Research Data Management Track Paper

SIGMOD °21, June 20-25, 2021, Virtual Event, China

VSS: A Storage System for Video Analytics

Brandon Haynes
brandon.haynes@microsoft.com
Gray Systems Lab, Microsoft

Amrita Mazumdar
amrita@cs.washington.edu
University of Washington

Maureen Daum
mdaum@cs.washington.edu
University of Washington

Magdalena Balazinska
magda@cs.washington.edu
University of Washington

Dong He
donghe@cs.washington.edu
University of Washington

Alvin Cheung
akcheung@cs.berkeley.edu
University of California, Berkeley

Luis Ceze
luisceze@cs.washington.edu
University of Washington

ABSTRACT

We present a new video storage system (VSS) designed to decouple
high-level video operations from the low-level details required to
store and efficiently retrieve video data. VSS is designed to be the
storage subsystem of a video data management system (VDBMS)
and is responsible for: (1) transparently and automatically arranging
the data on disk in an efficient, granular format; (2) caching
frequently-retrieved regions in the most useful formats; and
(3) eliminating redundancies found in videos captured from multiple
cameras with overlapping fields of view. Our results suggest that
VSS can improve VDBMS read performance by up to 54%, reduce
storage costs by up to 45%, and enable developers to focus on
application logic rather than video storage and retrieval.

ACM Reference Format:

Brandon Haynes, Maureen Daum, Dong He, Amrita Mazumdar, Magdalena
Balazinska, Alvin Cheung, and Luis Ceze. 2021. VSS: A Storage System
for Video Analytics. In Proceedings of the 2021 International Conference on
Management of Data (SIGMOD °21), June 20-25, 2021, Virtual Event, China.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3448016.3459242

1 INTRODUCTION

The volume of video data captured and processed is rapidly
increasing: YouTube receives more than 400 hours of uploaded video
per minute [52], and more than six million closed-circuit television
cameras populate the United Kingdom, collectively amassing an
estimated 7.5 petabytes of video per day [9]. More than 200K body-
worn cameras are in service [24], collectively generating almost a
terabyte of video per day [55].

To support this video data deluge, many systems and applications
have emerged to ingest, transform, and reason about such data [19,
23, 25, 27, 28, 34, 43, 56]. Critically, however, most of these systems
lack efficient storage managers. They focus on query execution for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD 21, June 20-25, 2021, Virtual Event, China

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06...$15.00
https://doi.org/10.1145/3448016.3459242

685

Query Query Query
| 192 Q| | e a3:

Find cars = Find ey read
@ accidents¥ video for

viewing

| Query Execution Engine

===
1Q1A 1
read ::::::I'
LB
[e |
Ll

read

VSS iQ3 i oioa3s VSS API
Materialized| Op Parameters
|m——— . Views d STP
Qs | rea (name, S, T, P)
]—— VideoV1 | ypite (name, S, T, P,data)
J-Overlap
AN vi create (name)
deo V2
Legend: delete (name)

Figure 1: VSS overview & API. Reads and writes require
specification of spatial (S; resolution, region of interest),
temporal (T; start/end time, frame rate), and physical (P;
frame layout, compression codec, quality) parameters.

a video that is already decoded and loaded in memory [23, 27, 28] or
treat video compression as a black box [25, 34, 56] (cf. [19, 43]). In
practice, of course, videos are stored on disk, and the cost of reading
and decompressing is high relative to subsequent processing [11,
19], e.g., constituting more than 50% of total runtime [29]. The
result is a performance plateau limited by Amdahl’s law, where
an emphasis on post-decompression performance might yield
impressive results in isolation, but ignores the diminishing returns
when performance is evaluated end-to-end.

In this paper, we develop VSS, a video storage system designed to
serve as storage manager beneath a video data management system
or video processing application (collectively VDBMSs). Analogous
to a storage and buffer manager for relational data, VSS assumes
responsibility for storing, retrieving, and caching video data. It frees
higher-level components to focus on application logic, while VSS
optimizes the low-level performance of video data storage. As we
will show, this decoupling dramatically speeds up video processing
queries and decreases storage costs. VSS does this by addressing
the following three challenges:

First, modern video applications commonly issue multiple queries
over the same (potentially overlapping) video regions and build on
each other in different ways (e.g., Figure 1). Queries can also vary
video resolution and other characteristics (e.g., the SMOL system

Research Data Management Track Paper

rescales video to various resolutions [29] and Chameleon dynamically
adjusts input resolution [25]). Such queries can be dramatically faster
with an efficient storage manager that maintains and evolves a cache
of video data, each differently compressed and encoded.

