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Abstract 

We developed and tested strategies for using spatial representations to help students understand 

core probability concepts, including the multiplication rule for computing a joint probability 

from a marginal and conditional probability, interpreting an odds value as the ratio of two 

probabilities, and Bayesian inference. The general goal of these strategies is to promote active 

learning by introducing concepts in an intuitive spatial format and then encouraging students to 

try to discover the explicit equations associated with the spatial representations. We assessed the 

viability of the proposed active-learning approach with two exercises that tested undergraduates’ 

ability to specify mathematical equations after learning to use the spatial solution method. A 

majority of students succeed in independently discovering fundamental mathematical concepts 

underlying probabilistic reasoning. For example, in the second exercise, 76% of students 

correctly multiplied marginal and conditional probabilities to find joint probabilities, 86% 

correctly divided joint probabilities to get an odds value, and 69% did both to achieve full 

Bayesian inference. Thus, we conclude that the spatial method is an effective way to promote 

active learning of probability equations.  

 

Keywords: Bayesian inference; spatial cognition; multiplication rule 
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Strategies for using a spatial method to promote active learning of probability concepts 

 

Probability concepts are a cornerstone of STEM (Science, Technology, Engineering, and 

Math) education, especially in the many fields that rely on statistical methods to draw 

conclusions. Unfortunately, people are prone to many fundamental misunderstandings of 

probabilistic reasoning, so educators face a strong headwind when they attempt to teach these 

concepts. The cognitive psychology literature documents many of these confusions, such as 

thinking that conjunctions of features can be more likely that the individual features themselves 

(Tversky & Kahneman, 1983) or erroneously transposing conditional probabilities (Diaconis & 

Freedman, 1981). The high risk of confusion is likely exacerbated by the fact that probability 

concepts are usually taught using mathematical notation that is unfamiliar to many students, so 

exploring more intuitive representations is a promising approach for improving understanding.  

 The current paper discusses strategies for using spatial representations of probability 

concepts in statistics instruction. We present evidence that many students can succeed in active-

learning activities that challenge them to translate spatial representations into symbolic 

equations. As detailed below, we explored spatial methods for (1) distinguishing marginal, 

conditional, and joint probabilities; (2) finding a joint probability from a marginal and 

conditional probability (i.e., the multiplication rule); (3) finding an odds value by dividing two 

probabilities; and (4) Bayesian inference. The first three concepts are common elements of 

undergraduate statistics courses, and Bayesian inference is quickly becoming an important part 

of the statistics curriculum (Martinez & Achar, 2014). Bayesian inference is also a central 

concept in various STEM subject areas such as naïve Bayes algorithms in computer science 
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(Koski & Nobel, 2009) or diagnostic test interpretation in medicine (Gigerenzer & Hoffrage, 

1995). 

Background 

Without training, people are typically poor at probabilistic reasoning, a fact that is 

perhaps most clearly illustrated by studies on Bayesian reasoning. Bayesian inference is the 

process of combining probabilistic evidence sources to determine what is likely to be true. 

Bayesian reasoning experiments typically explore this ability by presenting word problems that 

challenge participants to find the probability that some hypothesis is true given that some 

observation has been made.  

Solving Bayesian reasoning problems requires basic probability skills that are common 

learning objectives for undergraduate statistics courses, such as distinguishing marginal, 

conditional, and joint probabilities and applying the multiplication and addition rules for 

combining probabilities. Experiments investigating Bayesian reasoning typically use problems 

with two hypotheses (e.g., a patient has a disease not) and a dichotomous observed variable (e.g., 

a positive or negative diagnostic test for the disease), which is the simplest version of Bayesian 

inference and a good starting point for courses that cover Bayesian statistics (Kruschke, 2011).  

Following this formula, a classic Bayesian reasoning example is finding the probability 

that a patient has a disease (hypothesis) given that they get a positive diagnostic test 

(observation). Problems typically report the proportion of cases overall for which the hypothesis 

is true (e.g., the base rate of the disease in the general population), the proportion of hypothesis-

is-true cases that are consistent with the observation (e.g., the proportion of people with the 

disease who get a positive test result), and the proportion of hypothesis-is-false cases that are 
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consistent with the observation (e.g., the proportion of people without the disease that get a 

positive test result).  

A clear finding in this literature is that most people cannot perform the probabilistic 

reasoning needed to answer Bayesian reasoning questions; instead, they tend to rely on heuristics 

(Cohen & Staub, 2015; Gigerenzer & Hoffrage, 1995) or prior knowledge (Cohen, Sidlowski, & 

Staub, 2017). Simplifying the problem by providing nested frequencies helps (e.g., Gigerenzer & 

Hoffrage, 1995), but still leaves solution rates around 24% compared to 4% when problem 

information is presented as percentages/proportions (McDowell & Jacobs, 2017). Other changes 

in problem format can also impact success rates. For example, Borcherer-Lindler and Eichler 

(2019) reported success rates of 60-75% when the elements of frequency-format problems were 

presented as a contingency table compared to 20-50% when the problem elements were 

presented as a tree diagram. Expanding the tree diagram to include all values in the contingency 

table – what the authors call a double-tree diagram – improved performance relative to standard 

tree diagrams, but still left accuracy rates substantially below the contingency table format. Unit 

squares and icon arrays, which represent probabilities with the areas of rectangles, also fell short 

of contingency tables, although icon arrays produced performance levels similar to contingency 

tables for 3 out of their 4 word problems. 

The wide variability in effectiveness across formats reported by Borcherer-Lindler and 

Eichler (2019) is representative of the literature as a whole. Generally, studies have found that 

providing visual representations of Bayesian inference problems can improve performance, but 

some display formats are not effective (Binder, Krauss, & Bruckmaier, 2015; Böcherer‐Linder & 

Eichler, 2017, 2019; Brase, 2009, 2014; Cosmides & Tooby, 1996; Micallef, Dragicevic, & 

Fekete, 2012; Reani, Davies, Peek, & Jay, 2018; Sirota, Kostovičová, & Juanchich, 2014; 
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Sloman, Over, Slovak, & Stibel, 2003; Wu, Meder, Filimon, & Nelson, 2017; Yamagishi, 2003). 

Clearly, more work is needed to determine the relative effectiveness of these approaches. In 

particular, not all proposed representations have been thoroughly compared, including, for 

example, “truth tables” that enumerates the logical relationships between hypotheses and 

observations (Satake & Vashlishan Murray, 2015).  

Researchers have also explored systematic, instructional programs for Bayesian 

inference. Sedlemeier and Gigerenzer (2001) investigated computer-based tutorials to compare 

the effectiveness three instructional approaches. Rule-based training taught participants to 

directly input the probabilities reported in the problem into the Bayes theorem equation. 

Frequency-grid training taught participants to translate the probabilities reported in the problem 

into frequencies and mark components of an icon array to represent these frequencies. 

Frequency-tree training was similar to the frequency grid, except that participants were taught to 

enter frequencies as numbers in a tree diagram. Although all of these training versions improved 

Bayesian inference performance, the frequency versions produced more durable learning, as 

assessed by follow-up sessions weeks or months after the initial training. 

Kurzenhäuser and Hoffrage (2002) investigated instructional programs similar to the 

rule-based and frequency-based training from Sedlemeier & Gigerenzer (2001) in an in-person 

classroom setting. The frequency-based, or “representation”, training taught participants to solve 

Bayesian problems by translating probabilities to frequencies and filling in contingency tables 

and tree diagrams with those frequencies. A delayed test that came months after training showed 

a clear advantage for representation training.  

