disturbance
events influence the spectral signal associated with tree mortality and
have the potential to affect LTS detection (Fig. la). For instance,
observed spectral change increases with disturbance severity and initial
forest density (Harvey et al., 2019; Meigs et al., 2015; Miller et al.,
2009); low levels of tree mortality typically cause minimal spectral
change that is difficult to distinguish from interannual variability and
may go undetected by LTS algorithms (Cohen et al., 2010). Additionally,
different disturbance types have unique spectral characteristics and
varying durations at the scale of a Landsat cell (Fig. 1a). Tree mortality
caused by rapid and temporally-discrete disturbances (e.g., wildfire or
timber harvest) may be more easily detected than mortality caused by
disturbances that unfold over several years or more (e.g., tree-killing
insects) (Schleeweis et al., 2020). Furthermore, when multiple distur-
bance events occur in the same location within the Landsat record (i.e.,
the 1970s to present), their interaction has the potential to influence LTS
detection. For instance, initial forest disturbances may alter the spectral
characteristics of subsequent disturbances (Harvey et al., 2019; Parks
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Fig. 1. Examples of (a) correct and incorrect disturbance detection using temporal segmentation of Landsat time series (LTS), and (b) the potential influence of LTS
detection error on broad-scale disturbance mapping. In (a), line graphs give observed (grey) and segmented (black) spectral values from example LTS trajectories in
subalpine forests throughout southwestern Colorado, USA. The true year of disturbance occurrence is indicated by triangles above LTS trajectories, and the timing of
pre/post image acquisition is indicated by dashed lines. Image panels are false-colour composites (red highlights live vegetation) of 1-m aerial photography from the
National Agriculture Imagery Program (NAIP; USFS NAIP, 2020) collected before and after individual disturbances; white boxes in NAIP images correspond to the
location of each LTS trajectory. We expected that (a) sources of detection error in LTS algorithms would lead to lower estimates of disturbed area when compared to
(b) alternative approaches such as mapped perimeters of the total affected area (e.g., fire perimeters) or analyst-supervised detection methods such as image
classification or two-date change indices. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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et al., 2014) and thereby influence detectability in LTS. Similarly, when
two or more disturbance events occur in short succession, the spectral
trajectory may appear similar to a single disturbance spanning several
years (Fig. 1a), masking potentially meaningful differences in distur-
bance effects (e.g., compound effects; Paine et al., 1998). Though LTS
methods are widely applied in areas with overlapping disturbances (e.g.,
Hermosilla et al., 2019; Schleeweis et al., 2020; White et al., 2017), the
ability of LTS algorithms to detect these events is poorly understood.

In forests of the western United States, wildfire and bark beetle
(Curculionidae: Scolytinae) outbreaks are two of the most important
drivers of tree mortality, where they have affected at least 6.3% and
7.1% of the total forested area over the past three decades (Hicke et al.,
2016). Because fire and bark beetle outbreaks can have major influences
on forest ecosystems, LTS detection and other mapping methods are
commonly used to quantify disturbance-affected areas at a range of
spatial scales (e.g., Meigs et al., 2015; Schroeder et al., 2011; Senf et al.,
2015). Previously mapped fire perimeters (e.g., Canadian National Fire
Database, Monitoring Trends in Burn Severity) or aerial sketches of
insect-affected area (e.g., Aerial Detection Surveys, Aerial Overview
Surveys) can help to characterize disturbance extent at national or
regional levels (e.g., Bentz et al., 2009; Hanes et al., 2019). Though this
extent-based approach permits rapid calculations across broad areas,
mapped perimeters typically include areas without tree mortality,
leading to notable overestimates of the affected area (Kolden et al.,
2012; Meddens et al., 2016). Alternatively, approaches such as image
classification (e.g., Hart and Veblen, 2015; Meddens et al., 2013;
Schroeder et al., 2014) or two-date change indices (e.g., Meddens et al.,
2016; Meigs et al., 2020) can be used to map finer-grain estimates of tree
mortality, but these approaches require more direct input from analysts
and thus a greater investment of time. Different mapping methods —
including LTS detection, extent-based approaches, and analyst-
supervised detection — may give substantial differences in estimates of
disturbance-affected area (Fig. 1b).

Using a unique field dataset describing forest structure, causes of tree
mortality, and disturbance severity in a landscape affected by bark
beetle outbreaks and wildfire since c. 2000, we evaluated the ability of
the LTS algorithm LandTrendr (Landsat-based Detection of Trends in
Disturbance and Recovery; Kennedy et al., 2010) to identify the occur-
rence and timing of individual disturbance events. Given our focus on
disturbance detection, we used LandTrendr, one of the most widely
applied LTS algorithms (Zhu, 2017) because it has lower rates of omis-
sion than many comparable tools (Cohen et al., 2017). To determine the
extent to which LTS disturbance detection matched other estimates of
disturbed area, we also compared LandTrendr products with additional
mapping methods (i.e., fire perimeters, aerial surveys of insect-induced
tree mortality, two-date change indices of fire severity, and a supervised
classification of insect-affected area) available in the study area. Spe-
cifically, we asked the following questions:

Q1. How do pre-disturbance forest density, mortality agent, disturbance
severity, and time between overlapping disturbances influence detectability in
LTS? We expected that overlapping disturbances would be easiest to
detect in LTS when they occurred in areas with dense forest cover, were
temporally abrupt, occurred at high severity, and were separated by
longer intervals.

