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Abstract

The paper studies asymptotics of inhomogeneous integral functionals of an ergodic diffusion process
under the effect of discretization. Convergence to the corresponding functionals of the invariant dis-
tribution is shown for suitably chosen discretization steps, and the fluctuations are analyzed through
central limit theorem and moderate deviation principle. The results will be particularly useful for
understanding accuracy of an Euler discretization based numerical scheme for approximating func-
tionals of invariant distribution of an ergodic diffusion. This is an infinite-time horizon problem,
and the accuracy of numerical schemes in this context are comparatively much less studied than
the ones used for generating approximate trajectories of diffusions over finite time intervals. The
potential applications of these results also extend to other areas including mathematical physics, pa-
rameter inference of ergodic diffusions and analysis of multiscale dynamical systems with averaging.
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1 Introduction.

Consider the stochastic differential equation (SDE) driven by Brownian motion B

X(t) = x0 +

∫ t

0
b(X(s))ds+

∫ t

0
σ(X(s))dB(s), x0 ∈ Rd, (1.1)

which we assume to be ergodic with invariant distribution π. Suppose one is interested in estimation
of π. Of course, π satisfies the stationary Kolmogorv forward equation, L∗π = 0, in the weak sense,
where L∗ is the adjoint of the generator L of X given by

Lg(x) =
∑
i

bi(x)∂ig(x) +
1

2

∑
ij

aij(x)∂ijg(x), g ∈ C2(Rd,R). (1.2)

Here a = σσT . But since the above partial differential equation (PDE) is almost always difficult
to solve in closed form or even numerically (when d > 3), a probabilistic approach is often the
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most efficient one. This requires the ergodic theorem, which, under some standard conditions states

that ε

∫ 1/ε

0
f(X(s))ds

ε→0−→ π(f)
.
=

∫
Rd
f(x)dπ(x) a.s, and a disctretization scheme, most commonly

Euler-Maruyama method. Specifically, the integral π(f) is approximated by a Riemann sum, π̂∆̂
ε (f)

.
=

1
Nε

∑Nε
k=1 f(Ẑ(t̂k)), where Nε = [(ε∆̂)−1] and

Ẑ(t̂k+1) = Ẑ(t̂k) + b(Ẑ(t̂k))∆̂ + σ(Ẑ(t̂k))(W (t̂k+1)−W (t̂k)), t̂k+1 − t̂k = ∆̂.

Obviously, for such a scheme to be accurate, Nε and ∆̂ have to be large and small, respectively. But
the right choices of ∆̂ and Nε(or equivalently, ε) are often not obvious for many models.

Euler-Maruyama schemes for simulating trajectories of X and estimates for weak and strong error
over finite time intervals have been extensively studied, and we mention only a few comprehensive
surveys and books for references [18, 31, 16, 12] (also see [1] for error analysis of Euler approximation
for density-dependent jump Markov process). In comparison, much less is available on theoretical
error analysis of its use in approximation of invariant measure for ergodic diffusions. To understand
the issues here, note that although the error between X and Ẑ over a fixed time interval [0, T ] is
typically O(∆̂) (weak error order), for many stochastic models, the constant involved grows with T .
Thus, for these types of infinite-time horizon problems such estimates can lead to useless infinite error

bound for the error, π̂∆̂
ε (f)− π(f), for a fixed discretization step ∆̂ !

This shows that much care has to be taken for a rigorous error analysis, and important early results

in this context were obtained by Talay [33, 34, 32]. The discretized chain {Ẑ ≡ Ẑ∆̂(tk)}, under some

regularity conditions, will have an invariant distribution π∆̂, and the total error can be split as

π̂∆̂
ε (f)− π(f) =

(
π̂∆̂
ε (f)− π∆̂(f)

)
+
(
π∆̂(f)− π(f)

)
, π̂∆̂

ε (f)
.
=

1

Nε

Nε∑
k=1

f(Ẑ(t̂k))
ε→0−→ π∆̂(f).

The second error is ‘purely’ due to the discretization step, while the first depends on the integration
time interval [0, 1/ε]. Talay provides L1-type estimates on the second error in terms of ∆ in [33] and
[34], and notes that the first term is quite hard to estimate (also see [32]). But even the estimate on
the second error term is given under some strict conditions, which in particular include boundedness
of the derivatives (of all order) of coefficients. For many stochastic models, where the drift terms
satisfy a recurrence condition, the boundedness assumption on the derivatives of drift could restrict
applications of such a result. For SDEs on torus, Mattingly etal. [25] gives estimates on the Lp-error
terms in terms of both Nε (or equivalently, ε) and ∆̂ (also see [24] for some results in the case of
additive noise), but the extension of these results to non-compact case is highly non-trivial.

The goal of the paper is to understand a proper scaling between ε (measuring inverse of time
horizon) and the discretization step ∆̂ ≡ ∆̂(ε) for a complete error analysis, which will then lead to
improved design of numerical schemes. Instead of looking at Lp-type error estimates, our study will be

on asymptotics of the error probabilities of the form P
(

1
δ(ε) |π̂

∆̂
ε (f)− π(f)| > κ

)
for different scaling

regimes controlled by δ(ε). δ(ε) =
√
ε is of course the central limit theorem (CLT)-scaling, and if

the estimator is good (due to the proper scaling of ∆̂ ≡ ∆̂(ε) and ε), then for regimes: δ(ε) �
√
ε

(in the sense,
√
ε/δ(ε) → 0), we should expect exponential decay of these probabilities. The latter

regime falls under the purview of moderate deviation principle (MDP). The use of large or moderate
deviations in error analysis of these estimators, which we consider to be an interesting feature of our
work, provides more insight than typical Lp-error bounds. It should be noted that exponential decay
of error probabilities (in the right regimes) is not possible to deduce from Lp-error bounds. More
importantly, in contrast to these error bounds (which can be suboptimal), the presence of both upper
and lower bounds in a moderate deviation principle implies that the decay rate is optimal (for the
given numerical scheme). In fact, large and moderate deviation analyses yield a precise expression of
the rate of exponential decay, as opposed to Lp-error bounds which involve unknown constants. Thus
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they can potentially be powerful methods to compare between different numerical schemes.
We now briefly describe the results in the paper and make some comments about the mathematical

technicalities. In this paper, we actually work under the transformation t → t/ε. A simple change
of variable formula shows that the dynamics of X(·/ε) is given by the SDE (2.2), in the sense that
its distribution is same as that of, Xε, the solution of (2.2). Consequently,

∫ 1
0 f(Xε(s))ds → π(f) as

ε → 0. Letting Zε denote the (continuous) Euler approximation of Xε (see (2.3)) corresponding to

the discretization step ∆ ≡ ∆(ε), we study the asymptotics of 1
δ(ε)

(∫ 1
0 f(Zε(s))− π(f)

)
. It should

be noted that the transformation t → t/ε is used for certain technical conveniences only. The two
formulations are same mathematically, and so are any numerical schemes based on discretization of

(1.1) or (2.2). Indeed, ∆̂, introduced previously, is related to ∆ by ∆̂ = ∆/ε and Zε(·) dist= Ẑ(·/ε). Our
paper actually addresses the problem in more generality by considering (a) inhomogeneous integral
functionals of the form

∫ ·
0 f(s, Zε(s))ds (that is, we allow f to depend explicitly on time t as well), and

(b) proving the CLT and MDP for
∫ ·

0 f(s, Zε(s))ds at a process level (c.f. Theorem 2.7 and Theorem
2.9). Inhomogeneous functionals are more difficult to handle, especially, when differentiability is not
assumed in the time variable, but they arise naturally in various applications including statistical
inference of SDEs and averaging of certain multiscale systems with a fast diffusion component.

The MDP is proved by the weak convergence approach [7, 3, 4, 5, 6, 8] which in particular helped
us to avoid some complicated exponential probability estimates which are particularly hard to obtain
for our Euler approximation problem. This approach requires careful study of the tightness of certain
associated controlled processes. Similar versions of many estimates that have been developed for
studying the above tightness problem, are also used in the simpler uncontrolled setting for proving the
CLT result. The latter proofs are much simpler and are therefore omitted with only the important
changes being been pointed out. A crucial role in the tightness problem is played by the solution
of the Poisson equation Lu = −f, and its regularity properties. Many of the results which provide
sufficient conditions for this required regularity properties can be found in the work of Pardoux and
Veretennikov [29] (also see [30]). However, we do note that, although not explicitly mentioned in [29],
the proof of the estimate on the growth rate of the derivative of the solution of the Poisson equation
requires the drift b to be bounded – a condition which is restrictive for ergodic diffusions (e.g. even
for Ornstein-Uhlenbeck process b(x) ∼ −x) - see Remark A.1. In the appendix we note how a slightly
modified version of these results cover the case for b having some growth properties.

A different kind of numerical scheme and related error analysis for approximation of invariant
measure has been studied in a series of papers [21, 22, 26, 27, 28]. There, a weighted estimator of the
form

∑N
k=1wkf(Yk)/

∑N
k=1wk is considered where {Yk} is a Markov chain obtained by discretizing the

SDE (1.1) with decreasing time step ∆k such that ∆k → 0 as k →∞,
∑N

k=1 ∆k →∞,
∑N

k=1wk →∞
as N → ∞. In contrast, our ∆ does not change with iteration step k, but is suitably scaled with N
(≡ Nε, as per our notations). Although the convergence of the numerical scheme is shown for a broad
class of functions (like our paper), a CLT for the error is proved for a smaller class of test functions of
the form Lϕ, with ϕ satisfying several conditions including requirement of bounded derivatives up to
second or higher order. Moderate deviation analysis has not been undertaken in any of these papers,
and all the results are only for homogeneous functionals.

Interestingly, but not surprisingly, the machineries which we develop here (actually, in their much
simplified versions) also prove an MDP of the inhomogeneous integral functionals of the original process
Xε ( see Theorem 2.11). This, by itself, is an interesting problem, homogeneous version of which has
been studied in quite a few papers [23, 14] using different methods. For the inhomogeneous case,
to the best of our knowledge there exist only one paper [15] on moderate deviation problem, which
assumes that f is bounded (also see [13]). The weak convergence approach allows us to lift some of
the restrictive conditions including boundedness of f in [15] and stronger ergodicity conditions in [14].

Although we motivated the usefulness of these results in terms of approximations of functionals
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of the invariant distribution, π, when π is unknown or complicated, these results will also be poten-
tially useful in many other contexts including mathematical physics, multiscale systems and statistical
inference of SDEs (where estimators of parameters are often functions of certain integral functionals
- see[2, 20]). The rest of the paper is organized as follows. In Section 2.1, we give the mathemati-
cal formulation of our model and the statements of our main results. The variational representation
and the controlled process underlying the weak convergence approach to LDP have been described in
Section 2.2. Section 3 gives equivalent forms of the MDP rate functions which are useful in proving
upper and lower bounds, and which are proved, respectively, in Section 5.2 and Section 6. Estimates
and related tightness results required for these proofs are discussed in Section 4 and the beginning of
Section 5. The proof of CLT is given in Section 5.1. Finally, the Appendix collects some necessary
technical lemmas.
Notation: The following mathematical notation and conventions will be used in the paper. a ∨ b and
a∧ b will respectively denote max{a, b} and min{a, b}. For a Polish space S, we denote by P(S) (resp.
MF (S)) the space of probability measures (resp. finite measures) on S equipped with the topology
of weak convergence. We denote by Cb(S) the space of real continuous and bounded functions on S,
and by C1

b (S) the space of bounded Lipschitz continuous functions on S. The space of continuous
functions from [0, T ] to S, equipped with the uniform topology, will be denoted as C([0, T ] : S). For
a bounded Rd valued function g on S, we define ‖g‖∞ = supx∈S ‖g(x)‖. For a measure ν on S, and
an integrable function g : S → Rk, ν(g) =

∫
S g(x)ν(dx). For x ∈ Rk, ‖x‖ will denote its Euclidean

norm. For a matrix M , ‖M‖ will denote some appropriate matrix norm. Since we are working in
finite-dimensions, and all norms are equivalent, we will not explicitly mention which norms are used,
unless it is required. For g : Rd → Rk, Dg will denote its derivative matrix, that is, the l-th row is
given by (Dg)l∗ = ∇gl. D2g will denote its second derivative, that is, (D2g)lij = ∂2

ijgl. The big O
and little o notations will be used sometimes. That is f(x) = O(g(x)) as x → a if |f(x)| 6 C|g(x)|
for |x − a| 6 κ for some constants C and κ, or if a = ∞, then for x > B for some constant B (or
equivalently, lim supx→a |f(x)/g(x)| < ∞). Similarly, f(x) = o(g(x)) as x → a if |f(x)/g(x)| → 0,
as x → a. These notations will be used mostly for the limiting regimes x → ∞ and ε → 0, and the
regime intended for such a use of big O or little o notation will be clear from the context. Sometimes,
f(x) ∼ g(x) will be used to mean that f and g have same rate of growth, that is, f(x) = O(g(x)) and
g(x) = O(f(x)). This symbol will only be used informally for illustration purposes.
Convention: If p0 > 0, and a function g : Rd → Rn satisfies ‖g(x)‖ 6 C(1 + ‖x‖)p0 , then by a slight
abuse of notation, we will use the same constant C to write, when needed, ‖g(x)‖ 6 C(1 + ‖x‖p0).

2 Mathematical framework and some prerequisites

2.1 Formulation and main results

Throughout, we will assume that (a) the SDE (1.1) admits a (pathwise) unique strong solution Xε,
and (b) the solution X of (1.1) has a unique stationary / invariant distribution π.

Existence and uniqueness of solutions, of course holds under a variety of conditions on the co-
efficients, the most common being Lipschitz continuity. Existence of unique stationary distribution,
for example, holds under a recurrence condition like Condition 2.1-(i) and uniform ellipticity and
boundedness of a(x) = σ(x)σT (x). In fact, in this case X is geometrically ergodic [35, 29]; specifically,

‖Pt(x, ·)− π‖TV 6 Θ exp (θ1‖x‖) exp(−θ2t),

∫
Rd

exp(θ1‖x‖)π(dx) <∞,

for some constants Θ, θ1, θ2. Here Pt(x, ·) denotes the transition probability kernel and ‖ · ‖TV denotes
the total variation norm.

Although the assumption of uniform ellipticity and boundedness of a = σσT is typical and quite
commonly found in the literature for results involving stationary distribution of SDEs, we do not
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impose such conditions on the diffusion coefficient σ, and directly work under the assumption that
a unique stationary distribution exists. This allows us to present our results in a bit more general
framework and increases their applicability to potentially bigger class of ergodic SDEs where such
restrictions might not necessarily hold (for example, Cox-Ingersoll model - see Example A.5).

The following conditions on the coefficients b : Rd → Rd and σ : Rd → Rd×m will be assumed.

