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ABSTRACT

In 1974 Ablowitz, Kaup, Newell, Segur (AKNS) put forward a theoretical framework whereby one can
construct evolution equations that are (i) integrable in the sense of existence of infinite number of
conservation laws and (ii) solvable by the inverse scattering transform. In subsequent years, many
physically important integrable evolution equations were identified and the focus of the subject shifted
towards methods to find special solutions and enhancing the underlying analysis. The discovery of a new
reduction of the original AKNS system and the PT symmetric integrable nonlocal nonlinear Schrodinger
(NLS) equation more than forty years later was surprising. Subsequently, additional nonlocal integrable
reductions were found allowing nonlocality to be manifested in the time domain as well. This paper
reports on yet another novel set of integrable reductions for the original AKNS system and associated new
space-time nonlocal NLS type equations with space and time shifts. Integrability and inverse scattering
transform are established along with soliton solutions. Their unique properties are discussed along with
detailed comparison with the respective standard (non shifted) PT and reverse space-time symmetric NLS

equations.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

For several decades, integrable systems have been at the fore-
front in numerous research areas in the mathematical sciences and
theoretical physics [1-7]. In part, this is due to the quest for ex-
actly solvable models and solutions of physical relevance as well as
their elegant mathematical structure. Integrability theory originally
emerged in the study of classical Hamiltonian mechanics with few
numbers of degrees of freedom. One of its main pillars being the
existence of a canonical transformation to action-angle variables
that linearize the underlying governing nonlinear equations [8,9].

While the theory of integrable finite-dimensional Hamiltonian
dynamics had substantial influence in mathematics and physics,
its reach to a broad class of infinite-dimensional extended sys-
tems remained elusive for a long time. Amongst the earliest
infinite-dimensional integrable systems (albeit dissipative) is the
well-known viscous Burgers’ equation. Upon applying the so-called
Cole-Hopf [10,11] transformation, it reduces to the linear heat
equation. Thus, integrability manifests itself by an exact lineariza-
tion.

About fifteen years later, Zabusky and Kruskal [12] made their
seminal discovery of solitons that eventually paved the way to
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extend the theory of Hamiltonian integrable systems with fi-
nite number of degrees of freedom to infinite-dimensions. In-
deed, shortly afterwards, Gardner, Greene, Kruskal and Miura
[13] established the integrability (linearization) of the celebrated
Korteweg-de Vries (KdV) equation [14] by linking it to the lin-
ear Schrodinger equation (where the solution of the KdV equation
plays the role of a potential) and introduced the method of inverse
scattering and obtained the solution to its Cauchy problem with
decaying data.

Following these important results, Lax [15] showed that solv-
able nonlinear evolution equations resulted from a compatibility
condition between two linear systems or “linear pair”. This for-
mulation was used by Zakharov and Shabat [16] to find the so-
lution of the nonlinear Schrodinger equation (NLS) with decaying
data. Indeed, the NLS equation is an infinite dimensional integrable
Hamiltonian system.

In 1974 Ablowitz, Kaup, Newell, Segur (AKNS) [17] formulated a
general theory leading to a class of integrable nonlinear evolution
equations that are solvable by the inverse scattering transform.

These corner stone discoveries have led to an intense and rapid
research activities in the general area of integrable systems. Among
the various research directions and developments in this field in-
clude numerous exactly integrable physically significant nonlin-
ear wave equations including the KdV, scalar and coupled NLS,
sine-Gordon, and three-wave equations; multidimensional models


https://doi.org/10.1016/j.physleta.2021.127516
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2021.127516&domain=pdf
mailto:musliman@math.fsu.edu
https://doi.org/10.1016/j.physleta.2021.127516

M,J. Ablowitz and Z.H. Musslimani

such as the Kadomtsev-Petviashvili and Davey-Stewartson equa-
tions; discrete integrable systems including the Toda lattice [18]
and discrete integrable NLS models [19,20], quantum integrable
spin systems and field theories [21] to name a few.

