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Abstract—For general antiferromagnetic 2-spin systems, in-
cluding the hardcore model on weighted independent sets and
the antiferromagnetic Ising model, there is an FPTAS for the
partition function on graphs of maximum degree Δ when
the infinite regular tree lies in the uniqueness region by Li
et al. (2013). Moreover, in the tree non-uniqueness region,
Sly (2010) showed that there is no FPRAS to estimate the
partition function unless NP = RP. The algorithmic results
follow from the correlation decay approach due to Weitz
(2006) or the polynomial interpolation approach developed by
Barvinok (2016). However the running time is only polynomial
for constant Δ. For the hardcore model, recent work of Anari
et al. (2020) establishes rapid mixing of the simple single-site
Markov chain known as the Glauber dynamics in the tree
uniqueness region. Our work simplifies their analysis of the
Glauber dynamics by considering the total pairwise influence
of a fixed vertex v on other vertices, as opposed to the total
influence of other vertices on v, thereby extending their work
to all 2-spin models and improving the mixing time.

More importantly our proof ties together the three disparate
algorithmic approaches: we show that contraction of the
so-called tree recursions with a suitable potential function,
which is the primary technique for establishing efficiency of
Weitz’s correlation decay approach and Barvinok’s polynomial
interpolation approach, also establishes rapid mixing of the
Glauber dynamics. We emphasize that this connection holds for
all 2-spin models (both antiferromagnetic and ferromagnetic),
and existing proofs for the correlation decay or polynomial
interpolation approach immediately imply rapid mixing of the
Glauber dynamics. Our proof utilizes that the graph partition
function is a divisor of the partition function for Weitz’s self-
avoiding walk tree. This fact leads to new tools for the analysis
of the influence of vertices, and may be of independent interest
for the study of complex zeros.

Keywords-approximate counting; Glauber dynamics; spec-
tral independence; phase transitions; correlation decay;

I. INTRODUCTION

A remarkable connection has been established between

the computational complexity of approximate counting prob-

lems in general graphs of maximum degree Δ and the

statistical physics phase transition on infinite, regular trees

of degree Δ (or up to Δ in the more general case). This

connection holds for 2-state antiferromagnetic spin systems

– the hardcore model on independent sets and the Ising

model are the most interesting examples of such systems.

Given an n-vertex graph G = (V,E), configurations of

the 2-spin model are the 2n assignments of spins 0, 1 to the

vertices. A 2-spin system is defined by three parameters:

edge weights β, γ > 0 and a vertex weight λ > 0. Edge

parameter β controls the (relative) strength of interaction

between neighboring 1-spins, γ corresponds to neighboring

0-spins, and λ is the external field applied to vertices with

1-spins.
Every spin configuration σ ∈ {0, 1}V is assigned a weight

wG(σ) = βm1(σ)γm0(σ)λn1(σ),

where, for spin s ∈ {0, 1}, ms(σ) = #{uv ∈ E : σu =
σv = s} is the number of monochromatic edges with spin s,

and n1(σ) = #{v ∈ V : σv = 1} is the number of vertices

with spin 1 (as is standard, the parameters are normalized so

we can avoid two additional parameters). The Gibbs distribu-

tion over spin configurations is given by μG(σ) =
wG(σ)

ZG(β,γ,λ) ,

where ZG(β, γ, λ) =
∑

σ∈{0,1}V βm1(σ)γm0(σ)λn1(σ) is the

partition function.
There are two examples of particular interest: the hardcore

model and the Ising model. When β = 0 and γ = 1 then the

only configurations with non-zero weight are independent

sets of G and the weight of an independent set σ is w(σ) =
λ|σ|; this example is known as the hardcore model where

the parameter λ corresponds to the fugacity.
In the case β = γ then the important quantity is the total

number of monochromatic edges m(σ) = m0(σ) +m1(σ)
and the weight of a configuration σ is w(σ) = βm(σ)λn1(σ);

this is the classical Ising model where the parameter β
corresponds to the inverse temperature and λ is the external

field (λ = 1 means no external field). Note, when β > 1 then

the model is ferromagnetic as neighboring vertices prefer to

have the same spin, and β < 1 is the antiferromagnetic
Ising model. In the general 2-spin system, the model is

ferromagnetic when βγ > 1 and antiferromagnetic when

βγ < 1. (When βγ = 1 we get a trivial product distribution.)
The fundamental algorithmic tasks are to sample from the