Condition 2.1. The coefficients b : Rd → Rd and σ : Rd → Rd×m has the following properties:

(i) there exist constants γ > 0, α > 0 and B > 0 such that

〈x, b(x)〉 6 −γ‖x‖1+α, for ‖x‖ > B;

(ii) b : Rd → Rd and σ : Rd → Rd×m are Hölder continuous functions with respective Hölder
exponents νb, νσ ∈ [0, 1] and Holder constants, Lb and Lσ, respectively, that is,

Lb = sup
x 6=x′

‖b(x)− b(x′)‖
‖x− x′‖νb

, Lσ = sup
x 6=x′

‖σ(x)− σ(x′)‖
‖x− x′‖νσ

; (2.1)

(iii) there exists a constant B such that ‖b(x)‖ 6 B(1 + ‖x‖)ᾱ, for ᾱ 6 α ∧ 1 ;

(iv) there exists a constant B̄ such that ‖σ(x)‖ 6 B̄(1 + ‖x‖)λ, for λ 6 α/2 ;

(v) the Hölder exponent of σ satisfies νσ 6 1− λ/α.

Remark 2.2. Under (i), (iii) and (iv) of Condition 2.1, the stationary distribution π (which is assumed
to exist) has finite moments of any order, that is,

∫
Rd ‖x‖

qπ(dx) <∞ for any q > 0. For justification
of this fact, see Remark 5.9.

Appropriate assumptions on the moduli of continuity of the coefficients, which in this paper is in
terms of Hölder continuity (and thus, of course, covering the case of Lipschitz continuous coefficients),
is needed to analyze the discretized process. However we anticipate that parts of these assumptions
could be sufficiently weakened to cover more general stochastic equations, as long as existence and
uniqueness of solutions are guaranteed. Also we do note that such conditions are not needed for the
MDP result of the original process Xε (see Theorem 2.11).

Consider the scaled version of (1.1) obtained through the scaling t→ t/ε:

Xε(t) = x0 +
1

ε

∫ t

0
b(Xε(s))ds+

1√
ε

∫ t

0
σ(Xε(s))dW (s). (2.2)

We next consider an appropriate Euler-Maruyama discretization of scheme for Xε. Let {tk} be a parti-
tion of [0, T ] such that ∆ ≡ ∆(ε) = tk− tk−1, and let Zε denote the (continuous) Euler approximation
of Xε. In other words, let %ε(s) = tk for tk 6 s < tk+1, and Zε the solution to the SDE:

Zε(t) = x0 +
1

ε

∫ t

0
b(Zε(%ε(s)))ds+

1√
ε

∫ t

0
σ(Zε(%ε(s)))dW (s). (2.3)

Let Ξε, defined by Ξε(A× [0, t]) =
∫ t

0 1{Zε(s)∈A}ds, denote the occupation measure of the process Zε,

and, as standard, for f : [0, T ]× Rd → Rn, Ξε(f)(t) will denote the following:

Ξε(f)(t) =

∫
Rd×[0,t]

f(x, s)Ξε(dx× ds)
.
=

∫ t

0
f(Zε(s))ds.

As mentioned in the introduction, the objective of the paper is to study the asymptotics of

Υε(f)
.
=

1

δ(ε)

(
Ξε(f)(·)−

∫ ·
0
π(f(s, ·))ds

)
in C([0, T ],Rn), under a suitable scaling between the discretization step ∆ ≡ ∆(ε) and ε in the
following regimes:

• Central limit scaling: δ(ε) = ε1/2.
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• Moderate deviation scaling: ε→ 0, δ(ε)→ 0, β(ε) ≡ ε/δ2(ε)→ 0.

The case δ(ε) = 1 requires investigating large deviation asymptotics which we do not undertake in this
paper; large deviation analysis requires some different estimates and deserves a separate paper-long
treatment. In this paper, the notation δ(ε) will only be used in the moderate deviation scaling regime.

Our results will be proved for the class of functions f of the form f = −Lu, with u ∈ W 2,p
loc

satisfying some additional conditions, which we state shortly. In other words, the MDP results are
applicable to a subset of the following class of functions: {Lu : u ∈W 2,p

loc }.

Assumption 2.3. For each t > 0, π(f(t, ·)) ≡
∫
f(t, x)π(dx) = 0, that is, f is centralized. Further-

more, there exist exponents p0, q0 ∈ R and a constant C(T ) such that

(i) supt6T ‖f(t, x)‖ 6 C(T )(1 + ‖x‖)p0 ;

(ii) ωf (∆, x) 6 C(T )r(∆)(1 + ‖x‖)q0, where ωf (∆, x)
.
= sup|t−s|6∆,06s,t6T ‖f(x, t) − f(x, s)‖ is the

modulus of continuity of f .

(iii) f = −Lu, with u ∈ ∩p>0W
2,p
loc , where u = (u1, u2, . . . , un) satisfies the following conditions:

(a) sup
t6T
‖ul(t, x)‖ 6 C1(T ) (1 + ‖x‖)p1,

(b) sup
t6T
‖∇ul(t, x)‖ 6 C1(T ) (1 + ‖x‖)p2,

(c) ωul(∆, x)
.
= sup
{|t−s|6∆, 06s,t6T}

‖ul(t, x)− ul(s, x)‖ 6 C1(T )r(∆)(1 + ‖x‖)q1,

(d) ω∇ul(∆, x)
.
= sup
{|t−s|6∆, 06s,t6T}

‖∇ul(t, x)−∇ul(s, x)‖ 6 C1(T )r(∆)(1 + ‖x‖)q2,

(e) sup
t6T
‖D2ul(t, x)‖ 6 C1(T ) (1 + ‖x‖)p3 .

Remark 2.4. (Discussion of Assumption 2.3) Observe that class of f satisfying Assumption 2.3 is
certainly a rich class of functions, as one can always pick a u satisfying Assumption 2.3-(iii), and define
f = −Lu (whose expression can be explicitly computed).

On the other hand, it is natural ask if a given f (which is centralized) satisfying some standard
conditions falls in this class. This question can be answered by studying existence and regularity
of solutions of Poisson equation: Lu = −f . For some models and certain f , the solution u can
be computed directly and the required assumptions can be directly checked. For example, consider
an one-dimensional SDE with xb(x) = −|x|1+α and σ(x) ≡ 1. Notice that

∫
R b(x)π(dx) = 0. For

f(x) = −b(x), the coresponding u(x) = x and clearly Assumption 2.8 below holds for α > 1.
However, in most models, a closed form expression of the Poisson equation is not available, but

required existence and regularity results can still be studied theoretically in certain important cases.
For example, when a = σσT is uniformly elliptic and bounded, and f has polynomial growth, [29, The-
orem 2] (also see Proposition A.2) gurantees existence and uniqueness of solution of the corresponding
Poisson equation satisfying Assumption 2.3 -(iii). Thus, when the diffusion term of (1.1) is uniformly
elliptic and bounded, our asymptotic results hold (essentially) for function classes of the form

{f : [0, T ]× Rd → Rn : ‖f(t, x)‖ 6 C(T )(1 + ‖x‖)p0 , for 0 6 t 6 T, x ∈ Rd}.
The appendix contains more detailed discussion of some of the relevant results on Poisson equation
and their connection to Assumption 2.3 -(iii). But the advantage of presenting the theorems directly
for a subclass of {Lu : u ∈W 2,p} allows us to avoid some extra restrictions on the coefficients of SDE
(1.1), which might only be needed for existence and desired regularity properties of the solutions of
Poisson equations, but are not required directly for proof of Theorem 2.7 and Theorem 2.7.
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For implementation, it might be even more practical and convenient to use the Riemann sum,

ΞRε (f)(t) =

[t/∆(ε)]∑
i=1

f(ti, Z
ε(ti))∆(ε) =

∫ t

0
f(%ε(s), Z

ε(%ε(s)))ds (2.4)

as the estimator (the superscript R stands for Riemann sum). The associated limit theorems could be
proved under either one of the following additional conditions on f .

Assumption 2.5. Either

(A) f is Hölder continuous with Hölder exponent νf ∈ (0, 1]; or

(B) f is differentiable and supt6T ‖Df(t, x)‖ 6 C(T )(1 + ‖x‖)p′0 , for some p′0 > 0.

The following result guarantees the convergence of our scheme.

Theorem 2.6. Let f : [0,∞) × Rd → Rn satisfy Assumption 2.3, with r(∆) = O(
√

∆). Let Zε

be defined by (2.3), where the the step size ∆(ε) is such that ∆(ε)/ε → 0, as ε → 0. Then under
Condition 2.1, for T > 0, there exists a constant K(T ) such that

E
[
sup
t6T
‖Ξε(f)(t)‖

]
6 K(T )

√
ε.

In particular, Ξε(f)→ 0 in probability in C([0, T ],Rn) as ε→ 0. (Recall that f is already centralized).
If, in addition, Assumption 2.5 holds, the above assertion is also true for ΞRε (f).

The proof of this theorem follows easily from the proof of the CLT (stated below) which is given in
Section 5.1. Indeed, multiplying (5.15) by

√
ε, one uses similar estimates (actually simpler versions)

used in Section 5.1 and the proof of Theorem 5.8. In fact by Markov’s inequality and Borel-Cantelli
lemma, the subsequences along which the convergence is almost sure can be constructed.

For the CLT and the MDP results, we first define the matrix Mf (t) by

(Mf (t))i,j =

∫
Rd
Du(t, x)a(x)(Du(t, x))Tπ(dx)

=

∫
Rd

∫ ∞
0

[fi(t, x)Psfj(t, ·)(x) + fj(t, ·)Psfi(t, ·)(x)] dsdπ(x),

(2.5)

where, by a slight abuse of notation, we used {Pt} to denote the semigroup corresponding to the
transition probability kernels {Pt} of X; in other words, Ptg(x) =

∫
Rd g(y)Pt(x, dy). Note that the

above quantity is finite by Remark 2.2. The second equality in (2.5) holds by Lemma 3.1.

Theorem 2.7. Let f : [0,∞) × Rd → Rn satisfy Assumption 2.3, with r(∆) = o(
√

∆), and let
ν = νb ∧ νσ. Let Zε be defined by (2.3), where the the step size ∆(ε) is such that (∆(ε)/ε)ν/2/

√
ε→ 0,

as ε→ 0. Then under Condition 2.1,

ε−1/2Ξε(f)⇒
∫ ·

0
M

1/2
f (s)dW (s),

in C([0, T ],Rn) as ε → 0. Moreover the above assertion is also true for ε−1/2ΞRε (f) if either one of
the two conditions in Assumption 2.5 holds.

Finally, we state our MDP result, which we deem to be the most important contribution of the
present paper. This requires additional restrictions on the exponents appearing in Assumption 2.3.

Assumption 2.8. The exponents in Assumption 2.3 satisfy the following bounds:

(i) p1 6 (1 + α− 2λ)/2, (ii) p2 < α− 2λ if α− 2λ 6 1, and p2 6 (1 + α− 2λ)/2 o.w ,

(iii) q0 6 2(α− λ), (iv) q2 6 α− 2λ, (v) q1 6 2(α− λ) ∧ (1 + α− 2λ), (vi) p3 6 α− 2λ.
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Theorem 2.9. Let f : [0,∞) × Rd → Rn satisfy Assumption 2.3 with r(∆) = O(
√

∆), and let
ν = νb ∧ νσ. Moreover suppose Assumption 2.8 holds. Let Zε be defined by (2.3), where the the step
size ∆(ε) is such that (∆(ε)/ε)ν/2/

√
ε → 0, as ε → 0. Then under Condition 2.1 (with α > 0), as

ε→ 0, {Υε(f)} satisfies a LDP on C([0, T ],Rn) with speed β(ε) ≡ ε/δ2(ε) and rate function If given
by

If (ξ) =

{
1
2

∫ T
0 (ξ̇(s))TMf (s)−1ξ̇(s)ds, ξ is absolutely continuous;

∞, otherwise.
(2.6)

That is,

(i) lim inf
ε→0

β(ε) logP(Υε(f) ∈ O) > −If (O), for every open set O ∈ C([0, T ],Rn);

(ii) lim sup
ε→0

β(ε) logP(Υε(f) ∈ C) 6 −If (C), for every closed set C ∈ C([0, T ],Rn).

Moreover the above assertion is also true for ε−1/2ΞRε (f) if Assumption 2.5-(A) or Assumption 2.5-(B)
holds with p′0 6 α− 2λ. Here for a set A, If (A) = infx∈A If (x).

Remark 2.10. If σ(x) ≡ σ (a constant), then ν ≡ νb, and for the MDP result to hold, we only need
(∆(ε)/ε)ν/2/δ(ε)→ 0. Thus the discretization steps can be chosen slightly bigger. Also, in this case,
the growth assumptions of D2u (Assumption 2.3-(iii)-(e) and Assumption 2.8-(iv)) are not needed.

As mentioned, not surprisingly, the same techniques prove an MDP of the inhomogeneous func-
tionals of the original process Xε under less restrictive conditions. Indeed, some of the estimates that
are essential for study of MDP for Ξε(f) do not come up while considering the case of Γε(f), defined by

Γε(f) =

∫
Rd×[0,·]

f(s, x)Γε(dx× ds) =

∫ ·
0
f(s,Xε(s))ds. Some assumptions can be removed (including

Hölder continuity of b and σ, provided existence and uniqueness of solution X are available), and some
complex arguments could be simplified as a result.

Theorem 2.11. Let f : [0,∞)×Rd → Rn satisfy (i) - (iii)(d) of Assumption 2.3 with r(∆) = O(
√

∆).
Let Xε be the unique solution to (2.2). Then under (i), (iv) and (v) of Condition 2.1 (with α > 0),

and (i) - (iii) of Assumption 2.8, as ε → 0,
{
Uε(f) ≡ 1

δ(ε)Γε(f) = 1
δ(ε)

∫ ·
0 f(s,Xε(s))ds

}
satisfies a

LDP on C([0, T ],Rn) with speed β(ε) ≡ ε/δ2(ε) and rate function If given by (2.6).

2.2 Laplace principle, variational representation and controlled processes

To establish Theorem 2.9, we will actually prove the Laplace principle, which is equivalent to proving
LDP [7, Section 1.2]. In other words, we will show that for all F ∈ C1

b (C([0, T ] : Rn))

lim
ε→0

β(ε) lnE
[
exp

(
− F (Υε(f))/β(ε)

)]
= − inf

ξ∈C([0,T ],Rd)
[I(ξ) + F (ξ)]. (2.7)

This is the weak convergence approach to large deviation asymptotics. The first step in this ap-
proach requires variational representation of the prelimit of the left side of (2.7), that is, of expectation
of exponential functionals of Υε(f). We briefly describe the steps below.

Let P denote the predictable σ-field on [0, T ] × Ω associated with the filtration {Ft : 0 6 t 6 T},

and let PM2 ≡ {h : [0, T ]→ Rm :

∫ T

0
‖h(s)‖2ds 6M}, and

PM2 ≡
{
ψ : ψ is P\B(Rm) measurable and ψ ∈ PM2 , a.s. P

}
, P2

.
= ∪∞M=1PM2 ,

Then by the variational representation and an application of Girsanov’s theorem [3, 4],

−β(ε) lnE
[
exp

(
− F (Υε(f))/β(ε)

)]
= inf

ψ∈P2

E
{

1

2

∫ T

0
‖ψ(s)‖2ds+ F (Ῡψ

ε (f))

}
, (2.8)
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where Ῡψ
ε (f)(t) = 1

δ(ε)

∫ t
0 f(s, Z̄ψε (s))ds and Z̄ψε solves the controlled stochastic equation:

Z̄ψε (t) = x0 +
1

ε

∫ t

0
b(Z̄ψε (%ε(s)))ds+

1√
ε

∫ t

0
σ(Z̄ψε (%ε(s)))dW (s) +

δ(ε)

ε

∫ t

0
σ(Z̄ψε (%ε(s)))ψ(s)ds.