Towards the end of the past century it was thought that most
of the physically important nonlinear evolution equations had been
identified. In turn, interest in integrable systems shifted towards
finding special solutions and important mathematical analysis such
as long time asymptotics and formulations with different boundary
conditions. Unexpectedly, Ablowitz and Musslimani [22] reported
in 2013 on a new and unusual integrable symmetry reduction to
the AKNS scattering theory. It is of the parity-time (PT) symmet-
ric type (invariance under the combined action of parity operation
P and time-reversal symmetry T) and leads to the PT symmet-
ric nonlocal NLS equation. What is unusual about this reduction is
that it relates function values at point x in space to its function val-
ues at a mirror-reflection space point (—x). Interestingly enough,
prior to this discovery, there were no known similar examples
of such nonlocality in the general area of integrable systems. We
point out that PT symmetric and non-hermitian physics has been
the subject of an intense research for the last decade most notably
in classical optics, quantum mechanics and topological photonics
[23-44].

In 2016 a “second wave” of nonlocal integrable symmetry re-
ductions were found where now the nonlocality is no longer ex-
clusively spatial but rather includes time as well [45,46]. The intro-
duction of integrability preserving PT symmetric nonlocality into
the NLS equation has created opportunities to investigate nonlinear
extended systems where blending nonlocality and general space-
time reflection symmetries with integrability theory can lead to
unique phenomena that are absent otherwise. Examples include a
closed form soliton solution that approaches infinity in finite-time
after which, it recovers and, periodically, develops a singularity in
finite time periodically [22]; and nonlocal Painlevé equations [46]
to name a few. In recent years, much progress has been reported
in the general area of PT and space-time symmetric nonlocal
integrable systems. Among them are the so-called nonlocal neg-
ative AKNS hierarchy [47], nonlocal hydrodynamic type systems
[48], Riemann-Hilbert approach to space-time nonlocal mKdV hi-
erarchies [49,50], gauge invariance to magnetic Landau systems
[51,52], nonlocal discrete Ablowitz-Ladik type models [46,53], non-
local breathers and multi-dimensional extensions to name a few
[54-74].

In this paper, several novel integrable nonlocal reductions for
the AKNS scattering problem are unveiled. Unlike their correspond-
ing (standard) PT symmetric and reverse space-time nonlocal
ones, they correspond to a shifted space, or time or space-time
nonlocal symmetries. They give rise to a new set of space-time
nonlocal NLS-like equations. Among them are the shifted PT sym-
metric and the shifted time delay nonlocal NLS equations. The lat-
ter case, has distinct and unusual properties so far not encountered
in integrability theory: It is of a reverse delay differential equation
(in time) type. One and two soliton solution for the shifted PT
symmetric case are given below.

2. Shifted space-time nonlocal equations

We start the discussion by considering the coupled “(q,r) sys-
tem”

iqe = qxx — 2¢°r (1)
—irr=rw —2rq, (2)

where q and r are complex valued functions of the space vari-
able x (the whole real line) and time ¢ > 0. Here, subscripts denote
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partial derivatives with respect to either x or t. For notational pur-
poses only, all dependent variables (e.g. q,r) are assumed to be
local variables of x,t unless otherwise explicitly noted. Equations
(1) and (2) are well known in integrability theory. They were de-
rived by AKNS in 1974 [17] as a compatibility conditions between
two linear systems. One is a 2 x 2 first order Dirac-like scattering
problem

Vix = _lkvl + q(X, t)VZ ) (3)
vox =ikvy +1(x, vy, (4)

with q,r playing the role of potentials and an associated time-
evolution. Here, k is a complex parameter independent of space
and time and vq, v, are complex valued functions that are defined
by their plane wave asymptotic structure at infinity. Importantly,
Eqns. (1) and (2) were recently derived from asymptotic reduc-
tions of a physically relevant prototypical evolution equations such
as free-surface ideal water waves, the KdV and cubic nonlinear
Klein-Gordon equations [75]. As mentioned earlier, the PT nonlo-
cal, reverse space-time and reverse time-only NLS equations were
obtained from Eqns. (1) and (2) under new symmetry reductions
[22,46]. Here, we report, a new type of (uncommon) integrable
symmetry reductions associated with system (1)-(2). The first is
a space shifted PT symmetric nonlocal reduction given by

rx,t)=0q"(xo —x,t), (5)

where o = F1 and xo is an arbitrary real parameter. Under this
integrable reduction, Eqns. (1) - (2) are compatible and lead to the
integrable shifted PT symmetric nonlocal NLS equation:

iqe = qxx — 204%q* (X0 — X, 1) . (6)

Note that Eq. (6) is invariant under the joint transformation of x —
Xo — X, t —> —t and complex conjugation. In other words, if q(x,t)
solves (6), so does q*(xg — X, —t).

