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In 1974 Ablowitz, Kaup, Newell, Segur (AKNS) put forward a theoretical framework whereby one can 
construct evolution equations that are (i) integrable in the sense of existence of infinite number of 
conservation laws and (ii) solvable by the inverse scattering transform. In subsequent years, many 
physically important integrable evolution equations were identified and the focus of the subject shifted 
towards methods to find special solutions and enhancing the underlying analysis. The discovery of a new 
reduction of the original AKNS system and the P T symmetric integrable nonlocal nonlinear Schrödinger 
(NLS) equation more than forty years later was surprising. Subsequently, additional nonlocal integrable 
reductions were found allowing nonlocality to be manifested in the time domain as well. This paper 
reports on yet another novel set of integrable reductions for the original AKNS system and associated new 
space-time nonlocal NLS type equations with space and time shifts. Integrability and inverse scattering 
transform are established along with soliton solutions. Their unique properties are discussed along with 
detailed comparison with the respective standard (non shifted) P T and reverse space-time symmetric NLS 
equations.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

For several decades, integrable systems have been at the fore-
front in numerous research areas in the mathematical sciences and 
theoretical physics [1–7]. In part, this is due to the quest for ex-
actly solvable models and solutions of physical relevance as well as 
their elegant mathematical structure. Integrability theory originally 
emerged in the study of classical Hamiltonian mechanics with few 
numbers of degrees of freedom. One of its main pillars being the 
existence of a canonical transformation to action-angle variables 
that linearize the underlying governing nonlinear equations [8,9].

While the theory of integrable finite-dimensional Hamiltonian 
dynamics had substantial influence in mathematics and physics, 
its reach to a broad class of infinite-dimensional extended sys-
tems remained elusive for a long time. Amongst the earliest 
infinite-dimensional integrable systems (albeit dissipative) is the 
well-known viscous Burgers’ equation. Upon applying the so-called 
Cole-Hopf [10,11] transformation, it reduces to the linear heat 
equation. Thus, integrability manifests itself by an exact lineariza-
tion.

About fifteen years later, Zabusky and Kruskal [12] made their 
seminal discovery of solitons that eventually paved the way to 
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extend the theory of Hamiltonian integrable systems with fi-
nite number of degrees of freedom to infinite-dimensions. In-
deed, shortly afterwards, Gardner, Greene, Kruskal and Miura 
[13] established the integrability (linearization) of the celebrated 
Korteweg-de Vries (KdV) equation [14] by linking it to the lin-
ear Schrödinger equation (where the solution of the KdV equation 
plays the role of a potential) and introduced the method of inverse 
scattering and obtained the solution to its Cauchy problem with 
decaying data.

Following these important results, Lax [15] showed that solv-
able nonlinear evolution equations resulted from a compatibility 
condition between two linear systems or “linear pair”. This for-
mulation was used by Zakharov and Shabat [16] to find the so-
lution of the nonlinear Schrödinger equation (NLS) with decaying 
data. Indeed, the NLS equation is an infinite dimensional integrable 
Hamiltonian system.

In 1974 Ablowitz, Kaup, Newell, Segur (AKNS) [17] formulated a 
general theory leading to a class of integrable nonlinear evolution 
equations that are solvable by the inverse scattering transform.

These corner stone discoveries have led to an intense and rapid 
research activities in the general area of integrable systems. Among 
the various research directions and developments in this field in-
clude numerous exactly integrable physically significant nonlin-
ear wave equations including the KdV, scalar and coupled NLS, 
sine-Gordon, and three-wave equations; multidimensional models 
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such as the Kadomtsev-Petviashvili and Davey-Stewartson equa-
tions; discrete integrable systems including the Toda lattice [18]
and discrete integrable NLS models [19,20], quantum integrable 
spin systems and field theories [21] to name a few.

Towards the end of the past century it was thought that most 
of the physically important nonlinear evolution equations had been 
identified. In turn, interest in integrable systems shifted towards 
finding special solutions and important mathematical analysis such 
as long time asymptotics and formulations with different boundary 
conditions. Unexpectedly, Ablowitz and Musslimani [22] reported 
in 2013 on a new and unusual integrable symmetry reduction to 
the AKNS scattering theory. It is of the parity-time (P T ) symmet-
ric type (invariance under the combined action of parity operation 
P and time-reversal symmetry T ) and leads to the P T symmet-
ric nonlocal NLS equation. What is unusual about this reduction is 
that it relates function values at point x in space to its function val-
ues at a mirror-reflection space point (−x). Interestingly enough, 
prior to this discovery, there were no known similar examples 
of such nonlocality in the general area of integrable systems. We 
point out that P T symmetric and non-hermitian physics has been 
the subject of an intense research for the last decade most notably 
in classical optics, quantum mechanics and topological photonics 
[23–44].

