
VSS: A Storage System for Video Analytics

Brandon Haynes
brandon.haynes@microsoft.com
Gray Systems Lab, Microsoft

Maureen Daum
mdaum@cs.washington.edu
University of Washington

Dong He
donghe@cs.washington.edu
University of Washington

Amrita Mazumdar
amrita@cs.washington.edu
University of Washington

Magdalena Balazinska
magda@cs.washington.edu
University of Washington

Alvin Cheung
akcheung@cs.berkeley.edu

University of California, Berkeley

Luis Ceze
luisceze@cs.washington.edu
University of Washington

ABSTRACT

We present a new video storage system (VSS) designed to decouple

high-level video operations from the low-level details required to

store and efficiently retrieve video data. VSS is designed to be the

storage subsystem of a video data management system (VDBMS)

and is responsible for: (1) transparently and automatically arranging

the data on disk in an efficient, granular format; (2) caching

frequently-retrieved regions in the most useful formats; and

(3) eliminating redundancies found in videos captured frommultiple

cameras with overlapping fields of view. Our results suggest that

VSS can improve VDBMS read performance by up to 54%, reduce

storage costs by up to 45%, and enable developers to focus on

application logic rather than video storage and retrieval.

ACM Reference Format:

Brandon Haynes, Maureen Daum, Dong He, Amrita Mazumdar, Magdalena

Balazinska, Alvin Cheung, and Luis Ceze. 2021. VSS: A Storage System

for Video Analytics. In Proceedings of the 2021 International Conference on

Management of Data (SIGMOD ’21), June 20–25, 2021, Virtual Event, China.

ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3448016.3459242

1 INTRODUCTION

The volume of video data captured and processed is rapidly

increasing: YouTube receivesmore than 400 hours of uploaded video

per minute [52], and more than six million closed-circuit television

cameras populate the United Kingdom, collectively amassing an

estimated 7.5 petabytes of video per day [9]. More than 200K body-

worn cameras are in service [24], collectively generating almost a

terabyte of video per day [55].

To support this video data deluge, many systems and applications

have emerged to ingest, transform, and reason about such data [19,

23, 25, 27, 28, 34, 43, 56]. Critically, however, most of these systems

lack efficient storage managers. They focus on query execution for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD ’21, June 20–25, 2021, Virtual Event, China

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00
https://doi.org/10.1145/3448016.3459242

Video V1

Video V2

Overlap

Query
Q1:

Find cars

Q1A

Q1B

Q1C

Query
Q2:

Find
accidents

Query
Q3:

video for
viewing

Q3A

Q3B

Q3C

Q1A Q1B Q1C

Q2A Q2B

Q3A Q3B Q3CVSS
Materialized
Views

Query Execution Engine

Q2A

Q2B

RGBH264HEVCLegend:

Op Parameters, , ,, , , ,
VSS API

Figure 1: VSS overview & API. Reads and writes require

specification of spatial (S ; resolution, region of interest),

temporal (T ; start/end time, frame rate), and physical (P ;
frame layout, compression codec, quality) parameters.

a video that is already decoded and loaded in memory [23, 27, 28] or

treat video compression as a black box [25, 34, 56] (cf. [19, 43]). In

practice, of course, videos are stored on disk, and the cost of reading

and decompressing is high relative to subsequent processing [11,

19], e.g., constituting more than 50% of total runtime [29]. The

result is a performance plateau limited by Amdahl’s law, where

an emphasis on post-decompression performance might yield

impressive results in isolation, but ignores the diminishing returns

when performance is evaluated end-to-end.

In this paper, we develop VSS, a video storage system designed to

serve as storage manager beneath a video data management system

or video processing application (collectively VDBMSs). Analogous

to a storage and buffer manager for relational data, VSS assumes

responsibility for storing, retrieving, and caching video data. It frees

higher-level components to focus on application logic, while VSS

optimizes the low-level performance of video data storage. As we

will show, this decoupling dramatically speeds up video processing

queries and decreases storage costs. VSS does this by addressing

the following three challenges:

First, modern video applications commonly issue multiple queries

over the same (potentially overlapping) video regions and build on

each other in different ways (e.g., Figure 1). Queries can also vary

video resolution and other characteristics (e.g., the SMOL system

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

685

rescales video to various resolutions [29] andChameleon dynamically

adjusts input resolution [25]). Such queries can be dramatically faster

with an efficient storage manager that maintains and evolves a cache

of video data, each differently compressed and encoded.