Second, if the same video is queried using multiple systems
such as via a VDBMS optimized for simple select and aggregate
queries [27] and a separate vision system optimized for reasoning
about complex scenes [48] (e.g., Figure 1), then the video
file may be requested at different resolutions and frame rates
and using different encodings. Having a single storage system
that encapsulates all such details and provides a unified query
interface makes it seamless to create—and optimize—such federated
workflows. While some systems have attempted to mitigate this by
making multiple representations available to developers [49, 54],
they expensively do so for entire videos even if only small subsets
(e.g., the few seconds before and after an accident) are needed in
an alternate representation.

Third, many recent applications analyze large amounts of video
data with overlapping fields of view and proximate locations. For
example, traffic monitoring networks often have multiple cameras
oriented toward the same intersection and autonomous driving
and drone applications come with multiple overlapping sensors
that capture nearby video. Reducing the redundancies that occur
among these sets of physically proximate or otherwise similar
video streams is neglected in all modern VDBMSs. This is because
of the substantial difficulties involved: systems (or users) need
to consider the locations, orientations, and fields of view of each
camera to identify redundant video regions; measure overlap, jitter,
and temporally align each video; and ensure that deduplicated
video data can be recovered with sufficient quality. Despite these
challenges, and as we show herein, deduplicating overlapping video
data streams offers opportunities to greatly reduce storage costs.

VSS addresses the above challenges. As a storage manager, it
exposes a simple interface where VDBMSs read and write videos
using VSS’s API (see Figure 1). Using this AP, systems write video
data in any format, encoding, and resolution—either compressed
or uncompressed—and VSS manages the underlying compression,
serialization, and physical layout on disk. When these systems
subsequently read video—once again in any configuration and
by optionally specifying regions of interest and other selection
criteria—VSS automatically identifies and leverages the most
efficient methods to retrieve and return the requested data.

VSS deploys the following optimizations and caching
mechanisms to improve read and write performance. First,
rather than storing video data on disk as opaque, monolithic
files, VSS decomposes video into sequences of contiguous,
independently-decodable sets of frames. In contrast with previous
systems that treat video as static and immutable data, VSS applies
transformations at the granularity of these sets of frames, freely
transforming them as needed to satisfy a read operation. For
example, if a query requests a video region compressed using a
different codec, VSS might elect to cache the transcoded subregion
and delete the original.

As VSS handles requests for video over time, it maintains a per-
video on-disk collection of materialized views that is populated
passively as a byproduct of read operations. When a VDBMS
performs a subsequent read, VSS leverages a minimal-cost subset of

686

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

these views to generate its answer. Because these materialized views
can arbitrarily overlap and have complex interdependencies, finding
the least-cost set of views is non-trivial. VSS uses a satisfiability
modulo theories (SMT) solver to identify the best views to satisfy a
request. VSS prunes stale views by selecting those least likely to
be useful in answering subsequent queries. Among equivalently
useful views, VSS optimizes for video quality and defragmentation.

Finally, VSS reduces the storage cost of redundant video
data collected from physically proximate cameras. It does so
by deploying a joint compression optimization that identifies
overlapping regions of video and stores these regions only
once. The key challenge lies in efficiently identifying potential
candidates for joint compression in a large database of videos. Our
approach identifies candidates efficiently without requiring any
metadata specification. To identify video overlap, VSS incrementally
fingerprints video fragments (i.e., it produces a feature vector
that robustly characterizes video regions) and, using the resulting
fingerprint index, searches for likely correspondences between
pairs of videos. It finally performs a more thorough comparison
between likely pairs.

In summary, we make the following contributions:

e We design a new storage manager for video data that
leverages the fine-grained physical properties of videos to
improve application performance (Section 2).

e We develop a novel technique to perform reads by selecting
from many materialized views to efficiently produce an
output while maintaining the quality of the resulting video
data (Section 3).

e We develop a method to optimize the storage required to
persist videos that are highly overlapping or contain similar
visual information, an indexing strategy to identify such
regions (Section 5), and a protocol for caching multiple
versions of the same video (Section 4).

We evaluate VSS against existing video storage techniques and
show that it can reduce video read time by up to 54% and decrease
storage requirements by up to 45% (Section 6).