Gibbs distribution and to estimate the partition function. For

the approximate sampling problem we are given a graph G
and an ε > 0 and our goal is to generate a sample from a

distribution π which is within total variation distance ≤ ε
of the Gibbs distribution μG in time poly(n, log(1/ε)). An

efficient approximate sampling algorithm implies an FPRAS
(fully-polynomial randomized approximation scheme) for

the approximate counting problem [9], [22]. Recall, given
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an n-vertex graph G, and ε, δ > 0, an FPRAS outputs

a (1 ± ε)-approximation of ZG with probability ≥ 1 − δ
in time poly(n, 1/ε, log(1/δ)), whereas an FPTAS is the

deterministic analog (i.e., δ = 0).

A standard approach to the approximate sampling problem

is the Markov Chain Monte Carlo (MCMC) method; in

fact there is a simple Markov chain known as the Glauber
dynamics. The Glauber dynamics works as follows: from

a configuration Xt at time t, choose a random vertex v,

we then set Xt+1(w) = Xt(w) for all w �= v, and finally

we choose Xt+1(v) from the conditional distribution of

μ(σv|σw = Xt+1(w) for all w �= v). For the case of the

hardcore model, then Xt+1(v) is set to occupied (i.e., spin

1) with probability λ/(1 + λ) if no neighbors are currently

occupied, and otherwise it is set to unoccupied.

It is straightforward to verify that the Glauber dynamics is

ergodic with the Gibbs distribution as the unique stationary

distribution. The mixing time is the minimum number of

steps to guarantee, from the worst initial state X0, that the

distribution of Xt is within total variation distance ≤ 1/4 of

the Gibbs distribution. The goal is to prove that the mixing

time is polynomial in n, in which case the chain is said to

be rapidly mixing.

For the case of the ferromagnetic Ising model (with or

without an external field), a classical result of Jerrum and

Sinclair [8] gives an FPRAS for all graphs via the MCMC

method. This is the only case with an efficient algorithm

for general graphs. For antiferromagnetic 2-spin models the

picture is closely tied to statistical physics phase transitions

on the regular tree.

The uniqueness/non-uniqueness phase transition is nicely

illustrated for the case of the hardcore model. Consider the

infinite Δ-regular tree T rooted at r, and let Th denote the

tree truncated at the first h levels. This phase transition

captures whether the configuration at the leaves of Th

“influences” the root, in the limit h → ∞. For the hardcore

model we can consider even height trees (corresponding to

the all even boundary condition) versus odd height trees. Let

ph denote the marginal probability that the root is occupied

in the Gibbs distribution μTh
. Let peven = limh→∞ p2h and

podd = limh→∞ p2h+1. We say that tree uniqueness holds

if peven = podd and tree non-uniqueness holds if they are

not equal. For all Δ ≥ 3 there exists a critical fugacity

λc(Δ) = (Δ−1)Δ−1/(Δ−2)Δ) [10], where tree uniqueness

holds iff λ ≤ λc(Δ).
The remarkable connection is that an algorithmic phase

transition for general graphs of maximum degree Δ occurs

at this same tree critical point. For all constant Δ, all δ > 0,

all λ < (1 − δ)λc(Δ), all graphs of maximum degree Δ,

[23] presented an FPTAS for approximating the partition

function. On the other side, for all δ > 0, all λ > (1 +
δ)λc(Δ), [20], [21], [6] proved that, unless NP = RP, there

is no FPRAS for estimating the partition function.

One important caveat is that the running time of Weitz’s

algorithm is (n/ε)C logΔ where the approximation factor is

(1 ± ε) and the constant C depends polynomially on the

gap δ (recall, λ < (1 − δ)λc). Weitz’s correlation decay

algorithm was extended to the antiferromagnetic Ising model

in the tree uniqueness region by Sinclair et al. [19], and to

all antiferromagnetic 2-spin systems in the corresponding

tree uniqueness region (as we detail below) by Li, Lu, and

Yin [12].