(2.9)

Similarly, defining Ξ̄R,ψε (f)(t) ≡
∫ t

0 f(%ε(s), Z̄
ψ
ε (%ε(s)))ds,

−β(ε) lnE
[
exp

(
− F (ΞR,ψε (f)/δ(ε))/β(ε)

)]
= inf

ψ
E
{

1

2

∫ T

0
‖ψ(s)‖2ds+ F (Ξ̄Rε (f)/δ(ε))

}
,

Since PM2 is a closed ball in L2([0, T ]), it is compact under the weak topology, which is metrizable,
and throughout the paper, this topology will be used on PM2 .
Notational convention: The overbar on a process will denote its controlled version. For convenience,
superscripts like ψ will mostly be dropped from the notation of the controlled process.

3 Equivalent forms of the rate function

In this section we describe two equivalent forms of the rate function If that will be convenient to work
with in the proof of upper and lower bounds of Laplace principle.

Let λT denote the Lebesgue measure on [0, T ]. Let BT = [0, T ] × Rd × Rm, and let M1(BT ) be
the space of finite measures R on BT such that R(1) = λT and R(2,3|1) is a probability measure on

Rd × Rm. Here for i = 1, 2, 3, R(i) denotes the i-th marginal of R and R(i,j|k) denotes the conditional
distribution of i-th and j-th coordinate given the k-th coordinate.

For each ξ ∈ C([0, T ],R), let Rξ denote the family of measures R ∈M1(BT ) such that∫
BT
‖z‖2R(dy) <∞; (3.1)

ξ(t) =

∫
Bt
Du(s, x)σ(x)zR(dy); (3.2)∫

Bt
Lg(x)R(dy) = 0, for all t ∈ [0, T ], g ∈ C2

b (Rd,R), (3.3)

where the l-th row of the derivative matrix Du is given by

(Du(s, x))l∗ = ∇Tul(s, x) = (∂1ul(s, x), ∂2ul(s, x), . . . , ∂dul(s, x))

and a typical tuple (s, x, z) ∈ BT is denoted by y. Define Īf : C([0, T ],Rd)→ [0,∞] by

Īf (ξ) = inf
R∈Rξ

{
1

2

∫
BT
‖z‖2R(dy)

}
. (3.4)

Next, let Aξ denote the space of φ ∈ L2(Rd × [0, T ], π × λT ) such that

ξ(t) =

∫
Rd×[0,t]

Du(s, x)σ(x)φ(x, s)π(dx)ds.

Define Îf : C([0, T ],Rd)→ [0,∞] by

Îf (ξ) = inf
φ∈Aξ

{
1

2

∫
Rd×[0,T ]

‖φ(x, s)‖2π(dx)ds

}
. (3.5)

Lemma 3.1. Mf (t) =
∫
Rd Du(t, x)a(x)(Du(t, x))Tπ(dx), where a = σσT , u is defined by (A.1) and

Mf is defined by (2.5).
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Proof. Fix t > 0. By Itô’s lemma, we have

ui(t,X(r)) = ui(t,X(0)) +

∫ r

0
Lui(t, ·)(X(s))ds+

∫ r

0
∇Tui(t,X(s))σ(X(s))dB(s)

= ui(t,X(0))−
∫ r

0
fi(t0, X(s))ds+

∫ r

0
∇Tui(t,X(s))σ(X(s))dB(s).

Then by integration by parts and observing that the last term on the right side is a martingale, we
have, for any t > 0, after taking expectation with X(0) distributed as π

Eπ (ui(t,X(r))uj(t,X(r))) = Eπ (ui(t,X(0))uj(t,X(0)))−
∫ r

0
Eπ (ui(t,X(s))fj(t,X(s))) ds

−
∫ r

0
Eπ (uj(t,X(s))fi(t,X(s))) ds

+

∫ r

0
Eπ
(
∇Tui(t,X(s))σ(X(s))σT (X(s))∇Tuj(t,X(s))

)
ds.

The result now easily follows from (A.2) and from the observation that the left side is equal to the
first term on the right side as for all r > 0, X(r) is distributed as π (π is the invariant measure).

Theorem 3.2. Īf = Îf = If . (see (3.4), (3.5) and (2.6), for their definitions).

Proof. We first show that Īf (ξ) = Îf (ξ). Fix κ > 0. Let R ∈ Rξ be such that

1

2

∫
BT
‖z‖2R(dy) 6 Īf (ξ) + κ. (3.6)

Writing R(dy) = R(2,3|1)(dx× dz|s)ds and using (3.3), for any g ∈ C2
b (Rd,R), we have

0 =

∫
Rd×Rm

Lg(x)R(2,3|1)(dx× dz|s) =

∫
Rd
Lg(x)R(2|1)(dx|s), for a.a s ∈ [0, T ]

By the uniqueness of π, we have R(2|1)(dx|s) = π(dx) for a.a s ∈ [0, T ] and thus we have

R(dy) = R(3|1,2)(dz|x, s)R(2|1)(dx|s)ds = R(3|1,2)(dz|x, s)π(dx)ds.

Define φ(x, s) =
∫
Rm zR(3|2,1)(dz|x, s). Clearly, by Cauchy-Schwarz inequality,∫

Rd×[0,T ]
‖φ(x, s)‖2π(dx)ds 6

∫
Rm×Rd×[0,T ]

‖z‖2R(3|2,1)(dz|x, s)π(dx)ds =

∫
BT
‖z‖2R(dy).

Also,

ξ(t) =

∫
Bt
Du(s, x)σ(x)zR(dy) =

∫
Bt
Du(s, x)σ(x)zR(3|2,1)(dz|x, s)π(dx)ds

=

∫
Rd×[0,t]

Du(s, x)σ(x)φ(s, x)π(dx)ds.

Hence φ ∈ Aξ.

Îf (ξ) 6
1

2

∫
Rd×[0,T ]

‖φ(x, s)‖2π(dx)ds 6
1

2

∫
BT
‖z‖2R(dy) 6 Īf (ξ) + κ.

Since this is true for all κ, Îf (ξ) 6 Īf (ξ).
Conversely, for a fixed κ > 0, let φ ∈ Aξ be such that

1

2

∫
Rd×[0,T ]

‖φ(x, s)‖2π(dx)ds 6Îf (ξ) + κ. (3.7)

Define the measure R on Bt by

R([0, t]×A×B) =

∫
A×[0,t]

1{φ(x,s)∈B}π(dx)ds.
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Clearly, by the definition of R,∫
BT
‖z‖2R(dy) =

∫
Rd×[0,T ]

‖φ(x, s)‖2π(dx)ds, and

ξ(t) =

∫
Rd×[0,t]

Du(s, x)σ(x)φ(x, s)π(dx)ds =

∫
Bt
Du(s, x)σ(x)zR(dy).

Thus

Īf (ξ) 6
1

2

∫
BT
‖z‖2R(dy) =

1

2

∫
Rd×[0,T ]

‖φ(x, s)‖2π(dx)ds 6 Îf (ξ) + κ.

Consequently, Īf (ξ) 6 Îf (ξ).

We next show that Îf (ξ) = If (ξ). Let κ > 0 and let φ ∈ Aξ be such that (3.7) holds. Notice that

ξ̇(s) =

∫
Rd
Du(s, x)σ(x)φ(x, s)π(dx).

By Lemma B.5 (taking (Ω,P) = (Rd, π), H(s, x) = Du(s, x)σ(x), b = ξ̇(s)) for a.a s

(ξ̇(s))TMf (s)−1ξ̇(s) 6
∫
Rd
‖φ(x, s)‖2π(dx),

where we used the fact that by Lemma 3.1,

Mf (s) =

∫
Rd
H(s, x)H(s, x)Tπ(dx) =

∫
Rd
Du(s, x)a(x)(Du(s, x))Tπ(dx).

It now readily follows that If (ξ) 6 Îf (ξ)+κ, and since this is true for all κ > 0, we have If (ξ) 6 Îf (ξ).
Conversely, for an absolutely continuous ξ, define φ(x, s) = HT (s, x)Mf (s)−1ξ̇(s). Clearly, φ ∈ Aξ,

and
1

2

∫
Rd×[0,T ]

‖φ(x, s)‖2π(dx)ds =
1

2

∫
[0,T ]

(ξ̇(s))TMf (s)−1ξ̇(s)ds. It follows that If (ξ) > Îf (ξ).

4 Some estimates

We begin by making the following simple observation. Let {t̃k} be a partition of [0, t] such that
t̃k− t̃k−1 = ∆̃. Let η(s) = t̃k, if t̃k 6 s < t̃k+1. Then for any locally integrable function h, by changing
the order of integration, we get∫ t

0

∫ s

η(s)
|h(r)|dr ds =

∑
k

∫ t̃k+1

t̃k

∫ s

t̃k

|h(r)|dr ds =
∑
k

∫ t̃k+1

t̃k

∫ t̃k+1

r
|h(r)|ds dr

6 ∆̃
∑
k

∫ t̃k+1

t̃k

|h(r)|dr = ∆̃

∫ t

0
|h(r)|dr. (4.1)

The various constants that will appear in this and subsequent sections will only depend on the
parameters of the system like B, B̄, νb, νσ, ᾱ, λ etc., and possibly on T . The explicit dependence will
not be stated again, but can easily be inferred from the context.

Lemma 4.1. Let Z̄ψε as in (2.9), and assume that Condition 2.1 holds. Let ∆(ε) be such that
(∆(ε)/ε)ν/2/

√
ε → 0 as ε → 0. Then for any M > 0 and m > 0, there exist ε0 > 0, and con-

stants C1, C2(T ) such that for any ψ ∈ PM2 and ε 6 ε0

(i) E
[
‖Z̄ψε (s)− Z̄ψε (%ε(s))‖m

∣∣∣F%ε(s)] 6 C1ςm(ε)
(

1 + ‖Z̄ψε (%ε(s))‖
)m(ᾱ∨λ)

,

(ii) E
[
‖Z̄ψε (s)− Z̄ψε (%ε(s))‖m

]
6 C1ςm(ε)E

(
(1 + ‖Z̄ψε (s)‖)m(ᾱ∨λ)

)
,

where ς(ε) = δ(ε)∆1/2(ε)/ε. Furthermore, if m 6 2(1− λ/α), then

11



(iii)

∫ T

0
E
[
‖Z̄ψε (s)− Z̄ψε (%ε(s))‖m

]
ds 6 C2(T )

(
∆(ε)

ε

)m/2
E
∫ T

0

(
1 + ‖Z̄ψε (%ε(s))‖

)2(α−λ)
ds,

(iv)

∫ T

0
E
[
‖Z̄ψε (s)− Z̄ψε (%ε(s))‖m

]
ds 6 C2(T )

(
∆(ε)

ε

)m/2
E
∫ T

0

(
1 + ‖Z̄ψε (s)‖

)2(α−λ)
ds.

Remark 4.2. Notice that the condition on the step size ∆(ε) implies that ∆1/2(ε)/ε→ 0, as ε→ 0.
To see this simply observe that since ν 6 1,(

∆1/2(ε)/ε
)ν

= ε(1−ν)/2 × (∆(ε)/ε)ν/2 /
√
ε

ε→0−→ 0.

In particular, not only does this imply ς(ε)→ 0, but also

ςν(ε)/δ(ε) =

( √
ε

δ(ε)

)1−ν
× (∆(ε)/ε)ν/2 /

√
ε
ε→0−→ 0.

Proof. (Lemma 4.1) Observe that

Z̄ψε (s)− Z̄ψε (%ε(s)) =
1

ε
b(Z̄ψε (%ε(s))(s− %ε(s)) +

1√
ε
σ(Z̄ψε (%ε(s)))(W (s)−W (%ε(s))

+
δ(ε)

ε
σ(Z̄ψε (%ε(s)))

∫ s

%ε(s)
ψ(r)dr. (4.2)

Now using (a) for any m > 0, there exists a constant C̃m such that ‖x + y‖m 6 C̃m(‖x‖m + ‖y‖m),
(b) E(‖W (h)‖m) = O(hm/2), (c) ‖b(x)‖m 6 Bm(1 + ‖x‖)mᾱ, ‖σ(x)‖m 6 B̄m(1 + ‖x‖)mλ and (d)

‖s− %ε(s)| 6 ∆, we can estimate A0 = E
[
‖Z̄ψε (s)− Z̄ψε (%ε(s))‖m

∣∣∣F%ε(s)] as

A0 6 C̃0

[
(1 + ‖Z̄ψε (%ε(s))‖)mᾱ

(
∆

ε

)m
+ (1 + ‖Z̄ψε (%ε(s)‖)mλ

(
∆

ε

)m/2

+ (1 + ‖Z̄ψε (%ε(s))‖)mλ
(
δ(ε)

ε

)m
× E

(∆

∫ s

%ε(s)
‖ψ(r)‖2dr

)m/2 ∣∣∣F%ε(s)
]

6C̃1
(

1 + ‖Z̄ψε (%ε(s))‖
)mᾱ∨mλ [(∆

ε

)m
+

(
∆

ε

)m/2
+Mm/2

(
δ(ε)∆1/2

ε

)m ]

6 C̃2
(

1 + ‖Z̄ψε (%ε(s))‖
)m(ᾱ∨λ)

ςm(ε),

where ς(ε) = δ(ε)∆1/2/ε. The last inequality follows because (∆/ε)1/2 =
√
ε

δ(ε) ς(ε) 6 ς(ε). Notice that

since
√
ε/δ(ε)→ 0 and ς(ε)→ 0 as ε→ 0, we can assume that max{

√
ε/δ(ε),∆/ε} 6 1 for ε 6 1. This

proves (i). It could be easily seen that (i) leads to (ii) for sufficiently small ε by using the inequality

‖Z̄ψε (%ε(s))‖ 6 ‖Z̄ψε (s)‖+ ‖Z̄ψε (%ε(s))− Z̄ψε (s)‖ and the fact ᾱ 6 1.