Second, if the same video is queried using multiple systems

such as via a VDBMS optimized for simple select and aggregate

queries [27] and a separate vision system optimized for reasoning

about complex scenes [48] (e.g., Figure 1), then the video

file may be requested at different resolutions and frame rates

and using different encodings. Having a single storage system

that encapsulates all such details and provides a unified query

interface makes it seamless to create—and optimize—such federated

workflows. While some systems have attempted to mitigate this by

making multiple representations available to developers [49, 54],

they expensively do so for entire videos even if only small subsets

(e.g., the few seconds before and after an accident) are needed in

an alternate representation.

Third, many recent applications analyze large amounts of video

data with overlapping fields of view and proximate locations. For

example, traffic monitoring networks often have multiple cameras

oriented toward the same intersection and autonomous driving

and drone applications come with multiple overlapping sensors

that capture nearby video. Reducing the redundancies that occur

among these sets of physically proximate or otherwise similar

video streams is neglected in all modern VDBMSs. This is because

of the substantial difficulties involved: systems (or users) need

to consider the locations, orientations, and fields of view of each

camera to identify redundant video regions; measure overlap, jitter,

and temporally align each video; and ensure that deduplicated

video data can be recovered with sufficient quality. Despite these

challenges, and as we show herein, deduplicating overlapping video

data streams offers opportunities to greatly reduce storage costs.

VSS addresses the above challenges. As a storage manager, it

exposes a simple interface where VDBMSs read and write videos

using VSS’s API (see Figure 1). Using this API, systems write video

data in any format, encoding, and resolution—either compressed

or uncompressed—and VSS manages the underlying compression,

serialization, and physical layout on disk. When these systems

subsequently read video—once again in any configuration and

by optionally specifying regions of interest and other selection

criteria—VSS automatically identifies and leverages the most

efficient methods to retrieve and return the requested data.

VSS deploys the following optimizations and caching

mechanisms to improve read and write performance. First,

rather than storing video data on disk as opaque, monolithic

files, VSS decomposes video into sequences of contiguous,

independently-decodable sets of frames. In contrast with previous

systems that treat video as static and immutable data, VSS applies

transformations at the granularity of these sets of frames, freely

transforming them as needed to satisfy a read operation. For

example, if a query requests a video region compressed using a

different codec, VSS might elect to cache the transcoded subregion

and delete the original.

As VSS handles requests for video over time, it maintains a per-

video on-disk collection of materialized views that is populated

passively as a byproduct of read operations. When a VDBMS

performs a subsequent read, VSS leverages a minimal-cost subset of

these views to generate its answer. Because thesematerialized views

can arbitrarily overlap and have complex interdependencies, finding

the least-cost set of views is non-trivial. VSS uses a satisfiability

modulo theories (SMT) solver to identify the best views to satisfy a

request. VSS prunes stale views by selecting those least likely to

be useful in answering subsequent queries. Among equivalently

useful views, VSS optimizes for video quality and defragmentation.

Finally, VSS reduces the storage cost of redundant video

data collected from physically proximate cameras. It does so

by deploying a joint compression optimization that identifies

overlapping regions of video and stores these regions only

once. The key challenge lies in efficiently identifying potential

candidates for joint compression in a large database of videos. Our

approach identifies candidates efficiently without requiring any

metadata specification. To identify video overlap, VSS incrementally

fingerprints video fragments (i.e., it produces a feature vector

that robustly characterizes video regions) and, using the resulting

fingerprint index, searches for likely correspondences between

pairs of videos. It finally performs a more thorough comparison

between likely pairs.

In summary, we make the following contributions:

• We design a new storage manager for video data that

leverages the fine-grained physical properties of videos to

improve application performance (Section 2).

• We develop a novel technique to perform reads by selecting

from many materialized views to efficiently produce an

output while maintaining the quality of the resulting video

data (Section 3).

• We develop a method to optimize the storage required to

persist videos that are highly overlapping or contain similar

visual information, an indexing strategy to identify such

regions (Section 5), and a protocol for caching multiple

versions of the same video (Section 4).

We evaluate VSS against existing video storage techniques and

show that it can reduce video read time by up to 54% and decrease

storage requirements by up to 45% (Section 6).