One consistent characteristic of effective visual displays is that they represent 

probabilities with simple spatial features such as length (Wu et al., 2017). Starns, Cohen, Bosco, 
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& Hirst (2018) developed an instructional program for Bayesian inference that capitalizes on this 

spatial advantage. In a six-minute video, participants were taught how to perform approximate 

Bayesian inference using a spatial representation devised by a participant in Gigerenzer and 

Hoffrage (1995). In four laboratory experiments, we showed that undergraduate students can 

quickly learn this spatial method, resulting in a dramatic improvement in their performance on 

Bayesian reasoning problems. A classroom sample also showed clear performance 

improvements after training in this spatial method. 

The Current Project 

The current project explores the potential for using the spatial method from Starns et al. 

(2018) as an instructional aid in statistics courses that cover basic probability concepts. The 

spatial method could have unique advantages that complement the approaches described in the 

previous section. Most critically for the current purposes, the spatial method provides a way to 

demonstrate key probability concepts and have students work through problems without relying 

on equations. Thus, this method provides a more accessible and intuitive introduction to 

Bayesian reasoning and related probability concepts. Although an intuitive understanding is 

valuable in itself, students in a statistics course would also need to learn to work with equations, 

of course. Thus, an important question is whether students can relate an intuitive spatial 

understanding of probability concepts to explicit equations.  

We will focus on a particularly ambitious goal for linking spatial representations and 

equations; specifically, teaching students with the spatial method and then challenging them to 

discover the associated equations in an active-learning exercise. Basic research from psychology 

shows that self-generated information is remembered much better than passively-viewed 

information (Slamecka & Graf, 1978), so students who succeed in discovering the mathematical 
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analogs of the spatial techniques should experience substantial learning benefits. Moreover, pre-

exposure to the spatial representations can help all students meaningfully interpret the symbols in 

equations when they later receive direct instruction on mathematical procedures (see the Linking 

Spatial Representations to Equations section below). Indeed, the opportunity to correct 

misconceptions can provide a rich learning experience even for students who initially apply the 

wrong equations (Wiggins, 1998). Beyond these likely learning benefits, educational research 

shows that students prefer active-learning activities to passive lecturing (Freeman et al., 2014). 

Thus, educators have many good reasons to develop techniques that promote active-learning 

success. 

Starns et al. (2018) report a cursory evaluation of students’ ability to translate the spatial 

method into explicit equations. Specifically, in the last phase of the classroom activity, students 

formed small groups and worked together to try to specify how each step of the spatial technique 

could be translated into a mathematical equation. Over 80% of the groups succeeded, suggesting 

that a meaningful proportion of individual students can discover the mathematics of probabilistic 

reasoning after learning the spatial technique. However, succeeding at the group level requires 

only a single group member with the correct answer, and it is possible that information was 

sometimes shared across groups in this relatively uncontrolled setting. Thus, the classroom 

sample does not rule out the possibility that only a small subset of students discovered the 

required math and relayed this information to their classmates. 

In summary, the results from Starns et al. (2018) highlight the possibility that the spatial 

technique is a good way to promote active learning by presenting initial problems in an intuitive 

format and providing students with a chance to discover the link between these representations 

and the associated equations. Our goals for the current paper are to discuss strategies for using 
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spatial representations in classroom instruction on probability concepts and to test whether a 

substantial proportion of students can independently discover mathematical equations after 

learning the spatial method. To obtain more accurate estimates of the proportion of students who 

can succeed at this task, we assessed individual performance instead of group work in a 

classroom setting.  

In the Instructional Strategies section, we outline techniques for using spatial displays in 

probability instruction. In the Exercises Exploring Active-Learning Success section, we present 

results from two studies that tested whether participants could translate the spatial method into 

equations. Finally, we discuss future directions in the practice of using spatial representations to 

illustrate probability concepts. 

Instructional Strategies 

Probabilistic Reasoning Without Equations  

In this section, we show how spatial representations can help students conceptually 

understand probability concepts before they are confronted with equations. This strategy offers 

educators the opportunity to convey key concepts without eliciting potentially negative reactions 

to mathematical content. For this initial discussion, readers should try to understand the general 

principles without concern for exact mathematical solutions.  

Consider the following problem: 

The police need to find a potential witness to an accident. The witness was seen 

driving a pickup truck, and the police are considering whether or not they should 

focus their search in a nearby rural community. 10% of residents in their 

jurisdiction live in the rural community, and 90% do not. 45% of residents in the 
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rural community drive a pickup truck, compared to 10% of residents who do not 

live in the rural community. 

 In traditional Bayesian reasoning studies, one might be asked to provide the probability that the 

witness lives in the rural area (hypothesis) given that they drive a truck (observation). The 

current study used multiple question prompts in line with our interest in evaluating more basic 

probability concepts in addition to Bayesian inference. For example, in one of our active-

learning exercises we used prompts with the following structure: 

What is the probability that a resident lives in the rural community and drives a 

truck? 

What is the probability that a resident does NOT live in the rural community and 

drives a truck? 

Given that the witness drives a truck, is it more likely that the witness lives in the 

rural community or not?  

How many times more likely?  

Problems of this sort are usually solved by applying equations, but they are also 

amenable to a spatial solution method that could be more intuitive for many people (Starns et al., 

2018). Figure 1 represents the population of residents in this jurisdiction with bar lengths 

corresponding to the information reported in the problem. The total length of the bars shows the 

total proportion of residents who do and do not live in the rural community, 10% and 90%, 

respectively (“~” means “not” in this context). The relative length of the bars shows which 

hypothesis is more likely overall and how many times more likely. Here, it is more likely that a 

resident does not live in the rural area; moreover, this possibility is nine times more likely than 

the possibility that the witness does live in the rural area. In other words, for every resident who 
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lives in the rural community there are nine residents who do not (the Rural bar fits into the Not 

Rural bar nine times). This ratio of two probabilities is a statistical concept called odds, and in 

the context of Bayesian inference this is called the prior odds because it represents a situation 

before new information is learned.  

 

Figure 1. Example showing the spatial method for assessing the hypotheses that a witness 

does or does not live in a rural area (“Rural” and “~Rural”, respectively) based on the 

observation that the witness drives a pickup truck. See text for further details. 

 

Information about the type of vehicle is represented by filling in the bars with the 

proportion of residents who drive a pickup truck, as in Figure 1B. The “Rural” bar is filled to 

45% of its total length, and this filled part represents people who both live in the rural 

community and drive a pickup truck. The “Not Rural” bar is filled to 10% of its total length to 

represent people who do not live in the rural community but do drive a pickup truck. By 

evaluating the length of these filled portions of the bars relative to the full y-axis (that is, all 

residents), one can determine the proportion of residents who live in the rural area and drive a 
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truck (blue filled bar) and the proportion of residents who do not live in the rural area and drive a 

truck (green filled bar). These are the probabilities requested in the first two questions in our 

four-question sequence. 

One can determine which hypothesis is more likely to be true given the observation by 

comparing the length of the filled bars. Here, there are more residents who do not live in the rural 

community and drive a truck than residents who do live in the rural community and drive a truck 

(the bottom filled portion is longer than the top filled portion), so it is more likely that a truck-

driving resident does NOT live in the rural community than that they do (Question 3). The 

relative length of the filled portions shows the posterior odds, i.e., the odds after the observed 

information is considered. In this case, the filled part of the “Not Rural” bar is twice as long as 

the filled part of the “Rural” bar, revealing a posterior odds value of 2:1 in favor of the Not Rural 

hypothesis.  