For (iii) and (iv) we first estimate A1
.
= E

[∫ T
0

(
1 + ‖Z̄ψε (%ε(s))‖

)mλ (∫ s
%ε(s)
‖ψ(r)‖2dr

)m/2
ds

]
in

the following way:

A1 6

(
E
∫ T

0

∫ s

%ε(s)
‖ψ(r)‖2drds

)m/2(
E
∫ T

0

(
1 + ‖Z̄ψε (%ε(s))‖

)2mλ/(2−m)
)1−m/2

6

(
E
∫ T

0

(
1 + ‖Z̄ψε (%ε(s))‖

)2mλ/(2−m)
)1−m/2(

∆

∫ T

0
‖ψ(r)‖2ds

)m/2
6 C̃4Mm/2∆m/2

(
E
∫ T

0

(
1 + ‖Z̄ψε (%ε(s))‖

)2(α−λ)
)1−m/2

.
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In the above, the first inequality used Holder’s inequality (with p = 2/m), the second used (4.1) and
the third used the fact m 6 2(1 − λ/α) implies that mλ/(2 − m) 6 α − λ. Now (4.2) implies that

A2
.
=
∫ T

0 E
[
‖Z̄ψε (s)− Z̄ψε (%ε(s))‖m

]
ds can be estimated as

A2 6 C̃5

[(
∆

ε

)m/2
E
∫ T

0

(
1 + ‖Z̄ψε (%ε(s))‖

)mᾱ∨mλ
ds+

(
δ(ε)

ε

)m
∆m/2E(I)

]

6 C̃6

[(
∆

ε

)m/2
E
∫ T

0

(
1 + ‖Z̄ψε (%ε(s))‖

)mᾱ∨mλ
ds+

(
δ(ε)∆

ε

)m(
E
∫ T

0

(
1 + ‖Z̄ψε (%ε(s))‖

)2(α−λ)
)1−m/2]

.

The assertion (iii) now follows as (a) max{δ(ε)∆/ε, (∆/ε)1/2} 6 (∆/ε)1/2, (b) m 6 2(1 − λ/α)
(together with ᾱ ∨ λ 6 α) implies that m(ᾱ ∨ λ) 6 2(α − λ), and (c) 1 −m/2 6 1. (iv) now follows
using the same splitting used above to obtain (ii).

The above lemma leads to some observations that will be useful later.

Corollary 4.3. Assume the setup of Lemma 4.1, and let g > 0, g1 > 0, g2 > 0, θ > 0. Then the
following hold

(i)
1

C3
E
(

1 + ‖Z̄ψε (%ε(s))‖
)g

6 E
(

1 + ‖Z̄ψε (s)‖
)g

6 C3E
(

1 + ‖Z̄ψε (%ε(s))‖
)g
.

(ii)

∫ T

0
E
(

1 + ‖Z̄ψε (%ε(s))‖
)g

1{‖Z̄ψε (s)‖6B̄}ds 6 C3

(
1 + ςg(ε)

∫ T

0
‖Z̄ψε (s)‖gds

)
.

(iii) E
∫ T

0

(
1 + ‖Z̄ψε (s)‖

)g1 (
1 + ‖Z̄ψε (%ε(s))‖

)g2
‖Z̄ψε (s)− Z̄ψε (%ε(s))‖θds

6 ςθ(ε)C3E
∫ T

0

(
1 + ‖Z̄ψε (s)‖

)g1+g2+θ(ᾱ∨λ)
ds.

Proof. We will give the main steps for proof of (iii). The proofs of the other assertions are simpler.

Using ‖Z̄ψε (s)‖ 6 ‖Z̄ψε (%ε(s))‖ + ‖Z̄ψε (%ε(s)) − Z̄ψε (s)‖, we have that the integrand in the left side of
(iii) is less than

C̃7

[(
1 + ‖Z̄ψε (%ε(s))‖

)g2+g1
‖Z̄ψε (s)− Z̄ψε (%ε(s))‖θds+

(
1 + ‖Z̄ψε (%ε(s))‖

)g2
‖Z̄ψε (s)− Z̄ψε (%ε(s))‖g1+θ

]
.

The assertion now follows quite easily by using (a) Lemma 4.1-(i), (b) the fact that E(·) = E(E(·|F%ε(s)),
and (c) (i) of this corollary.

The following are the corresponding results for the original process Zε, which will be required in
proving the CLT result, and whose proof follows analogously (and in a simpler way).

Lemma 4.4. Let Zε be as in (2.3), and assume that Condition 2.1 holds. Let ∆(ε) be such that
∆(ε)/ε→ 0 as ε→ 0. Then there exist constants C4, and ε0 such that for all ε 6 ε0,

(i) E
[
‖Zε(s)− Zε(%ε(s))‖m

∣∣∣F%ε(s)] 6 C4(∆/ε)m/2E (1 + ‖Zε(%ε(s))‖)mᾱ .

(ii) E [‖Zε(s)− Zε(%ε(s))‖m] 6 C4(∆/ε)m/2E (1 + ‖Zε(s))‖)mᾱ .

5 Tightness results

In the proofs of the following and the subsequent results, we will adopt the notational convention
mentioned before, where we will drop the superscript ψ and use Z̄ε instead of Z̄ψε .

13



Lemma 5.1. Suppose that Z̄ψε satisfies (2.9) and that (∆(ε)/ε)ν/2/
√
ε → 0. Assume that Condition

2.1 (with α > λ) holds. Then for all M > 0, there exists an ε0 > 0, such that

sup
ε∈(0,ε0]

sup
ψ∈PM2

E
[∫ T

0
‖Z̄ψε (t)‖2(α−λ)dt

]
<∞.

Proof. The main idea is to use Itô’s lemma to the function x → ‖x‖(1+α−2λ)/2 and then obtain
estimates on different expectations. However, if α < 2λ + 2, some technical issues arise (because of
singularity of the map x → ‖x‖α−2λ−2 at origin) for obtaining bounds on certain terms. One way to
avoid them is to use a C∞ ([0,∞), [0,∞)) - function ϑ defined by

ϑ(x) =

{
x(1+α−2λ)/2, x > 1

0, 0 < x < 0.9.

By Itô’s lemma,

ϑ(‖Z̄ε(t)‖2) =ϑ(‖x0‖2) + M̄ε(t) +
2

ε

∫ t

0
ϑ′(‖Z̄ε(s)‖2)〈Z̄ε(s), b(Z̄ε(%ε(s)))〉ds

+
1

ε

∫ t

0
ϑ′(‖Z̄ε(s)‖2)‖σ(Z̄ε(%ε(s)))‖2 ds

+
2δ(ε)

ε

∫ t

0
ϑ′(‖Z̄ε(s)‖2)〈Z̄ε(s), σ(Z̄ε(%ε(s)))ψ(s)〉ds

+
1

ε

∫ t

0
ϑ′′(‖Z̄ε(s)‖2)‖Z̄ε(s)σ(Z̄ε(%ε(s)))‖2ds. (5.1)

Let B̄ = B∨1 (B was introduced in Condition 2.1-(i)). Splitting each term according to {‖Z̄ε(s)‖ 6
B̄} and {‖Z̄ε(s)‖ > B̄}, and using Condition 2.1-(i) we get

ϑ(‖Z̄ε(t)‖2) 6 ϑ(‖x0‖2) + M̄ε(t) +
C1,B(T )

ε

∫ T

0

[
(1 + ‖Z̄ε(%ε(s))‖)2λ + (1 + ‖Z̄ε(%ε(s))‖)ᾱ

+(1 + ‖Z̄ε(%ε(s))‖)λ‖ψ(s)‖
]

1{‖Z̄ε(s)‖6B̄}ds−
γ(1 + α− 2λ)

ε

∫ t

0
‖Z̄ε(s)‖2(α−λ)

+
C2

ε

[∫ t

0
(1 + ‖Z̄ε(s)‖)α−2λ−1(1 + ‖Z̄ε(%ε(s))‖)2λ1{‖Z̄ε(s)‖>B̄}ds

+ δ(ε)

∫ t

0
‖Z̄ε(s)‖α−2λ(1 + ‖Z̄ε(%ε(s))‖)λ‖ψ(s)‖ds+A1(t)

]
, (5.2)

where M̄ε(t) = 2√
ε

∫ t
0 ϑ
′(‖Z̄ε(s)‖2)Z̄ε(s)

Tσ(Z̄ε(%ε(s)))dW (s) is a martingale, and

A1(t) =

∫ t

0
‖Z̄ε(s)‖α−2λ−1|〈Z̄ε(s), b(Z̄ε(%ε(s))− b(Z̄ε(s))〉|ds.

By Cauchy-Schwarz inequality and Corollary 4.3-(ii), Ā .
= E

∫ T
0 (1+‖Z̄ε(%ε(s))‖)λ‖ψ(s)‖1{‖Z̄ε(s)‖6B̄}ds

can be estimated as

Ā 6

(
E
∫ T

0
(1 + ‖Z̄ε(%ε(s))‖)2λ1{‖Z̄ε(s)‖6B̄}ds

)1/2(
E
∫ T

0
ψ(s)‖2ds

)1/2

6C3(T )

(
1 + ς2λ(ε)E

∫ T

0
‖Z̄ε(s)‖2λ

)1/2

6 C4(T )

(
1 + ς2λ(ε)E

∫ T

0
‖Z̄ε(s)‖2(α−λ)

)
.
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The last inequality is because λ 6 α/2 implies 2λ 6 2(α− λ) (and the fact
√
x 6 1 + x). Similarly,

E
∫ T

0
(1 + ‖Z̄ε(%ε(s))‖)2λ1{‖Z̄ε(s)‖6B̄}ds 6 C5(T )

(
1 + ς2λ(ε)E

∫ T

0
‖Z̄ε(s)‖2(α−λ)

)
E
∫ T

0
(1 + ‖Z̄ε(%ε(s))‖)ᾱ1{‖Z̄ε(s)‖6B̄}ds 6 C6(T )

(
1 + ς2λ(ε)E

∫ T

0
‖Z̄ε(s)‖2(α−λ)

)
.

By (a) Hölder continuity of b, (b) Corollary 4.3-(iii), and (c) the fact α−2λ+νb(ᾱ∨λ) 6 2(α−λ),

E(A1(T )) 6 LbE
∫ T

0
‖Z̄ε(s)‖α−2λ‖Z̄ε(%ε(s))− Z̄ε(s)‖νb1{‖Z̄ε(s)‖>B̄}ds

6 C7ςνb(ε)

∫ T

0
E
[
1 + ‖Z̄ε(s)‖

]α−2λ+νb(ᾱ∨λ))
ds 6 C8ςνb(ε)

∫ T

0
E
[
1 + ‖Z̄ε(s)‖

]2(α−λ)
ds.

We now estimate A2(t)
.
=
∫ t

0 ‖Z̄ε(s)‖
α−2λ(1 + ‖Z̄ε(%ε(s))‖)λ‖ψ(s)‖ds. By Caucy-Schwarz inequality

and Corollary 4.3-(ii)

E[A2(T )] 6 C9

(
E
∫ T

0
‖Z̄ε(s)‖2(α−2λ)(1 + ‖Z̄ε(%ε(s))‖)2λ

)1/2(
E
∫ T

0
‖ψ(s)‖2 ds

)1/2

6 C10

(
E
∫ T

0
(1 + ‖Z̄ε(s)‖)2(α−λ)ds

)1/2

.

Again, by Corollary 4.3-(ii)

E
[∫ T

0
(1 + ‖Z̄ε(s)‖)α−2λ−1(1 + ‖Z̄ε(%ε(s))‖)2λ1{‖Z̄ε(s)‖>B̄}ds

]
6 C7E

[∫ T

0
(1 + ‖Z̄ε(s)‖)α−1ds

]
.

Also notice that for any θ > 0

E
(
‖Z̄ε((s))‖α−11{‖Z̄ε(s)‖>B̄}

)
6

1

B̄1−λE
(
‖Z̄ε((s))‖α−λ1{‖Z̄ε(s)‖>B̄}

)
6

1

B̄1−λ

(
θE
(
‖Z̄ε((s))‖2(α−λ)

)
+ θ−1

)
.

Now, multiplying both sides of (5.2) by ε, it follows that for some constant Ĉ1(T ),∫ T

0
E
(
‖Z̄ε(s)‖2(α−λ)

)
ds 6 C11(T )

[
1 + h(ε)

∫ T

0
E
(
‖Z̄ε((s))‖2(α−λ)

)
ds

+

∫ T

0
E
(
θE
(
‖Z̄ε((s))‖2(α−λ)

)
+ θ−1

)
ds

]
,

where h(ε) = ς2λ∧νb(ε) + δ(ε) → 0 as ε → 0. Choose ε0 > 0 such that C11(T )h(ε) 6 1
4 for all ε 6 ε0,

and θ > 0 be such that θĈ1(T ) 6 1/4. It is now immediate that

1

2

∫ t

0
E
(
‖Z̄ε(s)‖2(α−λ)

)
ds 6 C11(T )(1 + T/θ).

which proves the assertion.

Remark 5.2. Under the assumption of Lemma 5.1, it follows from Corollary 4.3-(i) that

sup
ε∈(0,ε0]

sup
ψ∈PM2

E
[∫ T

0
‖Z̄ψε (%ε(t))‖2(α−λ)dt

]
<∞.

Corollary 5.3. Under the assumptions of Lemma 5.1,

sup
0<ε<ε0

sup
ψ∈PM2

εE
[
sup
r6t
‖Z̄ψε (r)‖1+α−2λ

]
<∞.

Proof. Multiplying (5.2) by ε and following exactly the same estimates used in Lemma 5.1, we readily
see for some constant C12(T )

E
(
ε sup
r6t
‖Z̄ε(r)‖1+α−2λ

)
6 ε‖ϑ(‖x0‖2)‖+ εE

(
sup
r6t
‖M̄ε(r)‖

)
+ C12(T )E

∫ T

0
(1 + ‖Z̄ε(s)‖)2(α−λ)ds
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By Lemma 5.1, the last quantity is bounded by a constant C13(T ). The assertion follows as it is easy
to show by Burkholder’s inequality that εE

[
supr6t |M̄ε(t)|

]
6 C14(T ) for some constant C14(T ).

Lastly, as mentioned before, for technical reasons, we also need to consider a partition {t̃k} which

is coarser than {tk} and have bounds for integral moments of Zε ◦ ηε and Z̄ψε ◦ ηε (i.e., for the original
and the controlled processes). Here ηε(s) is the step function corresponding to the partition {t̃k}.

Corollary 5.4. Let {t̃k} be a partition of [0, T ] such that ∆̃ = t̃k − t̃k−1 6 ε. Then, under the
assumptions in Lemma 5.1, for all M > 0, there exists an ε0 > 0 such that

sup
ε∈(0,ε0)

sup
ψ∈PM2

E
[∫ T

0
‖Z̄ψε (ηε(t))‖pdt

]
<∞,

where p = (1 + α− 2λ) ∧ 2(α− λ) and ηε(t) = t̃k for t̃k 6 t < t̃k+1.

Proof. The proof essentially reuses the techniques of Lemma 5.1, and we only point out the central
ideas. Let ϑ̂ be a C∞ ([0,∞), [0,∞)) function such that ϑ(x) = xp/2 on (1,∞) and = 0 on (0, 0.9),
where p = (1 + α− 2λ) ∧ (α− λ). Write∫ t

0
‖Z̄ε(ηε(s))‖pds =

∫ t

0

(
‖Z̄ε(ηε(s))‖p1{‖Z̄ε(ηε(s))‖61} + ‖Z̄ε(ηε(s))‖p1{‖Z̄ε(ηε(s))‖>1}

)
ds

6
∫ t

0

(
1 + ‖ϑ̂‖∞,1 + ϑ̂

(
‖Z̄ε(ηε(s))‖2

)
− ϑ̂

(
‖Z̄ε(s)‖2

)
+ ‖Z̄ε(s)‖p1{‖Z̄ε(ηε(s))‖>1}

)
ds,

(5.3)

and ‖ϑ̂‖∞,r denotes the maximum of ϑ̂ on [0, r].