2 VSS OVERVIEW

Consider an application that monitors an intersection for
automobiles associated with missing children or adults with
dementia. A typical implementation would first ingest video data
from multiple locations around the intersection. It would then index
regions of interest, typically by decompressing and converting the
entire video to an alternate representation suitable for input to a
machine learning model trained to detect automobiles. Many video
query processing systems provide optimizations that accelerate this
process [27, 35, 54]. Subsequent operations, however, might execute
more specific queries only on the regions that have automobiles.
For example, if a red vehicle is missing, a user might issue a query
to identify all red vehicles in the dataset. Afterward, a user might
request and view all video sequences containing only the likely
candidates. This might involve further converting relevant regions
to a representation compatible with the viewer (e.g., at a resolution
compatible with a mobile device or compressed using a supported
codec). We show VSS’s performance for this application in Section 6.

Research Data Management Track Paper

While today’s video processing engines perform optimizations
for operations over entire videos (e.g., the indexing phase described
above), their storage layers provide little or no support for
subsequent queries over the results (even dedicated systems such as
quFiles [49] or VStore [54] transcode entire videos, even when only
a few frames are needed). Meanwhile, when the above application
uses VSS to read a few seconds of low-resolution, uncompressed
video data to find frames containing automobiles, it can delegate
responsibility to VSS for efficiently producing the desired frames.
This is true even if the video is streaming or has not fully been
written to disk.

Critically, VSS automatically selects the most efficient way to
generate the desired video data in the requested format and region of
interest (ROI) based on the original video and cached representations.
Further, to support real-time streaming scenarios, writes to VSS are
non-blocking and users may query prefixes of ingested video data
without waiting on the entire video to be persisted.

Figure 1 summarizes the set of VSS-supported operations. These
operations are over logical videos, which VSS executes to produce
or store fine-grained physical video data. Each operation involves
a point- or range-based scan or insertion over a single logical
video source. VSS allows constraints on combinations of temporal
(T), spatial (S), and physical (P) parameters. Temporal parameters
include start and end time interval ([s, e]) and frame rate (f); spatial
parameters include resolution (ry X ry) and region of interest
([x0..x1] and [yo..y1]); and physical parameters P include physical
frame layout (I; e.g., Yuv420, Yuv422), compression method (c; e.g.,
HEVC), and quality (to be discussed in Section 3.2).

Internally, VSS arranges each written physical video as a sequence
of entities called groups of pictures (GOPs). Each GOP is composed of
a contiguous sequence of frames in the same format and resolution.
A GOP may include the full frame extent or be cropped to some
ROI and may contain raw pixel data or be compressed. Compressed
GOPs, however, are constrained such that they are independently
decodable and take no data dependencies on other GOPs.

Though a GOP may contain an unbounded number of frames,
video compression codecs typically fix their size to a small,
constant number of frames (30-300) and VSS accepts as-is ingested
compressed GOP sizes (which are typically less than 512kB). For
uncompressed GOPs, our prototype implementation automatically
partitions video data into blocks of size < 25MB (the size of one RGB
4K frame), or a single frame for resolutions that exceed this threshold.

3 DATA RETRIEVAL FROM VSS

As mentioned, VSS internally represents a logical video as a
collection of materialized physical videos. When executing a read,
VSS produces the result using one or more of these views.
Consider a simplified version of the application described in
Section 2, where a single camera has captured 100 minutes of 4K
resolution, HEvc-encoded video, and written it to VSS using the
name V. The application first reads the entire video and applies a
computer vision algorithm that identifies two regions (at minutes
30-60 and 70-95) containing automobiles. The application then
retrieves those fragments compressed using H264 to transmit to a
device that only supports this format. As a result of these operations,
VSS now contains the original video (mg) and the cached versions of

687

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

my (4K, [0, 100], HEVC) ‘

m, (4K, [70,95], n264)

[my (4K, [30, 601, 1269) |

read(V, 4K, [20, 80], H264)

(a) Read operation on three materialized physical videos

mo{|f1,cl=32| focy =32 [fies=12 [fuci=12]
(I

(b) Physical video fragments with simplified cost formulae

Figure 2: Figure 2(a) shows the query read(V,4x,
[20,80], H264), where VSS has materialized mg, m;, and
my. Figure 2(b) shows weighted fragments and costs. The
lowest-cost result is shaded.

the two fragments (my, my) as illustrated in Figure 2(a). The figure
indicates the labels {mg, m1, mz} of the three videos, their spatial
configuration (4K), start and end times (e.g., [0, 100] for my), and
physical characteristics (HEVC or H264).

