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We show how rigidity emerges in experiments on sheared two-dimensional frictional granular
materials by using generalizations of two methods for identifying rigid structures. Both approaches,
the force-based dynamical matrix and the topology-based rigidity percolation, agree with each other
and identify similar rigid structures. As the system becomes jammed, at a critical contact number
zc ¼ 2.4� 0.1, a rigid backbone interspersed with floppy, particle-filled holes of a broad range of sizes
emerges, creating a spongelike morphology. While the pressure within rigid structures always exceeds the
pressure outside the rigid structures, they are not identified with the force chains of shear jamming. These
findings highlight the need to focus on mechanical stability arising through arch structures and hinges at
the mesoscale.
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Rigidity is the ability of a system to resist imposed
perturbations; for disordered materials, their detailed inter-
nal structure determines rigidity [1,2]. The Maxwell count-
ing criterion [3], first developed for building girder
frameworks in 19th century railway bridges, has long been
used to compute the stability of the system by comparing
the number of constraints to the number of degrees of
freedom [4]. This simple, effectively mean-field, criterion
correctly predicts the onset of positive bulk and shear
moduli in frictionless jamming of spherical particles (e.g.,
foams or emulsions) [5–8]. However, when friction is
introduced, the counting argument no longer works, even
with modifications [9–11], suggesting that one must go
beyond mean-field constraint counting to understand fric-
tional rigidity. In particular, systems that acquire rigidity
under shear do so at lower packing fractions than those
loaded isotropically, via the appearance of anisotropic,
load-bearing force chains, in a phenomenon known as shear
jamming [11,12].
A first approach to local rigidity, linear response theory,

uses the detailed local geometry and forces to compute the
dynamical matrix or Hessian of the system [13]. Rigid
packings have no system-spanning zero modes in the
dynamical matrix, except for global translations and rota-
tions; conversely, their presence indicates a lack of rigidity.
In frictionless systems, this method agrees with the result of
Maxwell constraint counting, after removing so-called
“rattlers” (isolated particles) [13]. In frictional systems,
the same comparison was made using a dynamical matrix
extended to include friction [14,15]. In frictional simula-
tions equilibrated at constant pressure, results agree with a

generalised form of constraint counting, creating a fric-
tional jamming transition along a generalized isostaticity
line [10,15]. Other modified frictional isostatic conditions
have been proposed [16,17], but none have yet been
experimentally tested.
A second approach to quantifying local rigidity focuses

on the spatial patterns of rigid clusters: sets of connected
bonds that are mutually rigid [18]. Rigidity percolation
corresponds to the emergence of a spanning rigid cluster
in the contact network. In two dimensions and with
central-force interactions, there exists a generic algorithm
for decomposing a network graph into rigid clusters
and floppy regions, the pebble game [19], independent
of forces and contact geometry. Analysis of 2D friction-
less packings recently showed that they exhibit a
discontinuous rigidity transition [20], while generic
central-force spring networks exhibit a continuous tran-
sition [21,22]. Rigidity percolation has also provided
insights into the structure of colloidal gels with attractive
interactions [23–25].
Recent work [26] generalizes rigidity percolation to

include friction by extending the pebble game to frictional
packings and shows that networks derived from slowly
sheared frictional simulations generate rigid cluster struc-
tures consistent with a continuous transition. A simplified
lattice model with friction provides further support for a
second-order frictional rigidity transition in its own uni-
versality class [27]. Recent work on frictional packings
numerically generated from frictionless simulations links
the onset of shear jamming to the percolation of overcon-
strained regions [28] and finds correlations between the
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rigid structures and force-chain percolation, the shear
jamming measure [11,12].
In this Letter, we remedy the lack of experimental tests of

constraint counting and apply both the dynamical matrix
and the pebble game to data from experiments on 2D
frictional granular packings. We measure particle positions
and forces within a monolayer of quasistatically sheared
disks floating on a gentle cushion of air [29,30], with
interparticle forces obtained using photoelasticity [31,32].
We find that the frictional dynamical matrix and the
frictional pebble game provide nearly identical decompo-
sitions of the packings into rigid and floppy regions, and
that there is a strong correlation between local pressure and
local rigidity. In contrast, while our system shear jams, we
find no correlation between force chains and rigid clusters.
The transition in our finite-sized system occurs at
zc ¼ 2.4� 0.1, well below the mean field value zc ¼ 3.
We discover that the rigid structures are spongelike, i.e.,
containing a broad range of floppy hole sizes, another
signature of a continuous transition inconsistent with mean-
field rigidity.
Experiments.—We perform experiments on a monolayer