2 VSS OVERVIEW

Consider an application that monitors an intersection for

automobiles associated with missing children or adults with

dementia. A typical implementation would first ingest video data

frommultiple locations around the intersection. It would then index

regions of interest, typically by decompressing and converting the

entire video to an alternate representation suitable for input to a

machine learning model trained to detect automobiles. Many video

query processing systems provide optimizations that accelerate this

process [27, 35, 54]. Subsequent operations, however, might execute

more specific queries only on the regions that have automobiles.

For example, if a red vehicle is missing, a user might issue a query

to identify all red vehicles in the dataset. Afterward, a user might

request and view all video sequences containing only the likely

candidates. This might involve further converting relevant regions

to a representation compatible with the viewer (e.g., at a resolution

compatible with a mobile device or compressed using a supported

codec). We show VSS’s performance for this application in Section 6.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

686

While today’s video processing engines perform optimizations

for operations over entire videos (e.g., the indexing phase described

above), their storage layers provide little or no support for

subsequent queries over the results (even dedicated systems such as

quFiles [49] or VStore [54] transcode entire videos, even when only

a few frames are needed). Meanwhile, when the above application

uses VSS to read a few seconds of low-resolution, uncompressed

video data to find frames containing automobiles, it can delegate

responsibility to VSS for efficiently producing the desired frames.

This is true even if the video is streaming or has not fully been

written to disk.

Critically, VSS automatically selects the most efficient way to

generate the desired video data in the requested format and region of

interest (ROI) based on the original video and cached representations.

Further, to support real-time streaming scenarios, writes to VSS are

non-blocking and users may query prefixes of ingested video data

without waiting on the entire video to be persisted.

Figure 1 summarizes the set of VSS-supported operations. These

operations are over logical videos, which VSS executes to produce

or store fine-grained physical video data. Each operation involves

a point- or range-based scan or insertion over a single logical

video source. VSS allows constraints on combinations of temporal

(T), spatial (S), and physical (P) parameters. Temporal parameters

include start and end time interval ([s, e]) and frame rate (f); spatial
parameters include resolution (rx × ry) and region of interest

([x0..x1] and [y0..y1]); and physical parameters P include physical

frame layout (l ; e.g., yuv420, yuv422), compression method (c ; e.g.,
hevc), and quality (to be discussed in Section 3.2).

Internally, VSS arranges eachwritten physical video as a sequence

of entities called groups of pictures (GOPs). Each GOP is composed of

a contiguous sequence of frames in the same format and resolution.

A GOP may include the full frame extent or be cropped to some

ROI and may contain raw pixel data or be compressed. Compressed

GOPs, however, are constrained such that they are independently

decodable and take no data dependencies on other GOPs.

Though a GOP may contain an unbounded number of frames,

video compression codecs typically fix their size to a small,

constant number of frames (30–300) and VSS accepts as-is ingested

compressed GOP sizes (which are typically less than 512kB). For

uncompressed GOPs, our prototype implementation automatically

partitions video data into blocks of size ≤ 25MB (the size of one rgb

4K frame), or a single frame for resolutions that exceed this threshold.

3 DATA RETRIEVAL FROM VSS

As mentioned, VSS internally represents a logical video as a

collection of materialized physical videos. When executing a read,

VSS produces the result using one or more of these views.

Consider a simplified version of the application described in

Section 2, where a single camera has captured 100 minutes of 4K

resolution, hevc-encoded video, and written it to VSS using the

name V . The application first reads the entire video and applies a

computer vision algorithm that identifies two regions (at minutes

30–60 and 70–95) containing automobiles. The application then

retrieves those fragments compressed using h264 to transmit to a

device that only supports this format. As a result of these operations,

VSS now contains the original video (m0) and the cached versions of

4K , 0, 100 , HEVC4K , 30, 60 , H264 4K , 70, 95 , H264, 4K , [20, 80], H264
(a) Read operation on three materialized physical videos

, = 2 , = 2, = 32 , = 32 , = 12 , = 12
(b) Physical video fragments with simplified cost formulae

Figure 2: Figure 2(a) shows the query read(V , 4k,
[20, 80],h264), where VSS has materialized m0, m1, and

m2. Figure 2(b) shows weighted fragments and costs. The

lowest-cost result is shaded.

the two fragments (m1,m2) as illustrated in Figure 2(a). The figure

indicates the labels {m0,m1,m2} of the three videos, their spatial
configuration (4k), start and end times (e.g., [0, 100] form0), and

physical characteristics (hevc or h264).