The second integrable symmetry reduction for system (1) - (2)
is of reverse time-delay type:

rix,t)y=o0q(x,to—t), (7)

where, as before, 0 = F1 and ¢p is an arbitrary real parameter.
This integrable reduction makes Eqns. (1) and (2) self-consistent
leading to a single integrable shifted reverse time only nonlocal
NLS equation

iqe = qxx — 20G°q(x, to — ) . (8)

What is unusual about the symmetry reduction (7) as well as
Eq. (8) is that when viewed as a reduction of the coupled system
(1) and (2) with initial conditions q(x, 0), r(x, 0), it appears to re-
quire the (unknown) data q(x, tp) in order to be able to determine
the value of q(x, t). To highlight the intricacies and challenges one
faces when dealing with such circumstances we consider two sim-
ple linear problems: ¢ = q(t) + q(t — tp) and § = q(t) + q(to — t).
Solution to the former equation can be sought of in the form
q(t) = e’ with s, ty obeying the constraint s =14 e, On the
other hand, the same ansatz is not useful in the latter case.

The third symmetry reduction for the AKNS system (1) - (2)
involves shifts in both space and time. It is given as

r(x,t)=0q(xo —x,to — ), (9)

for any real constants xg, to. Equation (9) gives rise to the space-
time shifted nonlocal integrable NLS equation:

iq = Qe — 20G°q(x0 — X, to — ) . (10)
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All the above NLS cases reduce back to their respective “standard”
PT and reverse space-time nonlocal NLS limits when xp and tg
are set to zero. With this in mind, we shall later highlight major
differences between these two scenarios and emphasize the role
X0, to play.

We also remark that for suitable equations the integrable re-
duction given in Eq. (9) can be extended to allow for complex
conjugation of the function q. This can be achieved by considering
the “(q,r) system” associated with the mKdV equation (it belongs
to the same hierarchy as for the NLS equation, i.e., it has the same
scattering problem as above: Eqns. (3)-(4), but different associated
time evolution):

e + qxxx — 6qrgx =0, (11)
Te+Txxx — 6qrry=0. (12)

With this at hand, it can be seen that under the complex integrable
symmetry reduction

r(x,t) =o0q*(xg —Xx,tg — t), (13)

the coupled evolution Eqns. (11) and (12) are compatible and give
rise to the shifted complex reverse space-time mKdV equation

qr + Gxxx — 604" (Xo — X, to — £)qx =0. (14)

It is clear that the real reduction (without complex conjugation)
also holds true and leads to a real space-time shifted mKdV equa-
tion

gt + Gxxx — 60Gq(Xo — X, tg — t)qx =0. (15)

We close this section by making an observation regarding the
“(q,r) system” and its classical integrable symmetry reduction
r(x,t) = oq*(x,t). Also interesting about the latter is that it has
no shifted counter part, i.e., r(x,t) = oq*(xo + x, t) is not a reduc-
tion to system (1) and (2) with real parameter xg.