An intriguing new algorithmic approach was presented by

Barvinok [3] and refined by Patel and Regts [15], utilizing

the absence of zeros of the partition function in the complex

plane to efficiently approximate a suitable transformation

of the logarithm of the partition function using Taylor

approximation. This polynomial interpolation approach was

shown to be efficient in the same tree uniqueness region as

for Weitz’s result by Peters and Regts [16], although the

exponent in the running time depends exponentially on Δ.

It was long conjectured that the simple Glauber dynamics

is rapidly mixing in the tree uniqueness region. This was

recently proved by Anari, Liu, and Oveis Gharan [2]; they

proved, for all δ > 0, the mixing time is nO(exp(1/δ))

whenever λ < (1− δ)λc(Δ). We improve this result. First,

we improve the mixing time from nO(exp(1/δ)) to nO(1/δ)

as detailed in the following theorem.

Theorem 1 (Hardcore model). Let Δ ≥ 3 be an integer
and δ ∈ (0, 1). For every n-vertex graph G of maximum
degree Δ and every 0 < λ ≤ (1− δ)λc(Δ), the mixing time
of the Glauber dynamics for the hardcore model on G with
fugacity λ is O(n2+32/δ).

This bound is optimal barring further improvements in the

local-to-global arguments from [1]. Our improved result fol-

lows from a simpler, cleaner proof approach which enables

us to extend our result to a wide variety of 2-spin models,

matching the key results for the correlation decay algorithm

with vastly improved running times.

Our proof approach unifies the three major algorithmic

tools for approximate counting: correlation decay, polyno-

mial interpolation, and MCMC. Most known results for both

correlation decay and polynomial interpolation approach are

proved by showing contraction of a suitably defined potential

function on the so-called tree recursions; the tree recursions

arise as a result of Weitz’s self-avoiding walk tree that we

will describe in more detail later in this paper. A recent

work of Shao and Sun [18] unifies these two approaches

by showing that the contraction which is normally used

to prove efficiency of the correlation decay algorithm, also

implies (under some additional analytic conditions) that the

polynomial interpolation approach is efficient.

Here we prove that this same contraction of a potential

function also implies rapid mixing of the Glauber dynamics,

with our improved running time that is independent of Δ;

see Definition 4 and Theorem 5 for a detailed statement.

Our proof utilizes several new tools concerning Weitz’s self-
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avoiding walk tree, which are detailed in Section III. In

particular, we show that the partition function of a graph G
divides the partition function of Weitz’s self-avoiding walk

tree; see Lemma 8. This result is potentially of independent

interest for establishing absence of zeros for the partition

function with complex parameters, as it enables one to

consider the self-avoiding walk tree. This result also yields

a new, useful equivalence for bounding the influence in a

graph in terms of the self-avoiding tree, which strength-

ens the previously known connection by Weitz [23]; see

Lemma 8 for details.

As an easy consequence we obtain rapid mixing for the

Glauber dynamics for the antiferromagnetic Ising model in

the tree uniqueness region. In terms of the edge activity, the

two critical points for the Ising model on the Δ-regular tree

are at βc(Δ) = Δ−2
Δ and βc(Δ) = 1

βc(Δ) = Δ
Δ−2 ; the first

lies in the antiferromagnetic regime, while the second lies

in the ferromagnetic regime. If βc(Δ) < β < βc(Δ), then

uniqueness holds for all external field λ on the Δ-regular

tree.

As mentioned earlier, for the ferromagnetic Ising model,

an FPRAS was known for general graphs [8]. Furthermore,

Mossel and Sly [14] proved O(n log n) mixing time of

the Glauber dynamics for the ferromagnetic Ising model

when 1 ≤ β < βc(Δ). However, rapid mixing for the

antiferromagnetic Ising model in the tree uniqueness region

was not known.

We provide the following mixing result for the case β >
βc(Δ). Note, when β ≤ βc there is an additional uniqueness

region for certain values of the external field λ; this region

is covered by Theorem 3.