Later, a first responder on the scene views a one-hour portion of
the recorded video on her phone, which only has hardware support
for H264 decompression. To deliver this video, the application
executes read(V, 4x, [20, 80], H264), which, as illustrated by the
arrow in Figure 2(a), requests video V at 4k between time [20, 80]
compressed with H264.

VSS responds by first identifying subsets of the available physical
videos that can be leveraged to produce the result. For example,
VSS can simply transcode mg between times [20, 80]. Alternatively,
it can transcode mg between time [20, 30] and [60, 70], m; between
[30, 60], and my between [70, 80]. The latter plan is the most efficient
since m; and my are already in the desired output format (1264),
hence VSS need not incur high transcoding costs for these regions.
Figure 2(b) shows the different selections that VSS might make
to answer this read. Each physical video fragment {fi,..fo} in
Figure 2(b) represents a different region that VSS might select.
Note that VSS need not consider other subdivisions—for example
by subdividing f5 at [30, 40] and [40, 60]—since f5 being cheaper at
[30, 40] implies that it is at [40, 60] too.

To model these transcoding costs, VSS employs a transcode cost
model c;(f, P, S) that represents the cost of converting a physical
video fragment f into a target spatial and physical format S and
P. The selected fragments must be of sufficient quality, which
we model using a quality model u(f, f’) and reject fragments of
insufficient quality. We introduce these models in the following
two subsections.

3.1 Cost Model

We first discuss how VSS selects fragments for use in performing
a read operation using its cost model. In general, given a read
operation and a set of physical videos, VSS must first select
fragments that cover the desired spatial and temporal ranges. To
ensure that a solution exists, VSS maintains a cover of the initially-
written video mg consisting of physical video fragments with
quality equal to the original video (i.e., u(myg, f) > 7). Our prototype

Research Data Management Track Paper

A
I fi I f3
UU ‘J\U U W Fragment start
W Dependent frame

M Independent frame

M Previously-selected frame
Figure 3: A simplified illustration based on Figure 2. VSS has
decided to use f; and f5 and is considering using f3 starting
at the red-highlighted frame. However, f3 cannot be decoded
without transitively decoding its dependencies shown by
directed edges (labeled A).

sets a threshold 7 = 40dB, which is considered to be lossless. See
Section 3.2 for details. VSS also returns an error for reads extending
outside of the temporal interval of my.

Second, when the selected physical videos temporally overlap,
VSS must resolve which physical video fragments to use in
producing the answer in a way that minimizes the total conversion
cost of the selected set of video fragments. This problem is similar
to materialized view selection [15]. Fortunately, a VSS read is
far simpler than a general database query, and in particular is
constrained to a small number of parameters with point- or range-
based predicates.

We motivate our solution by continuing our example from
Figure 2(a). First, observe that the collective start and end points of
the physical videos form a set of transition points where VSS can
switch to an alternate physical video. In Figure 2(a), the transition
times include those in the set {30, 60,70}, and we illustrate them
in Figure 2(b) by partitioning the set of cached materialized views
at each transition point. VSS ignores fragments that are outside
the read’s temporal range, since they do not provide information
relevant to the read operation.

Between each consecutive pair of transition points, VSS must
choose exactly one physical video fragment. In Figure 2(b), we
highlight one such set of choices that covers the read interval.
Each choice of a fragment comes with a cost (e.g., fi has cost 32),
derived using a cost formula given by ¢;(f, P, S) = a(fs, fp, S, P) -
| f]. This cost is proportional to the total number of pixels | f| in
fragment f scaled by a(S, P, S’, P’), which is the normalized cost
of transcoding a single pixel from spatial and physical format (S, P)
into format (S’, P’). For example, using fragment m; in Figure 2
requires transcoding from physical format P = HEVC to P’ = H264
with no change in spatiotemporal format (ie., S = §’).

During installation, VSS computes the domain of « by executing
the vbench benchmark [31] on the installation hardware, which
produces per-pixel transcode costs for a variety of resolutions and
codecs. For resolutions not evaluated by vbench, VSS approximates
a by piecewise linear interpolation of the benchmarked resolutions.