Q2. How do estimates of disturbance occurrence and overlap differ among
common methods of detection? We expected that extent-based approaches
using wildfire perimeters and aerial surveys of bark beetle outbreaks
would give the largest estimates of disturbance-affected area, and LTS
products would give the smallest estimates because of partial omission.

2. Methods
2.1. 2.1. Study area and focal disturbance types

Our study area is within the boundaries of five wildfires that
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occurred in 2012 and 2013 throughout the San Juan Mountains in
southwestern Colorado, U.S.A. (Table 1, Fig. 2). Forests in the San Juan
Mountains span a broad elevational range (c. 1500-3600 m); subalpine
forests (2700-3600 m) comprise the core of the mountain range
(Romme et al., 2009) and make up 87% of the total area within the
studied fires (Rollins, 2009). The dominant tree species in subalpine
forests of the San Juan Mountains include Engelmann spruce (Picea
engelmannii), subalpine fir (Abies lasiocarpa), and quaking aspen (Populus
tremuloides) (Wilson et al., 2013). Climate varies dramatically across
elevational gradients in the study area. Average annual precipitation
ranges from 400 to 1600 mm year ~!, January minimum temperatures
range — 20 to —11 °C, and July maximum temperatures range 17 to
28 °C (1981-2010 normals; PRISM, 2020).

Wildfire and bark beetles (e.g., Dendroctonus spp., Ips spp., Dryocoetes
spp.) have long shaped the structure of subalpine forests in the southern
Rocky Mountains, U.S.A. (Baker and Veblen, 1990). Fires are typically
infrequent and stand-replacing in subalpine forests, constrained to
exceptionally dry conditions that are suitable for widespread burning
(Buechling and Baker, 2004; Sibold and Veblen, 2006), such as the
weather conditions that occurred during the 2012-2013 fires studied
here (Andrus et al., 2016). Spruce beetle (Dendroctonus rufipennis) is the
most important tree-killing insect in subalpine forests of the San Juan
Mountains, where it primarily attacks Engelmann spruce and occa-
sionally blue spruce (Picea pungens). Stands composed of abundant
large-diameter spruce are most susceptible to spruce beetle attack
(Jenkins et al., 2014; Schmid and Frye, 1977; Temperli et al., 2014), and
warm, dry periods can initiate epidemic-level outbreaks across broad
areas (Hart et al., 2014; Raffa et al., 2008). Western balsam bark beetle
(WBBB; Dryocoetes confusus) is another notable tree-killing insect in
subalpine forests of the San Juan Mountains, where it primarily affects
subalpine fir; though widespread, WBBB outbreaks typically occur at
lower severity than do spruce beetle outbreaks (Andrus et al., 2020;
Lalande et al., 2020) and were not a focus of this study. Recently, the
combined effects of spruce beetle and fire have led to notable changes in
forest structure throughout the San Juan Mountains (Andrus et al., 2020;
Carlson et al., 2017; Savage et al., 2017). In our study area, a spruce
beetle outbreak began in the early 2000s (Hart et al., 2017) and the
stand-scale effects of the outbreak ranged from minor mortality to near-
total mortality of mature trees (Table 1). Similarly, the 2012 and 2013
fires had a range of effects on stand structure, though severity was
generally high (Table 1).

Table 1

Fire name, number of field plots, year of fire occurrence, fire severity, years of
the initial detection of spruce beetle-induced tree mortality, and pre-fire spruce
beetle severity in each of the five surveyed sites in southwestern Colorado, USA.
Fire severity, years of spruce beetle detection, and spruce beetle severity are
summarized for field plots, not at the extent of each site.