Theorem 2 (Antiferromagnetic Ising Model). Let Δ ≥ 3 be
an integer and δ ∈ (0, 1). Assume that 1 > β ≥ βc(Δ) +
δ(1 − βc(Δ)) and λ > 0. Then for every n-vertex graph
G of maximum degree Δ, the mixing time of the Glauber
dynamics for the Ising model on G with edge weight β and
external field λ is O(n2+1.5/δ).

Our results for the hardcore and Ising models fit within

a larger framework of general antiferromagnetic 2-spin sys-

tems. Recall that the antiferromagnetic case is when βγ < 1.

For general 2-spin systems the appropriate tree phase

transition is more complicated as there are models where the

tree uniqueness threshold is not monotone in Δ. Hence the

appropriate notion is “up-to-Δ uniqueness” as considered

by [12]. Roughly speaking, we say uniqueness with gap

δ ∈ (0, 1) holds on the d-regular tree if for every integer

	 ≥ 1, all vertices at distance 	 from the root have total

“influence” � (1 − δ)� on the marginal of the root. We

say up-to-Δ uniqueness with gap δ holds if uniqueness with

gap δ holds on the d-regular tree for all 1 ≤ d ≤ Δ; see

Section II for the precise definition.

Both Theorem 1 and Theorem 2 are corollaries of the

following general rapid mixing result which holds for gen-

eral antiferromagnetic 2-spin systems in the entire tree

uniqueness region.

Theorem 3 (General antiferromagnetic 2-spin system). Let
Δ ≥ 3 be an integer and δ ∈ (0, 1). Let β, γ, λ be reals
such that 0 ≤ β ≤ γ, γ > 0, βγ < 1 and λ > 0.
Assume that the parameters (β, γ, λ) are up-to-Δ unique
with gap δ. Then for every n-vertex graph G of maximum
degree Δ, the mixing time of the Glauber dynamics for
the antiferromagnetic 2-spin system on G with parameters
(β, γ, λ) is O(n2+72/δ).

We also match existing correlation decay results [7], [18]

for ferromagnetic 2-spin models; see Section VI for results

and the full version [5] of this paper for proofs.

A. Mixing by the potential method

The tree recursion is very useful in the study of ap-

proximating counting. Consider a tree rooted at r. Sup-

pose that r has d children, denoted by v1, . . . , vd. For

1 ≤ i ≤ Δi we define Tvi
to be the subtree of T

rooted at vi that contains all descendant of vi. Let Rr =
μT (σr = 1)/μT (σr = 0) denote the marginal ratio of the

root, and Rvi
= μTvi

(σvi
= 1)/μTvi

(σvi
= 0) for each

subtree. The tree recursion is a formula that computes Rr

given Rv1 , . . . , Rvd , due to the independence of Tvi ’s. More

specifically, we can write Rr = Fd(Rv1
, . . . , Rvd

) where

Fd : [0,+∞]d → [0,+∞] is a multivariate function such

that for (x1, . . . , xd) ∈ [0,∞]d,

Fd(x1, . . . , xd) = λ
d∏

i=1

βxi + 1

xi + γ
.

In this paper, however, we pay particular interest in the log

of marginal ratios. The reason is that we will carefully study

the pairwise influence matrix IG of the Gibbs distribution

μG, introduced in [2] and defined as for every r, v ∈ V

IG(r → v) = μG(σv = 1 | σr = 1)− μG(σv = 1 | σr = 0).

In [2], the authors show that if the maximum eigenvalue of

IG is bounded appropriately, then the Glauber dynamics is

rapid mixing. One crucial observation we make in this paper

is that the influence IG(r → v) of r on v can be viewed

as the derivative of logRr with respect to the log external

field at v (see Lemma 12). Thus, it is more convenient for

us to work with the log ratios. To this end, we rewrite the

tree recursion as logRv = Hd(logRv1
, . . . , logRvd

) where

Hd : [−∞,+∞]d → [−∞,+∞] is a function such that for

(y1, . . . , yd) ∈ [−∞,+∞]d,

Hd(y1, . . . , yd) = log λ+
d∑

i=1

log

(
βeyi + 1

eyi + γ

)
.