of N ¼ 826 photoelastic bidisperse disks [Fig. 1(a)]. The
two particle radii are R1 ¼ 5.5 and R2 ¼ 7.7 mm (with
R2=R1 ¼ 1.4Þ, and the particles are initially confined to an
area of approximately L ¼ 0.5 × 0.5 m2. Two of the
confining walls are controlled by stepper motors; to impose
pure shear, one wall moves in while the other moves out in
a series of quasistatic steps of size Δx ¼ 1.5 mm, with Δy
adjusted to maintain constant area A. After n steps, each
resulting in a shear strain ϵ ¼ Δx=L ≈ 0.003, the shear
is reversed back to the initial state. The number of steps
is not fixed, but ranges from n ¼ 8 (ending at a total stress
threshold) to n ¼ 13 (predefined maximum). The floor of
the shear cell is a porous frit through which air flows to
allow the particles to float on a gentle air cushion, creating a
system without basal friction; this apparatus is largely the
same as the one described in Refs. [29,30]. Therefore, the

external load from the two walls is the only significant
external stress. The complete dataset consists of 24 cyclic
runs, with each run starting from randomized particle
positions and an initial barely jammed volume. The
packing fraction for each of the 24 runs is in the range
0.746 < ϕ < 0.760� 0.006. During each cycle, contacts
are created through shear during the first half of the cycle
(dubbed “shear”), and partially released during the second
half of the cycle (dubbed “unshear”); due to shear jamming
[11,33], the system does not return to its initial state after a
complete cycle. Datasets where we could not track all
particles where discarded. A total of 353 images are used in
the analysis below. Since the particles are made of a
birefringent material (Vishay PhotoStress PSM-4), we
are able to use photoelasticity [31,32] to measure the
vector contact forces on all particles; a sample image is
shown in Fig. 1(b). The red channel (not shown) uses
unpolarized light and measures particle positions, and the
green channel (shown) uses circularly polarized light to
measure the photoelastic signal. From the latter, we
determine the normal and tangential contact forces (fn,
ft) on each particle using our open-source algorithms
[31,34]. From measurements of the normal fn and tangen-
tial ft contact forces, we estimate a friction coefficient of
μ ¼ 0.3 (see Ref. [35]). The Coulomb threshold for the
mobilization m ¼ jftj=μfn divides contacts into sliding
(m ≥ 1) or frictional (m < 1); its experimental distribution
is complex (see Fig. D14 in Ref. [35]) and PðmÞ has so far
only been analysed in simulations [10]. The rigidity
calculations, described below, depend sensitively on the
correct determination of whether two particles are in
contact. The Supplemental Material [35] provides infor-
mation on how we determine the optimal parameters. In all
cases, we find that values of the mean coordination number
are known to within �0.1.
Rigidity computations.—We first compute the vibrational

modes of the system, starting by expanding the equations of
motion about mechanical equilibrium

FIG. 1. (a) Schematic of the experimental setup with fixed walls (blue) and moving walls (red). (b) Sample image, showing just the
polarized channel (photoelastic respose). (c) Rigid region decomposition of sample (b), computed using the dynamical matrix; the rigid
region is purple, and floppy bonds are gray. (d) Rigid cluster decomposition of sample (b), computed using the pebble game; it contains
two large rigid clusters (blue and red bonds), some smaller rigid clusters (other colors), and regions of floppy bonds (grey). Colors
simply label distinct clusters, and have no other significance.
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δ̈riα ¼ −Dij
αβδr

j
β þ dissipationðδ_rÞ þOðδr2Þ; ð1Þ

where Dij
α;β ¼ ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimi;αmj;β

p Þ½ð∂2VijÞ=ð∂ri;αrj;βÞ� is the
dynamical matrix of the system, the indices ði; jÞ label
all disks, ðα; βÞ label the two spatial x, y components and
the angular component Rθ, and m denotes the particle
mass. While frictional interactions are not conservative, one
can nevertheless derive an effective potential in linear
response (see Ref. [35]). We arrive at Vf

eff ¼ 1
2
Ktδt2 for a

contact with stiffness Kt during tangential contact loading,
where δt is the tangential displacement at the contact point.
For a sliding contact at the Coulomb threshold, we approxi-
mate that the shear dynamics does not reverse the sliding
direction. We have verified this assumption in sheared
simulations [36] and do not include the shear-reversal step
in our analysis here. We obtain Vf

eff ¼ �μfnδt, where fn is
the value of the normal force at equilibrium. Then the
effective potential becomes [14,15,35]