In 2016 a “second wave” of nonlocal integrable symmetry re-
ductions were found where now the nonlocality is no longer ex-
clusively spatial but rather includes time as well [45,46]. The intro-
duction of integrability preserving P T symmetric nonlocality into 
the NLS equation has created opportunities to investigate nonlinear 
extended systems where blending nonlocality and general space-
time reflection symmetries with integrability theory can lead to 
unique phenomena that are absent otherwise. Examples include a 
closed form soliton solution that approaches infinity in finite-time 
after which, it recovers and, periodically, develops a singularity in 
finite time periodically [22]; and nonlocal Painlevé equations [46]
to name a few. In recent years, much progress has been reported 
in the general area of P T and space-time symmetric nonlocal 
integrable systems. Among them are the so-called nonlocal neg-
ative AKNS hierarchy [47], nonlocal hydrodynamic type systems 
[48], Riemann-Hilbert approach to space-time nonlocal mKdV hi-
erarchies [49,50], gauge invariance to magnetic Landau systems 
[51,52], nonlocal discrete Ablowitz-Ladik type models [46,53], non-
local breathers and multi-dimensional extensions to name a few 
[54–74].

In this paper, several novel integrable nonlocal reductions for 
the AKNS scattering problem are unveiled. Unlike their correspond-
ing (standard) P T symmetric and reverse space-time nonlocal 
ones, they correspond to a shifted space, or time or space-time 
nonlocal symmetries. They give rise to a new set of space-time 
nonlocal NLS-like equations. Among them are the shifted P T sym-
metric and the shifted time delay nonlocal NLS equations. The lat-
ter case, has distinct and unusual properties so far not encountered 
in integrability theory: It is of a reverse delay differential equation 
(in time) type. One and two soliton solution for the shifted P T
symmetric case are given below.

2. Shifted space-time nonlocal equations

We start the discussion by considering the coupled “(q, r) sys-
tem”

iqt = qxx − 2q2r , (1)

−irt = rxx − 2r2q , (2)

where q and r are complex valued functions of the space vari-
able x (the whole real line) and time t ≥ 0. Here, subscripts denote 
2

partial derivatives with respect to either x or t . For notational pur-
poses only, all dependent variables (e.g. q, r) are assumed to be 
local variables of x, t unless otherwise explicitly noted. Equations 
(1) and (2) are well known in integrability theory. They were de-
rived by AKNS in 1974 [17] as a compatibility conditions between 
two linear systems. One is a 2 × 2 first order Dirac-like scattering 
problem

v1x = −ikv1 + q(x, t)v2 , (3)

v2x = ikv2 + r(x, t)v1 , (4)

with q, r playing the role of potentials and an associated time-
evolution. Here, k is a complex parameter independent of space 
and time and v1, v2 are complex valued functions that are defined 
by their plane wave asymptotic structure at infinity. Importantly, 
Eqns. (1) and (2) were recently derived from asymptotic reduc-
tions of a physically relevant prototypical evolution equations such 
as free-surface ideal water waves, the KdV and cubic nonlinear 
Klein-Gordon equations [75]. As mentioned earlier, the P T nonlo-
cal, reverse space-time and reverse time-only NLS equations were 
obtained from Eqns. (1) and (2) under new symmetry reductions 
[22,46]. Here, we report, a new type of (uncommon) integrable 
symmetry reductions associated with system (1)-(2). The first is 
a space shifted P T symmetric nonlocal reduction given by

r(x, t) = σq∗(x0 − x, t) , (5)

where σ = ∓1 and x0 is an arbitrary real parameter. Under this 
integrable reduction, Eqns. (1) - (2) are compatible and lead to the 
integrable shifted P T symmetric nonlocal NLS equation:

iqt = qxx − 2σq2q∗(x0 − x, t) . (6)

Note that Eq. (6) is invariant under the joint transformation of x →
x0 − x, t → −t and complex conjugation. In other words, if q(x, t)
solves (6), so does q∗(x0 − x, −t).