By Itô’s Lemma (5.1) (with ϑ̂ in place of ϑ), after splitting each term according to {‖Z̄ε(s)‖ 6 B̄}
and {‖Z̄ε(s)‖ > B̄} (where B̄ = B ∨ 1 with B as in Condition 2.1-(iii)), we deduce that

Q
.
= ϑ̂(‖Z̄ε(ηε(s))‖2)− ϑ̂(‖Z̄ε(s)‖2)

6 M̂ε(ηε(s))− M̂ε(s) +
Ĉ1(T )

ε

∫ s

ηε(s)

(
(1 + ‖Z̄ε(%ε(s))‖)2λ

+(1 + ‖Z̄ε(%ε(s))‖)ᾱ + (1 + ‖Z̄ε(%ε(s))‖)λ‖ψ(s)‖
)

1{‖Z̄ε(s)‖6B̄}ds

+
Ĉ2

ε

∫ s

ηε(s)

(
‖Z̄ε(s)‖p−1(1 + ‖Z̄ε(%ε(s))‖)ᾱ + ‖Z̄ε(s)‖p−2(1 + ‖Z̄ε(%ε(s))‖)2λ

+ δ(ε)‖Z̄ε(s)‖p−1(1 + ‖Z̄ε(%ε(s))‖)λ‖ψ(s)‖ds
)

1{‖Z̄ε(s)‖>B̄}ds, (5.4)

where M̂ε is as in the proof of Lemma 5.1 with ϑ replaced by ϑ̂. Integrating the above display from
0 to T , we get by (a) (4.1) together with the assumption ∆̃ 6 ε and (b) Corollary 4.3 along with
p 6 (1 + α− 2 exp) ∧ 2(α− λ)∫ T

0
E
(
ϑ̂(‖Z̄ε(ηε(s))‖2)− ϑ̂(‖Z̄ε(s)‖2)

)
ds 6 Ĉ3(T )E

[∫ T

0
(1 + ‖Z̄ε(s)‖)2(α−λ)ds

]
6 Ĉ4(T ).

The last inequality in the above display is due to Lemma 5.1. The assertion now follows from (5.3).

We now state similar results for the original process Zε needed to prove the CLT result. Their
proofs use almost exactly same estimation techniques and are actually much simpler due to the absence
of the control terms. As such, they will be mostly stated without proofs. The following lemma is the
analogue of Lemma 5.1, and the important point to note here is that unlike the controlled version, it
holds for any exponent q > 0.
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Lemma 5.5. Suppose that Zε satisfies (2.3) and that ∆(ε)/ε→ 0. Assume that Condition 2.1 holds.
Then for all q > 0, there exists a constant ε0 such that

sup
0<ε6ε0

E
[∫ T

0
‖Zε(t)‖qdt

]
<∞.

Proof. Let p > 2. Then from Itô’s lemma,

‖Zε(t)‖p =‖x0‖p + M̄ε(t) +
p

ε

∫ t

0
‖Zε(s)‖p−2〈Zε(s), b(Z̄ε(%ε(s)))〉ds

+
p

2ε

∫ t

0
‖Zε(s)‖p−2‖σ(Zε(%ε(s)))‖2 ds+

p(p− 2)

2ε

∫ t

0
‖Zε(s)‖p−4‖Zε(s)σ(Zε(%ε(s)))‖2ds,

where Mε(t) = p√
ε

∫ t
0 ‖Z̄ε(s)‖

p−2Z̄ε(s)
Tσ(Z̄ε(%ε(s)))dW (s) is a martingale. Splitting the third term

according as ‖Zε(s)‖ > B or not, we have for some constant Ĉ01(T )

‖Zε(t)‖p 6 ‖x0‖p + Mε(t) +
p

ε
Aε(t) +

Ĉ01(T )

ε

[
1 +

∫ t

0
‖Zε(s)‖p+λ−2ds

]
− p

ε

∫ t

0
‖Zε(s)‖p+α−11{‖Zε(s)‖>B}ds, (5.5)

where the term Aε(t)
.
=
∫ t

0 ‖Zε(s)‖
p−2|〈Zε(s), b(Z̄ε(%ε(s)) − b(Zε(s))〉|ds can be easily estimated by

using the Holder continuity of b and Lemma 4.1 as

E|Aε(t)| 6Ĉ02(T )

(
∆

ε

)νb/2
E
∫ t

0
(1 + ‖Zε(s)‖)p+α−1 ds.

Now observing that p + λ − 1 6 p + α − 1, similar steps used in the proof of the Theorem 5.1, show
that, choosing ∆(ε)/ε sufficiently small and rearranging terms in (5.5), there exists an ε0 > 0 such

that sup0<ε6ε0 E
[∫ T

0 ‖Z
ε(t)‖p+α−1dt

]
<∞.

The following corollary to Lemma 5.5 follows in the same way as Corollary 5.3.

Corollary 5.6. Under the assumptions of Lemma 5.5, for any q > 0, there exists a constant ε0 such
that sup0<ε<ε0 εE

[
supr6t ‖Zε(r)‖q

]
<∞.

Remark 5.7. Similar to Corollary 5.4, we have for the following result for the original process Zε

corresponding to the coarser partition {t̃k}: for any q > 0, there exist a constant Ĉ03(T ) and ε0 such

that sup
0<ε6ε0

sup
ψ∈PM2

E
[∫ T

0
‖Zε(ηε(t))‖qdt

]
6 Ĉ03(T ).

Proposition 5.8. Let {ψε} be such that
∫ T

0 ‖ψε(s)‖
2ds 6M for some constant M > 0. Let Z̄ε ≡ Z̄ψεε

satisfy (2.9) with ψ replaced by ψε, and define the occupation measure R̄ε on BT by

R̄ε([0, t]×A×B) =

∫ t

0
1{Z̄ε(s)∈A}1{ψε(s)∈B}ds. (5.6)

Assume that

(i) the step size ∆(ε) is such that (∆(ε)/ε)ν/2/
√
ε→ 0, as ε→ 0 (ν = νb ∧ νσ);

(ii) f : [0,∞)× Rd → Rn satisfies Assumption 2.3, with r(∆) =
√

∆;

(iii) Condition 2.1 (with α > λ) and Assumption 2.8 hold.

Then (R̄ε, Ῡε(f)) is tight in M1(BT )×C([0, T ] : Rd), and any limit point (R, ξ) satisfies (3.1) - (3.3),
where Ῡε(f) was defined before (2.9). Moreover, the same assertion is true for (R̄ε,Ξ

R
ε (f)/δ(ε)) if

Assumption 2.5-(A) or Assumption 2.5-(B) (with p′0 6 α− 2λ) holds.
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Proof. We start by establishing the tightness of R̄ε and toward this end, we need to show that for
every η > 0, there exists a constant Cη such that

sup
ε

ER̄ε {y : ‖x‖+ ‖z‖ > Cη} 6 η (5.7)

where recall that y denotes a typical tuple (s, x, z) in BT . Note that for all 0 < ε < 1,∫ T

0
‖ψε(s)‖2ds =

∫
BT
‖z‖2R̄ε(dy) 6M, (5.8)

and by Lemma 5.1,

sup
ε

E
∫
BT
‖x‖2(α−λ)R̄ε(dy) = sup

ε
E
∫ T

0
‖Z̄ε(s)‖2(α−λ)ds <∞. (5.9)

(5.7) now follows after an application of Markov inequality.
Let {t̃k}Nk=0 be a partition of [0, T ] such that ∆̃ = t̃k − t̃k−1 = ε. Applying Itô-Krylov lemma [19]

to each component ul, we have for r ∈ [tk, tk+1],

ul(t̃k, Z̄ε(r)) = ul(t̃k, Z̄ε(t̃k)) +
1

ε

(∫ r

t̃k

∇Tul(t̃k, Z̄ε(s))b(Z̄ε(%ε(s)))ds

+
1

2

∫ r

t̃k

tr
(
D2ul(t̃k, Z̄ε(s))a(Z̄ε(%ε(s)))

)
ds

)
+
δ(ε)

ε

∫ r

t̃k

∇Tul(t̃k, Z̄ε(s))σ(Z̄ε(%ε(s)))ψε(s)ds

+
1

ε1/2

∫ r

t̃k

∇Tul(t̃k, Z̄ε(s))σ(Z̄ε(%ε(s)))dW (s).

Let k0 = max{k : t̃k < t} and without loss of generality assume that t̃k0+1 = t. Summing over k, we
can write Ã0

.
=
∑k0

k=0

(
ul(t̃k, Z̄ε(t̃k+1))− ul(t̃k, Z̄ε(t̃k))

)
as

Ã0 =
1

ε

∫ t

0
Lu(ηε(s), ·)(Z̄ε(s))ds+ δ(ε)Eε0(t)/ε+

δ(ε)

ε

∫ t

0
∇Tul(ηε(s), Z̄ε(s))σ(Z̄ε(%ε(s)))ψε(s)ds

+
1

ε1/2

∫ t

0
∇Tul(ηε(s), Z̄ε(s))σ(Z̄ε(%ε(s)))dW (s), (5.10)

where, as before, ηε(s) = t̃k if t̃k < s 6 t̃k+1, and

Eε0,l(t) =
1

δ(ε)

(∫ t

0

[
∇Tul(ηε(s), Z̄ε(s))b(Z̄ε(%ε(s)))ds+

1

2
tr
(
D2ul(ηε(s), Z̄ε(s))a(Z̄ε(%ε(s)))

)]
ds

−
∫ t

0
Lul(ηε(s), ·)(Z̄ε(s))ds

)
.

Therefore from (5.10), Uεt
.
= ε

δ(ε)

(
u(t, Z̄ε(t))− u(0, x0)

)
can be written as

Uεt =
ε

δ(ε)

k0∑
k=0

(
u(t̃k+1, Z̄ε(t̃k+1))− u(t̃k, Z̄ε(t̃k+1))

)
+

ε

δ(ε)

k0∑
k=0

(
u(t̃k, Z̄ε(t̃k+1))− u(t̃k, Z̄ε(t̃k))

)
= Eε0(t) + Eε1(t)− 1

δ(ε)

∫ t

0
f(ηε(s), Z̄ε(s))ds+

∫ t

0
Du(ηε(s), Z̄ε(s))σ(Z̄ε(s))ψε(s)ds

+

√
ε

δ(ε)

∫ t

0
Du(ηε(s), Z̄ε(s))σ(Z̄ε(%ε(s)))dW (s)

= − Ῡε(f)(s) +

∫
Bt
Du(s, x)σ(x)zR̄ε(dy) +

√
ε

δ(ε)

∫ t

0
Du(ηε(s), Z̄ε(s))σ(Z̄ε(%ε(s)))dW (s)

+ Eε0(t) + Eε1(t) + Eε2(t) + Eε3(t), (5.11)
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where the quantities Eεi (t) are defined below:

Eε1(t)
.
=

ε

δ(ε)

∑
k

(
u(t̃k+1, Z̄ε(t̃k+1))− u(t̃k, Z̄ε(t̃k+1))

)
;

Eε2(t)
.
=

1

δ(ε)

(∫ t

0
f(s, Z̄ε(s))ds−

∫ t

0
f(ηε(s), Z̄ε(s))

)
ds;

Eε3(t)
.
=

∫ t

0
Du(ηε(s), Z̄ε(s))σ(Z̄ε(%ε(s)))ψε(s)ds−

∫ t

0
Du(s, Z̄ε(s))σ(Z̄ε(s))ψε(s)ds,

and Eε0 is of course given by Eε0 = (Eε0,1, . . . , Eε0,n)T .

Recalling that ∆̃ = ε , it follows from Assumption 2.3-(ii), the fact that q0 6 2(α−λ) (Assumption
2.8-(iii)), and Lemma 5.1 that

E
(

sup
s6t
‖Eε2(s)‖

)
6 C̄1(T )

√
ε

δ(ε)

(∫ t

0
(1 + E(‖Z̄ε(s)‖q0)ds

)
→ 0, (5.12)

as ε→ 0. Next, by Assumption 2.3-(iii) and Hölder continuity of σ, we have for some constant C̃1(T )

‖Eε3(s)‖ 6 C̄2(T )

[√
ε

∫ t

0
(1 + ‖Z̄ε(s)‖)q2+λ‖ψε(s)‖ds+

∫ t

0
(1 + ‖Z̄ε(s)‖)p2‖Z̄ε(s)− Z̄ε(%ε(s))‖νσ‖ψε(s)‖ds

]
≡ Eε3,1(t) + Eε3,2(t).

By (a) the assumption that q2 6 α − 2λ (which implies q2 + λ 6 α − λ) (Assumption 2.8-(iii)), (b)
Lemma 5.1, and (c) Cauchy-Schwarz inequality,

E
(

sup
s6t
|Eε3,1(s)|

)
6C̄3(T )

√
ε

(∫ t

0
E(1 + ‖Z̄ε(s)‖)2(q2+λ)ds E

∫ t

0
‖ψε(s)‖2ds

)1/2

6C̄3(T )M1/2 sup
ε

(∫ t

0
E
(
1 + ‖Z̄ε(s)‖

)2(q2+λ)
ds

)1/2√
ε → 0,

as ε→ 0. Also, since νσ 6 1− λ/α

E
(

sup
s6t
|Eε3,2(s)|

)
6 C̄4(T )E

(∫ t

0
(1 + ‖Z̄ε(s)‖)p2‖Z̄ε(s)− Z̄ε(%ε(s))‖νσ‖ψε(s)‖ds

)
6 C̄4(T )E

(
sup
s6T

(1 + ‖Z̄ε(s)‖)p2
∫ t

0
‖Z̄ε(s)− Z̄ε(%ε(s))‖νσ‖ψε(s)‖ds

)
6 C̄4(T )LσE

[
sup
s6T

(1 + ‖Z̄ε(s)‖)p2
(∫ t

0
‖Z̄ε(s)− Z̄ε(%ε(s))‖2νσ

)1/2(∫ t

0
‖ψε(s)‖2ds

)1/2
]

6 C̄4(T )LσM
1/2E

[
sup
s6T

(1 + ‖Z̄ε(s)‖)p2
(∫ t

0
‖Z̄ε(s)− Z̄ε(%ε(s))‖2νσds

)1/2
]

6 C̄4(T )LσM
1/2

[
E
(

sup
s6T

(1 + ‖Z̄ε(s)‖)2p2

)]1/2 [∫ t

0
E‖Z̄ε(s)− Z̄ε(%ε(s))‖2νσds

]1/2

6C̄5(T )
(∆(ε)/ε)νσ/2√

ε

[
εE
(

sup
s6T

(1 + ‖Z̄ε(s)‖)2p2

)]1/2

×
[∫ t

0
(1 + E‖Z̄ε(s)‖2(α−λ))ds

]1/2

6 C̄6(T )
(∆(ε)/ε)νσ/2√

ε

ε→0→ 0,

by the choice of discretization step ∆(ε) (see (i) in the hypotheses of the proposition). The last
inequality above used the (a) Corollary 5.3 along with the assumption that p2 6 (1 + α − 2λ)/2
(Assumption 2.8-(ii)), and (b) Lemma 5.1.
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We now consider Eε1 . Note that because of Assumption 2.3-(iii)-(c)

|Eε1(t)| 6 ε

δ(ε)

k0∑
k=0

C1(T )
(
1 + ‖Z̄ε(t̃k+1)‖q1

)
∆̃1/2 =

√
ε

δ(ε)

k0+1∑
k=1

C1(T )
(
1 + ‖Z̄ε(t̃k)‖q1

)
ε

6

√
ε

δ(ε)
C1(T )

∫ T

0

(
1 + ‖Z̄ε(ηε(s))‖q1

)
ds,

and because of Assumption 2.8-(iii), it follows by Corollary 5.4 that E
(
sups6T ‖Eε1(s)‖

) ε→0→ 0.
To estimate Eε0 , note that for each l, by Assumption 2.3-(iii)-(b) & (e),

sup
t6T
‖Eε0,l(t)‖ 6

1

δ(ε)

(∫ T

0
‖∇Tul(ηε(s), Z̄ε(s))‖‖b(Z̄ε(s))− b(Z̄ε(%ε(s)))‖ds

+

∫ T

0
‖D2ul(ηε(s), Z̄ε(s))‖‖a(Z̄ε(s))− a(Z̄ε(%ε(s)))‖ds

)
=

1

δ(ε)

(
E1,ε

0,l (t) + E2,ε
0,l (t)

)
for some constant C̄1(T ). Notice that by Corollary 4.3-(iv)

E
(

sup
t6T
‖E1,ε

0,l (t)‖
)

6 C1(T )LbE
∫ T

0
(1 + ‖Z̄ε(s)‖)p2‖Z̄ε(s)− Z̄ε(%ε(s))‖νbds,

6 C̄7(T )ςνb(ε)E
∫ T

0
(1 + ‖Z̄ε(s)‖)p2+νb(ᾱ∨λ)ds 6 C̄8(T )ςνb(ε).

