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Abstract— The endoscopic camera of a surgical robot pro-

vides surgeons with a magnified 3D view of the surgical field, but

repositioning it increases mental workload and operation time.

Poor camera placement contributes to safety-critical events

when surgical tools move out of the view of the camera. This

paper presents a proof of concept of an autonomous camera

system for the Raven II surgical robot that aims to reduce

surgeon workload and improve safety by providing an optimal

view of the workspace showing all objects of interest. This

system uses transfer learning to localize and classify objects

of interest within the view of a stereoscopic camera. The

positions and centroid of the objects are estimated and a

set of control rules determines the movement of the camera

towards a more desired view. Our perception module had an

accuracy of 61.21% overall for identifying objects of interest

and was able to localize both graspers and multiple blocks

in the environment. Comparison of the commands proposed

by our system with the desired commands from a survey of

13 participants indicates that the autonomous camera system

proposes appropriate movements for the tilt and pan of the

camera.

I. INTRODUCTION

Surgical robots such as Intuitive Surgical’s da Vinci Sys-
tems [1] are advancing medical specialties such as urology,
gynecology, and general surgery by providing surgeons with
increased flexibility and precision, while reducing incision
size, recovery time, and scarring. Their adoption is linked to
an increase in volume of minimally invasive surgery (MIS)
cases [2], and is driving the development of new surgical
procedures and technologies [3]. However, the current gen-
eration of robots is not autonomous yet. They are in level 0 of
autonomy [4] and the surgeon must position and control all
four arms manually which increases their mental workload
[5]. One of these arms holds the endoscopic camera which
provides surgeons with a magnified 3D view of the surgical
field, but requires both hands and a foot to switch control
of the arms and reposition the camera. During an operation,
surgeons often adjust their camera position or settle for a
suboptimal viewpoint which increases procedure time and
risk to the patient since poor camera placement contributes to
safety-critical events such as arm collisions, use of excessive
force, dropping an object, or movement of the instruments
out of camera’s view [6], [7].

Existing methods for automating the surgical robot’s cam-
era focus on using reactive simple sets of rules, proactive

machine learning algorithms to learn movement behavior,

or combined control strategies that integrate these two tech-
niques [5]. Most reactive autonomous camera systems rely
on kinematic data from the surgical robot [8], use a camera
to track the surgical tools [9], or track the surgeon’s eyes
using visual servoing [10], and change the camera position
in direct relation to changes in these measurements. But,
these methods over-emphasize tracking tools and do not
account for other objects of interest in the environment such
as important tissues or needles. Our goal is to create an
autonomous camera system that reduces surgeon workload
and improves safety by providing an optimal viewpoint of
the surgical environment that keeps objects of interest and

surgical tools in the field of view thus reducing the likelihood
of off-camera injuries.

In related work on autonomous camera systems, Yu et al.
[11] introduced a region of interest (ROI) around the robot
end effectors. Yang et al. [12] defined an intuitive virtual
plane (IVP) as the plane normal to the surgeon’s line of
sight and containing the intersection of the surgeon’s line
of sight with the ROI. The IVP was a constraint to reduce
misorientation that occurs when the optical and physical axes
of the laparoscope are not parallel. However, their work used
a 2D laparoscope and followed only one end effector.

While previous work focused on laparoscopic
surgery, [13]–[15] were the first works that created an
autonomous camera system for a surgical robot using the
da Vinci Research Kit (DVRK) [16]. Their system used
several rules and kinematics data from the DVRK to keep
the tools centered in the camera’s view. They conducted
a 20-participant trial, which included four surgeons, that
compared their automated camera system to the traditional
clutched camera control. The results showed that the
automated camera was able to keep the tools within the
camera’s field of view, and improved metrics of workload,
efficiency, and progress. In contrast, our work relies on
video data for detecting objects in the surgical workspace,
thus enabling the consideration of all objects of interest in
the environment as well as being platform independent.

Contributions. This paper presents a proof of concept of
an autonomous camera system for the RAVEN II robot, an
open-source platform for robotic surgery research [17].