The second integrable symmetry reduction for system (1) - (2)
is of reverse time-delay type:

r(x, t) = σq(x, t0 − t) , (7)

where, as before, σ = ∓1 and t0 is an arbitrary real parameter. 
This integrable reduction makes Eqns. (1) and (2) self-consistent 
leading to a single integrable shifted reverse time only nonlocal 
NLS equation

iqt = qxx − 2σq2q(x, t0 − t) . (8)

What is unusual about the symmetry reduction (7) as well as 
Eq. (8) is that when viewed as a reduction of the coupled system 
(1) and (2) with initial conditions q(x, 0), r(x, 0), it appears to re-
quire the (unknown) data q(x, t0) in order to be able to determine 
the value of q(x, t). To highlight the intricacies and challenges one 
faces when dealing with such circumstances we consider two sim-
ple linear problems: q̇ = q(t) + q(t − t0) and q̇ = q(t) + q(t0 − t). 
Solution to the former equation can be sought of in the form 
q(t) = est with s, t0 obeying the constraint s = 1 + e−st0 . On the 
other hand, the same ansatz is not useful in the latter case.

The third symmetry reduction for the AKNS system (1) - (2)
involves shifts in both space and time. It is given as

r(x, t) = σq(x0 − x, t0 − t) , (9)

for any real constants x0, t0. Equation (9) gives rise to the space-
time shifted nonlocal integrable NLS equation:

iqt = qxx − 2σq2q(x0 − x, t0 − t) . (10)
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All the above NLS cases reduce back to their respective “standard” 
P T and reverse space-time nonlocal NLS limits when x0 and t0
are set to zero. With this in mind, we shall later highlight major 
differences between these two scenarios and emphasize the role 
x0, t0 play.

We also remark that for suitable equations the integrable re-
duction given in Eq. (9) can be extended to allow for complex 
conjugation of the function q. This can be achieved by considering 
the “(q, r) system” associated with the mKdV equation (it belongs 
to the same hierarchy as for the NLS equation, i.e., it has the same 
scattering problem as above: Eqns. (3)-(4), but different associated 
time evolution):

qt + qxxx − 6qrqx = 0 , (11)

rt + rxxx − 6qrrx = 0 . (12)

With this at hand, it can be seen that under the complex integrable 
symmetry reduction

r(x, t) = σq∗(x0 − x, t0 − t) , (13)

the coupled evolution Eqns. (11) and (12) are compatible and give 
rise to the shifted complex reverse space-time mKdV equation

qt + qxxx − 6σqq∗(x0 − x, t0 − t)qx = 0 . (14)

It is clear that the real reduction (without complex conjugation) 
also holds true and leads to a real space-time shifted mKdV equa-
tion

qt + qxxx − 6σqq(x0 − x, t0 − t)qx = 0 . (15)

We close this section by making an observation regarding the 
“(q, r) system” and its classical integrable symmetry reduction 
r(x, t) = σq∗(x, t). Also interesting about the latter is that it has 
no shifted counter part, i.e., r(x, t) = σq∗(x0 + x, t) is not a reduc-
tion to system (1) and (2) with real parameter x0.

3. Complex shifts

While all the shifts (i.e., x0 and t0) introduced above were con-
sidered to be real, we remark that the new integrable symmetry 
reductions given by Eqns. (7) and (9) allow for these shifts to be 
extended to the complex parameter plane. Indeed, under the inte-
grable symmetry reduction

r(x, t) = σq(x, t0 + it1 − t) , (16)

the “(q, r) system” given by Eqns. (1) and (2) are indeed compat-
ible and lead to the following integrable complex shift nonlocal 
reverse time only NLS equations:

iqt = qxx − 2σq2q(x, t0 + it1 − t) , (17)

with t0 and t1 being real parameters. Similarly, the integrable re-
duction

r(x, t) = σq(x0 + ix1 − x, t0 + it1 − t) , (18)

where x j, t j, j = 0, 1 are all real constants, makes the “(q, r) sys-
tem” self-consistent giving rise to an integrable complex space-
time shifted nonlocal NLS equations

iqt = qxx − 2σq2q(x0 + ix1 − x, t0 + it1 − t) . (19)