The last step used (a) the fact that p2 6 α−2λ (c.f. Assumption 2.8-(ii)) implies p2+νb(ᾱ∨λ) 6 2(α−λ)
and (b) Lemma 5.1. Again by Corollary 4.3-(iv)

E
(

sup
t6T
‖E2,ε

0,l (t)‖
)

6 C1(T )E
∫ T

0
(1 + ‖Z̄ε(s)‖p3)

(
‖σ(Z̄ε(s))‖‖Z̄ε(s)− Z̄ε(%ε(s))‖νσ

+ ‖σ(Z̄ε(%ε(s)))‖‖Z̄ε(s)− Z̄ε(%ε(s))‖νσds
)
,

6 C̄9(T )

(
E
∫ T

0
(1 + ‖Z̄ε(s)‖p3+λ)‖‖Z̄ε(s)− Z̄ε(%ε(s))‖νσ ds

+

∫ T

0
(1 + ‖Z̄ε(s)‖p3)(1 + ‖Z̄ε(%ε(s))‖λ)‖Z̄ε(s)− Z̄ε(%ε(s))‖νσds

)
,

6 C̄10(T )ςνσ(ε)E
∫ T

0
(1 + ‖Z̄ε(s)‖)p3+λ+νσ(ᾱ∨λ)ds 6 C̄11(T )ςνσ(ε).

The last step used (a) the fact that p3 6 α − 2λ (c.f. Assumption 2.8-(ii)) and νσ 6 1− λ/α implies
p3 + λ+ νσ(ᾱ ∨ λ) 6 2(α− λ) and (b) Lemma 5.1. It follows from Remark 4.2 that

E
(

sup
t6T
‖Eε0,l(t)‖

)
6 C̄12(T )ςν(ε)/δ(ε)

ε→0→ 0, ν = νb ∧ νσ.

We next show that as ε→ 0
ε

δ(ε)
E
[
sup
t6T
‖u(t, Z̄ε(t))− u(0, x0)‖

]
→ 0. (5.13)

Since p1 6 (1 + α− 2λ)/2 (Assumption 2.8-(i)),

ε

δ(ε)
E
(

sup
s6t

(1 + ‖Z̄ε(s)‖)p1
)

6 C̄13 ε

δ(ε)
E
(

sup
s6t

(1 + ‖Z̄ε(s)‖)(1+α−2λ)/2

)
= C̄13

√
ε

δ(ε)

[
εE
(

sup
s6t

(1 + ‖Z̄ε(s)‖)1+α−2λ

)]1/2

→ 0,

as ε→ 0 by Corollary 5.3, and (5.13) follows because of Assumption 2.3-(iii)-(a).
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For each l = 1, 2, . . . , n, the martingale terms, M̃l
ε(t)

.
=

√
ε

δ(ε)

∫ r

0
∇Tul(ηε(s), Z̄ε(s))σ(Z̄ε(s))dW (s),

can be estimated as below by (a) Burkholder-Davis-Gundy inequality, (b) Corollary 4.3, (c) Lemma
5.1 along with the assumption p2 < α− 2λ:

E
[
sup
r6t
|M̃l

ε(r)|2
]
6

ε

δ2(ε)
E
∫ t

0
‖∇Tul(ηε(s), Z̄ε(s))σ(Z̄ε(s))‖2ds

6 C2
1(T )B̄2 ε

δ2(ε)
E
∫ t

0
(1 + ‖Z̄ε(s)‖)2p2(1 + ‖Z̄ε(%ε(s))‖)2λds

6 C̄14(T )
ε

δ2(ε)
E
∫ t

0
(1 + ‖Z̄ε(s)‖)2(p2+λ) ds 6 C̄15(T )

ε

δ2(ε)

ε→0→ 0.

It now follows from (5.11) that for tightness Ῡε(f) we only need to show tightness of Λ̄ε, where

Λ̄ε(t) =

∫
Bt
Du(s, x)σ(x)zR̄ε(dy) =

∫ t

0
Du(s, Z̄ε(s))σ(Z̄ε(s))ψε(s)ds.

Toward this end, notice that by Assumption 2.3-(iii)-(b) for any K > 0,

‖Λ̄ε(t+ h)− Λ̄ε(t)‖ 6 C1(T )B̄

∫ t+h

t
(1 + ‖Z̄ε(s)‖)p2+λ‖ψε(s)‖ds

6C̄16(T )

[
(1 +K)p2+λ

∫ t+h

t
‖ψε(s)‖ds+

∫ t+h

t
(1 + ‖Z̄ε(s)‖)p2+λ1{‖Z̄ε(s)‖>K}‖ψε(s)‖ds

]
6C̄16(T )

[
(1 +K)p2+λM1/2h1/2 +

1

(1 +K)α−2λ−p2

∫ t+h

t
(1 + ‖Z̄ε(s)‖)α−λ‖ψε(s)‖ds

]
6C̄16(T )

[
(1 +K)p2M1/2h1/2 +

1

(1 +K)α−2λ−p2

(∫ T

0
(1 + ‖Z̄ε(s)‖)2(α−λ)ds+M

)]
,

where C̄16(T ) is a constant independent of K. Taking (1 + K) = h−1/4p2 , and using Lemma 5.1 we
have that for some constant¯̄C17(T ),

E
[

sup
06t6t+h6T

‖Λ̄ε(t+ h)− Λ̄ε(t)‖
]
6 C̄17(T )

(
h1/4 + h(α−2λ−p2)/4p2

)
.

Recalling that p2 < α − 2λ, tightness of Λ̄ε is now immediate. Here, of course, we assumed p2 > 0.
The argument for p2 = 0 (that is, when Du is bounded) is much simpler.

Let (R, ξ) be a limit point of {(R̄ε, Ῡε(f))} and by Skorohod representation theorem assume
without loss of generality that (R̄ε, Ῡε(f))→ (R, ξ) a.s in M1(BT )×C([0, T ] : Rd) as ε→ 0, at least,
along some subsequence. Note that (3.1) follows from (5.8), continuity of z → ‖z‖ and (generalized)
Fatou’s lemma. (see [10, Theorem 1.1]).

Next notice that ‖Du(s, x)σ(x)z‖ = o(‖x‖α−λ‖z‖) by Assumption 2.3-(iii)-(b), and the fact that
p2 < α − 2λ (Assumption 2.8-(ii)). Hence (5.8), (5.9), and an application of Lemma B.4 imply that
as ε→ 0, ∫

Bt
Du(s, x)σ(x)zR̄ε(dy)→

∫
Bt
Du(s, x)σ(x)zR(dy).

Thus from (5.11) and the above calculations it follows that (3.2) holds, that is,

ξ(t) =

∫
Bt
Du(s, x)σ(x)zR(dy).

Finally, for (3.3), let g ∈ C2
b (Rd,R). Then a simpler version of (5.10) with u replaced by g and

much easier calculations reveal that∫
Bt
Lg(x)R(dy) = 0, 0 6 t 6 T.
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For the result on Ξ̄Rε (f), notice we only need to show that Ẽε2 , defined by

Ẽε2(t)
.
=

1

δ(ε)

(∫ t

0
f(ηε(s), Z̄ε(s))ds−

∫ t

0
f(%ε(s), Z̄ε(%ε(s)))ds

)
ε→0−→ 0.

We work only under Assumption 2.5-B. The steps under Assumption 2.5-A are simpler. Writing

Ẽε2(t) =
1

δ(ε)

∫ t

0

(
f(ηε(s), Z̄ε(s))− f(%ε(s), Z̄ε(s))

)
ds− 1

δ(ε)

∫ t

0

(
f(%ε(s), Z̄ε(s))− f(%ε(s), Z̄ε(%ε(s)))

)
ds

.
= Ẽε2,1(t) + Ẽε2,2(t),

it is immediate that (c.f. (5.12)) E
[
supt6T |Ẽε2,1(t)|

]
→ 0, as ε→ 0.

Next, for each l = 1, . . . , n, by the mean value theorem,

Ẽε2,2,l(t) =
1

δ(ε)

∫ t

0
∇fl

(
ηε(%ε(s)), θl(s)Z̄ε(%ε(s)) + (1− θl(s))Z̄ε(s)

) (
Z̄ε(%ε(s))− Z̄ε(s)

)
ds

for some θl(s) ∈ (0, 1). Thus by Assumption 2.5-B, and Corollary 4.3,

sup
s6T
|Ẽε2,2,l(t)| 6

C̄18(T )

δ(ε)

∫ t

0

(
‖Z̄ε(%ε(s))‖p

′
0 + ‖Z̄ε(s)‖p

′
0

)
‖Z̄ε(%ε(s))− Z̄ε(s)‖ds

6
C̄19(T )

δ(ε)

∫ t

0

(
‖Z̄ε(s)‖p

′
0‖Z̄ε(%ε(s))− Z̄ε(s)‖+ ‖Z̄ε(%ε(s))− Z̄ε(s)‖p

′
0+1
)
ds

6C̄20(T )
ς(ε)

δ(ε)
E
∫ T

0

(
1 + ‖Z̄ε(s)‖

)p′0+ᾱ∨λ
ds 6 C̄21(T )

ς(ε)

δ(ε)

ε→0→ 0.

The last step used Lemma 5.1 along with the fact that p′0 + ᾱ ∨ λ 6 2(α− λ), and Remark 4.2.

Remark 5.9. Analogous to Lemma 5.5, we have (by much simpler methods) that

sup
0<ε6ε0

E
[∫ T

0
‖Xε(t)‖qdt

]
≡ sup

0<ε6ε0
E

[∫
Rd×[0,T ]

‖x‖qΓε(dx× ds)

]
=<∞

under (i), (iii) and (iv) of Condition 2.1. Now again by much simpler calculations than that used in
proof of Proposition 5.8, any limit point Γ satisfies∫

Rd×[0,t]
Lg(x)Γ(dx× ds) = 0, 0 6 t 6 T.

Writing Γ(dx × ds) = Γ2|1(dx|s)ds, it follows from the uniqueness of the invariant measure π (c.f.
beginning of Section 2.1) that Γ(dx × ds) = π(dx)ds. Hence, it follows from continuity of x → ‖x‖,
(generalized) Fatou’s lemma (see [10, Theorem 1.1]) , that for any q > 0,

∫
Rd ‖x‖

qπ(dx) <∞.

5.1 Proof of Theorem 2.7

Notice because of Lemma 5.5, Ξε is tight and as in the above remark

Ξε ⇒ Ξ, where Ξ(dx× ds) = π(dx)ds. (5.14)

Now, again using the coarser partition {t̃k} with ∆̃(ε) = tk−tk−1 = ε, similar to (5.11), for the original
process Zε, we can write U0

.
=
√
ε (u(t, Zε(t))− u(0, x0)) as

U0 =
√
ε

k0∑
k=0

(
u(t̃k+1, Z

ε(t̃k+1))− u(t̃k, Z
ε(t̃k+1))

)
+
√
ε

k0∑
k=0

(
u(t̃k, Z

ε(t̃k+1))− u(t̃k, Z
ε(t̃k))

)
= Êε0(t) + Êε1(t)− 1√

ε

∫ t

0
f(ηε(s), Z

ε(s))ds+

∫ t

0
Du(ηε(s), Z

ε(s))σ(Zε(%ε(s)))dW (s)

= − ε−1/2Ξε(f)(t) + M̂ε(t) + Êε0(t) + Êε1(t) + Êε2(t) + Êε3(t), (5.15)
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where

Êεl,0(t) =
1√
ε

(∫ t

0

[
∇Tul(ηε(s), Zε(s))b(Zε(%ε(s)))ds+

1

2
tr
(
D2ul(ηε(s), Z

ε(s))a(Zε(%ε(s)))
)]
ds

−
∫ t

0
Lul(ηε(s), ·)(Zε(s))ds

)
Êε1(t)

.
=
√
ε
∑
k

(
u(t̃k+1, Z

ε(t̃k+1))− u(t̃k, Z
ε(t̃k+1))

)
;

Êε2(t)
.
=

1√
ε

(∫ t

0
f(s, Zε(s))ds−

∫ t

0
f(ηε(s), Z

ε(s))

)
ds;

Êε3(t)
.
=

∫ t

0
Du(ηε(s), Z

ε(s)σ(Zε(%ε(s)))−Du(s, Zε(s))σ(Zε(s))dW (s),

M̂ε(t)
.
=

∫ t

0
Du(s, Zε(s))σ(Zε(s))dW (s).

Notice that by Remark 5.7,

E[sup
t6T
‖Êε1(t)‖] 6

√
εC1(T )

∑
k

E(1 + ‖Zε(t̃k+1)‖q1)r(ε) 6
r(ε)√
ε
C1(T )

∫ T

0
E(1 + ‖Zε(ηε(s))‖q1)ds

ε→0−→ 0.

Also, since r(ε)→ 0, by Lemma 4.4 and Lemma 5.5

E[sup
t6T
‖Êε3(t)‖] 6 C1(T )B̄r(ε)

∫ T

0
E(1 + ‖Zε(s)‖q2+λ)ds

+ LbC1(T )

∫ T

0
E(1 + ‖Zε(s)‖p2)‖Zε(s)− Zε(%ε(s)))‖νσds

ε→0−→ 0.