Fire No. Fire Fire Years of
Name Field Year Size Fire Spruce Beetle ~ Spruce
Plots (ha) Severity" Detection® Beetle
Severity®
East 2 2013 142 58 2005-2008 52
Fork (16-100) (28-77)
Little 11 2012 10,089 66 2000-2009 23 (7-91)
Sand (29-100)
Papoose 39 2013 19,978 95 2000-2010 73 (9-96)
(3-100)
West 50 2013 22,895 95 2000-2010 79
Fork (0—100) (34-99)
Windy 11 2013 574 89 2001-2010 68
Pass (11-100) (22-95)

¢ Fire severity and spruce beetle severity are the median (min-max) percent-
age of pre-disturbance live tree basal area killed in field plots

4 Years of spruce beetle activity were determined for each field plot based on
analyst interpretation of Landsat time series from 1984 to 2019, US Forest
Service Aerial Detection Survey data from 1996 to 2019, and high resolution (1-
m) aerial photography collected in 2005, 2009, 2011, 2013, 2015, and 2017
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Fig. 2. Site map showing the locations of the five studied fires in southwestern Colorado, USA. Pre-fire spruce beetle (Dendroctonus rufipennis) extent is based on US
Forest Service Aerial Detection Surveys (USFS ADS, 2020) of tree mortality 1996-2012 (i.e., before all fires except for the 2012 Little Sand). Each fire was surveyed in

the field for tree mortality due to spruce beetle and wildfire (Andrus et al., 2016).

2.2. Datasets

2.2.1. Development of Landsat time series

We used Google Earth Engine (GEE; Gorelick et al., 2017) to extract
and process all Landsat Tier 1 Surface Reflectance scenes (geometrically
and atmospherically corrected) from 1984 to 2019 that overlapped the
study area and were collected during the growing season of the subal-
pine zone (i.e., July 1-September 30). These data included imagery from
the Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic
Mapper Plus (ETM+), and Landsat 8 Operation Land Imager (OLI).
Because of reflective wavelength differences between TM/ETM+ and
OLI sensors, we harmonized Landsat 8 OLI bands to TM/ETM+ equiv-
alents following Roy et al. (2016). Within each scene, we masked pixels
obstructed by clouds, shadows, and snow using the CFMask-derived
quality assurance band (Foga et al., 2017). We created annual com-
posite images from the individual scenes using medoid selection (Flood,

2013). Because LandTrendr operates on a single band or spectral index,
we used annual composite images to develop 1984-2019 time series of
the Normalized Burn Ratio (NBR) (Key and Benson, 2006). NBR, the
normalized difference between TM-equivalent bands four (0.76-0.90
pm) and seven (2.09-2.35 pm), has been widely used in prior studies of
fire and tree-killing insects (Meigs et al., 2015; Senf et al., 2017, 2015).

2.2.2. LTS disturbance detection

To test the ability of LTS methods to identify tree mortality due to
wildfire and spruce beetle outbreaks throughout the study area, we used
the GEE implementation of LandTrendr (Kennedy et al., 2018). Land-
Trendr is a pixel-based algorithm that uses temporal segmentation of
LTS to identify important features (i.e., segments; homogenous periods
of change or stability) while excluding noise due to atmospheric and
geometric distortion, interannual climate variability, vegetation
phenology, and changes in illumination (Kennedy et al., 2010). For
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segmentation parameters in LandTrendr (e.g., spike threshold, p-value
threshold, the maximum number of segments), we used values in Table 1
of Kennedy et al. (2018). Rather than optimizing parameters for the
study area, our goal was to compare LandTrendr products developed
using standard practices with reference data. A sensitivity analysis of the
effect of parameter values on segmentation accuracy confirmed that
results were relatively insensitive to parameter selection (Appendix A).
A minimum mapping unit (MMU) filter by detection year is sometimes
used as a noise-reduction technique to account for the spatial context
surrounding each voxel (e.g., Kennedy et al., 2012). We did not use an
MMU filter because insect outbreaks can spread gradually through a
stand, leading to slight differences in the timing of detection in adjacent
30-m pixels. For comparison with field data and alternative methods of
mapping disturbance, we extracted the year of detection as well as the
direction and magnitude of spectral change from each LandTrendr-
derived segment in each 30-m cell.

2.2.3. Field data

We compared LandTrendr products with previously collected field
data from 141 plots (20 x 20 m) in Engelmann spruce- and subalpine fir-
dominated forests throughout the study area (Fig. 2, Table 1) (Andrus
et al., 2016). These data, collected using established methods (Harvey
et al., 2013), are field surveys of pre-fire tree mortality due to spruce
beetle (e.g., reconstructed primarily from tree attributes and cambial
evidence of spruce beetle attack) as well as fire effects (e.g., tree mor-
tality, percent surface charring). For analyses, we used a subset of 113
plots that 1) had at least some (i.e., greater than zero) pre-fire tree
mortality due to spruce beetle, 2) had wildfire activity observed on the
plot, either through tree mortality or surface charring, and 3) had three
or more years between the onset of tree mortality due to spruce beetle
and wildfire occurrence. Three or more years between outbreak onset
and wildfire occurrence allowed for non-overlapping one-year buffers
surrounding the year of each disturbance to account for uncertainty in
the detection year (discussed further in 2.3.1. Statistical Comparisons of
Field Data and LTS Detection). Using these data, we calculated pre-spruce
beetle (c. 2000) and pre-fire (c. 2012) live basal area for all trees
exceeding 4 cm in diameter at breast height (DBH, 1.37 m above ground
level). We then calculated plot-level spruce beetle severity and fire
severity as the percentage of pre-outbreak basal area killed by spruce
beetle, and the percentage of live pre-fire basal area killed by fire,
respectively. The severity of each disturbance type ranged widely
(7-99% for spruce beetle and 0-100% for fire; Table 1) and these metrics
were not correlated at the plot-level (Pearson’s r < 0.01).