Observe that H = log ◦F ◦ exp. Moreover, we define

h(y) = − (1− βγ)ey

(βey + 1)(ey + γ)
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for y ∈ [−∞,+∞], so that ∂
∂yi

Hd(y1, . . . , yd) = h(yi) for

each i.
To prove our main results, we use the potential method,

which has been widely used to establish the decay of

correlation. By choosing a suitable potential function for

the log ratios, we show that the total influence from a

given vertex decays exponentially with the distance, and thus

establish rapid mixing of the Glauber dynamics. Let us first

specify our requirements on the potential. For every integer

d ≥ 0, we define a bounded interval Jd which contains

all log ratios at a vertex of degree d. More specifically,

we let Jd =
[
log(λβd), log(λ/γd)

]
when βγ < 1, and

Jd =
[
log(λ/γd), log(λβd)

]
when βγ > 1. Furthermore,

define J =
⋃Δ−1

d=0 Jd to be the interval containing all log

ratios with degree less than Δ.

Definition 4 ((α, c)-Potential function). Let Δ ≥ 3 be an

integer. Let β, γ, λ be reals such that 0 ≤ β ≤ γ, γ > 0 and

λ > 0. Let Ψ : [−∞,+∞] → (−∞,+∞) be a differen-

tiable and increasing function with image S = Ψ[−∞,+∞]
and derivative ψ = Ψ′. For any α ∈ (0, 1) and c > 0, we

say Ψ is an (α, c)-potential function with respect to Δ and

(β, γ, λ) if it satisfies the following conditions:

1) (Contraction) For every integer d such that 1 ≤ d < Δ
and every (ỹ1, . . . , ỹd) ∈ Sd, we have

∥∥∇HΨ
d (ỹ1, . . . , ỹd)

∥∥
1
=

d∑
i=1

ψ(y)

ψ(yi)
· |h(yi)| ≤ 1− α

where HΨ
d = Ψ ◦Hd ◦Ψ−1, yi = Ψ−1(ỹi) for 1 ≤ i ≤

d, and y = Hd(y1, . . . , yd).
2) (Boundedness) For every y1, y2 ∈ J , we have

ψ(y2)

ψ(y1)
· |h(y1)| ≤ c

Δ
.

In the definition of (α, c)-potential, one should think of y
as the log marginal ratio at a vertex and the potential function

is of logR. The following theorem establishes rapid mixing

of the Glauber dynamics given an (α, c)-potential function.

Theorem 5. Let Δ ≥ 3 be an integer. Let β, γ, λ be reals
such that 0 ≤ β ≤ γ, γ > 0 and λ > 0. Suppose
that there is an (α, c)-potential with respect to Δ and
(β, γ, λ) for some α ∈ (0, 1) and c > 0. Then for every
n-vertex graph G of maximum degree Δ, the mixing time
of the Glauber dynamics for the 2-spin system on G with
parameters (β, γ, λ) is O(n2+c/α).

We outline our proofs in Section III. Note that in both

Definition 4 and Theorem 5, the constant c is allowed to

depend on the maximum degree Δ and parameters (β, γ, λ)
in general. For example, a straightforward black-box ap-

plication of the potential in [12] would give c = Θ(Δ)
for the Boundedness condition, resulting in nΘ(Δ) mixing.

However, this is undesirable for graphs with potentially

unbounded degrees. One of our contributions is that we show

the Boundedness condition holds for a universal constant c
independent of Δ and (β, γ, λ). Thus, our mixing time is

O(n2+c/δ) with no parameters in the exponent except for

1/δ.

In the full version [5] of this paper, we give a slightly

more general definition of (α, c)-potentials, which relaxes

the Boundedness condition, and is necessary for our analysis

of antiferromagnetic 2-spin systems with 0 ≤ β < 1 < γ.

Theorem 5 still holds for this larger class of potentials.

We remark that in all previous works of the potential

method, results and proofs are always presented in terms of

Fd, the tree recursion of R, and Φ, a potential function of R.