Similarly, it easily follows that E[sups6T ‖Êε2(s)‖]→ 0, and by similar techniques used in the proof

of Proposition 5.8, (∆(ε)/ε)ν/2/
√
ε→ 0 implies that E[sups6T ‖Êε0(s)‖]→ 0 as ε→ 0.

Moreover, since Corollary 5.6 holds for any q, using Assumption 2.3-(iii)-(a), it could be seen that√
εE
[
supt6T |u(t, Zε(t))|

]
→ 0, as ε → 0 (c.f. the proof of (5.13)). For the martingale term we look

at its quadratic variation. By (5.14) and Lemma B.4, it follows that as ε→ 0,

[M̂ε]t =

∫ t

0
Du(s, Zε(s))a(Zε(s))(Du(s, Zε(s)))Tds =

∫
Rd×[0,t]

Du(s, x)a(x)(Du(s, x))TΞε(dx× ds)

→
∫
Rd×[0,t]

Du(s, x)a(x)(Du(s, x))Tπ(dx)ds =

∫ t

0
Mf (s)ds.

The result now follows from the martingale central limit theorem [9, Chapter 7].
Finally, just as in the last part of the proof of Proposition 5.8, and using the same techniques,

ε−1/2E
[
sup
t6T

∣∣∣∣∫ t

0

(
f(ηε(s), Z

ε(s))− f(%ε(s), Z
ε(%ε(s)))

)
ds

∣∣∣∣]→ 0,

as ε→ 0, and the assertion for ΞRε (f) follows.

5.2 LDP / Laplace principle upper bound - Theorem 2.9

The objective of this section is to prove the Laplace principle upper bound, that is, to show that

lim sup
ε→0

β(ε) lnE
[
exp

(
− F (Υε(f))/β(ε)

)]
6 − inf

ξ∈C([0,T ],Rd)
[If (ξ) + F (ξ)]. (5.16)

Note that (2.8) implies that for every ε > 0, there exists a sequence of {ψε} such that

−β(ε) lnE
[
exp

(
− F (Υε(f))/β(ε)

)]
>

1

2
E
[∫ T

0
‖ψε(s)‖2ds+ F (Ῡε(f))

]
− ε, (5.17)
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Let R̄ε be as in Proposition 5.8. Since F is bounded, by a standard localization argument [3, 6], one

can assume without loss of generality that sup0<ε<1

∫ T
0 ‖ψ

ε(s)‖2ds 6M for some constant M > 0. By
Proposition 5.8, (R̄ε, Ῡε(f)) is tight and any limit point (R, ξ) satisfies (3.1) - (3.3). Hence (R, ξ) ∈ Rξ,
where Rξ was introduced in Section 3. Assume, without loss of generality, that (R̄ε, Ῡε(f))⇒ (R, ξ)
along the full sequence. It follows from (5.17) and (generalized) Fatou’s lemma that

lim inf
ε→0

−β(ε) lnE
[
exp

(
− F (Υε(f))/β(ε)

)]
>

1

2
lim inf
ε→0

E
[∫ T

0
‖ψε(s)‖2ds+ F (Ῡε(f))

]
> E

[
1

2

∫
BT
‖z‖2R(dy) + F (ξ)

]
> I(ξ) + F (ξ),

which proves (5.16). Here we used the equivalent form of the rate function given in Lemma 3.2.
The proof for the Laplace principle upper bound for ΞRε (f)/δ(ε) follows by the exact same steps.

6 LDP / Laplace principle lower bound - Theorem 2.9

The goal of this section is to prove the Laplace principle lower bound, which is equivalent to proving
the LDP lower bound. Specifically, we will show that

lim inf
ε→0

β(ε) lnE
[
exp

(
− F (Υε(f))/β(ε)

)]
> − inf

ξ∈C([0,T ],Rd)
[If (ξ) + F (ξ)] (6.18)

for a bounded Lipschitz continuous function F : C([0, T ],Rn)→ R, Fix κ > 0. Let ξ be such that

If (ξ) + F (ξ) 6 inf
ξ∈C([0,T ],Rd)

[If (ξ) + F (ξ)] + κ/2.

Recall that by Theorem 3.2, If = Īf . Choose φ ∈ Aξ such that

1

2

∫
Rd×[0,T ]

‖φ(x, s)‖2π(dx)ds+ F (ξ) 6 If (ξ) + F (ξ) + κ/2 6 inf
ξ∈C([0,T ],Rd)

[If (ξ) + F (ξ)] + κ.

Using the denseness of C∞c ([0, T ],Rd) in L2(π×λT ), find φκ ∈ C∞c ([0, T ],Rd) such that ‖φκ−φ‖2 6 κ.
Define ξκ by

ξκ(t) =

∫
Rd×[0,t]

Du(x, s)σ(x)φκ(x, s)π(dx)ds. (6.19)

Notice that by Assumption 2.3-(iii)-(b), there exists a constant C̃1(T ) such that

|ξ(t)− ξκ(t)| 6
∫
Rd×[0,t]

‖Du(x, s)‖op‖σ(x)‖op‖φ(x, s)− φκ(x, s)‖π(dx)ds

6 C̃1(T )

∫
Rd×[0,t]

(1 + ‖x‖)p2+λ‖φ(x, s)− φκ(x, s)‖π(dx)ds

6 C̃1(T )

(∫
Rd×[0,t]

(1 + ‖x‖)2(p2+λ)π(dx)ds

∫
Rd×[0,t]

‖φ(x, s)− φκ(x, s)‖2π(dx)ds

)1/2

6 Θ2C̃1(T )T 1/2κ, (6.20)

where Θ2 ≡
∫
Rd(1 + ‖x‖)2(p2+λ)π(dx) <∞ (by Remark 2.2).

Let Z̄κε be the solution to the following SDE

Z̄κε (t) = x0 +
1

ε

∫ t

0
b(Z̄κε (%ε(s)))ds+

1√
ε

∫ t

0
σ(Z̄κε (%ε(s)))dW (s) +

δ(ε)

ε

∫ t

0
σ(Z̄κε (%ε(s)))φκ(Z̄κε (s), s)ds.

(6.21)

Since φκ ∈ C∞c ([0, T ],Rd) and hence Lipschitz, it readily follows that there exists a unique solution to
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(6.21). Define ψε(s) = φκ(Z̄κε (s), s) and by the variational representation we have

−β(ε) lnE
[
exp

(
− F (Υε(f))/β(ε)

)]
6 E

[
1

2

∫ T

0
‖ψε(s)‖2ds+ F (Ῡκ

ε (f))

]
, (6.22)

where Ῡκ
ε (f) = 1

δ(ε)

∫ t
0 f(s, Z̄κε (s))ds. Let Ξ̄κε , defined by

Ξ̄κε (A× [0, t]) =

∫ t

0
1{Z̄κε (s)∈A}ds,

denote the occupation measure of Z̄κε (s) on Rd × [0, T ]. We now study the limit of Ῡκ
ε (f). Since

sup
ε

E

[∫
Rd×[0,T ]

‖x‖2αΞ̄κε (dx× ds)

]
= sup

ε
E
[∫ T

0
‖Z̄κε (s)‖2αds

]
<∞,

Ξ̄κε is tight in M1(Rd × [0, T ]). Let Ξκ be a limit point of Ξ̄κε and assume without loss of generality
that Ξ̄κε → Ξκ as ε→ 0. Now observe that from (5.11) using φk in place of φ

ε

δ(ε)

(
u(t, X̄κ

ε (t))− u(0, x0)
)

= − Ῡκ
ε (f)(s) +

∫
Rd×[0,t]

Du(x, s)σ(x)φκ(x, s)Ξ̄κε (dx× ds)

+

√
ε

δ(ε)

∫ t

0
Du(ηε(s), Z̄

κ
ε (s))σ(Z̄κε (%ε(s)))dW (s)

+ Eε0(t) + Eε1(t) + Eε2(t) + Eε3(t), (6.23)

where Eεj are defined analogously. Thus invoking the same calculations in the proof of Proposition 5.8,
E(sups6t ‖Eεj (s)‖)→ 0, j = 0, . . . , 3 and

E
[
sup
r6t
|
√
ε

δ(ε)

∫ r

0
∇Tul(ηε(s), Z̄κε (s))σ(Z̄κε (%ε(s)))dW (s)|2

]
→ 0,

as ε→ 0. Next by Lemma B.4∫
Rd×[0,t]

Du(x, s)σ(x)φκ(x, s)Ξ̄κε (dx× ds) ε→0−→
∫
Rd×[0,t]

Du(x, s)σ(x)φκ(x, s)Ξκ(dx× ds).

Consequently, it follows that Ῡκ
ε (f) →

∫
Rd×[0,·]Du(x, s)σ(x)φκ(x, s)Ξκ(dx × ds). Now just as in the

proof of Proposition 5.8, much easier calculation shows that for any g ∈ C2
b (Rd),

∫
Rd×[0,t] Lg(x)Ξκ(dx×

ds) = 0 for all t ∈ [0, T ]. Writing Ξκ(dx× ds) = γκs (dx)ds, we have by the uniqueness of the invariant
distribution of π, Ξκ(dx× ds) = π(dx)ds. Thus Ῡκ

ε (f)→ ξκ, where ξκ is defined by (6.19).
Next we observe that since (x, s) → φκ(x, s) is continuous and bounded, and Ξκε ⇒ Ξκ, where

Ξκ(dx× ds) = π(dx)ds,∫ T

0
φκ(Z̄κε (s), s)ds =

∫
Rd×[0,T ]

φκ(x, s)Ξκε (dx× ds)→
∫
Rd×[0,T ]

φκ(x, s)π(dx)ds.

Now taking limits in (6.22), we have that A
.
= −β(ε) lnE

[
exp

(
− F (Υε(f))/β(ε)

)]
satisfies

A 6 lim sup
ε→0

E
[

1

2

∫ T

0
‖φκ(Z̄κε (s), s)‖2ds+ F (Ῡκ

ε (f))

]
=

1

2

∫ T

0
‖φκ(x, s)‖2π(dx)ds+ F (ξκ)

6
1

2

∫ T

0
‖φ(x, s)‖2π(dx)ds+ F (ξ) + ‖φ− φκ‖22 + LFlip‖ξ − ξκ‖T

6
1

2

∫ T

0
‖φ(x, s)‖2π(dx)ds+ F (ξ) + κ2 + LFlipΘ2C̃1(T )T 1/2κ

6 inf
ξ∈C([0,T ],Rd)

[If (ξ) + F (ξ)] + κ+ κ2 + LFlipΘ2C̃1(T )T 1/2κ.

Here LFlip is the Lipschitz constant of F , and the fourth step used (6.20). Sending κ → 0, we have

(6.18). Again, the proof for the Laplace principle lower bound for ΞRε (f)/δ(ε) follows similarly.
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Appendix

A Poisson equation

The goal of this section is to characterize (at least partially) the set of functions f = (f1, f2, . . . , fn) :
[0, T ]×Rd → Rn satisfying Assumption 2.3. As discussed in Remark 2.4, this requires us to study the
solution of the Poisson equation for each t > 0:

Lu(t, ·)(x) = −f(t, x), (A.1)

The equation above is component-wise, and so without loss of generality, we will simply assume n = 1.
A solution u, when it exists, is given by

u(t, x) =

∫ ∞
0

Psf(t, ·)(x)ds =

∫ ∞
0

∫
Rd
f(t, y)Ps(x, dy)ds, (A.2)

Notice since t is fixed, it is just playing the role of a parameter here. This section summarizes the work
of Pardoux and Veretennikov [29] on existence and regularity of the solution u under the assumption
a = σσT is uniformly elliptic and bounded:

• there exist strictly positive constants c1 and c2 such that for all x, y ∈ Rd

0 < c1 6 yT
(
σ(x)σT (x)

)
y/‖y‖2 6 c2. (A.3)

From [29, Theorems 1, 2], under Condition 2.1-(i) and (A.3), if f satisfies Assumption 2.3-(i), then
for each t > 0 (which is just playing the role of a parameter here), (A.1) admits a unique solution
u(t, ·) in the class of functions belonging to W 2,p

loc for any p > 1. u(t, ·). Note that by choosing p > d
and using Sobolev embedding theorem [11, Section 7.7], it follows that for each t > 0, Du(t, ·) is
continuous. Moreover, if we assume that the coefficients b and a are C1, f is (weakly) differentiable
and supt6T ‖Df(t, x)‖ 6 C(T )(1 + ‖x‖)p′0 for some p′0 ∈ R, then by [11, Theorem 9.19], it follows that

f ∈ W 3,p
loc for all p > 1. As before, choosing p > d and using Sobolev embedding theorem, it now

follows that D2u(t, ·) is continuous.

Remark A.1. As mentioned in the introduction, we do note that the proof of the estimate on the
growth rate of Du, [29, Theorem 2, eq. (21)], requires the drift b to be globally bounded. This is
not explicitly mentioned in [29], where b is said to be locally bounded (although in the statement of
Theorem 1 of [29], it did mention once that the constant depends on supi,x |bi(x)|). To see why this is
indeed the case, first observe that the proof uses the result on interior Lp-estimates of solutions of the
elliptic equation from Gilbarg and Trudinger [11, Theorem 9.1]. However, the constant in this result
depends on the bounds of the coefficients, b and a, in the domain of interest, Ω. The coefficient a is
assumed to be bounded, but the drift term b in most examples will not be. More specifically, since the
domain Ω = B(x, 1) in the part (e) of proof of [11, Theorem 9.1], the constant C in [11, Eq. (9.4)], and
hence the constant C ′ in the first display of [29, Page 1070] will actually depend on x. For example,
for Ornstein-Uhlenbeck SDE, where b(x) ∼ −x, it is not hard to see following the chain of arguments
leading to [11, Eq. (9.4)] that this particular C ∼ x2. This affects the growth rate of the gradient of
the solution u in [29, Theorem 2, eq. (21)].

The statement as stated in [29, Theorem 2, eq. (21)] might still be true for more general b, but
unfortunately, we cannot find a way to adapt the proof given by Pardoux and Veretennikov or find
an alternate proof – except in one-dimension. For one-dimensional SDEs, the original statement of
[29] (at least, a very similar one) is indeed true, and we were able to find an alternate way to prove
it. For multi-dimensional SDEs, a closer inspection of the proof of [11, Theorem 9.1], shows that a
modified statement with a different growth rate of Du holds (c.f. Proposition A.2 below). We claim
no originality of its proof, and we just kept track of certain constants in the original proof of [29] to
arrive at the correct exponents for u and its derivatives.

26



Proposition A.2. Suppose that Condition 2.1 and Assumption 2.3-(i) hold, and that a = σσT satisfies
(A.3). Then u ∈ C1(Rd,R), and (iii)-(a) and (iii)-(b) of Assumption 2.3 hold, with the following
relations between the exponents:

p1 = (p0 − α+ 1)+, p2 = max{p1 + 2ᾱ, p0}.
If in addition, Assumption 2.3-(ii) holds, then (iii)-(c) and (iii)-(d) of Assumption 2.3 also hold with

q1 = (q0 − α+ 1)+, q2 = max{q1 + 2ᾱ), q0}.
Here p0 and q0 are as in Assumption 2.3.