In summary, although driving a truck is certainly more characteristic of people who live 

in the rural community, this new evidence was not strong enough to overturn the very uneven 

base rates indicating that a small proportion of residents overall live in the rural community. The 

bar display highlights all of the relevant inputs, making it obvious that the relative length of the 

filled bars is influenced by both the length of the original bars and the proportion of each bar that 

is filled. Thus, creating the display discourages common fallacies of probabilistic inference that 

involve disregarding one or more of the relevant factors, like the base-rate fallacy (e.g., Bar-

Hillel, 1980), the prosecutor’s fallacy of confusing the compliment of the false positive rate for 

the posterior probability (Thompson & Shumann, 1987), or simply confusing the true positive 

rate and the posterior probability (Cohen & Staub, 2015; Gigerenzer & Hoffrage, 1995).  
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This spatial display provides a way to help students understand the essence of Bayesian 

inference without using equations: New information changes the odds that a hypothesis is true 

because it rules out some of the possibilities. The full bars represent all possibilities (before new 

information arrives), the open part of the bars represent the possibilities that are ruled out by the 

new information, and the filled part of the bars represent the possibilities that are consistent with 

the new information. In the current example, once the police consider the observation that the 

witness drives a pickup truck, they should disregard all other residents and just focus on pickup 

drivers. That is, updating beliefs in response to the observed information simply means switching 

from looking at the full bars to focusing on just the filled portions. Having a simple spatial 

representation of the logic of Bayesian inference should be particularly helpful for students who 

are unlikely to glean the basic principle just from studying equations. Below, we will discuss 

how elements of the spatial display have a one-to-one mapping to terms in the Bayes Theorem 

equation, but we also wish to emphasize that creating the spatial display can stand alone as an 

(approximate) solution method. 

There are many ways that educators can use this sort of spatial representation to help 

students build an intuition for the purpose and logic of probabilistic reasoning before introducing 

any equations. Here, we will make a few suggestions. Perhaps the most basic strategy is simply 

showing students a number of displays and asking them to provide approximate answers based 

on interpreting the display. This is a good way to quickly go through a number of different 

scenarios, because judging bar lengths takes a lot less time than reading word problems and 

attempting to solve them mathematically. The initial displays could even be presented without 

any corresponding numbers, which encourages students to focus on deeper conceptual aspects of 

the problem situation (Givven, Moroz, Loftus, & Stigler, 2019). To challenge students a bit more, 
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one possibility is to give them verbal descriptions of scenarios and ask them to draw 

corresponding bar displays. The scenarios could be things like “You start out thinking the 

hypothesis is likely to be true but seeing the observation makes you think it is likely to be false” 

or “You start out with no idea whether or not the hypothesis is true or false and seeing the 

observation makes you strongly believe that it is true.” In a large lecture class, this could be 

transformed into a multiple-choice question (“Which of these four bar displays is consistent with 

the given scenario?”) so students could use an electronic student-response system.  

Linking Equations to Spatial Representations  

A major advantage of the spatial technique is that components of the display have a one-

to-one correspondence with elements of Bayes Theorem, the equation for performing Bayesian 

inference. Moreover, elements of the display have a direct link to related probability concepts 

that are standard topics in statistics courses. In this section, we use the pickup-truck example to 

link the spatial method to explicit equations. Our goal is to demonstrate how educators can 

buttress understanding of the equations with a supporting structure that students might find more 

intuitive. Figure 2 shows spatial representations and mathematical notation for four core 

probability concepts: (1) distinguishing marginal, conditional, and joint probabilities; (2) the 

multiplication rule; (3) finding an odds value by dividing probabilities; and (4) Bayesian 

inference. The example starts with the simplest concept in Row 1 and builds in complexity as 

one moves down the rows. 

Marginal probability (Row 1) is the probability of observing one level of a variable out of 

a full population, ignoring all other variables. For example, in Figure 2, P(R) denotes the 

probability of living in the rural community and P(~R) denotes the probability of not living in the 

rural community. These values apply to all residents in the jurisdiction without regard to any 
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other variable (e.g., truck ownership). In the spatial display, marginal probabilities are 

represented by total bar lengths. Here, the “Rural” bar goes to .1 because P(R) = .1 and the “Not 

Rural” bar goes to .9 because P(~R) = .9 (~ means “not” in this context).  

 

Figure 2. Illustration of the link between the spatial method and explicit equations for a range of 

probability concepts, using the pickup-truck problem as an example. Each row introduces a new 

concept with increasing levels of complexity, and the panels in the row show how the concept is 

represented in the spatial display and in mathematical notation. “Rural” and “~Rural” represent the 

hypotheses that the witness does and does not live in a rural area, respectively. See text for details. 
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Conditional probability (Row 2) is the probability of observing a certain level of one 

variable for a given level of another variable. In this case, we need to consider the probability of 

driving a pickup truck (denoted with “T”) given that a resident lives in the rural community, 

P(T|R), and the probability of driving a pickup truck given that a resident does not live in the 

rural community, P(T|~R) (“|” means “given” in this context). The critical concept here is that 

specifying a condition restricts the population to a certain subset. Thus, the axes in these panels 

end at the end of the bars, because we are considering only the residents in the Rural or Not 

Rural categories, respectively. Conditional probabilities are represented by the filled portion of a 

bar. Here, we fill in 45% of the Rural bar because P(T|R) = .45 and 10% of the Not Rural bar 

because P(T|~R) = .10. 

Joint probability (Row 3) is the probability of a combination of multiple variables (e.g., 

both a rural community resident and a pickup truck owner) out of a full set (e.g., all residents). 

The mathematical procedure for finding joint probabilities is called the multiplication rule. Here, 

taking 45% of the 10% of rural residents leaves 4.5% of residents overall who both live in the 

rural community and own a pickup truck [P(T|R)P(R) = .45×.1=.045], and taking 10% of the 

90% of non-rural residents leaves 9% of residents overall who do not live in the rural community 

but do drive a pickup truck [P(T|~R)P(~R) =.1×.9=.09]. Rather than an abstract formula, the bar 

representation translates the multiplication rule into an explicit spatial mechanism. The third row 

of Figure 2 displays the logic of this step by placing the filled bars from Row 2 on the axis 

representing all residents. On this full axis, the filled parts of the “Rural” and “Not Rural” bars 

end at .045 and .09, respectively. Comparing Rows 2 and 3 reveals that the only difference 

between conditional and joint probabilities is the scale. For joint probability, we are back to 
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considering all residents, not just rural or non-rural residents. In other words, we are back on the 

original x-axis.  

One ambitious strategy for capitalizing on the direct link between the spatial 

representation and the equation for the multiplication rule is to show students the spatial method 

for finding a joint probability (fill in a bar representing the marginal probability proportional to 

the conditional probability) and challenge them to figure out how that translates into a 

mathematical equation. The exercises below will investigate whether a substantial proportion of 

students can succeed in this task. Even if an instructor does not want to take this active-learning 

approach, supplementing discussion of the multiplication rule with the spatial technique could 

help students understand why multiplying the marginal and conditional probabilities results in the 

joint probability. In particular, multiplying by a decimal cuts the original value down to a 

proportion of its value. The marginal probability gives the proportion of cases that meet 

Condition A (total bar length) and multiplying by the conditional probability of B given A limits 

this set to just those that also meet Condition B (filled bar length). 

Finally, comparing joint probabilities achieves Bayesian inference, as shown in Rows 4 

and 5. Row 4 puts both hypotheses on the same axis to create the spatial display discussed above 

(Figure 1B). The equations in Row 5 are the odds version (5a) and probability version (5b) of 

Bayes theorem as applied to the pickup-truck example. Notice that both equations are simply 

new arrangements of the joint probabilities from Row 3. Working with only the joint 

probabilities means that we have discarded all of the possibilities that are inconsistent with the 

observed information to create a new reference population (only residents who drive a pickup 

truck). For the left panel, the fact that the Not Rural bar is twice as long as the Rural bar visually 
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displays the posterior odds of 2:1 in favor of the hypothesis that the witness does not live in the 

rural area.  