In fact, our results can also be translated into the language of

(Fd,Φ). To see this, since Hd = log ◦Fd ◦exp, it is straight-

forward to check that HΨ
d = Ψ◦Hd◦Ψ−1 = Φ◦Fd◦Φ−1 =

FΦ
d if we pick Φ = Ψ◦log, and thereby ∇HΨ

d = ∇FΦ
d . This

implies that the Contraction condition in Definition 4 holds

for (Hd,Ψ) if and only if the corresponding contraction

condition holds for (Fd,Φ). The Boundedness condition can

also be stated equivalently for (Fd,Φ). Nevertheless, in this

paper we choose to work with (Hd,Ψ) for the following two

reasons. First, as mentioned earlier, the fact that IG(r → v)
is a derivative of logRr makes it natural to consider the tree

recursion for the log ratios. Indeed, it is easier and cleaner to

present our results and proofs using (Hd,Ψ) directly rather

than switching to (Fd,Φ). Second, the potential function

Ψ we will use is obtained from the exact potential Φ in

[12], by the transformation Ψ = Φ ◦ exp.1 It is intriguing

to notice that the derivative of this potential is simply

ψ =
√|h|. Then the Contraction condition has a nice form:∑d

i=1

√
h(y)h(yi) ≤ 1−α; and the Boundedness condition

only involves an upper bound on h(y). This seems to shed

some light on the mysterious potential function Φ from [12],

and also indicates that Hd is a meaningful variant of the tree

recursion to consider. To add one more evidence, for a lot

of cases (e.g., Δ−2
Δ <

√
βγ < Δ

Δ−2 ) where the potential

Φ = log is picked, that just means we can pick Ψ to be the

identity function and Hd itself is contracting without any

nontrivial potential.

II. PRELIMINARIES

Mixing time and spectral gap: Let P be the transition

matrix of an ergodic (i.e., irreducible and aperiodic) Markov

chain on a finite state space Ω with stationary distribution

μ. Let P t(x0, ·) denote the distribution of the chain after t
steps starting from x0 ∈ Ω. The mixing time of P is defined

to be

Tmix(P ) = max
x0∈Ω

min

{
t ≥ 0 :

∥∥P t(x0, ·)− μ(·)∥∥
TV

≤ 1

4

}

1To be more precise, we also multiply a constant factor which only
simplifies our calculation and does not matter much; also notice that [12]
denotes the potential function by ϕ and its derivative by Φ = ϕ′.
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We say P is reversible if μ(x)P (x, y) = μ(y)P (y, x) for all

x, y ∈ Ω. If P is reversible, then P has only real eigenvalues

which can be denoted by 1 = λ1 ≥ · · · ≥ λ|Ω| ≥ −1.

The spectral gap of P is defined to be 1 − λ2 and the

absolute spectral gap of P is defined as λ∗(P ) = 1 −
max{|λ2|, |λ|Ω||}. If P is also positive semidefinite with

respect to the inner product 〈·, ·〉μ, then all eigenvalues of

P are nonnegative and thus λ∗(P ) = 1 − λ2. Finally, the

mixing time and the absolute spectral gap are related by

Tmix(P ) ≤ 1

λ∗(P )
log

(
4

minx∈Ω μ(x)

)
. (1)

Uniqueness: Let Δ ≥ 3 be an integer or Δ = ∞. Let

β, γ, λ be reals such that 0 ≤ β ≤ γ, γ > 0, βγ < 1 and

λ > 0. For 1 ≤ d < Δ, define

fd(R) = λ

(
βR+ 1

R+ γ

)d

and denote the unique fixed point of fd by R∗
d. For δ ∈

(0, 1), we say the parameters (β, γ, λ) are up-to-Δ unique
with gap δ if |f ′

d(R
∗
d)| < 1− δ for all 1 ≤ d < Δ.

Ratio and influence: Consider the 2-spin system on a

graph G = (V,E). Let Λ ⊆ V and σΛ ∈ {0, 1}Λ. For

all v ∈ V \Λ, we define the marginal ratio at v to be

RσΛ

G (v) =
μG(σv = 1 | σΛ)

μG(σv = 0 | σΛ)
.

For all u, v ∈ V \Λ, we define the (pairwise) influence of u
on v by

IσΛ

G (u → v) = μG(σv = 1 | σu = 1, σΛ)

− μG(σv = 1 | σu = 0, σΛ).