3. Complex shifts

While all the shifts (i.e., xo and tg) introduced above were con-
sidered to be real, we remark that the new integrable symmetry
reductions given by Eqns. (7) and (9) allow for these shifts to be
extended to the complex parameter plane. Indeed, under the inte-
grable symmetry reduction

r(x,t) =oqx,to +it1 —t), (16)

the “(q,r) system” given by Eqns. (1) and (2) are indeed compat-
ible and lead to the following integrable complex shift nonlocal
reverse time only NLS equations:

iqe = qxx — 20G°q(x, to + it — 1) , (17)

with tp and t; being real parameters. Similarly, the integrable re-
duction

r(x,t) =0q(xo +ix; — X, to +it; —t), (18)

where x;,tj, j=0,1 are all real constants, makes the “(q,r) sys-
tem” self-consistent giving rise to an integrable complex space-
time shifted nonlocal NLS equations

i = Qux — 20q%q(xo + ix1 — X, to +it] —t) . (19)

Furthermore, under the same reduction (18) Eqns. (11) and (12)
are also compatible leading to the complex space-time shifted
mKdV equation:
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Gt + Qxxx — 60°qq (X0 +ix1 — X, to + it —t)qx =0. (20)

This type of AKNS integrable symmetry reductions has not previ-
ously appeared in the theory of integrable systems. They would
inevitably result in complexification of either time alone or both
space and time variables as, for example, Eqns. (17) and (19)
seem to imply. In this paper, we shall focus the analysis (integra-
bility, solitons and inverse scattering) on the PT symmetric and
space-time nonlocal (real) shifted NLS equations only and leave the
complex shifted cases for future study. We point out that complex-
ification of integrable systems by complexification of the indepen-
dent variables (space and time) has been studied over the years.
Examples include the self-dual Yang-Mills equations, Kadomtsev-
Petviashvili and Davey-Stewartson equations [3,83-86]. Equations
(17)-(19) yield a different type of complexification.

4. Integrability and conservation laws

One of the hallmarks of the AKNS theory is that nonlinear equa-
tions derived from a corresponding AKNS scattering problem are
integrable. Since the ‘(gq, r) system” given by Eqns. (1) and (2) were
obtained from an AKNS scattering problem, any reduction of them
would lead to an integrable equation. As such, Eqns. (6), (8), (10),
(17) and (19) all form integrable systems in the sense of existence
of an infinitely many conservation laws. To keep the discussion
concise, we list few global conservation laws for selected integrable
systems and leave the full account to a future work.

4.1. Shifted PT nonlocal NLS Eq. (6)

The first few global conservation laws are given by

f 4x. D" (xo — x, O (21)
R
/ qx(x, )q* (xo — x, t)dx , (22)
R

/ [0 0uix. 08" (0 — %0 + (2. 03200 —x D |dx. (23)
R

4.2. Space-time shifted nonlocal NLS Eq. (10)

Here, we give some constant of motions when the shifts are
present both in space and time

/q(x, t)q(xo — x, tg — t)dx , (24)
R
/ qx(x, )q(xo — x, to — t)dx,, (25)
R

/ [—oqxx(x, £)q(xo — X, to — £) +q* (x, £)g* (X0 — X, to — t)] dx .
R
(26)

Scrutinizing any of the conservation laws given in Eqns. (24)-(26)
reveals the various subtleties involved when dealing with reverse
time shifts (real or complex). Note that if Eq. (10) is supplemented
with initial data at time t =t/2 (rather than at t = 0) that would
make the above conserved quantities immediately computable.
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5. Other space-time shifted nonlocal NLS

In this section we derive other type of space-time shifted non-
local NLS equations that emerge from a vectorial generalization of
the “(q,r) system” defined by Eqns. (1) and (2). The starting point
is the representation

iQ: = Q« — 2QRQ,, (27)
—iR: =Ry — 2RQR, (28)

where Q and R are row and column vectors respectively of size n.
Under the “classical” integrable symmetry reduction

Rx,t)=0Q (x,t), (29)

with superscript H denoting matrix transpose and complex con-
jugation, the system (27) and (28) are compatible and lead to the
vectorial NLS equation

iQ =Qu —20/|Q*Q, (30)

where || - || denotes a vector norm. For the simple and physically
relevant two component case (n = 2), we arrive at the coupled sys-
tem of NLS equations for the function Q(x, t) = (¢ (x, t), @ (x, t))

iqt" =q\ — 20 (Iq“)l2 + Iq‘”Iz) q?, (31)
iq® =q@ —20 (Iq(”l2 + |q<2>|2) q?. (32)