Furthermore, under the same reduction (18) Eqns. (11) and (12)
are also compatible leading to the complex space-time shifted 
mKdV equation:
3

qt + qxxx − 6σqq(x0 + ix1 − x, t0 + it1 − t)qx = 0 . (20)

This type of AKNS integrable symmetry reductions has not previ-
ously appeared in the theory of integrable systems. They would 
inevitably result in complexification of either time alone or both 
space and time variables as, for example, Eqns. (17) and (19)
seem to imply. In this paper, we shall focus the analysis (integra-
bility, solitons and inverse scattering) on the P T symmetric and 
space-time nonlocal (real) shifted NLS equations only and leave the 
complex shifted cases for future study. We point out that complex-
ification of integrable systems by complexification of the indepen-
dent variables (space and time) has been studied over the years. 
Examples include the self-dual Yang-Mills equations, Kadomtsev-
Petviashvili and Davey-Stewartson equations [3,83–86]. Equations 
(17)-(19) yield a different type of complexification.

4. Integrability and conservation laws

One of the hallmarks of the AKNS theory is that nonlinear equa-
tions derived from a corresponding AKNS scattering problem are 
integrable. Since the ‘(q, r) system” given by Eqns. (1) and (2) were 
obtained from an AKNS scattering problem, any reduction of them 
would lead to an integrable equation. As such, Eqns. (6), (8), (10), 
(17) and (19) all form integrable systems in the sense of existence 
of an infinitely many conservation laws. To keep the discussion 
concise, we list few global conservation laws for selected integrable 
systems and leave the full account to a future work.

4.1. Shifted P T nonlocal NLS Eq. (6)

The first few global conservation laws are given by

∫

R

q(x, t)q∗(x0 − x, t)dx , (21)

∫

R

qx(x, t)q∗(x0 − x, t)dx , (22)

∫

R

[
−σqxx(x, t)q∗(x0 − x, t) + q2(x, t)q∗2

(x0 − x, t)
]

dx . (23)

4.2. Space-time shifted nonlocal NLS Eq. (10)

Here, we give some constant of motions when the shifts are 
present both in space and time

∫

R

q(x, t)q(x0 − x, t0 − t)dx , (24)

∫

R

qx(x, t)q(x0 − x, t0 − t)dx , (25)

∫

R

[
−σqxx(x, t)q(x0 − x, t0 − t) + q2(x, t)q2(x0 − x, t0 − t)

]
dx .

(26)

Scrutinizing any of the conservation laws given in Eqns. (24)-(26)
reveals the various subtleties involved when dealing with reverse 
time shifts (real or complex). Note that if Eq. (10) is supplemented 
with initial data at time t = t0/2 (rather than at t = 0) that would 
make the above conserved quantities immediately computable.
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5. Other space-time shifted nonlocal NLS

In this section we derive other type of space-time shifted non-
local NLS equations that emerge from a vectorial generalization of 
the “(q, r) system” defined by Eqns. (1) and (2). The starting point 
is the representation

iQt = Qxx − 2QRQ , (27)

−iRt = Rxx − 2RQR , (28)

where Q and R are row and column vectors respectively of size n. 
Under the “classical” integrable symmetry reduction

R(x, t) = σQH (x, t) , (29)

with superscript H denoting matrix transpose and complex con-
jugation, the system (27) and (28) are compatible and lead to the 
vectorial NLS equation

iQt = Qxx − 2σ ||Q||2Q , (30)

where || · || denotes a vector norm. For the simple and physically 
relevant two component case (n = 2), we arrive at the coupled sys-
tem of NLS equations for the function Q(x, t) ≡ (q(1)(x, t), q(2)(x, t))

iq(1)
t = q(1)

xx − 2σ
(
|q(1)|2 + |q(2)|2

)
q(1) , (31)

iq(2)
t = q(2)

xx − 2σ
(
|q(1)|2 + |q(2)|2

)
q(2) . (32)

The coupled equations (31) and (32) was derived and shown to be 
integrable by Manakov in 1974 [76]. Physically speaking, one appli-
cation describes the dynamics of two incoherently coupled spatial 
beams propagating in Kerr-type media [77–79]. Other applications 
can be found in temporal optics where q( j), j = 1, 2 represent two 
orthogonal polarizations [80–82]. System (31) and (32) was used 
in [55] to derive various P T symmetric and space-time nonlocal 
Manakov-type equations [55]. In this section, we use the Manakov 
system (31) and (32) to derive several new shifted nonlocal equa-
tions that share the same symmetries as the ones obtained so far. 
If we choose

q(2)(x, t) = eiθ0 q(1)(x0 − x, t) , (33)

with arbitrary real and constant θ0, then system (31) and (32) are 
compatible and leads to a single evolution equation for the “polar-
ization” q(1) (dropping the super script):

iqt = qxx − 2σ
(
|q|2 + |q(x0 − x, t)|2

)
q . (34)