Vij ¼
1

2
½Knðδr · n̂Þ2 − fn=jrijjðδr · t̂Þ2 þ Vf

eff �; ð2Þ

with normal elastic stiffness Kn, and where the third term
arises only for friction. To construct the dynamicalmatrix for
our experimental data, we use measured masses for m, and
estimateKn from the elastic modulus of the material and we
approximate Kt ¼ Kn. Using the particle positions and
interparticle forces, we then construct the dynamical matrix
and compute its normalized eigenmodes. The zero eigen-
value modes parametrize the floppy motions, and we
determine the translational and rotational relative displace-
ments at all contacts. We then compute the mean square
displacement over floppy modes at individual bonds and
mark all bonds with a displacement below (above) a
threshold value 2 × 10−5 as rigid (floppy); there is mild
threshold dependence [35]. In the transition region, we
obtain sets of contiguous rigid bonds that form rigid regions,
shown in Fig. 1(c).

Our second method of measuring rigidity is to decom-
pose the system into rigid clusters using the frictional
pebble game. To do so, we extend the central force ðk ¼
2; l ¼ 3Þ pebble game applied to a contact network to a
(k ¼ 3, l ¼ 3) pebble game in order to incorporate the
additional rotational degree of freedom made relevant by
the friction between disks. Moreover, each contact below
the Coulomb threshold contributes two constraints (one
normal and one tangential), while each contact at the
threshold (freely sliding) only contributes a normal con-
straint. To this constraint network, we add an appropriate
number of constraint bonds between the four boundaries in
the experiment and all contacting particles. Please see the
Supplemental Material [35], which also includes Refs. [37–
44], and Refs. [26,27] for details. A sample decomposition
is shown in Fig. 1(d).
Results.—Using the particle positions and interparticle

forces obtained from experiments, we apply the dynami-
cal matrix method and the frictional pebble game to
determine rigid regions and rigid clusters, respectively.
Figures 1(c)–1(d), performed on an image near the onset
of jamming, illustrate that rigid clusters and regions are
closely correlated. This correspondence remains true for
our full dataset: Fig. 2(a) is a scatter plot of the measured
rigid cluster fraction against the rigid region fraction. All
data points are clustered around the diagonal, with no
difference between the shear and unshear directions. We
find that the pebble game detects a slightly higher rigid
fraction at high z, possibly due to boundary effects. This
system-scale correspondence carries over to the contact
level [Fig. 2(b)], where we compute the adjusted Rand
index (ARI) [35,45,46] to measure the bond-scale simi-
larity of the detected clusters/regions. We find ARI > 0
(correlation is present), with an average of 0.6 indicating
strong positive correlation and some differences again
apparent at higher z. This robust [35] high degree of
correspondence is significant since the rigid cluster
method requires only information about the contact graph

(a) (c) (d)(b)

FIG. 2. Correlations between rigid clusters and regions, calculated on the 353-image dataset. (a) Correlation between the rigid cluster
fraction and the rigid region fraction. (b) ARI between the rigid cluster decomposition and the rigid region decomposition. (c) Fractions
of rigid clusters and rigid regions as function of average coordination number, z. Inset: Probability of a spanning rigid cluster, defining
zc. (d) Histogram of cluster size s, taken for three different ranges of z.
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(it is simply a topological measure, only including the
classification of sliding vs frictional contacts), in contrast
to the explicit displacement computation in the dynamical
matrix, which contains the full spatial and mechanical
information. The correspondence is not exact, and there
are specific (known, but rare) configurations where the
two approaches give different results [47]. In Fig. 2(c), we
observe that the rigid cluster or region fractions both
indicate a continuous transition, and agree with each other
within error bars. Using the probability of a spanning rigid
cluster (inset), we measure the transition point of
zc ¼ 2.4� 0.1. Figure 2(d) shows that the rigid cluster
size distribution broadens with increasing z. While our
data are limited by finite system size and finite statistics,
our distributions do not have a gap, and strongly resemble
the results found in simulations of frictional disks [26].
These findings are consistent with a continuous rigidity
percolation transition at zc < 3, the mean-field Maxwell
criterion with friction. Note that we do not remove rattlers,
as they are an integral part of the coexisting floppy and
rigid regions and its shear response.
In Fig. 1(d), rigid clusters surround large holes that

contain floppy bonds and rattler particles. To characterize
these floppy holes, we decompose the rigid cluster graph
into a unique set of tiles corresponding to the holes. Each
tile is a face of the planar graph where the rigid bonds are
the edges connecting vertices at the particle centers. To
examine hole statistics, we employ a simple cutoff in hole
size h > 2, in units of mean particle area, to exclude (most)
simple interstices between particles; the remaining tiles are
colored in Fig. 4(a). With increasing z, we observe both
more and larger holes [Fig. 4(b)], with the system size as an
apparent cutoff in hole size for z > 1.9. We quantify
changes in shape using the dimensionless shape parameter
p0 ¼ P=

ffiffiffiffi

A
p

, where P is the hole perimeter and A is its
area; a regular hexagon has p0 ¼ 3.72 and larger values
indicate less circular shapes. As z increases, we observe a
broader range of shapes with some jaggedness emerging.