2.2.4. Identifying the timing of spruce beetle outbreak in field plots

Bark beetle outbreaks have a typical duration of c. 3-4 years at the
30-m scale of a Landsat cell (Meddens and Hicke, 2014), and the timing
of disturbance is not easily defined without repeated field surveys or
detailed interpretation of multi-temporal data. Herein, a single analyst
assigned a year of spruce beetle “outbreak detection” to each field plot,
in which the onset of tree mortality could be visually identified based on
the following reference datasets: 1) 1-m imagery from the National
Agriculture Imagery Program (NAIP; USFS NAIP, 2020) collected in
2005, 2009, 2011, 2013, 2015, and 2017, 2) US Forest Service Aerial
Detection Surveys (ADS; USFS ADS, 2020) conducted each year for the
period 1996-2019, and 3) 1984-2019 trajectories of NBR and Landsat
TM-equivalent band 7 (sensitive to outbreak initiation; Foster et al.,
2017). To account for uncertainty in the timing of outbreak detection
and disagreement among the reference datasets, the analyst also
assigned a confidence rating of high (+ 0 years), medium (+ 2 years), or
low (+ 4 years) for each detection year estimate. We included this
confidence rating in later statistical models because the confidence of
the interpreter in assigning a detection year is related to the quality of
the reference data and thus the ability of LandTrendr to match the
reference. We note that our definition of outbreak detection refers to the
onset of visible tree mortality rather than the timing of initial spruce
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beetle infestation, as visible signs of tree mortality often lag infestation
(Foster et al., 2017; Meddens and Hicke, 2014). A further description of
methods used in determining the timing of spruce beetle outbreak in
field plot locations is provided in Appendix B.

2.2.5. Alternative disturbance mapping methods for comparison with LTS
detection

To understand how LTS algorithm biases influence the character-
ization of disturbance-affected area, we also compared LandTrendr
disturbance detection to two additional mapping methods that are
commonly used for quantifying the area affected by wildfire and bark
beetle outbreaks. First, we obtained perimeters for each of the five
studied fires from the Wildland Fire Support Geospatial Multi-agency
Coordinating Group (GeoMAC, 2020), and ADS-mapped boundaries of
spruce beetle affected area between 1996 (the first year in which this
portion of the San Juan Mountains was mapped) and 2011 (prior to the
occurrence of fires in 2012 and 2013). Using these data, we calculated
the area burned as the total area within GeoMAC fire perimeters, and the
area of spruce beetle outbreak as the total area of ADS spruce beetle
polygons, restricted to areas within fire perimeters. Our second
approach, which better identifies undisturbed areas within mapped
perimeters (Kolden et al., 2012; Meddens et al., 2016), was to identify
burned area using the Relative differenced Normalized Burn Ratio
(RANBR), and spruce beetle presence using a previous NAIP-based
classification of grey-stage tree mortality (i.e., greater than c. two
years since infestation; Schmid and Frye, 1977). RANBR is an index of
fire severity based on the two-date changes in the Normalized Burn
Ratio, relativized by the initial spectral values (Miller and Thode, 2007).
The NAIP-based classification of tree mortality attributed to spruce
beetle was previously developed at a 3-m spatial resolution using 2011
NAIP imagery with an overall accuracy of c¢. 90% (Hart and Veblen,
2015).

We calculated RANBR within each of the studied fires using annual
composite images from years preceding and following fire occurrence
(following Meigs and Krawchuk, 2018). This approach improves upon
standard fire severity products (e.g., Eidenshink et al., 2007) by mini-
mizing the influence of clouds, snow, and shadows in individuals scenes,
as well as data gaps caused by the Scan Line Corrector failure in ETM+
(Parks et al., 2018). Because two-date change indices are sensitive to
phenological differences between images (Kolden et al., 2015), we
applied a phenology offset using unburned forest pixels (identified using
the 2016 National Land Cover Dataset; Homer et al., 2020) in a 300-m
outward buffer from each fire perimeter. We defined the burned area
as all 30-m cells within each fire perimeter with positive RANBR values,
thus excluding unburned cells. To identify areas affected by spruce
beetle using the NAIP-based classification, we aggregated these data to a
30-m spatial resolution (aligned with LandTrendr products and RANBR
maps of fire extent). To account for classification uncertainty, we
defined spruce beetle presence as all 30-m cells with at least 10% clas-
sified cover of grey-stage tree mortality. Because these NAIP-based maps
did not overlap with the East Fork fire or the southern portion of the
Little Sand fire (8.75% of total fire area), we excluded these areas from
all broad-scale spatial analyses. A sensitivity analysis describing the
influence of different definitions of disturbance presence on RANBR- and
NAIP-mapped disturbance area is presented in Appendix C.