The shifted reverse time only is obtained by letting

q(2)(x, t) = eiθ0 q(1)∗(x, t0 − t) , (35)

which, after substitution in Eqns. (31) and (32) leads to (dropping 
the super script)

iqt = qxx − 2σ
(
|q|2 + |q(x, t0 − t)|2

)
q . (36)

The third reduction to system (31) and (32) is of the space-time 
shifted nonlocal type

q(2)(x, t) = eiθ0 q(1)∗(x0 − x, t0 − t) , (37)

giving rise to the following space-time shifted nonlocal NLS-like 
equation (dropping the super script):

iqt = qxx − 2σ
(
|q|2 + |q(x0 − x, t0 − t)|2

)
q . (38)

Due to the nature of the reduction (37) the shifts must be in the 
real domain.
4

6. Inverse scattering: Riemann-Hilbert approach

So far we have introduced several novel space-time shifted non-
local integrable NLS type equations. They arise from a reduction 
of the AKNS scattering theory in which case they are solvable by 
the inverse scattering transform. In this section, we shall outline 
the solution method for the shifted P T NLS Eq. (6); the remain-
ing cases are left for future work. The approach to solving Eq. (6)
follows three major steps. The first is concerned with the analysis 
of the direct scattering problem. Primarily, this entails establishing 
the analytic and symmetry properties of the eigenfunctions gov-
erned by equations (3)-(4) as well as the underlying scattering data 
and asymptotic behavior. The second step involves determining the 
time evolution of the scattering data which, in essence, encodes 
the time dependence of the general solution and solitons. Lastly, 
the solution q(x, t) is recovered by applying the inverse scattering 
transform via a Riemann-Hilbert formulation. With these steps at 
hand, the most general solution to Eq. (6) can be obtained which, 
for the sake of simplicity, we write below for the case where no 
continuous spectrum is present and discrete soliton eigenvalues lo-
cated on the imaginary (k) axis only:

q(x, t) = 2iσ
J∑

�=1

C∗
� (t, x0)F ∗(x0 − x,k�)e−2ik∗

� (x0−x) , (39)

where F (x, k�) satisfies the following linear system

F (x,k j) = 1 +
J̄∑

�=1

J∑
�′=1

C̄�C�′e2i(k�′−k̄�)x F (x,k�′)

(k j − k̄�)(k̄ j − k�′)
, (40)

and k j ≡ iη j, ̄k j ≡ −iη̄ j are the soliton eigenvalues with η j, η̄ j be-

ing arbitrary positive and real. Furthermore, C j(t) = C j(0, x0)e−4ik2
j t

and C̄ j(t) = C̄ j(0, x0)e4ik̄2
j t are the so-called norming constants (in 

space). They encode the time-dependence of the soliton or the 
general solution. Note that throughout the paper, complex conju-
gation is indicated by a star and not by bar. The inverse scattering 
theory taking into account complex eigenvalues k j, ̄k j has been 
also worked out but, in order to keep the presentation compact, 
the details will be left for future paper. Nonetheless, the one and 
two soliton solutions will be discussed.

7. Soliton solutions

In this section we discuss a one and two soliton solution for 
the shifted P T symmetric NLS Eq. (6) only. Solutions to all other 
space-time shifted nonlocal cases will be reported in future paper. 
The one soliton solution is characterized by a single isolated and 
simple eigenvalue k1, ̄k1 located at the imaginary axis in the com-
plex k plane. By setting J = 1, J̄ = 1 and k1 ≡ iη1, k̄1 ≡ −iη̄1 (with 
real and positive η1, η̄1) we find the time evolution of the norming 
constants when σ = −1 to be C̄1(t) = −i(η1 + η̄1)eη̄1x0 eiθ̄1 e−4iη2