Later, a first responder on the scene views a one-hour portion of

the recorded video on her phone, which only has hardware support

for h264 decompression. To deliver this video, the application

executes read(V , 4k, [20, 80],h264), which, as illustrated by the

arrow in Figure 2(a), requests video V at 4k between time [20, 80]
compressed with h264.

VSS responds by first identifying subsets of the available physical

videos that can be leveraged to produce the result. For example,

VSS can simply transcodem0 between times [20, 80]. Alternatively,
it can transcodem0 between time [20, 30] and [60, 70],m1 between

[30, 60], andm2 between [70, 80]. The latter plan is themost efficient

sincem1 andm2 are already in the desired output format (h264),

hence VSS need not incur high transcoding costs for these regions.

Figure 2(b) shows the different selections that VSS might make

to answer this read. Each physical video fragment { f1, .. f6} in

Figure 2(b) represents a different region that VSS might select.

Note that VSS need not consider other subdivisions—for example

by subdividing f5 at [30, 40] and [40, 60]—since f5 being cheaper at

[30, 40] implies that it is at [40, 60] too.
To model these transcoding costs, VSS employs a transcode cost

model ct (f , P, S) that represents the cost of converting a physical
video fragment f into a target spatial and physical format S and

P . The selected fragments must be of sufficient quality, which

we model using a quality model u(f , f ′) and reject fragments of

insufficient quality. We introduce these models in the following

two subsections.

3.1 Cost Model

We first discuss how VSS selects fragments for use in performing

a read operation using its cost model. In general, given a read
operation and a set of physical videos, VSS must first select

fragments that cover the desired spatial and temporal ranges. To

ensure that a solution exists, VSS maintains a cover of the initially-

written video m0 consisting of physical video fragments with

quality equal to the original video (i.e.,u(m0, f) ≥ τ). Our prototype

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

687

Fragment start
Dependent frame
Independent frame
Previously-selected frame

Δ ଷ݂

ହ݂
⋯ଵ݂

Figure 3: A simplified illustration based on Figure 2. VSS has

decided to use f1 and f5 and is considering using f3 starting
at the red-highlighted frame.However, f3 cannot be decoded
without transitively decoding its dependencies shown by

directed edges (labeled Δ).

sets a threshold τ = 40dB, which is considered to be lossless. See

Section 3.2 for details. VSS also returns an error for reads extending

outside of the temporal interval ofm0.

Second, when the selected physical videos temporally overlap,

VSS must resolve which physical video fragments to use in

producing the answer in a way that minimizes the total conversion

cost of the selected set of video fragments. This problem is similar

to materialized view selection [15]. Fortunately, a VSS read is

far simpler than a general database query, and in particular is

constrained to a small number of parameters with point- or range-

based predicates.

We motivate our solution by continuing our example from

Figure 2(a). First, observe that the collective start and end points of

the physical videos form a set of transition points where VSS can

switch to an alternate physical video. In Figure 2(a), the transition

times include those in the set {30, 60, 70}, and we illustrate them

in Figure 2(b) by partitioning the set of cached materialized views

at each transition point. VSS ignores fragments that are outside

the read’s temporal range, since they do not provide information

relevant to the read operation.

Between each consecutive pair of transition points, VSS must

choose exactly one physical video fragment. In Figure 2(b), we

highlight one such set of choices that covers the read interval.

Each choice of a fragment comes with a cost (e.g., f1 has cost 32),
derived using a cost formula given by ct (f , P, S) = α(fS , fP , S, P) ·
| f |. This cost is proportional to the total number of pixels | f | in
fragment f scaled by α(S, P, S ′, P ′), which is the normalized cost

of transcoding a single pixel from spatial and physical format (S, P)
into format (S ′, P ′). For example, using fragmentm1 in Figure 2

requires transcoding from physical format P = hevc to P ′ = h264

with no change in spatiotemporal format (i.e., S = S ′).
During installation, VSS computes the domain of α by executing

the vbench benchmark [31] on the installation hardware, which

produces per-pixel transcode costs for a variety of resolutions and

codecs. For resolutions not evaluated by vbench, VSS approximates

α by piecewise linear interpolation of the benchmarked resolutions.

VSS must also consider the data dependencies between frames.

Consider the illustration in Figure 3, which shows the frames within

a physical video with their data dependencies indicated by directed

edges. If VSS wishes to use a fragment at the frame highlighted

in red, it must first decode all of the red frame’s dependent frames,

denoted by the set Δ in Figure 3. This implies that the cost of

transcoding a frame depends on where within the video it occurs,

and whether its dependent frames are also transcoded.