2.3. Analytical methods

2.3.1. Statistical comparisons of field data and LTS detection

We extracted LandTrendr outputs at the location of each field plot
and compared these records to field data describing vegetation structure
and disturbance characteristics using two generalized linear mixed
models (GLMMs) (Bolker et al., 2009). We developed the first GLMM to
examine the influences of initial forest cover, tree mortality agent,
disturbance severity, and analyst-interpreted time between events on
LandTrendr detection of wildfire and spruce beetle outbreak (hereafter
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“two-disturbance model”). We hypothesized that the timing and severity
of prior disturbance may have a one-directional influence on the
detection of subsequent disturbance. Thus, we developed a second
GLMM to quantify the effect of spruce beetle outbreaks on the detection
of wildfire (hereafter “fire model”). In each GLMM, the response vari-
able represented correct or incorrect disturbance detection by Land-
Trendr. Detection was considered correct if LandTrendr identified the
initiation of disturbance within one year of the observed (i.e., fire) or
analyst-interpreted (i.e., spruce beetle) detection year. Allowing for a
one-year offset helps to account for differences in image collection dates
or a lack of clear-sky imagery in portions of annual composites (Cohen
et al., 2017, 2010). We used a Bernoulli distribution in each GLMM; we
selected a logit link function for the two-disturbance model and a
complementary log-log link function for the fire model to account for
class imbalance (Zuur et al., 2009). For the two-disturbance model (n =
226; two observations in 113 plots), we included a nested random
intercept term of plot within fire to account for dependence between
observations within a plot and among plots within each fire. For the fire
model (n = 113), we included a random intercept term of fire. We
developed GLMMs using the ‘glmmTMB’ package (Brooks et al., 2017)
and all statistical analyses were performed in R (R Core Team, 2018)
(Appendix D).

We used a model selection approach to identify the most important
predictors of LandTrendr disturbance detection. For the two-disturbance
model, we included as potential predictors: 1) live basal area of all tree
species prior to disturbance occurrence, 2) percent basal area mortality
in the disturbance event, 3) the mortality agent (i.e., fire or spruce
beetle), 4) the number of years between spruce beetle detection and fire
occurrence, and 5) analyst confidence in assigning a specific detection
year. For the fire model, we included: 1) live basal area prior to spruce
beetle outbreak, 2) live basal area after spruce beetle outbreak but prior
to fire, 3) percent of pre-outbreak basal area killed by spruce beetle, 4)
percent of pre-fire basal area killed during fire, and 5) the number of
years between spruce beetle detection and fire occurrence. Relevant
bivariate interaction terms were also included in each set of statistical
models (Appendix D). For comparison of effect sizes of categorical (i.e.,
binary contrasts) and continuous predictors, we scaled all continuous
predictors by subtracting the mean and dividing by two standard de-
viations (Gelman, 2008). For final models, we retained predictors that
minimized the sample size-corrected Akaike Information Criterion
(AICc) in all possible subsets model selection (the ‘dredge’ function in
the ‘MuMIn’ package; Barton, 2018). Following model selection and
fitting, we used the ‘DHARMa’ package (Hartig, 2018) to test residual
distributions, and spline correlograms in the ‘ncf’ package (Bjornstad,
2019) to test for spatial autocorrelation in the residuals. Residuals from
final GLMMs met all necessary assumptions (Appendix D).

2.3.2. Comparison of LTS detection with other mapping methods

We compared the total mapped area of fire only, spruce beetle
outbreak only, fire and spruce beetle overlap, and total undisturbed area
using three different mapping methods: 1) GeoMAC and ADS perime-
ters, 2) RANBR and NAIP-based maps, and 3) LandTrendr products. For
this comparison, we restricted LandTrendr-detected fire events to those
within fire perimeters that corresponded to the fire year (2012 for Little
Sand and 2013 for the remaining fires). For LandTrendr detection of
spruce beetle, we included all disturbance segments initiating
1996-2011. We excluded 2.4% of the total study area where sanitation
harvests, salvage logging, and timber harvests were recorded from 1996
to 2011 (USFS Geodata, 2020) from all spruce beetle layers. Similarly,
we restricted all maps of spruce beetle activity to forest stands with the
presence of Engelmann spruce following Hart and Veblen (2015).
Finally, to determine if LandTrendr detection was related to remotely
sensed estimates of disturbance severity, we used classification tree
models (Breiman et al., 1984) in the ‘party’ package (Hothorn et al.,
2014) in R. Specifically, we compared mapped disturbance severity,
represented here using continuous values of RANBR and NAIP-derived
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percent grey-stage tree mortality, in pixels identified as disturbed and
undisturbed in LandTrendr maps. For ease of interpretation and to
minimize overfitting, we restricted classification trees to a maximum
depth of 1 (i.e., a single binary split). We weighted individual obser-
vations based on class prevalence to account for imbalanced sampling
and assessed final classification accuracy using 10-fold cross-validation.