• We introduce a custom-built camera arm, the Inde-
pendent Binocular Imaging System (IBIS) (Section II-
A), supporting a 3D stereoscopic camera (ZED Mini
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by Stereolabs Inc. [18]). The IBIS reports its joint
and camera positions, and accepts commands from
foot pedals and serial communication which facilitates
system integration.

• We present a Perception module for automated percep-
tion of the surgical field using transfer learning to lo-
calize and classify objects of interest (end effectors and
blocks in dry-lab) in a given image of the surgical field.
We use a Mask Region-based CNN (MRCNN) [19]
(with convolutional layers pre-trained using the COCO
dataset [20]) to identify objects of interest by generating
bounding boxes, classifying, and then creating masks.
The coordinates of all objects of interest provided by
the Perception module are then used to calculate the
centroid of the objects and to adjust the camera position
(Section II-B.2).

• We present a Control module that adjusts the zoom, pan,
and tilt of the camera to align the center of the view with
the centroid of the objects and maximize the view of
all objects of interest. The Control module computes the
projection of each object’s position onto an image plane
containing the centroid. Then, control rules determine
camera movements based on the position of the centroid
relative to the desired view area of the camera.

The training set for the MRCNN consisted of 1,686 anno-
tated images (3,372 after augmentation), and the validation
set consisted of 600 images. The images were collected
from dry-lab experiments of the “Pick and Place” task.
These datasets included both left and right images from the
ZED Mini camera, but there was not a 50/50 ratio between
the two. After tuning the hyper-parameters using the early
stopping technique, the overall loss (defined as the sum of
the region proposal class loss, region proposal bounding box
loss, MRCNN class loss, MRCNN bounding box loss, and
MRCNN mask loss) was 0.2672.

We evaluated the camera system using a separate set of
27 pairs of left and right images of a block transfer task,
and a survey was used to determine the ground truth desired
commands for each image. The Perception module correctly
identified 61.21% of the objects, and the Control module
demonstrated acceptable behavior when tilting and panning,
but the desired zoom area should be decreased to provide a
wider field of view.

II. AUTONOMOUS CAMERA SYSTEM

Our autonomous camera system consists of a custom-built
camera arm integrated with a ZED Mini and a software
pipeline for perception of the environment and control of
the camera arm, as shown in Fig. 1 and described next.

A. IBIS Camera Arm

A custom robotic camera arm, shown in Fig. 2, was de-
veloped to hold the stereoscopic camera and provide control
over the position of the camera during tele-operation of the
Raven II. This Independent Binocular Imaging System (IBIS)
can also be controlled using a set of foot pedals making it
platform independent and enabling future experimentation

ZED Camera

MRCNN

Object position estimation

Centroid calculation

Projection onto camera image plane

View area maximization

Average distance 
between centroid 
and each object

Vector from 
camera center to 

centroid

IBIS Camera Arm

Zoom Pan and tilt

List of positions of objects 
in images

List of positions of objects 
relative to IBIS

List of positions of objects 
in view of the camera

Perception

Control

Images

Position

Commands

Fig. 1: Autonomous camera pipeline
with alternative control interfaces for surgical endoscopes.
An Arduino Uno R3 runs custom kinematic and inverse
kinematic models, and communicates through a serial port
to report its position and accept commands. This allows for
open-source development and easy integration with other
systems.

Fig. 2: IBIS Camera Arm: (a) ZED Mini, (b) Linear Actuator,
(c) Top Servo, (d) Bottom Servo, (e) Base and Base Servo.

The mechanical design of the IBIS consists of upper
and lower arms positioned using three servos and a linear
actuator. The Base Servo, embedded in the blue base of the
IBIS shown in Fig. 2, controls the pan of the camera by
rotating the entire arm left or right. The Bottom Servo is
a high torque servo that supports the rest of the arm and
camera. The Top Servo, at the joint between the upper and
lower arms, is a standard servo with an angled bracket that
joins to the mounting plate for the linear actuator. The ZED
Mini is held by a custom-machined adapter that fits on the
end of the linear actuator.