Mathematically, the posterior odds are calculated by dividing one joint probability by 

another; for example, dividing the joint probability for “Not Rural and Truck Driver” by the joint 

probability for “Rural and Truck Driver” gives the “2:1 against” value evident in the display 

(.09/.045=2). For the right panel, all that has happened is that the Rural and Not Rural joint 

probabilities (the filled bars) are combined on the same axis for comparison. The fact that the 

blue part of the bar goes up to 1/3 on the axis reveals that the posterior probability of Rural is 

1/3, or about 33%. In other words, out of all the residents who drive pickup trucks, 1/3 of them 

live in the rural community. The corresponding equation answers this question: “Out of all the 

residents who drive a pickup truck, what proportion of them live in the rural community?” This 

can be found by dividing the 4.5% of residents who both live in the rural community and drive a 

pickup truck by the 13.5% of residents overall who drive a pickup truck. The latter value is 

found by taking the 4.5% of rural, truck-driving residents and adding in the 9% of non-rural, 

truck-driving residents.  

Again, one strategy for using the link between the spatial display and the Bayes theorem 

equation would be to show students the spatial method of finding posterior odds (look at how 

many times longer one joint-probability bar is than the other) and challenge them to specify the 

corresponding mathematical procedure (divide one joint probability by the other). The exercises 

below test whether a substantial proportion of students can independently discover the math 

required to find the posterior odds after learning the spatial technique. Although not tested here, 

a similar procedure could be used for posterior probabilities to see if students can translate the 

spatial solution method (look at the proportion covered by each joint probability bar when they 
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are stuck together) to an equation-based method (divide each joint probability by the sum of both 

joint probabilities).1 Educators could also decide to forego this active-learning approach but still 

supplement instruction on equations with the spatial representations to help students intuitively 

understand what the equations achieve.  

Active-Learning Exercise 1 

 We have suggested that educators use spatial representations in initial instruction on 

probability concepts and then give students the chance to discover the associated mathematics in 

an active-learning process. We imagine that most educators would only want to attempt this if 

they can expect that a substantial proportion of their students will succeed in the active-learning 

challenge. The goal of this exercise was to test whether or not this is the case. As mentioned 

above, Starns et al. (2018) showed that a strong majority (>80%) of small groups of 

undergraduate statistics students were able to correctly specify the mathematics associated with 

applying the spatial display in an active-learning exercise. This result is promising, but the 

classroom setting makes it difficult to rule out the possibility that only a small subset of students 

succeeded in the active-learning exercise and then shared the information with their peers. 

Accordingly, for the current exercise undergraduate students attempted the active-learning task 

as individuals.  

Exercise 1 was completed as part of author WL-R’s undergraduate honors thesis project. 

College undergraduates were tutored in the spatial method for solving probabilistic reasoning 

problems in one-on-one sessions, and then they completed a “math induction” worksheet that 

presented the visual solution to a problem and asked participants to specify the equations 

                                                      
1 We did not test both posterior odds and posterior probability in the experiments below because they provide 

redundant information; an odds value can be transformed to a probability and vice versa. We focus on odds instead 

of probability because the former is more directly observable in the spatial display. 
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associated with each step. The example problem involved determining the odds that a student 

knows how to read music given that they own an instrument. Similar to the pickup-truck problem 

above, participants were given the base rate of students overall who know how to read music, the 

probability of owning an instrument for students who know how to read music, and the 

probability of owning an instrument for students who do not know how to read music. The 

worksheet also included a bar display for the problem that had the filled parts of the bar labeled 

with letters, as shown in Figure 3.  

 

Figure 3. The problem and bar display on the math induction sheet for Exercise 1. 

 

Participants were asked three questions: “Mathematically, how do you figure out where 

the shaded region of the ‘Read Music’ bar ends on the x-axis (marked by the letter A)?”; 
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“Mathematically, how do you figure out where the shaded region of the “Don’t Read Music” bar 

ends on the x-axis? (marked by the letter B)?”; and “Mathematically, how do you figure out how 

many times longer the shaded region is for ‘Read Music’ than ‘Don’t Read Music’?”. We will 

refer to the first two questions as the “Multiplication Rule” questions and score each participant 

as correctly applying the multiplication rule if they multiply the appropriate marginal and 

conditional probabilities on both questions. We will refer to the third question as the “posterior 

odds” question and score it correct if the participant divides the joint probabilities computed in 

questions 1 and 2. 

Methods 

 Participants. We recruited 23 undergraduate students from the psychology department’s 

participant pool. One participant was removed from analyses because the instructor mistakenly 

revealed the math before the math induction sheet (this was the first participant run by that 

instructor). Participants received extra credit in their psychology classes as remuneration.  

Procedure. The exercise consisted of six steps summarized in Figure 4. Each step was 

presented to participants as an individual worksheet. 



Running head: SPATIAL PROBABILITY 

 

22 

 

Figure 4. Summary of the worksheet sequence in Exercise 2. See text for a description of each 

step. 

 

When participants arrived, they were first asked to read and sign the consent form. The 

form allowed the participants to indicate whether or not they consented to having their session 

audio recorded, and 19 participants granted permission for recording. The primary purpose of the 

recordings was to ensure that proper instruction procedures were followed by the undergraduate 

researchers who conducted the sessions. A graduate student reviewed all of the recordings to 

ensure that the instructor never revealed the math linked to the spatial method before having the 

participant complete the math induction sheet. As mentioned in the Participants section, one 

instructor did reveal the math in the first session that he conducted, and data from this session 

were removed from analyses. The audio recordings are available on the OSF 

(https://osf.io/aq7w3/?view_only=ccb6dc5b367e419facc7965b3a0caaf5). 
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After signing the consent form, participants began the sequence of six worksheets 

summarized in Figure 4. All worksheets involved Bayesian reasoning problems that asked 

participants to assess the hypothesis that a student in a class knows how to read music given the 

observation that the student owns an instrument (scans of responses on all worksheets from all 

participants are available on OSF, 

https://osf.io/aq7w3/?view_only=ccb6dc5b367e419facc7965b3a0caaf5).  

The first and second worksheets asked participants to solve problems without any 

training in order to establish baseline performance. The first worksheet (“Frequency baseline”) 

presented the following problem:  

In a class, 10 of the students know how to read music and 40 do not. 

Out of the 10 who know how to read music, 8 own a musical instrument and 2 do not.  

Out of the 40 who do not know how to read music, 4 own a musical instrument and 36 do 

not. 

Participants reported the prior and posterior odds associated with the problem in four steps. First, 

they were asked to consider a student in the class without knowing whether or not this student 

owned an instrument and select whether the student was more likely to know how to read music 

or not. Second, they were asked how many times more likely the option they selected was than 

the other option. Responses to those two questions together constituted the prior odds. Third, 

they were asked to consider another student in the class who owns an instrument and select 

whether the student was more likely to know or not know how to read music. Fourth, they were 

asked how many times more likely the option they selected was than the other option. Responses 

to the third and fourth questions constituted the posterior odds. After the participant recorded all 

responses, the instructor provided quick feedback on the problem (more formal feedback was 
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provided during the frequency feedback worksheet described below). The feedback simply noted 

the different numbers that need to be compared for any general student from the class and for a 

student who owns an instrument (e.g., “There are 8 students who own an instrument and read 

music and 4 students who own an instrument and do not read music, so there are twice as many 

students who do know how to read music in this set.”). 