Furthermore, assume that b and a are in C1(Rd), ‖D2a‖∞ <∞, ‖Db‖ 6 B(1+‖x‖ᾱ), f is (weakly)
differentiable and supt6T ‖Df(t, x)‖ 6 C(T )(1 + ‖x‖)p′0 for some p′0 ∈ R and some constant C(T ) > 0.
Then u ∈ C2(Rd,R), and Assumption 2.3-(iii)-(e) also holds with

p3 = max{p0 + 2ᾱ, p1 + 4ᾱ}.

Proof. The fact that u ∈ C1(Rd,Rn) (or C2(Rd,Rn), under additional hypotheses) follows from the
discussion above Remark A.1. Assumption 2.3-(iii)-(a) follows from [29, Theorem 2]. Assumption
2.3-(iii)-(b) and Assumption 2.3-(iii)-(e) now follow from Lemma B.1, Remark B.2 and Lemma B.3,
applied to f and u.

In fact, a closer observation of the proof of [29, Theorem 2] reveals the following more detailed
assertion: if ‖gκ(x)‖ 6 κ(1 + ‖x‖p0) for some parameter κ, and vκ given by (A.2) (with fl replaced by
gκ) is the solution to the Poisson equation Lvκ = −gκ, then

‖vκ(x)‖ 6 m̃0κ(1 + ‖x‖p1), (A.4)

with p1 = (p0 − α+ 1)+, and where the constant m̃0 does not depend on κ. Next, Remark B.2 shows
that for some constant m̃1 not depending on the parameter κ,

‖∇vκ(y)‖ 6 m̃1κ(1 + ‖y‖)p2 . (A.5)

with p2 = max{p12ᾱ, p0}.
In other words, the parameter κ appears in the bound of the solution, uκ and its gradient, in the

same linear way it appears in the bound of the input function, gκ. This key observation is the reason
behind the validity of of (c) and (d) of Assumption 2.3-(iii).

To see this notice that for a fixed t and ∆

ūt,∆(x)
.
= u(t+ ∆, x)− u(t, x) =

∫ ∞
0

Psf̄
t,∆(x)ds

is the solution to the equation Lv = −f̄ t,∆, where f̄ t,∆(x)
.
= f(t+ ∆, x)− f(t, x) satisfies ‖f̄ t,∆(x)‖ 6

C(T )r(∆)(1 + ‖x‖)q0 (by Assumption 2.3-(ii)). It follows from (A.4) and (A.5) with q1 and q2 as in
the statement of the proposition ( and with r(∆) playing the role of κ) that

|u(t+ ∆, x)− u(t, x)| ≡ |ūt,∆(x)| 6 C̄(T )r(∆)(1 + ‖x‖)q1 , and

|∇u(t+ ∆, x)−∇u(t, x)| ≡ |∇ūt,∆(x)| 6 C̄(T )r(∆)(1 + ‖x‖)q2

Hence (c) and (d) of Assumption 2.3-(iii) hold.

Although the above theorem is nice and might be the only tool available to check Assumption 2.3-
(iii) and Assumption 2.8 for many stochastic models, it is not optimal. Consider an one dimensional
model, where we have xb(x) = −|x|1+α. Then clearly, |b(x)| ∼ |x|α. Then if Proposition A.2 is used
to determine the exponents of u,Du, then it follows from Assumption 2.8 that f has to be chosen
from the class for which p0 < −1, that is, |f(x)| ∼ 1/(1 + |x|). This restricts the applicability of the
theorem to a smaller class of functions than desired.

However, for one-dimensional SDEs, Proposition A.2 could actually be vastly improved, and tighter
bounds on growth rate of u and u′ can be obtained. This result is presented in Proposition A.4. This
makes our MDP results applicable to a wide class of stochastic models, and to functions f having
polynomial-like growth – without doing any extra work for checking regularity of Poisson equation.
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Regularity of Poisson equation for one dimensional SDE

When d = 1, the invariant distribution of X is given by

π(z) =
B

a(z)
exp

(
2

∫ z

0

b(y)

a(y)
dy

)
,

where B is the normalizing constant, and by a slight abuse of notation, we used π(·) to denote the
density of the invariant distribution π . In this case the solution of the Poisson equation, u(t, ·), have
the following explicit representation:

uf (t, x) ≡ u(t, x) = −
∫ x

−∞

2

a(z)π(z)

∫ z

−∞
f(t, y)π(y)dy dz. (A.6)

Since t is just a parameter in (A.6), for convenience, we will drop t from the following result.

Assumption A.3. There exist exponents p, θ(> −1) and constants c0, c1 and b such that

(i) |f(x)| = O(|x|p0), |b(x)| = O(|x|α), (ii) |f(x)/b(x)| = O(|x|p0−α),

(iii) c0|x|θ 6 |b(x)/a(x)| 6 c1|x|θ, for |x| > b.

Proposition A.4. Suppose that Condition 2.1-(i) and Assumption A.3 hold. Then, uf defined by
(A.6), is a solution to the Poisson equation, and

(i) |uf (x)| = O(|x|p0−α+1), for p0 − α 6= −1, |u(x)| = O(| lnx|), for p0 − α = −1,

(ii) |u′f (x)| = O(|x|p0−α), (iii) |u′′f (x)| = O(|x|p0−α+θ)

Proof. Direct computation shows that uf defined by (A.6), is a solution to the Poisson equation.
Notice that

(π(z)a(z))′ = 2b(z)π(z). (A.7)

Also, it is clear from (a) Assumption A.3-(iii), (b) the expression of invariant distribution π, and (c)
the fact that θ + 1 > 0, that for any m

xma(x)π(x)→ 0, as |x| → ∞. (A.8)

Notice that since f is centered, that is π(f) = 0,

u′f (x) =− 2

a(x)π(x)

∫ x

−∞
f(y)π(y)dy =

2

a(x)π(x)

∫ ∞
x

f(y)π(y)dy (A.9)

Since for |x| > B (B was introduced Condition 2.1-(i)) , xb(x) < 0, we have that b(x) < 0 for all
x > B and b(x) > 0 for x < −B For our purposes, the second equality in (A.9) needs to be used when
x > B, and the first needs to be used when x < −B.

We first consider the case when x > B. Observe by Assumption A.3-(ii) and the fact that for
x > B, |b(x)| = −b(x), we have for some constant c2

|u′f (x)| 6 2

a(x)π(x)

∫ ∞
x

∣∣∣∣f(y)

b(y)

∣∣∣∣ |b(y)|π(y)dy 6 − 2c2
a(x)π(x)

∫ ∞
x

yp0−αb(y)π(y)dy.

If p0 6 α, then by (A.7) and (A.8), it follows that |u′f (x)| = O(|x|p0−α). If p0 > α, then we use (A.7)
and integration by parts to get,

|u′f (x)| 6 − c2
a(x)π(x)

[
yp0−αa(y)π(y)

∣∣∣∞
x
−
∫ ∞
x

yp0−α−1a(y)π(y)dy

]
= c2x

p0−α +
c2

a(x)π(x)

∫ ∞
x

yp0−α−1a(y)π(y)dy

=c2x
p0−α +

c2
a(x)π(x)

∫ ∞
x

yp0−α−1 a(y)

|b(y)|
|b(y)|π(y)dy

6 c2x
p0−α − c2/c0

a(x)π(x)

∫ ∞
x

yp0−α−1−θb(y)π(y)dy.

28



If p− α− θ 6 1, then it follows that

|u′f (x)| 6 c2x
p0−α − c2x

p0−α−1−θ/c0
a(x)π(x)

∫ ∞
x

b(y)π(y)dy = 2c2x
p0−α + c2x

p−α−1−θ/2c0 = O(|x|p0−α)

where we have used (A.7) and (A.8). If p0 − α − θ > 1, then let k > 1 be the smallest integer such
that p0−α− θ 6 k. Now we repeat the integration by parts technique k times to prove the assertion.

If x < −B then we use the first equality in (A.9) and the same techniques to prove the assertion.
To prove the bound on u′′f simply observe that |a(x)u′′f (x)| 6 |b(x)u′f (x)|+ |f(x)|. Now the assertion
follows from (ii) and (iii) of Assumption A.3.

Example A.5. For a mean-reverting Ornstein-Uhlenbeck process (b(x) = µ− x, and σ(x) = σ), the
invariant distribution is of course the Normal(µ, σ2/2κ). Here for f satisfying |f(x)| 6 C(1 + ‖x‖)p0 ,
Proposition A.4 gives the exponents of Assumption 2.3-(iii) : p1 = p0, p2 = p0−1. Note that p3 is not
needed as the diffusion coefficient is constant σ (see Remark 2.10). Thus Assumption 2.8 (and hence
Theorem 2.9) holds for functions f with p0 6 1. For Cox-Ingersoll-Ross (CIR) model (b(x) = κ(µ−x)
and σ(x) = s

√
x), the invariant distribution is given by Gamma(2µκ/σ2, 2κ/σ2). Here Proposition

A.4 implies that Theorem 2.9 holds for all functions f with growth exponent p0 6 1/2.

B Other results

The following version of [11, Theorem 9.11] is used in proving Proposition A.2. The proof just requires
tracking of constants in the proof of [11, Theorem 9.11] and is omitted.

Lemma B.1. Let g ∈ Lploc(R
d,R) and v ∈ W 2,p

loc (Rd,R) a solution to the elliptic equation Lv = g,
where the coefficient a is uniformly continuous and satisfies (A.3), and b satisfies

‖b(x)‖ 6 B(1 + ‖x‖)ᾱ

for some constant B > 0 and exponent ᾱ > 0. Then for any R > 0 and 0 < θ < 1, there exists a
constant c̄0 depending on B, λ1, λ2, θ, R, d and p such that

‖v‖W 2,pB(y,θR) 6 c̄0(‖g‖Lp(B(y,R)) + (1 + ‖y‖2ᾱ)‖v‖Lp(B(y,R))).

Remark B.2. Let κ be a parameter, and |gκ(x)| 6 m0κ(1 + ‖x‖)p0 , |vκ(x)| 6 m1κ(1 + ‖x‖)p1 . Then
notice that for some constants m01

‖gκ‖Lp(B(y,r)) 6 m01κ(1 + ‖y‖)p0 , ‖vκ‖Lp(B(y,r)) 6 m11κ(1 + ‖y‖)p1

where the constants m01 (resp. m11) depend on r, m0 (resp. m1), and p0 (resp. p1), but not on the
parameter κ. It then follows from Lemma B.1,

‖vκ‖W 2,pB(y,θr) 6 m̄0κ(1 + ‖y‖)p2 ,
where p2 = max{p0, p1 + 2ᾱ}, and the constant m̄0 does not depend on κ. Next choose p > d. Then
by Sobolev’s embedding theorem, there exists a constant m̄1 ≡ m̄1(p, d, θr) such that

‖∇vκ(y)‖ 6 m̄1‖vκ‖W 2,pB(y,θr) 6 m̄1m̄0κ(1 + ‖y‖)p2 .

We now state the result on pointwise bounds of ‖D2v(·)‖.

Lemma B.3. Assume the setup and hypothesis of Lemma B.1. Furthermore, suppose that the coeffi-
cients of L are in C1(Rd), and that for each k, ‖a(k)‖∞ < ∞ and ‖b(k)(x)‖ 6 B(1 + ‖x‖ᾱ) for some
constant B and some exponent ᾱ′, where

a
(k)
ij (x) = ∂kaij(x), b

(k)
i (x) = ∂kbi(x).

Also, as in Remark B.2, assume that |g(x)| = O(‖x‖p0), ‖∇g(x)‖ = O(‖x‖p0), and |v(x)| = O(‖x‖p1)
for some exponents p0 and p1. Then for some constant c̄2

‖D2v(y)‖ 6 c̄2(1 + ‖y‖)p3
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where p3 = max{p0 + 2ᾱ, p1 + 4ᾱ}.

Proof. First notice that v(k) = ∂kv satisfies Lv(k) = g̃k, where g̃k = g(k) − b(k) · ∇v − 1
2 tr(a

(k)D2v). It
now follows from Lemma B.1 that for each k = 1, 2, . . . , d,

‖v(k)‖W 2,pB(y,θr) 6 c̄7

(
‖g̃k‖Lp(B(y,r)) + (1 + ‖y‖2ᾱ)‖v(k)‖Lp(B(y,r))

)
6 c̄8

(
‖g(k)‖|Lp(B(y,r)) + (1 + ‖y‖ᾱ)‖∇v‖Lp(B(y,r)) + ‖D2v‖Lp(B(y,R))

+ (1 + ‖y‖2ᾱ)‖∇v‖Lp(B(y,r))

)
.

Thus,

‖v‖W 3,pB(y,θr) 6 c̄9
(
‖∇g‖Lp(B(y,r)) + (1 + ‖y‖2ᾱ)‖v‖W 2,p(B(y,r))

)
6c̄10 (‖∇g‖Lp(B(y,r)) + (1 + ‖y‖2ᾱ)‖g‖Lp(B(y,r)) + (1 + ‖y‖4ᾱ)‖v‖Lp(B(y,r))).

The desired pointwise bound now again follows from Sobolev’s embedding theorem (by choosing p > d),
and the assumption on g and ∇g.

The following lemma is about convergence of integrals with respect to random probability mea-
sures under uniform integrability like condition. The proof is similar to [17, Proposition 3.12] in the
deterministic case and is omitted.

Lemma B.4. Let E be a separable Banach space, and {µn} a sequence of P(E)-valued random vari-
ables such that µn(ω) ⇒ µ(ω) ω-a.s as n → ∞. Suppose that h : E → Rd is a continuous function
satisfying ‖h(x)‖/f(x) → 0 as ‖x‖ → ∞, where f : E → [0,∞) is a lower semicontinuous function

such that K0
.
= sup

n
E
∫
E
f(x) µn(dx) <∞. Then as n→∞, E

∥∥∥∥∫
E
h(x)µn(dx)−

∫
E
h(x)µ(dx)

∥∥∥∥→ 0.

Lemma B.5. Let L2
d ≡ L2(Ω,Rd) denote the space of square integrable Rd-valued random variables on

a probability space (Ω,F ,P), and H an n×d random matrix. Assume that M = E(HHT ) is invertible.
Then for any b ∈ Rn,

min{E‖Y ‖2 : Y ∈ L2
d, E(HY ) = b} = bTM−1b,

Proof. Let Y be such that E(HY ) = b. Then notice that

0 6 E‖Y −HTM−1b‖2 = E‖Y ‖2 − 2E
(
〈Y,HTM−1b〉

)
+ E‖HTM−1b‖2

= E‖Y ‖2 − 2E
(
〈HY,M−1b〉

)
+ E(bTM−1(HHT )M−1b)

= E‖Y ‖2 − 2〈E(HY ),M−1b〉+ bTM−1E(HHT )M−1b = E‖Y ‖2 − bTM−1b,

which proves that E‖Y ‖2 > bTM−1b. Finally, observe that equality holds for Y = HTM−1b.
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