The Base Servo pans the camera arm, while the other two
servos and linear actuator move together to change the verti-
cal and horizontal position of the camera. These movements
are calculated using the inverse kinematics functions based
on incremental changes in the position of the Bottom Servo.
This enables a deterministic solution for the positions of the
Top Servo and linear actuator. The Base Servo is the origin
of the coordinate system of the IBIS where the positive x
axis points into the operating space, the positive y axis points
upwards, and the positive z axis points right.
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The software on the Arduino Uno uses an open source
library [21] to control the servos and the linear actuator. The
main function of the code is to listen for commands from the
foot pedals or serial line, use inverse kinematic functions to
move the arm, update the state of the arm using the kinematic
functions, and report the position of the arm over a serial line
at 9600 baud rate. A Python script on the receiving computer
parses and logs the position of the IBIS enabling real-time
and closed loop control of the arm.

B. Perception

1) Object Detection and Localization: We used Transfer
Learning to apply the knowledge obtained from a pre-trained
model to our task. This allowed us to obtain competitive
accuracy with a smaller training dataset. As the perception
task involves both object detection and localization, we used
Mask Region-based Convolutional Neural Network (MR-
CNN) architecture, which has the backbone network, in our
case pre-trained Residual Nets (ResNet) [22], followed by
the network head. The backbone network performs feature
extraction on a given image, and is followed by the Region
Proposal Network (RPN) which examines each region of
interest (ROI), before feeding the extracted features into
the fine-tuned classification layers. The classification layers
generate the bounding boxes and masks for each class.
The bounding boxes indicate where an object has a high
probability of being found while the masks reveal where the
object was actually found.

In our task, the classes of the objects were “Left Grasper”,
“Right Grasper”, “Red Block”, “Green Block”, and “Back-
ground”. We fine-tuned the final two layers of the MRCNN,
pre-trained on the COCO dataset [20], for our application
of detecting and localizing objects of interest in the surgical
workspace. The classification layers were trained on a set of
1,686 images (3,372 after augmentation) that were manually
annotated using the VGG Image Annotator (VIA) [23]. The
images were annotated by 5 students and each image was
annotated once. Each object’s boundary was outlined and it
was labeled with the appropriate class. These images were
collected using the ZED Mini from the execution of the
Fundamentals of Laparoscopy (FLS) “Pick and Place” task
on the RAVEN II robot. The diversity in scenes was ensured
to a certain degree by picking up different blocks with the
graspers and showing incremental movements in the images.

We performed image augmentation to diversify object
orientations in the images of the training set and improve
the model’s ability to detect objects of interest. After image
augmentation, the training set consisted of 3,372 images.
This is one method of artificially expanding a dataset. Some
of the techniques that can be used for image augmentation
include scaling, translation, rotation, flipping, adding noise,
and changing lighting conditions. The techniques used for
augmenting our dataset were flipping the images left/right
50% of the time and generating images with random blending
between the original images and their canny edges.

2) Object Position Estimation: For each left and right
image obtained from the ZED Mini, the MRCNN returns a

list of the objects and the coordinates for the upper left and
lower right corners of their bounding boxes. The centers of
the bounding boxes are assumed to be the center of the object
in the image, and are used for subsequent calculations. These
objects are sorted and paired, and if an object was detected in
one image but not the other, it is discarded because there is
not enough information to reconstruct that object’s position.

The locations of the objects in the left and right images
are used to estimate each object’s position with respect to
the camera arm. Then, the centroid of the identified objects
is calculated so that an image plane containing this point
and perpendicular to the optical axis of the camera can be
constructed. Each object is then projected onto this image
plane in order to relate their locations to a desired field of
view of the camera.

For each object in the list returned by the MRCNN,
the center of the bounding box is calculated by taking the
average of the x and y pixel coordinates of the corners.
This estimates the center of each object in the left and right
images. The lists are sorted to pair an object’s location in the
left image with its corresponding location in the right image.

The position of the camera and its optical axis are obtained
from the IBIS. A unit vector parallel to the camera’s optical
axis is defined as the normal unit vector, n̂. The camera is
assumed to be horizontal which allows the construction of a
horizontal unit vector, ĥ, perpendicular to the optical axis of
the camera. A third, orthogonal unit vector is defined as the
cross product of the normal unit vector and the horizontal
unit vector. This vector is named the vertical unit vector, v̂.