The second worksheet (“Probability baseline”) was very similar to the first, except that it 

presented a new problem in probability format: 

10% of the students in a class know how to read music, and 90% do not. 

45% of the students who know how to read music own a musical instrument. 

20% of the students who do not know how to read music own a musical instrument.  

The participants were asked to report the prior and posterior odds that a student from this class 

knows how to read music in the same four-step sequence as the first worksheet. No feedback was 

provided for this worksheet, because answering the probability format questions involved the 

same math that we later tested with the math-induction task.    

After completing the first two worksheets, participants received instruction based on the 

spatial solution method. Instruction began with a feedback sheet that covered the frequency-

format problem from the first worksheet (“Freq. spatial feedback”). The feedback sheet included 

the original problem text along with a bar display representing the problem information. The 

instructor explained that the total bar lengths represented all the students who could and could 

not read music (top and bottom bars, respectively) and the filled parts of the bars represented the 

students who owned an instrument. The instructor reinforced this by pointing out that the end of 

the two full bars and the two filled portions matched the corresponding numbers in the problem 

text. The feedback sheet also had the same questions as the first worksheet, but this time with the 
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answers filled in. The instructor explained how the answers could be discovered by looking at 

the bar display; namely, that the answers to questions 1 and 2 could be found by noting which of 

the two full bars was longer and estimating how many times the shorter bar could fit into the 

longer one and that the answers to questions 3 and 4 could be found by following the same 

procedure with just the filled portions of the bars. Participants were not told how to derive the 

correct answers mathematically. 

Instruction continued with a sheet that presented the same problem as the frequency 

baseline and the frequency feedback sheet, but this time in a probability format (“Prob. spatial 

feedback”). The instructor compared the two problems to show that they contained the same 

information in different formats. The sheet displayed a bar representation of the problem 

information, and the instructor again explained what each component of the display represented. 

The instructor also noted that the bar display looked exactly the same as the one for frequency 

format problem other than a change in the x-axis. The answers were again filled in, and the 

instructor again reviewed the procedure for finding the answers with the bar display. As before, 

the instructor did not provide information on the mathematical equations needed to find the 

correct answers. 

The training culminated with a new probability-format Bayesian inference problem that 

gave participants a chance to implement the spatial solution method with guidance from the 

instructor (“Probability test”). The problem text was at the top of the page, and a blank bar 

display appeared just below it. Participants were asked to draw bars that would represent the 

information in the problem. After their attempt, the instructor helped them correct any mistakes 

they made to create a display that matched the problem, if necessary. The participant then 

answered the same four questions from the previous worksheets using the spatial display, with 
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help from the instructor, if needed. The instructor only provided guidance in applying the spatial 

method to answer the questions. No instruction was provided on how to find the answers with 

mathematical equations. 

Next, participants were asked to complete the math induction worksheet ("Math 

induction”). Participants were shown the same Bayesian problem from worksheet two, but this 

time accompanied with a corresponding bar display. Participants were first asked how to 

mathematically calculate the shaded regions of both the displayed bars; i.e., the joint 

probabilities. Each question had a fill-in-the-blank format, with two blank spaces for the 

numerical components of the equation, one blank space for a mathematical operation (addition, 

subtraction, multiplication, or division), and one blank space for the resulting answer. A correct 

answer required entering the appropriate marginal and conditional probability from the problem 

for the numbers and multiplication for the math operation. We will collectively call the first two 

items the “multiplication rule questions,” and we scored this component as a success if the 

participant entered the correct equation for both items. A third question asked participants to 

write a mathematical equation to find how many times longer one shaded region was than the 

other, i.e., the posterior odds. Here too, the question was given as a fill-in-the-blank format 

requiring numerical values and a mathematical operation. A correct response required entering 

the two joint probabilities calculated in the first two questions for the numerical components and 

entering a division sign for the math operation. We will call the third item the “posterior odds” 

question. 

After the participant completed the math induction sheet, the instructor collected it and 

then explained how to find the correct answers ("Math solution”). The instructor also asked the 
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participant if they had ever seen problems like the ones from the exercise and if so, where they 

had seen them (“Survey”). 

Results 

 As in past research (e.g., Gigerenzer & Hoffrage, 1995), we found higher success rates 

for untrained Bayesian reasoning problems presented in a nested-frequency format compared to a 

conditional-probability format. Specifically, 45% of our participants correctly specified both the 

prior and posterior odds for the frequency-format problem compared to just 14% for the 

probability-format problem. To make inferences about population success rates, we used 

Bayesian parameter estimation with a prior distribution that assigned equal likelihood to all 

probability values (a Beta distribution with shape parameters of 1 and 1). Credible intervals for 

the frequency (90% CI [.30, .62]) and probability (90% CI [.06, .30]) formats did not overlap, 

supporting high confidence that the difference between the two is not attributable to sampling 

variability.  

In contrast to the low success rate for the initial probability-format problem (14%), over 

half (55%) of participants succeeded on all of the math induction questions after learning the 

spatial method. Broken down by question type, 73% of participants succeeded for both of the 

multiplication-rule items and 59% succeeded for the posterior odds item. Bayesian estimates of 

population success rates ruled out the possibility that only a small proportion of students are able 

to succeed in this sort of active learning exercise. Specifically, our results are consistent with 

population success rates of .54 (90% CI [.38, .70]) for correctly answering all math induction 

questions, .71 (90% CI [.55, .85]) for correctly answering the multiplication rule questions, and 

.59 (90% CI [.42, .74]) for correctly answering the posterior odds question. 
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Success rates on the math induction task were encouragingly high. Nearly ¾ of the 

students in Exercise 2 multiplied the appropriate conditional and marginal probabilities to find 

joint probabilities, and inferential tests support high confidence that the population success rate is 

above 50% (.98 of the posterior distribution was above this value). Thus, educators can expect 

that a majority of students will succeed in this aspect of the math-induction task after training in 

the spatial method. Results were not as strong when it came to discovering that one needs to 

divide the joint probabilities to obtain the posterior odds, with a slim majority of students 

succeeding in this task and weaker evidence that the population success rate is above 50% (.80 of 

the posterior distribution was above this value). One of the goals for Exercise 2 was to see if we 

could amend the procedures to increase success rates for the posterior odds question. 

Active-Learning Exercise 2 

We reviewed the session recordings from Exercise 1 to see if we could clarify the process 

of finding the posterior odds based on spatial relationships. The resulting changes are described 

in detail in the Methods section, but for now we will highlight a few of the biggest changes. First, 

the Exercise 2 training phase began with a problem that the instructor (author JMV) solved by 

creating the bar display and noting the spatial relationships needed to answer the questions. The 

instructor carefully explained each component of the display as he created it and emphasized the 

process of estimating the posterior odds by imagining how many copies of the shorter filled 

section could fit into the longer filled section. We hoped that this would help participants 

thoroughly understand each component of the display by seeing the step-by-step process of 

creating the bars as opposed to getting a feedback sheet with the full display already visible as in 

Exercise 1. Second, we asked participants to directly estimate the joint probabilities from the 

spatial display during the spatial training, as opposed to just having them estimate the prior and 
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posterior odds as in Exercise 1. We hoped that having rough values for these components would 

help participants gain insight into how they could mathematically produce the posterior odds that 

they see in the spatial display. 