VSS must also consider the data dependencies between frames.
Consider the illustration in Figure 3, which shows the frames within
a physical video with their data dependencies indicated by directed
edges. If VSS wishes to use a fragment at the frame highlighted
in red, it must first decode all of the red frame’s dependent frames,
denoted by the set A in Figure 3. This implies that the cost of
transcoding a frame depends on where within the video it occurs,
and whether its dependent frames are also transcoded.

688

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

To model this, we introduce a look-back cost ¢;(Q, f) that gives
the cost of decoding the set of frames A on which fragment f
depends if they have not already been decoded, meaning that they
are not in the set of previously selected frames Q. As illustrated
in Figure 3, these dependencies come in two forms: independent
frames A C A (i.e., frames with out-degree zero in our graphical
representation) which are larger in size but less expensive to decode,
and the remaining dependent frames A — A (those with outgoing
edges) which are highly compressed but have more expensive
decoding dependencies between frames. We approximate these
per-frame costs using estimates from Costa et al. [10], which
empirically concludes that dependent frames are approximately
45% more expensive than their independent counterparts. We
therefore fix n = 1.45 and formalize look-back cost as ¢;(Q, f) =
|A-Ql+n-[(A-A)-Q]

To conclude our example, observe that our goal is to choose a set
of physical video fragments that cover the queried spatiotemporal
range, do not temporally overlap, and minimize the decode and
look-back cost of selected fragments. In Figure 2(b), of all the
possible paths, the one highlighted in gray minimizes this cost.
These characteristics collectively meet the requirements identified
at the beginning of this section.

Generating a minimum-cost solution using this formulation
requires jointly optimizing both look-back cost ¢; and transcode
cost ¢;, where each fragment choice affects the dependencies
(and hence costs) of future choices. These dependencies make the
problem not solvable in polynomial time, and VSS employs an
SMT solver [12] to generate an optimal solution. Our embedding
constrains frames in overlapping fragments so that only one is
chosen, selects combinations of regions of interest (ROI) that spatially
combine to cover the queried ROI, and uses information about the
locations of independent and dependent frames in each physical
video to compute the cumulative decoding cost due to both transcode
and look-back for any set of selected fragments. We compare this
algorithm to a dependency-naive greedy baseline in Section 6.1.

3.2 Quality Model

Besides efficiency, VSS must also ensure that the quality of a result
has sufficient fidelity. For example, using a heavily downsampled
(e.g., 32 x 32 pixels) or compressed (e.g., at a 1Kbps bitrate)
physical video to answer a read requesting 4k video is likely to be
unsatisfactory. VSS tracks quality loss from both sources using a
quality model u(fy, f) that gives the expected quality loss of using
a fragment f in a read operation relative to using the originally-
written video fy. When considering using a fragment f in a read,
VSS will reject it if the expected quality loss is below a user-specified
cutoff: u(fo, f) < e. The user optionally specifies this cutoff in
the read’s physical parameters (see Figure 1); otherwise, a default
threshold is used (¢ = 40dB in our prototype).

The range of u is a non-negative peak signal-to-noise ratio
(PSNR), a common measure of quality variation based on mean-
squared error [22]. Values >40dB are considered to be lossless
qualities, and >30dB near-lossless. PSNR is itself defined in terms
of the mean-squared error (MSE) of the pixels in a frame relative to
the corresponding pixels in a reference frame, normalized by the
maximum pixel value.

Research Data Management Track Paper

As described previously, error in a fragment accumulates through
two mechanisms—resampling and compression—and VSS uses the
sum of both sources when computing u. We next examine how VSS
computes error from each source.

Resampling error. First, for downsampled error produced
through a resolution or frame rate change applied to fj, computing
MSE(, fo) is straightforward. However, VSS may transitively apply
these transformations to a sequence of fragments. For example, fj
might be downsampled to create fi, and f; later used to produce f.
In this case, when computing MSE(fo, f2), VSS no longer has access
to the uncompressed representation of fj. Rather than expensively
re-decompressing fy, VSS instead bounds MSE(f, f,) in terms
of MSE(fo, f1), ..., MSE(fn-1, fn), which are a single real-valued
aggregates stored as metadata. We show a proof in [17].

Compression error. Unlike resampling error, tracking quality
loss due to lossy compression error is challenging because it cannot
be calculated without decompressing—an expensive operation—
and comparing the recovered version to the original input. Instead,
VSS estimates compression error in terms of mean bits per
pixel per second (MBPP/S), which is a metric reported during
(re)compression. VSS then estimates quality by mapping MBPP/S to
the PSNR reported by the vbench benchmark [31], a benchmark for
evaluating video transcode performance in the cloud. To improve
on this estimate, VSS periodically samples regions of compressed
video, computes exact PSNR, and updates its estimate.