3. Results
3.1. Comparing LandTrendr disturbance detection to field data

In the two-disturbance GLMM, LandTrendr detection was best pre-
dicted by the tree mortality agent (i.e., fire or spruce beetle), percent
basal area mortality, and interpreter confidence in the year of distur-
bance (Fig. 3a; AAICc from second-ranked model = 1.7). LandTrendr
was less likely to detect spruce beetle outbreak initiation than wildfire
(B =-1.02, p =0.03; Fig. 3a, b). Specifically, 74.3% of fire disturbances
were correctly identified within one year by LandTrendr, compared to
just 26.5% for spruce beetle. Though only a portion of spruce beetle
disturbances could be assigned with confidence to a specific year (n =
34; 30.1% of the total), the detection rate for these “high-confidence”
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Fig. 3. Results of the final ‘two-disturbance’ GLMM of LandTrendr detection of
wildfire and spruce beetle outbreaks in the San Juan Mountains, CO, USA. (a)
Scaled coefficients show the direction and effect size of each predictor included
in the final model, and error bars give + one standard error of the coefficient
estimate. In (a), “Medium Confidence” and “High Confidence” give contrasts
with the “Low Confidence” level for the categorical predictor of interpreter
confidence when assigning a detection year. In (b), detection probabilities for
fire (orange) and spruce beetle (purple) disturbances are given across a range of
disturbance severities. Points show the observed data, jittered vertically for
clarity. Predicted values (curves with shaded areas representing + one standard
error of the prediction) are conditional on the mean value of random effects and
assume that an interpreter identified a disturbance with high confidence. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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events (i.e., 61.8%) was still 12.5% lower than detection of fire. As ex-
pected, interpreter confidence in the year of disturbance was associated
with LandTrendr detection (low vs. moderate: = 0.57, p = 0.51; low vs.
high: 8 = 2.40, p < 0.01). Probability of disturbance detection by
LandTrendr was positively related to percent basal area mortality (i.e.,
disturbance severity) for both mortality agents (8 = 0.98, p < 0.01;
Fig. 3b). Pre-disturbance live basal area, the time between disturbance
events, and bivariate interaction terms were not included in the most
parsimonious two-disturbance model. For disturbances that were
correctly detected, the spectral magnitude of change in the corre-
sponding disturbance segment was weakly correlated with field-derived
percent basal area mortality (Pearson’s r = 0.25 for spruce beetle; r =
0.21 for fire). In the fire model, we found that LandTrendr detection of
fire events was primarily related to fire severity (8 = 0.71, p < 0.01;
Appendix D), and no other predictors were retained in the top model
(AAICc from the second-ranked model = 0.71). Contrary to expecta-
tions, initial forest cover (i.e., basal area) and the timing and severity of
prior spruce beetle disturbance had little influence on the detection of
fire.

3.2. Comparing LandTrendr to other mapping methods

When comparing LandTrendr disturbance detection with other
methods of quantifying spruce beetle- and fire-affected areas, we found
important differences in areal estimates. The mapping approach using
GeoMAC fire perimeters and ADS polygons had the greatest area
affected by only fire (249.0 km?), as well as the greatest area of overlap
between spruce beetle outbreak and fire (281.8 km?) (Fig. 4a, d). RANBR
and NAIP-derived maps of grey-stage tree mortality had the second
highest areas affected by only fire (213.5 km?) and spruce beetle and fire
overlap (274.3 km?) (Fig. 4b, d). Importantly, this approach also iden-
tified unburned areas that were affected by only spruce beetle (13.2
kmz) or were unaffected by either disturbance (29.8 km?). Areal esti-
mates derived from thresholding RANBR and NAIP were relatively
insensitive to the threshold used to determine disturbance presence/
absence (Appendix C). In comparison with ADS and GeoMAC perimeters
and RANBR- and NAIP-based maps, LandTrendr estimated a much lower
area affected by fire or spruce beetle. Specifically, LandTrendr had lower
areas affected by only fire (178.1 kmz) and both disturbances (95.9
kmz), and a substantially higher undisturbed area (216.8 km?) (Fig. 4b,
d). Overall, the LandTrendr estimate of the area affected by fire or bark
beetle was 40.8% lower than estimates using ADS and GeoMAC pe-
rimeters and 37.3% lower than RANBR- and NAIP-based maps.
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LandTrendr detection was also related to RANBR fire severity and
percent grey-stage tree mortality attributed to spruce beetle, indices of
disturbance severity for each mortality agent (Fig. 5). Classification
trees indicated that LandTrendr was more likely to detect fire occurrence
when RANBR exceeded 514 (Fig. 5a), and only 52.6% of the total area
within fire perimeters exceeded this threshold. Similarly, LandTrendr
detection of spruce beetle was most likely when grey-stage tree mor-
tality exceeded 35% in a 30-m cell (Fig. 5b), and this threshold was
exceeded in 45.2% of spruce-dominated stands within fire perimeters.
Accuracies from cross-validation of classification trees were 79.3% for
fire detection and 61.9% for spruce beetle detection, both higher than
the no information rate (Appendix D).