A secondary goal for Exercise 2 was to estimate baseline performance on the math 

induction task. We designed the math induction task to test whether students can translate the 

spatial method into equations, but doing so involved breaking the problem into steps that are 

each linked to a component of the spatial display. This “road map” might enhance performance 

on its own. This would be important to know, because it would mean that educators can 

implement a successful active-learning procedure without the need to teach the spatial solution 

method (although the spatial method could have other benefits besides supporting successful 

active learning, of course). In Exercise 2, we explored the impact of breaking the problem into 

steps by asking participants the math-induction questions both before and after they learned the 

spatial method.  

 Finally, we added two new assessments to the procedure in Exercise 2. We included a 

problem that participants were challenged to answer by drawing the spatial display without 

guidance from the instructor. This problem allowed us to estimate the proportion of students who 

successfully learned the spatial solution method. Participants also completed a “purely spatial” 

task in which they considered two planks cut down to a percentage of their original length. 

Participants were asked to specify how they could mathematically find (1) the length of the 

remaining part of each plank and (2) how many times longer one remaining section was than the 

other. The goal was to measure their ability to link spatial representations to math equations 

outside the context of a probability question.   

Methods 
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Participants. We obtained data from 29 undergraduate students in the UMass psychology 

department subject pool who had not participated in Exercise 1. All but three of these 

participants consented to have the audio of their session recorded, and the resulting files are 

available on OSF (https://osf.io/aq7w3/?view_only=ccb6dc5b367e419facc7965b3a0caaf5).  

 Procedure. After signing the consent form and indicating whether or not they agreed to 

audio recording, participants completed a series of steps presented as worksheets, as summarized 

in Figure 5. Scans of worksheets from all participants are available on OSF 

(https://osf.io/aq7w3/?view_only=ccb6dc5b367e419facc7965b3a0caaf5). 

 

Figure 5. Summary of the worksheet sequence in Exercise 3. See text for a description of each 

step. 

 

 

https://osf.io/aq7w3/?view_only=ccb6dc5b367e419facc7965b3a0caaf5
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The first worksheet (“Math ind. baseline”, where ind. stand for induction) presented a 

probability-format Bayesian reasoning problem with the same “music reading” scenario used in 

Exercise 2. Participants were asked to specify (1) the math needed to find the proportion of 

students in the class who both know how to read music and own an instrument, (2) the math 

needed to find the proportion of students in the class who don’t know how to read music but do 

own an instrument, (3) whether a student in the class who owned an instrument was more likely 

to know how to read music or not, and (4) the math needed answer the question, “How many 

times more likely is the option you selected on question 3 than the other option?” As in Exercise 

1, there were large boxes to indicate where the participant should fill in numbers and small boxes 

to indicate where they should fill in math operations. After the participant recorded their 

responses, the instructor collected the response sheet without providing feedback of any sort. As 

before, we will refer to the first two questions as the “multiplication rule” questions and score 

this component as correct if the participant correctly multiplies the appropriate conditional and 

marginal probabilities for both questions, and we will refer to the last two questions as the 

“posterior odds” question and score this component as correct if the participant correctly selects 

the more likely hypothesis and divides the joint probabilities that they calculated above to answer 

“How many times more likely?”   

The second worksheet (“Spatial baseline”) introduced a new problem that described a 

carpenter cutting two planks of wood to a proportion of their original length in order to complete 

a construction project. The goal was to measure the participant’s ability to link spatial 

representations to math equations outside the context of a probability question. The problem was 

presented numerically to participants in a fashion analogous to the first worksheet, with numbers 

provided for the original length of each plank and the proportion of each plank that remained 
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after they were cut. Participants also saw a bar display that represented the problem visually. The 

instructor read through the problem and briefly described how the content of the problem was 

represented on the visualization, describing only the basic components of the bar display such as 

the axis labels and legend. The participants were given no instructions on how to utilize the bar 

display to answer any of the worksheet’s questions but were encouraged to use the display as a 

tool to assist in their answering. After the instructions from the instructor, participants answered 

four questions that were analogous to those on the first worksheet. Once complete, the worksheet 

was set aside, and participants were given no feedback on whether their answers were correct.   

Beginning with the third worksheet (“Bar method demo”), the participants learned how to 

construct and use the bar display. The participants were shown a worksheet that presented the 

same Bayesian reasoning problem from the first worksheet and were told that the instructor 

would draw a bar display to represent the information visually. For their role in the drawing, the 

participants were asked to follow along as the instructor created the bar display by hand and were 

encouraged to ask questions at any point during the instructions. The instructor identified each 

component of the Bayesian reasoning problem as he drew the bars and emphasized that all of the 

information given in the problem was explicitly highlighted in the visualization itself. Once the 

bar display was complete, the instructor demonstrated how each of the four questions from the 

first worksheet could be answered through estimations obtained from the visual. For example, 

the joint probability could be estimated by examining the length of the shaded region of each bar 

relative to the x-axis, and the posterior odds could be estimated by assessing spatially how many 

times longer one shaded region was compared to the other. Participants received no instruction 

on how to solve the problem with equations.  
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The fourth worksheet (“Bar method guided”) was again instructional and followed a 

format similar to the previous sheet, except that participants were tasked with verbally explaining 

how estimations for each of the four questions could be achieved using the bar display. For this 

worksheet, a new Bayesian reasoning problem was introduced and a bar display representing the 

new problem was created by the instructor. The instructor then read aloud each of the four 

questions and asked the participants to verbally explain how to approximately answer each 

question using the display. The participants were encouraged to fully explain their answers and 

to physically point to parts of the bar display that they were using to obtain each answer. The 

purpose of such verbalization was to test the participant’s understanding of the bar display and to 

provide an opportunity for additional clarification if the participants were struggling to 

understand components of the display. Again, no indication was given as to how each answer 

could be obtained mathematically.  

Following instruction, the participant completed a new Bayesian reasoning problem in a 

two-worksheet sequence. First, they worked the problem on their own using the spatial method 

(“Bar method test”). This worksheet presented the problem text and asked participants to draw a 

bar display representing the problem. The instructor checked the display to ensure that it 

matched the problem information (all participants drew the display correctly without further 

guidance). After drawing the display, participants were asked to report the joint probabilities and 

posterior odds with the same four-question sequence as the “Bar method demo” and “Bar method 

guided” worksheets. No feedback was provided on their responses. When they finished, they 

were given the math-induction worksheet with the same problem text as the last worksheet 

(“Math ind. post-test I”). The instructor explained to the participant that they were going to work 

the same problem again, but this time they were going to attempt to solve it with equations 
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instead of the spatial method. This post-training math induction sheet had the same questions and 

response options as the baseline math induction sheet (but not the same numbers in the problem). 

The instructor also gave the participant a sheet displaying a computer-generated figure of the 

correct bar display to use as a reference. 

The final worksheet (“Math ind. post-test II”) provided a second chance to answer the 

math induction questions and was only administered to participants who responded incorrectly 

on Math ind. post-test I. This worksheet was identical the previous one, except that the bar 

display was labeled to show which aspect of the display mapped to each math induction 

question. The participants were asked to double-check that their answers corresponded 

appropriately to the bar display. Each question was given a letter identification that corresponded 

to the labels on the bar display. In this way, the participants were prompted to remember how to 

estimate answers using the bar display and encouraged to use those estimations to reevaluate 

their mathematical answers.  

We used two versions of the task, where Version B was created by taking Version A and 

switching the problem used before training on the “Math ind. baseline” and “Bar method guided” 

worksheets with the problem used after training on the “Bar method test” and “Math ind. post-

test” worksheets. We alternated versions across subjects, and ended up with 15 and 14 

participants run with Version A and B, respectively.  