The coupled equations (31) and (32) was derived and shown to be
integrable by Manakov in 1974 [76]. Physically speaking, one appli-
cation describes the dynamics of two incoherently coupled spatial
beams propagating in Kerr-type media [77-79]. Other applications
can be found in temporal optics where ¢, j = 1,2 represent two
orthogonal polarizations [80-82]. System (31) and (32) was used
in [55] to derive various PT symmetric and space-time nonlocal
Manakov-type equations [55]. In this section, we use the Manakov
system (31) and (32) to derive several new shifted nonlocal equa-
tions that share the same symmetries as the ones obtained so far.
If we choose

q?Px,t) =eqM(xg —x, ), (33)

with arbitrary real and constant 6y, then system (31) and (32) are
compatible and leads to a single evolution equation for the “polar-
ization” g1 (dropping the super script):

igr = — 20 (14 + a0 — % O) q (34)
The shifted reverse time only is obtained by letting
qPx.t) =e™qV x 1o — 1), (35)

which, after substitution in Eqns. (31) and (32) leads to (dropping
the super script)

ige = g — 20 (lg2 +1g(x.to = D) q . (36)

The third reduction to system (31) and (32) is of the space-time
shifted nonlocal type

qP(x, t) = e®qM (xg —x,tg — 1), (37)

giving rise to the following space-time shifted nonlocal NLS-like
equation (dropping the super script):

iq: = g — 20 (141 + 190 = x,to — DI?) 4. (38)

Due to the nature of the reduction (37) the shifts must be in the
real domain.

Physics Letters A 409 (2021) 127516

6. Inverse scattering: Riemann-Hilbert approach

So far we have introduced several novel space-time shifted non-
local integrable NLS type equations. They arise from a reduction
of the AKNS scattering theory in which case they are solvable by
the inverse scattering transform. In this section, we shall outline
the solution method for the shifted PT NLS Eq. (6); the remain-
ing cases are left for future work. The approach to solving Eq. (6)
follows three major steps. The first is concerned with the analysis
of the direct scattering problem. Primarily, this entails establishing
the analytic and symmetry properties of the eigenfunctions gov-
erned by equations (3)-(4) as well as the underlying scattering data
and asymptotic behavior. The second step involves determining the
time evolution of the scattering data which, in essence, encodes
the time dependence of the general solution and solitons. Lastly,
the solution q(x,t) is recovered by applying the inverse scattering
transform via a Riemann-Hilbert formulation. With these steps at
hand, the most general solution to Eq. (6) can be obtained which,
for the sake of simplicity, we write below for the case where no
continuous spectrum is present and discrete soliton eigenvalues lo-
cated on the imaginary (k) axis only:

J
q(x, £) = 2i0 Yy C}(t, X0) F* (xo — X, ke)e 2HKi o0 (39)
=1

where F(x, k) satisfies the following linear system

Z]: Zj: CoCpe?itko—kOXE(x k)

F(x, k =1+ —
! (kj — ke)(kj — kg

(40)

and kj =in;j, kj = —ifj; are the soliton eigenvalues with n;,7; be-

L2
ing arbitrary positive and real. Furthermore, C;(t) = C;(0, xo)efmkf t

and Cj(t) = Cj(O,xo)e‘“k?t are the so-called norming constants (in
space). They encode the time-dependence of the soliton or the
general solution. Note that throughout the paper, complex conju-
gation is indicated by a star and not by bar. The inverse scattering
theory taking into account complex eigenvalues kj, kj has been
also worked out but, in order to keep the presentation compact,
the details will be left for future paper. Nonetheless, the one and
two soliton solutions will be discussed.