4. Discussion

This study builds upon existing literature describing the effectiveness
of LTS algorithms for disturbance detection (e.g., Cohen et al., 2017;
Schleeweis et al., 2020; Thomas et al., 2011) by comparing LTS detec-
tion in a landscape influenced by multiple disturbances with extensive
field data and alternative methods of disturbance mapping. We note
three key findings: 1) successful detection of the occurrence and timing
of tree mortality was strongly related to disturbance type and severity,
2) LandTrendr predicted a substantially lower area affected by distur-
bance than did other mapping methods, particularly when disturbances
occurred at low severity, and 3) factors related to prior disturbance and
disturbance overlap had little influence on detection by LandTrendr.

Ecological disturbances operate across a range of spatiotemporal
scales and have a broad array of impacts on forest ecosystems. Fire can
occur in only moments, but insect outbreaks may take several years to
unfold within a stand (Hart et al., 2017; Meddens and Hicke, 2014).
Similarly, forest disturbances range from localized removals of plant
biomass to stand-replacing events that span broad areas (Agee, 1996;
Turner, 2010). Because disturbances encompass a diversity of ecological
processes, it is clear that there are certain conditions under which
disturbance detection is a challenging task for LTS algorithms. Our
finding that LandTrendr was more likely to correctly detect wildfire than
spruce beetle outbreaks in field plots, and that detectability of both
disturbance types increased with severity, has potentially broad impli-
cations for the use of LTS algorithms in disturbance mapping. Gradual,
low-severity disturbances (e.g., background tree mortality, non-stand
replacing disturbance) are pervasive throughout many forest systems
(Cohenetal., 2016; Das et al., 2016; Hermosilla et al., 2019; Shang et al.,
2020), but these events can be difficult to separate from other sources of
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Fig. 4. A comparison of three methods used for mapping fire- and spruce beetle-affected area in the San Juan Mountains, Colorado, USA. In (a), mapped fire pe-
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(ADS; USFS ADS, 2020) polygons that identify tree mortality attributed to spruce beetle. In (b), we used the Relative differenced Normalized Burn Ratio (RANBR;
Miller and Thode, 2007) to identify burned areas within each fire perimeter, and a 3-m thematic map of tree mortality (Hart and Veblen, 2015) derived from National
Agriculture Imagery Program (NAIP; USFS NAIP, 2020) imagery to identify pre-fire spruce beetle activity. In (c), we used LandTrendr (Landsat-based Detection of
Trends in Disturbance and Recovery; Kennedy et al., 2010) to detect fire and spruce beetle disturbances in the study area. Panel (d) compares the mapped area with
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the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. A comparison of mapped disturbance severity in cells with and without
detection of disturbance using LandTrendr (Landsat-based Detection of Trends
in Disturbance and Recovery; Kennedy et al., 2010). Fire severity is represented
using the Relative differenced Normalized Burn Ratio (RANBR; Miller and
Thode, 2007) calculated from annual pre- and post-fire imagery. Spruce beetle
severity is the percent cover of grey-stage tree mortality within each 30-m pixel
(Hart and Veblen, 2015). Dashed lines represent a binary split in the data
(based on a classification tree model) at which LandTrendr is most likely to
detect a disturbance event.

spectral variation in LTS such as unresolved geometric and atmospheric
effects and variation in vegetation phenology (Kennedy et al., 2010;
Zhu, 2017). Thus, it is likely that the occurrence and timing of many
gradual and low-severity disturbances are incorrectly detected in broad-
scale mapping efforts using automated LTS algorithms.