Results 

Our primary interest was the math induction success rates before and after training (from 

“Math ind. baseline” to “Math ind. post-test I” on Figure 5). Generally, success rates were pretty 

high even before training and increased after participants learned the spatial task. Specifically, 

success rates for correctly answering all components of the math induction sheet went from 41% 
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to 69%, success rates for correctly answering both of the multiplication rule questions went from 

59% to 76%, and success rates for correctly answering the posterior odds question went from 

55% to 86%.  

We used a multinomial model to estimate the proportion of students in the overall 

population who will succeed (“S”) and fail (“F”) on the math induction task before and after 

spatial training, creating four mutually exclusive categories (F-F, F-S, S-F, S-S). We used a 

Dirichlet distribution to define uncertainty in the multinomial parameters for the proportion of 

participants in each of the four categories, and we set all shape parameters to 1 for the prior 

distribution. Thus, our posterior distributions reflect only information from our sample. We 

combined the S-F and S-S categories to estimate success rates before training and the F-S and S-

S categories to define success rates after training. 

 

Figure 6. Posterior distributions for the effect of spatial training; that is, the difference in 

success rates between pre- and post-training math induction tasks. The three histograms show 

three different criteria for success: answering all of the math induction questions correctly, 
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answering the two multiplication rule questions correctly, and answering the posterior odds 

question correctly. The dashed vertical lines show 90% credible intervals. 

 

Figure 6 shows posterior distributions for the training effect (post-training minus pre-

training success rates) where success is defined either by answering all of the math induction 

questions, by answering just the multiplication-rule questions, or by answering just the posterior-

odds question. In all cases, the lower limit of the credible interval is above zero, indicating a high 

probability (over 95%) of positive training effects at the population level. Point estimates for the 

training effect indicated a meaningful effect size, and suggested that learning the spatial 

technique increases student success rates by 24 percentage points for the “complete success” 

measure, 15 percentage points for the multiplication rule questions, and 27 percentage points for 

the posterior odds question.   

As described in the procedure, we gave participants who erred on the math induction 

post-test a second chance with two added advantages: (1) a spatial display that more clearly 

linked elements of the display to the math induction problems, and (2) instructions to make sure 

that their math-derived answers match what they see on the spatial display (Math ind. post-test II 

on Figure 5). We did not see evidence that this additional prompting is a substantial help for the 

students who initially failed the math induction exercise. In fact, there was only one participant 

who recovered after an initial incorrect response for the multiplication rule questions and only 

one (separate) participant who recovered after an initial incorrect response for the posterior odds 

question.  

Exercise 2 included a problem that participants were asked to solve using the spatial 

method without help from the instructor (Spatial test on Figure 5). To assess how well they 
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learned the spatial method, we scored whether they drew a bar display that correctly represented 

the problem information, whether they accurately estimated both joint probabilities (to within .05 

of the true values), and whether they accurately estimated the posterior odds (to within 1 of the 

true value).2 Results showed that participants were very successful in learning to use the spatial 

method. Every participant drew the bars in a way that accurately represented the problem 

information. We also observed a 100% success rate for estimating the value of both joint 

probabilities from the display. For the posterior odds, 93% of participants (all but 2) made 

accurate estimates. 

The plank-task results showed that, before the spatial training, about half of the 

participants were able to map spatial relationships to math equations. We observed that 51% of 

participants answered all of the questions correctly, 62% were able to calculate the length of the 

remaining portion of both planks, and 62% were able to figure out that they needed to divide to 

figure out how many times longer one remaining portion was than the other.  

Four participants who were scored as incorrect on the multiplication rule question 

subtracted the unfilled portion of each bar from the total length of the bar to get the correct 

values for the joint probabilities. Thus, the response was technically correct, but we scored it as 

incorrect because the unfilled portion of the bars was not given as a number in the problem, 

meaning that they relied on the visualization, and not an equation, to get part of their answer. It is 

possible that some or all of these participants would have applied the multiplication rule if we 

had clarified that they cannot use any numbers that they estimated from the display, but instead 

could only use numbers reported in the problem or calculated in a previous step. 

                                                      
2 We used each participant’s estimates of the joint probabilities to define the correct posterior odds. We did this to 

accommodate variation in how participants drew the spatial display, with the rationale that their own responses carry 

the best information about what they are seeing on the display they created. 
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The key finding from Exercise 3 is that our revised procedures succeeded in increasing 

post-training success rates for the posterior odds portion of the math induction task. Indeed, 

Exercise 3 produced the highest success rates for all aspects of the task, and the results suggest 

that a strong majority of students can succeed in actively discovering the mathematical principles 

of Bayes theorem and related probability concepts. We also saw a clear increase in success rates 

from before to after spatial training on all aspects of the math induction task. 

Discussion 

 We explored ways that a spatial technique for solving Bayesian inference problems could 

be used to teach probability concepts. We showed that elements of the spatial display have a one-

to-one mapping to important equations underlying probabilistic reasoning, and we suggested that 

educators could use the parallel representations to promote active learning by challenging students 

to discover these equations after learning a spatial method for approximating the desired quantities. 

To explore the viability of this suggestion, we ran two tutoring exercises to estimate the proportion 

of students who can succeed in the active learning exercise.  

One aspect of the math-induction task involved discovering the multiplication rule for 

finding the joint probability that a hypothesis is true and an observation is made. The participants 

practiced approximating this quantity by creating one bar that represented the marginal or prior 

probability of the hypothesis, P(H), and filling in this bar proportional to the conditional 

probability of the observation given the hypothesis, P(O|H), and we tested their ability to translate 

this spatial method into explicit equations. Success rates for correctly applying the multiplication 

rule were over 70% in both exercises. Thus, we have strong evidence that the majority of students 

are capable of discovering this mathematical principle after learning an analogous spatial method. 

Moreover, success rates were just under 60% even before the visual training in the Exercise 2 math 
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induction baseline, which is further encouragement for an active learning approach to teaching this 

concept. Finally, our results supported a strong inference that multiplication rule performance 

increased after the spatial training even though it started from a fairly high baseline, so teachers 

can expect that using the spatial representation will help more of their students succeed in actively 

discovering the multiplication rule. 

The fairly high success rate that the we observed for baseline multiplication rule 

performance contrasts with the low untrained performance on Bayesian inference problems, which 

is generally around 4% (McDowell & Jacobs, 2017) and was 14% in our Exercise 1. This suggests 

that untrained students can achieve much higher success rates when asked to apply isolated 

components of Bayesian inference compared to when they are asked to combine components 

without guidance on individual steps.  

Another aspect of the math-induction task involved finding the posterior odds that a 

hypothesis is true given an observation – that is, dividing the joint probability that the hypothesis 

is true and the observation is made by the joint probability that the hypothesis is false and the 

observation is made. Students learned to approximate this value by comparing the length of the 

filled portion of the two bars in the spatial display, and then they were challenged to specify an 

equation that corresponded to this spatial comparison. We observed that 59% of students 

succeeded in this active learning task in Exercise 1, and we designed Exercise 2 to try to improve 

success rates by showing students the step-by-step process of creating the bar display and by 

emphasizing the process of estimating posterior odds. These changes appeared to be successful, as 

we observed a success rate of 86% after spatial training in Exercise 2.   

 Overall, our results demonstrate that spatially-guided active-learning exercises will be 

successful for many students. This is significant for educators, because self-generated information 
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is remembered substantially better than passively received information (Slamecka & Graf, 1978) 

and students report preferring active-learning exercises over standard lecturing (Freeman et al., 

2014). Moreover, all students will learn an independent solution method that the instructor can use 

to provide insight into the structure of the equations as learning progresses. In Exercise 2, we tested 

participants’ ability to implement the spatial technique on their own after a brief instruction phase 

in which the instructor demonstrated the technique for two other problems. The vast majority of 

participants (93%) correctly applied the technique to estimate both the joint probabilities and the 

posterior odds for a Bayesian inference problem, demonstrating that instruction with spatial 

representations has tangible benefits even for students who do not succeed in translating them into 

explicit equations. 