The distance, d, of an object from the camera is calculated
using the difference in the horizontal position of the object
between the left and right images as shown in equation (1).
The ZED Mini has a focal distance of f = 700 pixels and
a camera separation of S = 63 mm. Lpx and Rpx are the
horizontal positions, in pixels, of the object in the left and
right images, respectively.

d =
fS

|Lpx �Rpx|
(1)

Then, the horizontal displacement of the object, dh, in
the direction of ĥ, from the center of the camera’s view is
calculated using equation (2). This is added to 1

2S to account
for the position of the right camera offset from the center
of the ZED Mini. The images used in our experiments are
720x1280, so Rpx � 640 represents the horizontal location
of the object relative to the center of the right image.

dh = S(
1

2
+

(Rpx � 640)

|Lpx �Rpx|
) (2)

Likewise, the vertical position, Rpy , of the object in the
right image is used to calculate the vertical displacement of
the object, dv , in the direction of v̂, from the center of the
camera’s view. Similarly, Rpy � 360 represents the vertical
location of the object relative to the center of the right image.

dv = S
360�Rpy

|Lpx �Rpx|
(3)
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The object’s position relative to the camera arm is then
calculated as the position of the camera added to the dis-
tances and displacements multiplied by their respective unit
vectors, as shown in equation (4).

Pobject = Pcamera + dn̂ + dhĥ + dv v̂ (4)
C. Control

The Control module uses the list of the objects’ positions
relative to the camera arm to calculate the centroid of the
objects as their average position. An image plane containing
the centroid and defined by v̂ and ĥ is constructed. The
distance from the camera to the image plane, dcam, is
calculated using equation (5) where ~pcentroid and ~pcamera

represent vectors from the origin to the centroid and camera’s
position, respectively. The camera’s position on the image
plane defines the origin of the image plane.

dcam = (n̂ · ~pcentroid)� (n̂ · ~pcamera) (5)
Then, each object is projected onto the image plane and

the average distance from the centroid to each object’s
projected position is calculated. The height of the image
plane within view of the camera is calculated using equation
(6), proportional to the distance from the image plane to
the camera. The radius of the desired view was set at 50%
and defined a circle that should maximally overlap the circle
drawn around the centroid by the average distance to the
objects.

hvisable = dcamtan(30�) (6)
Based on the location of the centroid with respect to the

origin of the image plane (the center of the camera’s view),
the control rules determine the movement of the camera.
Zoom is controlled by the difference in size of the circles
around the centroid and origin. If the average distance from
the centroid to the objects is larger than the desired view
ring, then the system proposes zooming out. Conversely,
if the average distance from the centroid to the objects is
smaller than the desired view ring, then the system proposes
zooming in. The tilt and pan of the camera are controlled
by the location of the centroid on the image plane relative
to the origin of the image plane. If the centroid is further
away from the origin than 30% of the visible height of the
camera’s view in any direction, then the camera is tilted up
or down, or panned left or right to bring the centroid closer
to the center of the camera’s view.

III. EXPERIMENTAL EVALUATION

The autonomous camera system was evaluated by exam-
ining the Perception and Control modules separately as well
as assessing the system as a whole. This analysis considered
27 pairs of left and right images of a block transfer task
showing the left and right graspers and several blocks. These
54 images were annotated to create the ground truth of the
locations of the objects in the images. The accuracy of the
MRCNN was defined as the ratio of correctly localized and
classified objects to the total number of objects present in the
image set. An object was considered correctly localized if the
center of the object was within the bounding box generated

by the MRCNN. The Root Mean Square Error (RMS) for the
horizontal and vertical locations of the centers of the objects
were also calculated. To evaluate the Control module, 13
students were shown these 27 pairs of images and asked how
they would adjust the camera’s zoom, pan, and tilt to achieve
a better view of the objects in the environment. For each pair
of images, the commands given by the Control module using
the object locations directly from the Perception module and
the commands given by the Control module using the ground
truth object locations were compared to the majority vote of
the commands from the survey.

All the experiments were conducted on an x86 64 PC
with an Intel Core i7 CPU @ 3.70GHz and 32GB RAM,
running Linux Ubuntu 18.04 LTS, and an Nvidia 1080 Ti
GPU, running CUDA 10.1. We used Keras [24] API v.2.2.4
on top of TensorFlow [25] v.1.13.1 for training our model and
Scikit-learn [26] v.0.21.3 for pre-processing and evaluation.