In addition to LTS algorithms, several alternative mapping ap-
proaches can be used to identify tree-killing disturbances in forest eco-
systems. For bark beetle outbreaks and wildfire, perimeters describing
total extent can be used to quickly calculate disturbed area across broad
regions (e.g., Bentz et al., 2009; Hanes et al., 2019). Another common
approach is the use of two-date change indices or image classification
with input from analysts to refine the location and timing of occurrence
(e.g., Hart and Veblen, 2015; Meddens et al., 2013). Our findings indi-
cate that LandTrendr predicted a c. 40% lower area of disturbance than
did either of these alternative approaches. Other studies have effectively
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reduced mapping error of LTS products through the use of multispectral
ensembles, a combination of algorithms or base learners, or the incor-
poration of additional data from other satellite systems (e.g., Sentinel-1
and Sentinel-2 missions) (Cohen et al., 2020; Healey et al., 2018; Senf
and Seidl, 2020; Shimizu et al., 2019). The inclusion of several spectral
bands and indices, particularly those that target the shortwave-infrared
portion of the electromagnetic spectrum (e.g., TM-equivalent bands 5
and 7, the Normalized Difference Moisture Index) will improve mapping
accuracy in future studies using LTS algorithms (Cohen et al., 2018).
Supervised image classification and ancillary datasets such as ADS and
the Forest Inventory and Analysis (FIA) monitoring network can also be
used to constrain or adjust LTS outputs (Meigs et al., 2015; Schroeder
et al., 2014). To refine disturbance detection, hybrid approaches are
being developed that include the initial processing steps of LTS algo-
rithms (e.g., developing cloud- and shadow-free annual image com-
posites), but use alternative data sources (Meigs and Krawchuk, 2018),
or algorithms tailored to specific disturbance types (Bright et al., 2020).
Automated LTS algorithms have clear advantages over alternative ap-
proaches when applied across broad areas without detailed knowledge
of the type, location, and timing of disturbance events. Still, whenever
possible, incorporating additional data may substantially improve the
results of LTS-based disturbance detection.

Overlapping forest disturbances are of broad importance because of
the potential for linked interactions that influence disturbance proper-
ties (e.g. extent or severity; Simard et al., 2011) or compounded in-
teractions that may limit ecosystem recovery (Paine et al., 1998).
Remotely sensed data, including LTS products, play an important role in
understanding linked and compounded disturbance interactions (Her-
mosilla et al., 2019; Meigs et al., 2016). We expected that LTS detection
might be limited in areas of disturbance overlap because prior distur-
bance would alter forest structure and change the spectral characteris-
tics of subsequent disturbance. Additionally, we expected that two
disturbance events occurring in short succession might be combined
during temporal segmentation. Instead, we found that LandTrendr
detection was unrelated to the time between disturbances or the severity
of prior disturbances. A warming climate is expected to become
increasingly suitable for the occurrence and spread of drought-mediated
disturbances such as wildfire and bark beetle outbreaks (Abatzoglou
et al., 2019; Bentz et al., 2010), leading to increases in the total area of
disturbance overlap. Similarly, with the planned launch of Landsat-9
and the increasing length of the Landsat record (Wulder et al., 2019),
disturbance overlap in LTS will be an increasingly common issue. Our
findings support the use of LTS-based approaches for the detection and
monitoring of overlapping disturbances. Still, we tested only one com-
bination of disturbance events (bark beetle followed by wildfire) and
additional work is needed to determine if LTS algorithms are similarly
effective with other sequences and types of disturbance (e.g., wildfire
followed by insects, insect outbreaks followed by salvage logging), and
alternative forest types.

In the present study, we primarily focused on errors of omission, or
the failure to detect disturbances in areas of known occurrence. Omis-
sion and commission error are inversely related (Cohen et al., 2017;
Congalton, 1991) and LTS algorithms that are capable of detecting
disturbances associated with minor spectral changes will inherently
have a greater number of false detections. Thus, designing increasingly
sensitive LTS algorithms is not an effective means of reducing mapping
error unless outputs are paired with ancillary data that can limit false
positives. We specifically assessed vertex agreement, the agreement of
LTS-detected occurrence and timing of disturbance with observed or
analyst-interpreted timing, but many additional accuracy measures can
also be used to assess the effectiveness of LTS algorithms (Cohen et al.,
2010). However, vertex agreement is a particularly useful measure of
accuracy in LTS detection because it assesses one of the key advantages
of LTS over two-date approaches, the accurate representation of the
timing and rate of events (Kennedy et al., 2014).

LTS algorithms are commonly used for forest ecosystem monitoring,
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and their use is likely to increase in the future (Banskota et al., 2014;
Zhu, 2017). An assessment of the causes of mapping error and uncer-
tainty in LTS products aids in methodological refinement, which in turn
improves the effectiveness of monitoring efforts that have broad impli-
cations for science, policy, and society. Herein, we note that a commonly
used LTS algorithm more easily detects severe and abrupt disturbances
than gradual and low-severity disturbances. Users of LTS algorithms
should be aware of potential biases in derived products, including
omission of low-severity disturbances, and how these biases may influ-
ence monitoring efforts. Yet we also noted that LTS detection was robust
to disturbance overlap, an important finding that supports the use of LTS
algorithms in areas with a complex history of natural and anthropogenic
disturbances. With the increasing length of the Landsat record and the
increasing availability of additional data sources (e.g., Sentinel-2,
MODIS), automated algorithms using image time series will continue
to play a crucial role in understanding and addressing human impacts
and ecosystem changes across Earth’s surface.
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