7. Soliton solutions

In this section we discuss a one and two soliton solution for
the shifted PT symmetric NLS Eq. (6) only. Solutions to all other
space-time shifted nonlocal cases will be reported in future paper.
The one soliton solution is characterized by a single isolated and
simple eigenvalue ki, kq located at the imaginary axis in the com-
plex k plane. By setting J =1, J=1 and k; =inq, k= —iny (with
real and positive 11, 1j1) we find the time evolution of the norming
constants when ¢ = —1 to be Cq(t) = —i(n1 + ﬁ1)e’71"oeiale*4iﬁ%f
and C1(t) = i(n1 + 7j1)eM¥0ei® 4t where 0y, 6; are arbitrary real
constants. Substituting these quantities back into Eq. (39) and (40);
we then find the most general one soliton solution to Eq. (6)

_ in2 i
2(m +m)e—4m]tefmx067191e2mx

1 — e—(m+iix0p—i(61+61) o4 —1)t o2(77; +171)x

qx,t) = — (41)
This one soliton solution has four free parameters: 11, 171; 61 and
/1 accounting for two free real soliton eigenvalues and two phases
(not magnitude) of the complex norming constants C; and C;. This
count is consistent with its classical NLS counter part where one
complex eigenvalue and one complex norming constant contribute
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Fig. 1. Two soliton solution for the shifted nonlocal PT symmetric NLS Eq. (6) cor-
responding to xo = -3 (a), xo =0 (b) and xo = 43 (c). Soliton parameters are:
n=17=11¢=-1E=-1.1

to the tally of free parameters. Equation (41) reveals an unexpected
result: it relates the one soliton solution of Eq. (6) to that of the
“standard” (unshifted) PT symmetric NLS equation given by

iU = Ugy + 202U* (=X, 1) . (42)

It turns out that if we denote by qq(x, t) and uq(x,t) the one soli-
ton solution for Eqns. (6) and (42) respectively, (corresponding to
eigenvalues on the imaginary complex k axis) then Eq. (41) im-
plies q1(x,t) =u1(x — Xo/2,t). This (nonobvious) fact prompted us
to check whether this type of relation would persist at the two
soliton solution level.

To that purpose, we have extended the inverse scattering theory
associated with Eq. (6) to account for soliton eigenvalues located
off the imaginary complex k axis. In this case, the formula for the
potential q(x, t) is given as

J
q(x.t) =2ic Y C; (. x0)G*(xo — X, ke)e~2iki (0=
=1
J
+2i0 Y D} (t, x0)G* (xo — x, —kj)e2ke 0= (43)
=1

where now the soliton eigenvalues kj = & 4 in; are assumed to
be complex (£ # 0); the norming constants D(t, xo) are given by

Dj(t) = D;(0, xo)e_4lk72t and G(x,kj), G(x, —kj) are independent
functions that satisfy a set of algebraic equations similar (in spirit)
to those in (40) yet too long to write in a compact form. In Fig. 1,
a space-time density plot of a two-soliton solution is shown corre-
sponding to three different scenarios: xg = —3 (a), X = 0 (b) and
Xo = 3 (c). Sub-figure (b) in fact represents the two-soliton solution
for Eq. (42) for xo = 0. Clearly, these results reveal an unambiguous
picture: the two soliton solution for the shifted PT nonlocal NLS
equation cannot be obtained from knowledge of its corresponding
standard PT nonlocal NLS equation by applying a point coordinate
transformation. In other words, q2(X,t) # uz(x + c(xg),t) where
q2(x,t) and uy(x,t) the one soliton solution for Eqns. (6) and (42)
respectively and c(xp) is a shift.

8. Conclusions
In this paper, several novel integrable symmetry reductions to

the well-known AKNS scattering theory were proposed each of
which giving rise to a new kind of PT symmetric or a reverse
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space-time nonlocal NLS type equations. What is atypical about
these integrable systems is that the nonlocality occurs in a re-
markably simple, yet very different, way; it relates functions values
at (generally speaking) a point (x,t) in space-time domain to its
function values at its corresponding shifted and mirror reflected
space-time point (xo — X, to — t). So far, to our knowledge such a
circumstance has not been encountered in integrable systems. The
inverse scattering theory for the space shifted and PT symmetric
NLS equation was formulated and a one and two soliton solutions
were discussed. The inverse scattering and soliton solutions for the
other proposed nonlocal equations will be the focus of future work.
These results also imply that there are similar symmetry reduc-
tions like the ones found here for other integrable equations such
as the Ablowitz-Ladik systems and the multi-dimensional Davey-
Stewartson equations.
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