A. Perception

The model was evaluated in terms of its overall loss,
bounding box loss, classification loss, validation bounding
box loss, and validation classification loss which are listed
in Table I. The validation bounding box loss was 0.1346,
and the validation class loss was 0.0274. We used hyper-
parameter tuning to find the optimum learning rate which
was 0.01 for 20 epochs, each with step-size of 50 and a
batch size of 1 image. Tensorboard was used to visualize
the impact that certain hyperparameters had on the model’s
performance.

TABLE I: MRCNN Losses
Type Loss

Bounding Box Loss 0.0422
Class Loss 0.0312

Validation Bounding Box Loss 0.1346
Validation Class Loss 0.0274

Overall Loss 0.2672

The MRCNN model predicted on images from the ZED
Mini and returned a list of objects identified for each image.
One such pair of left and right images is shown in Fig. 3.
Although both graspers and four blocks were localized in
the left image, only the two graspers and three blocks were
detected in the right image. The rightmost block in the right
image was classified as a “Green Block” and was ignored
by the algorithm. In addition, the vertical difference in the
positions of the right grasper in the left and right images was
too large, so it was not correctly paired, and was thus also
ignored. This left us with only three objects to use in the
proceeding calculations, the left grasper and two blocks.

The MRCNN consistently misclassified the left grasper
as the “Right Grasper” and the right grasper as the “Left
Grasper”. Errors in the classification of the graspers can be
attributed to insignificant differences between the color of the
graspers and the background. The graspers appear to blend
in with their background and although apparent to the naked
eye, the two can be easily confused with a camera. The right
and left graspers were also very similar in shape and size, so
without information about their relative position in regards
to other objects, they would be difficult to differentiate.

198

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 30,2021 at 20:01:57 UTC from IEEE Xplore.  Restrictions apply. 



(a) Left image from the ZED Mini (b) Right image from the ZED Mini
Fig. 3: Pair of images with objects localized and classified by the MRCNN

Different colored blocks were also used to test the ability
of the MRCNN to discern color, but since most of the blocks
were classified as “Red Blocks” regardless of their color, this
analysis considered “Blocks” in general. The model had an
accuracy of 52.87% in correctly identifying blocks in the
images. Due to the consistent mislabeling of the graspers,
this analysis considered “Graspers” in general as well. The
model had an accuracy of 80.77% in correctly identifying
graspers in the images. Table II shows the number of objects
correctly classified out of the total number of objects for all
54 images. The MRCNN correctly localized but misclassified
seven objects and in two cases incorrectly identified the
frame of the Raven II as a “Right Grasper”. Overall, the
model had an accuracy of 61.21% in correctly classifying
blocks and graspers in the images and provided sufficient
information for the Control module to estimate the centroid
of the objects and propose commands to move the camera.

TABLE II: Object Classification Accuracies
Class Correctly Classified Total Accuracy (%)

Graspers 84 104 80.77
Blocks 129 244 52.87

All objects 213 348 61.21

The ground truth annotations were also used to determine
the RMS in the horizontal and vertical locations of the
centers of the objects in each image. The RMS error in
the horizontal and vertical locations of the bounding boxes
proposed by the MRCNN and the centers of the ground truth
annotations were 20.37 pixels and 16.98 pixels, respectively.
The sorting and pairing algorithm used by the system to
match the position of an object in the left image with
its position in the right image tolerated up to a 20 pixel
difference in vertical position, so this was an acceptable
amount of error.

B. Control

Fig. 4 shows the objects in Fig. 3 mapped to the image
plane. Given the estimated positions of the objects identified
by the Perception module, the Control module mapped them
to the image plane as shown in Fig. 4a. The Control module
sent commands to the IBIS to zoom in. However, given the
list of estimated positions for each object calculated using the
ground truth annotations, the Control module mapped these
objects to the image plane as shown in Fig. 4b and proposed
zooming in, tilting down, and panning right instead.