To model this, we introduce a look-back cost cl (Ω, f) that gives
the cost of decoding the set of frames Δ on which fragment f
depends if they have not already been decoded, meaning that they

are not in the set of previously selected frames Ω. As illustrated
in Figure 3, these dependencies come in two forms: independent

frames A ⊆ Δ (i.e., frames with out-degree zero in our graphical

representation) which are larger in size but less expensive to decode,

and the remaining dependent frames Δ − A (those with outgoing

edges) which are highly compressed but have more expensive

decoding dependencies between frames. We approximate these

per-frame costs using estimates from Costa et al. [10], which

empirically concludes that dependent frames are approximately

45% more expensive than their independent counterparts. We

therefore fix η = 1.45 and formalize look-back cost as cl (Ω, f) =
|A − Ω | + η · |(Δ − A) − Ω |.

To conclude our example, observe that our goal is to choose a set

of physical video fragments that cover the queried spatiotemporal

range, do not temporally overlap, and minimize the decode and

look-back cost of selected fragments. In Figure 2(b), of all the

possible paths, the one highlighted in gray minimizes this cost.

These characteristics collectively meet the requirements identified

at the beginning of this section.

Generating a minimum-cost solution using this formulation

requires jointly optimizing both look-back cost cl and transcode

cost ct , where each fragment choice affects the dependencies

(and hence costs) of future choices. These dependencies make the

problem not solvable in polynomial time, and VSS employs an

SMT solver [12] to generate an optimal solution. Our embedding

constrains frames in overlapping fragments so that only one is

chosen, selects combinations of regions of interest (ROI) that spatially

combine to cover the queried ROI, and uses information about the

locations of independent and dependent frames in each physical

video to compute the cumulative decoding cost due to both transcode

and look-back for any set of selected fragments. We compare this

algorithm to a dependency-naïve greedy baseline in Section 6.1.

3.2 Quality Model

Besides efficiency, VSS must also ensure that the quality of a result

has sufficient fidelity. For example, using a heavily downsampled

(e.g., 32 × 32 pixels) or compressed (e.g., at a 1Kbps bitrate)

physical video to answer a read requesting 4k video is likely to be

unsatisfactory. VSS tracks quality loss from both sources using a

quality model u(f0, f) that gives the expected quality loss of using

a fragment f in a read operation relative to using the originally-

written video f0. When considering using a fragment f in a read,

VSSwill reject it if the expected quality loss is below a user-specified

cutoff: u(f0, f) < ϵ . The user optionally specifies this cutoff in

the read’s physical parameters (see Figure 1); otherwise, a default

threshold is used (ϵ = 40dB in our prototype).

The range of u is a non-negative peak signal-to-noise ratio

(PSNR), a common measure of quality variation based on mean-

squared error [22]. Values ≥40dB are considered to be lossless

qualities, and ≥30dB near-lossless. PSNR is itself defined in terms

of the mean-squared error (MSE) of the pixels in a frame relative to

the corresponding pixels in a reference frame, normalized by the

maximum pixel value.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

688

As described previously, error in a fragment accumulates through

two mechanisms—resampling and compression—and VSS uses the

sum of both sources when computing u. We next examine how VSS

computes error from each source.

Resampling error. First, for downsampled error produced

through a resolution or frame rate change applied to f0, computing

MSE(f , f0) is straightforward. However, VSS may transitively apply

these transformations to a sequence of fragments. For example, f0
might be downsampled to create f1, and f1 later used to produce f2.
In this case, when computingMSE(f0, f2), VSS no longer has access
to the uncompressed representation of f0. Rather than expensively

re-decompressing f0, VSS instead bounds MSE(f0, fn) in terms

of MSE(f0, f1), ...,MSE(fn−1, fn), which are a single real-valued

aggregates stored as metadata. We show a proof in [17].

Compression error. Unlike resampling error, tracking quality

loss due to lossy compression error is challenging because it cannot

be calculated without decompressing—an expensive operation—

and comparing the recovered version to the original input. Instead,

VSS estimates compression error in terms of mean bits per

pixel per second (MBPP/S), which is a metric reported during

(re)compression. VSS then estimates quality by mapping MBPP/S to

the PSNR reported by the vbench benchmark [31], a benchmark for

evaluating video transcode performance in the cloud. To improve

on this estimate, VSS periodically samples regions of compressed

video, computes exact PSNR, and updates its estimate.