1t

and C1(t) = i(η1 + η̄1)eη1x0 eiθ1 e4iη2
1t where θ1, θ̄1 are arbitrary real 

constants. Substituting these quantities back into Eq. (39) and (40); 
we then find the most general one soliton solution to Eq. (6)

q(x, t) = − 2(η1 + η̄1)e−4iη2
1te−η1x0 e−iθ1 e2η1x

1 − e−(η1+η̄1)x0 e−i(θ1+θ̄1) e4i(η2
1−η2

1)te2(η1+η1)x
(41)

This one soliton solution has four free parameters: η1, η̄1; θ1 and 
θ̄1 accounting for two free real soliton eigenvalues and two phases 
(not magnitude) of the complex norming constants C1 and C̄1. This 
count is consistent with its classical NLS counter part where one 
complex eigenvalue and one complex norming constant contribute 
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Fig. 1. Two soliton solution for the shifted nonlocal P T symmetric NLS Eq. (6) cor-
responding to x0 = −3 (a), x0 = 0 (b) and x0 = +3 (c). Soliton parameters are: 
η = 1, ̄η = 1.1; ξ = −1, ̄ξ = −1.1.

to the tally of free parameters. Equation (41) reveals an unexpected 
result: it relates the one soliton solution of Eq. (6) to that of the 
“standard” (unshifted) P T symmetric NLS equation given by

iut = uxx + 2u2u∗(−x, t) . (42)

It turns out that if we denote by q1(x, t) and u1(x, t) the one soli-
ton solution for Eqns. (6) and (42) respectively, (corresponding to 
eigenvalues on the imaginary complex k axis) then Eq. (41) im-
plies q1(x, t) = u1(x − x0/2, t). This (nonobvious) fact prompted us 
to check whether this type of relation would persist at the two 
soliton solution level.

To that purpose, we have extended the inverse scattering theory 
associated with Eq. (6) to account for soliton eigenvalues located 
off the imaginary complex k axis. In this case, the formula for the 
potential q(x, t) is given as

q(x, t) = 2iσ
J∑

�=1

C∗
� (t, x0)G∗(x0 − x,k�)e−2ik∗

� (x0−x)

+ 2iσ
J∑

�=1

D∗
�(t, x0)G∗(x0 − x,−k∗

�)e2ik�(x0−x) , (43)

where now the soliton eigenvalues k j ≡ ξ j + iη j are assumed to 
be complex (ξ j �= 0); the norming constants D j(t, x0) are given by 

D j(t) = D j(0, x0)e−4ik∗
j

2t and G(x, k j), G(x, −k∗
j ) are independent 

functions that satisfy a set of algebraic equations similar (in spirit) 
to those in (40) yet too long to write in a compact form. In Fig. 1, 
a space-time density plot of a two-soliton solution is shown corre-
sponding to three different scenarios: x0 = −3 (a), x0 = 0 (b) and 
x0 = 3 (c). Sub-figure (b) in fact represents the two-soliton solution 
for Eq. (42) for x0 = 0. Clearly, these results reveal an unambiguous 
picture: the two soliton solution for the shifted P T nonlocal NLS 
equation cannot be obtained from knowledge of its corresponding 
standard P T nonlocal NLS equation by applying a point coordinate 
transformation. In other words, q2(x, t) �= u2(x + c(x0), t) where 
q2(x, t) and u2(x, t) the one soliton solution for Eqns. (6) and (42)
respectively and c(x0) is a shift.

8. Conclusions

In this paper, several novel integrable symmetry reductions to 
the well-known AKNS scattering theory were proposed each of 
which giving rise to a new kind of P T symmetric or a reverse 
5

space-time nonlocal NLS type equations. What is atypical about 
these integrable systems is that the nonlocality occurs in a re-
markably simple, yet very different, way; it relates functions values 
at (generally speaking) a point (x, t) in space-time domain to its 
function values at its corresponding shifted and mirror reflected 
space-time point (x0 − x, t0 − t). So far, to our knowledge such a 
circumstance has not been encountered in integrable systems. The 
inverse scattering theory for the space shifted and P T symmetric 
NLS equation was formulated and a one and two soliton solutions 
were discussed. The inverse scattering and soliton solutions for the 
other proposed nonlocal equations will be the focus of future work. 
These results also imply that there are similar symmetry reduc-
tions like the ones found here for other integrable equations such 
as the Ablowitz-Ladik systems and the multi-dimensional Davey-
Stewartson equations.
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