The Control module determined commands to move the
camera based on the location of the centroid relative to
the center of the camera’s view, and the average distance
between the centroid and each object compared to a desired
zoom radius. In Fig. 4, the center of the camera’s view is
a black dot while the centroid of the objects is a red dot.
The gray disk represents the desired area that the centroid
should be in and the Control module adjusted the pan and tilt
of the camera to move the gray disk towards the centroid.
The average distance between the centroid and objects is
shown with a red circle around the centroid and represents
the size of the region of interest. The thick pink ring around
the center of the image represents the desired zoom area and
the Control module adjusted zoom so that the red circle was
within the pink ring.

In order to evaluate the control rules used to determine
camera movement commands, 13 graduate and undergradu-
ate students were shown the 27 pairs of images and asked
to select commands for zoom, tilt, and pan (no movement
was also an option for each category). The ground truth
for desired movements for each image was determined by
majority voting based on the survey responses. The confusion
matrices between the desired commands and the Control
module’s commands are shown in Fig. 5. Figures 5a, 5c, and
5e show the confusion matrices for the commands proposed
by the system when directly fed the predictions of the
MRCNN, and Figures 5b, 5d, and 5f show the confusion
matrices for the commands proposed by the system based
on the ground truth annotations for the Perception module
(assuming perfect Perception).

The set of images used in this analysis included frames
showing a block transfer task, during which the camera
position was held constant. The task occurred in the central,
lower, and slightly right regions of the operating space, which
meant appropriate camera commands were limited to tilting
down, panning right, adjusting zoom, or no movement. Thus,
the confusion matrices in Fig. 5 only show data for these
movements. The confusion matrices for the zoom command
show that the system proposed zooming in when the desired
command was no movement. This behavior was consistent
even when the Control module was given the ground truth
annotations. Since the amount of zoom tends to be subjective,
the desired zoom area should be adjustable to accommodate
personal preferences. The confusion matrices for the tilt
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(a) (b)
Fig. 4: Projection of objects located in Fig. 3 onto the camera image plane. (a) Object coordinates directly from MRCNN
where mispairing resulted in incorrect position estimations, (b) Object coordinates from ground truth.

command show that in 75% of cases the system proposed no
adjustments to tilt even if the desired command was to tilt
down. However, when given the ground truth annotations,
the system often proposed tilting down when the desired
command was no movement (61%). On the other hand, the
system usually selected appropriate commands for panning,
even given the ground truth annotations.

The undesired tilt down commands could be explained by
the equal weighting of all objects in the centroid calculation.
The Perception module had a higher accuracy in detecting
graspers, which were usually located more centrally in the

(a) (b)

(c) (d)

(e) (f)
Fig. 5: Confusion matrices for Control module commands.
(a), (c), and (e) are based on MRCNN predictions. (b), (d),
and (f) are based on ground truth annotations for Perception.

images and would have led the system to propose no change
in tilt. But using the ground truth, the blocks would have
pulled the location of the centroid down in the image
resulting in tilt down commands. The difference between
Fig. 5c and 5d suggests that a weight function should be
implemented in the centroid calculation to address how some
objects are more important to view than others.

IV. CONCLUSION

This work presents a proof of concept of an autonomous
camera system for tele-operated robotic surgery that tracks
the centroid of all objects of interest in the field of view
of the camera. The objects of interest were identified using
transfer learning, with an MRCNN partly pre-trained on the
COCO dataset. A custom-built camera arm was created for
positioning the camera and the centroid of objects of interest
was tracked using a set of control rules. The system was
evaluated using a dataset of images from dry-lab experiments
and by comparing the proposed motions of the camera to
the desired motions. The evaluation results suggest that the
system proposes appropriate movements for the tilt and pan
of the camera, but the desired zoom area should be decreased
to provide a wider field of view and an object weight function
should be implemented in the centroid calculation. Future
work will focus on improving the accuracy of the Perception
module by increasing the size and diversity of the training
set and generating more accurate annotations, adjusting the
control rules for zoom, and testing the system on a wider
variety of object configurations and movement directions.

CODE AVAILABILITY

Designs and code for the IBIS and the percep-
tion model are respectively available at https://
github.com/kch4fk/IBIS and https://github.
com/thatssoharsh/Raven-II-Perception.
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