4 DATA CACHING IN VSS

We now describe how VSS decides which physical videos to

maintain, and which to evict under low disk space conditions. This

involves making two interrelated decisions:

• When executing a read, should VSS admit the result as a new

physical video for use in answering future reads?

• When disk space grows scarce, which existing physical

video(s) should VSS discard?

To aid both decisions, VSS maintains a video-specific storage budget

that limits the total size of the physical videos associated with each

logical video. The storage budget is set when a video is created in

VSS (see Figure 1) and may be specified as a multiple of the size of

the initially written physical video or a fixed ceiling in bytes. This

value is initially set to an administrator-specified default (10× the

size of the initially-written physical video in our prototype). As

described below, VSS ensures a sufficiently-high quality version

of the original video can always be reproduced. It does so by

maintaining a cover of fragments with sufficiently high quality

(PSNR ≥ 40dB in our prototype, which is considered to be lossless)

relative to the originally ingested video.

The key idea behind VSS’s cache is to logically break physical

videos into “pages.” That is, rather than treating each physical video as

a monolithic cache entry, VSS targets the individual GOPs within each

physical video. Using GOPs as cache pages greatly homogenizes the

sizes of the entries that VSS must consider. VSS’s ability to evict GOP

pageswithin a physical video differs from other variable-sized caching

efforts such as those used by content delivery networks (CDNs), which

make decisions on large, indivisible, and opaque entries (a far more

challenging problem space with limited solutions [7]).

However, there are key differences between GOPs and pages. In

particular, GOPs are related to each other; i.e., (i) one GOP might be

a higher-quality version of another, and (ii) consecutive GOPs form a

contiguous video fragment. These correlations make typical eviction

policies like least-recently used (LRU) inefficient. In particular, naïve

LRU might evict every other GOP in a physical video, decomposing

it into many small fragments and increasing the cost of reads (which

have exponential complexity in the number of fragments).

Additionally, given multiple, redundant GOPs that are all

variations of one another, ordinary LRU would treat eviction of

a redundant GOP the same as any other GOP. However, our

intuition is that it is desirable to treat redundant GOPs different

than singleton GOPs without such redundancy.

Given this intuition, VSS employs a modified LRU policy

(LRUV SS) that associates each fragment with a nonnegative

sequence number computed using ordinary LRU offset by:

• Position (p). To reduce fragmentation, VSS increases the

sequence number of fragments near the middle of a physical

video, relative to the beginning or end. For a video with

n fragments arranged in ascending temporal order, VSS

increases the sequence number of fragment fi by p(fi) =
min(i,n − i).

• Redundancy (r). VSS decreases the sequence number of

fragments that have redundant or higher-quality variants.

To do so, using the quality cost model u, VSS generates a

u-ordering of each fragment fi and all other fragments that

are a spatiotemporal cover of fi . VSS decreases the sequence
number of fi by its rank r (fi) : Z

0+ in this order (i.e., r (fi) = 0

for a fragment with no higher-quality alternatives, while

r (fi) = n for a fragment with n higher-quality variants).

• Baseline quality (b). VSS never evicts a fragment if it

is the only fragment with quality equal to the quality of

the corresponding fragment m0 in the originally-written

physical video. To ensure this, given a set of fragments F in a

video, VSS increases the sequence number of each fragment

by (our prototype sets τ = 40):

b(fi) =

{
+∞ if �fj ∈ F \ fi .u(m0, fj) ≥ τ

0 otherwise

Using the offsets described above, VSS computes the sequence

number of each candidate fragment fi as LRU vss(fi) = LRU (fi) +
γ · p(fi) − ζ · r (fi) + b(fi). Here weights γ and ζ balance between

position and redundancy, and our prototype weights the former

(γ = 2) more heavily than the latter (ζ = 1). It would be a

straightforward extension to expose these as parameters tunable

for specific workloads.

5 DATA COMPRESSION IN VSS

VSS employs two compression-oriented optimizations and one

optimization that reduces the number of physical video fragments.

Specifically, VSS (i) jointly compresses redundant data across

multiple physical videos (Section 5.1); (ii) lazily compresses blocks

of uncompressed, infrequently-accessed GOPs (Section 5.2); and (iii)

improves the read performance by compacting temporally-adjacent

video (Section 5.3).

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

689