Exercise 2 produced the highest math induction success rates, so we recommend that 

educators emulate the Exercise 2 procedure when designing active-learning exercises. 

Specifically, we recommend that educators allow students to see the steps involved in creating the 

spatial display with a clear description of what each new element of the display represents. This 

could be achieved by drawing the display on the board or with staged slides showing a computer-

generated display with a new component appearing on each new slide. For practice problems, we 

also recommend getting explicit confirmation from students about what components of the display 

they are using and why. This would ideally be an explicit part of answering the problem, e.g., 

“Circle the part of the bar display you used to estimate the proportion of students in the class who 

both know how to read music and own an instrument.” 

Math-Induction Mechanisms 

 The current exercises were designed to test whether an active learning approach is viable 

for educators, not to explore the theoretical processes involved in our math-induction task. Our 
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results suggest that many students will succeed in active learning supported by spatial 

representations, but future investigations are needed to explore how the spatial training promotes 

success in math induction. Some of the underlying processes might be fairly prosaic, and might 

not rely on the spatial nature of our solution method. In this section, we discuss two of these general 

factors.  

Linking the spatial display to explicit mathematics involves breaking the Bayes theorem 

equation into steps that correspond to identifiable elements of the display. Exercise 2 suggests that 

this “road map” to finding a solution is beneficial in itself. With the problem broken down into 

steps, 41% of participants were able to specify the correct math for all steps even before they 

learned the spatial method. This number is well above the expected rate of solving probability-

format Bayesian reasoning problems for untrained participants, which is typically below 10% 

(McDowell & Jacobs, 2017) and was 14% for the probability-baseline problem in our Exercise 1. 

Although our Exercise 2 baseline performance was impressively high for untrained participants, 

training in the spatial method substantially increased success rates, with 69% of participants able 

to specify the correct math for all steps by the end of the session. So the results strongly suggest 

that the spatial training is useful for helping students gain insight into the mathematical principles 

of Bayes theorem and related probability concepts. Also, the spatial display provides a way to 

show students why those steps are part of finding a solution, helping them understand how the 

step-by-step procedure relates to the larger goal of inferring what is likely to be true based on 

probabilistic information. 

 Our active learning procedure also gives students a chance to work through problems and 

get approximate answers without having to learn equations. This opportunity to solve practice 

problems could play a role in the observed success on the math-induction task. Past results suggest 
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that college students are unlikely to figure out how to solve Bayesian reasoning problems just from 

repeated practice, even when they complete dozens of problems and receive feedback on the 

correct answer after each problem (e.g., Starns et al., 2018). However, it is possible that direct 

experience with example problems is more beneficial for our math-induction task because it 

isolates individual steps in the solution process. The role of general practice effects is an interesting 

topic for future theoretical experiments. For now, we note that attributing performance gains to 

practice effects would not detract from the value of the spatial method as an instructional tool. 

Indeed, one of the key benefits of the method is that is gives students a quick, intuitive way to 

perform approximate probabilistic reasoning before they are confronted with equations, so it 

provides a meaningful way for them to practice applying probability concepts. We doubt that 

students would respond positively to being confronted with multiple practice problems without 

knowing any method for answering them. The spatial method gives students a way to work practice 

problems without denying them the opportunity to independently discover the necessary equations 

as an active learning exercise. We are not aware of any other method that gives students a way to 

solve probability problems without teaching them any explicit equations, but if such methods are 

developed it will be interesting to compare them to the spatial method. 

 In summary, we acknowledge that factors like breaking the solution procedure into 

meaningful steps and experiencing practice problems are not uniquely tied to the spatial method, 

but the method provides a way to harness these benefits while also illustrating concepts in a format 

that some students might find more intuitive. Our results demonstrate that the method is a 

promising tool for educators, and this is true regardless of which specific underlying mechanisms 

support performance on the math-induction task. 

Future Directions 
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 Classroom Applications. The spatial method discussed here could be expanded in many 

ways in future research and application. One important question is how the spatial method 

compares to alternative teaching approaches in the classroom, both in terms of students’ initial 

learning experiences and the durability of their learning. We are beginning to address this question 

with a multiple-year classroom study. Another important question is whether students who fail to 

discover the correct math after learning the spatial technique could succeed with another active 

learning strategy. An optimal curriculum will likely need to incorporate a number of different ways 

to represent the same concept and explain the logic of solution procedures. The current results 

show that spatial methods are a useful element of this toolkit. Yet another future goal is to explore 

how spatial representations can help students understand more complex applications of Bayesian 

inference, such as parameter estimation. 

 Our goal was to estimate the proportion of students who are able to transfer a spatial 

solution method into explicit equations when working independently, and as a result, we also had 

students who received individual instruction on the spatial method. Using individual instruction 

potentially limits the external validity of the current results, as group instruction is more common 

in classrooms. Although we acknowledge the need for more exploration of our active learning 

approach in a group setting, Starns et al. (2018) reported one example of successful classroom-

based application. When Starns et al. is considered together with the current results, we have 

evidence that our techniques can work in real classrooms as a group assignment and evidence that 

a high proportion of students can discover the equations independently. As such, we would expect 

to find high rates of success with group instruction followed by individual work on the math 

induction task, and we will explore this in future studies. In addition to further classroom work, 

another potential future direction is to develop a computerized “virtual tutor” system that students 
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complete independently as a homework assignment, ideally one that adapts to the needs of 

individual students by tracking their accuracy at each step of the active-learning process. 

An important goal for future research is exploring how the spatial method interacts with 

student characteristics. Unlike alternative visual displays, such as contingency tables and tree 

diagrams, the bars represent information both numerically and spatially. This dual representation 

could be especially beneficial for students who struggle with math or have negative attitudes about 

math, potentially helping a more diverse range of students succeed in fields with heavy statistical 

requirements.  

 Frequency versus Probability. Past research shows that untrained participants are more 

likely to solve Bayesian inference problems in a nested-frequency format than a probability format 

(Gigerenzer & Hoffrage, 1995; McDowell & Jacobs, 2017). We replicated this pattern in Exercise 

2, with participants achieving solution rates of 45% and 14% for the untrained frequency- and 

probability-format problems, respectively. Our primary goal is helping students understand 

probability and statistical reasoning, so we have focused on whether participants can discover the 

math for probability-format problems. Generally, statistics instructors will also want their students 

to be able to work directly with probabilities, of course. That said, linking the nested-frequency 

and probability formats might enhance the success of an active learning approach by capitalizing 

on peoples’ keener intuition for the nested-frequency format. Starns et al. (2018) showed how the 

bar display could be used to translate between frequency and probability formats by demonstrating 

to students that the spatial relationships of the display components are exactly the same for the two 

formats. Future studies can evaluate whether spatial representations help students recognize the 

shared features of frequency and probability formats. 

Conclusion 
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 Probabilistic reasoning is a fundamental skill for many STEM fields and the backbone of 

statistical inference. Given the well-documented learning benefits of self-generation (Slamecka & 

Graf, 1978) and the educational benefits of promoting active learning (Freeman et al., 2014), we 

have attempted to develop techniques that allow students to independently discover the equations 

associated with important probability concepts by analogy to a spatial solution method. Our results 

suggest that the majority of students can specify the mathematical steps required to find a joint 

probability, calculate an odds value, and apply Bayes theorem after learning a spatial method for 

approximating the solution to probability problems.  
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