4 DATA CACHING IN VSS

We now describe how VSS decides which physical videos to
maintain, and which to evict under low disk space conditions. This
involves making two interrelated decisions:

e When executing a read, should VSS admit the result as a new
physical video for use in answering future reads?

e When disk space grows scarce, which existing physical
video(s) should VSS discard?

To aid both decisions, VSS maintains a video-specific storage budget
that limits the total size of the physical videos associated with each
logical video. The storage budget is set when a video is created in
VSS (see Figure 1) and may be specified as a multiple of the size of
the initially written physical video or a fixed ceiling in bytes. This
value is initially set to an administrator-specified default (10x the
size of the initially-written physical video in our prototype). As
described below, VSS ensures a sufficiently-high quality version
of the original video can always be reproduced. It does so by
maintaining a cover of fragments with sufficiently high quality
(PSNR > 40dB in our prototype, which is considered to be lossless)
relative to the originally ingested video.

The key idea behind VSS’s cache is to logically break physical
videos into “pages.” That is, rather than treating each physical video as
a monolithic cache entry, VSS targets the individual GOPs within each
physical video. Using GOPs as cache pages greatly homogenizes the
sizes of the entries that VSS must consider. VSS’s ability to evict GOP
pages within a physical video differs from other variable-sized caching
efforts such as those used by content delivery networks (CDNs), which
make decisions on large, indivisible, and opaque entries (a far more
challenging problem space with limited solutions [7]).

689

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

However, there are key differences between GOPs and pages. In
particular, GOPs are related to each other; i.e., (i) one GOP might be
a higher-quality version of another, and (ii) consecutive GOPs form a
contiguous video fragment. These correlations make typical eviction
policies like least-recently used (LRU) inefficient. In particular, naive
LRU might evict every other GOP in a physical video, decomposing
it into many small fragments and increasing the cost of reads (which
have exponential complexity in the number of fragments).

Additionally, given multiple, redundant GOPs that are all
variations of one another, ordinary LRU would treat eviction of
a redundant GOP the same as any other GOP. However, our
intuition is that it is desirable to treat redundant GOPs different
than singleton GOPs without such redundancy.

Given this intuition, VSS employs a modified LRU policy
(LRUyss) that associates each fragment with a nonnegative
sequence number computed using ordinary LRU offset by:

e Position (p). To reduce fragmentation, VSS increases the
sequence number of fragments near the middle of a physical
video, relative to the beginning or end. For a video with
n fragments arranged in ascending temporal order, VSS
increases the sequence number of fragment f; by p(f;) =
min(i, n — i).

e Redundancy (r). VSS decreases the sequence number of
fragments that have redundant or higher-quality variants.
To do so, using the quality cost model u, VSS generates a
u-ordering of each fragment f; and all other fragments that
are a spatiotemporal cover of f;. VSS decreases the sequence
number of f; by its rank r(f;): Z°* in this order (i.e., 7(f;) = 0
for a fragment with no higher-quality alternatives, while
r(fi) = n for a fragment with n higher-quality variants).

e Baseline quality (b). VSS never evicts a fragment if it
is the only fragment with quality equal to the quality of
the corresponding fragment mg in the originally-written
physical video. To ensure this, given a set of fragments F in a
video, VSS increases the sequence number of each fragment
by (our prototype sets 7 = 40):

) +oo if Afj € F\ fi.u(mo, fj) > 7
(i) = 0 otherwise

Using the offsets described above, VSS computes the sequence
number of each candidate fragment f; as LRUyss(fi) = LRU(f;) +
v - p(fi) = ¢ - r(fi) + b(fi). Here weights y and { balance between
position and redundancy, and our prototype weights the former
(y = 2) more heavily than the latter ({ = 1). It would be a
straightforward extension to expose these as parameters tunable
for specific workloads.

5 DATA COMPRESSION IN VSS

VSS employs two compression-oriented optimizations and one
optimization that reduces the number of physical video fragments.
Specifically, VSS (i) jointly compresses redundant data across
multiple physical videos (Section 5.1); (ii) lazily compresses blocks
of uncompressed, infrequently-accessed GOPs (Section 5.2); and (iii)
improves the read performance by compacting temporally-adjacent
video (Section 5.3).