Thus, the rigid structures resemble a spongelike porous
medium much like the interior of sourdough bread. This
finding is compatible with the presence of arch structures,
rigid bridges, and hinges linking up rigid clusters to form a
spanning network [27], and contrasts with the rigidity
transition in frictionless packings, where such floppy holes
are not observed [20].
To show that the rigid clusters are mechanically relevant,

we calculate the virial pressure p from the contact forces
(see Ref. [35]). In Fig. 3(a), we show pðzÞ, rattlers included:
the blue curve rises gradually but z remains well below 3. In
contrast, we observe that z ≥ 3 except in some very small
clusters when pðzÞ is calculated within the rigid clusters
only. Removing rattlers is not equivalent to identifying
the rigid clusters: the same curve pðzÞ with the rattlers
removed, as in Ref. [48], now crosses z¼3. In Fig. 3(b), we
compute the local pressure inside vs outside the rigid
clusters, normalized by p for the entire packing. We find
that pressure within rigid clusters is always significantly
higher than the mean pressure. In contrast, the pressure in
the floppy regions is always below average and drops
further for z≳ 2, while the mean pressure, the rigid cluster
fraction, and the rigid region fraction all start to rise. We
interpret Fig. 3 as an emerging rigid backbone, responsible
for the rise in pressure and carrying the majority of stress;
this same mechanism was previously observed in simu-
lations [26]. In contrast, while we observe anisotropic force
chains consistent with shear jamming [11,12], unlike in
Ref. [28], we find no correlation between them and the rigid
clusters or regions (see Ref. [35]). It therefore remains
unclear how the emergence of a rigid backbone and the
decomposition into a strong and weak force network [49]
fit together.
Discussion.—We have investigated the network structure

of real, frictional granular materials under shear using two
distinct, but compatible, measures of rigidity. From the
probability of finding a spanning rigid cluster, we find a
frictional jamming transition at zc ¼ 2.4� 0.1, signifi-
cantly below z ¼ 3, the lower bound on stable frictional
packings given by mean-field constraint counting and
also known as random loose packing [50]. Within the

(a) (b)

FIG. 3. (a) Mean pressure p as a function of z of the entire
packing (blue), within rigid clusters only (green), and with rattlers
removed (purple). (b) Pressure inside rigid clusters (blue dots)
and outside rigid clusters (red squares) normalized by the mean
pressure of the entire packing. The fraction of rigid clusters (gray
triangles) is also plotted for reference.

>
<

(a) (b)

FIG. 4. (a) Rigid clusters (black bonds) decomposed into tiles
of closed loops (tile colors are illustrative only; most colored tiles
with h > 2 contain nonrigid particles; z ¼ 2.69. (b) Histogram of
hole sizes, in units of average particle area and histogram of hole
shapes.
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constraints of small system size and limited statistics, we
observe a rigid cluster size distribution consistent with a
continuous rigidity transition. Our zc is also lower than
simulation results by [28] who observed a rigid spanning
cluster at zc ≈ 2.9 and the percolation of overconstrained
bonds at z ¼ 3. Finally, our experimental results contrast
with simulations modeling friction with rough, but friction-
less particles [51,52].
Open questions include what role the mechanics of these

rigid structures plays in local failure under shear. While
strong force chains often surround a floppy hole with an
arch-like shape, we observed little correlationwith pressure:
not all forces within floppy regions are weak. Our results
need to be complemented with observations of force chains
[53–55] and cycles [56] to more completely address rigidity,
particularly in the context of shear jamming [11,12]. This
could be achieved through topological [57], geometrical
[58], or stress-space approaches [59]. Identifying rigid
structures will also be important for shear thickening in
dense granular suspensions, where a load-bearing rigid
cluster abruptly emerges via the exchange of frictionless,
lubricated contacts for frictional contacts [60–63].

The data and codes are available on DataDryad [64] and
GitHub [34,65].
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