Write IσΛ

G for the (pairwise) influence matrix whose entries

are given by IσΛ

G (u → v).
Weitz’s self-avoiding walk tree: Let G = (V,E) be a

connected graph and r ∈ V be a vertex of G. The self-
avoiding walk (SAW) tree is defined as follows. Suppose that

there is a total ordering of the vertex set V . A self-avoiding

walk from r is a path r = v0 − v1 − · · · − v� such that

vi �= vj for all 0 ≤ i < j ≤ 	. The SAW tree TSAW(G, r)
is a tree rooted at r, consisting of all self-avoiding walks

r = v0−v1−· · ·−v� with deg(v�) = 1, and those appended

with one more vertex that closes the cycle (i.e., r = v0−v1−
· · ·−v�−vi for some 0 ≤ i ≤ 	−2 such that {v�, vi} ∈ E).

Note that a vertex of G might have many copies in the

SAW tree, and the degrees of vertices are preserved except

for leaves.

We can define a 2-spin system on TSAW(G, r) with the

same parameters (β, γ, λ), in which some of the leaves

are fixed to a particular spin. More specifically, for a self-

avoiding walk r = v0−v1−· · ·−v� appended with vi, we fix

vi to be spin 1 if vi+1 < v� with respect to the total ordering

on V , and spin 0 if vi+1 > v�. For each v ∈ V we denote the

set of all free (unfixed) copies of v in TSAW(G, r) by Cv . For

Λ ⊆ V and a partial configuration σΛ ∈ {0, 1}Λ, we define

the SAW tree with conditioning σΛ by assigning the spin σv

to every copy v̂ of v from Cv and removing all descendants

of v̂, for each v ∈ Λ. Note that in general, different copies

of v from Cv can receive different spin assignments. Finally,

in the case that every vertex v has a distinct field λv , all

copies of v from Cv will have the same field λv in the SAW

tree.

III. PROOF OUTLINE FOR MAIN RESULTS

Step 1 ([2]): Spectral Independence implies rapid mixing.:
Our proof builds on [2] who showed that the Glauber dynam-

ics for sampling from the hardcore distribution on graphs of

maximum degree at most Δ mixes in O(nexp(O(1/δ))) steps

whenever λ ≤ (1 − δ)λc(Δ). One of the key ingredients

of their proof is a notion they call spectral independence.

[2] shows that the spectral independence property implies

rapid mixing. Note that the diagonal entries of IσΛ

G are 1,

as opposed to 0 in the original definition in [2].

Definition 6 (Spectral Independence [2]). We say that

the Gibbs distribution μG on an n-vertex graph G is

(η0, . . . , ηn−2)-spectrally independent, if for every 0 ≤ k ≤
n − 2, Λ ⊆ V of size k and σΛ ∈ {0, 1}Λ, one has

λmax(IσΛ

G )− 1 ≤ ηk.

Theorem 7 ([2]). If μ is an (η0, . . . , ηn−2)-spectrally
independent distribution, then the Glauber dynamics for
sampling from μ has spectral gap at least

1

n

n−2∏
i=0

(
1− ηi

n− i− 1

)
.

Our primary goal now is to bound the maximum eigen-

value of IσΛ

G .
Step 2: Self-avoiding walk trees preserve influences.:

From standard linear algebra, we know that the maximum

eigenvalue of IσΛ

G is upper bounded by both the 1-norm

‖IσΛ

G ‖1 = maxr∈V

∑
v∈V |IσΛ

G (v → r)|, which corresponds

to total influences on a vertex r, and the infinity-norm

‖IσΛ

G ‖∞ = maxr∈V

∑
v∈V |IσΛ

G (r → v)|, corresponding to

total influences of r. In [2] the authors use ‖IσΛ

G ‖1 as an

upper bound on λmax(IσΛ

G ). Roughly speaking, they show

that the sum of absolute influences on a fixed vertex r, is

upper bounded by the maximum absolute influences on r in

the self-avoiding walk tree rooted at r, over all boundary

conditions. Here in this paper, we will use ‖IσΛ

G ‖∞ to

upper bound λmax(IσΛ

G ) instead. In fact, much more is true

if we look at the influences from r in the self-avoiding

tree. We show that for every vertex v ∈ V , the influence

IσΛ

G (r → v) in G is preserved in the self-avoiding walk tree

T = TSAW(G, r) rooted at r, in the form of sum of influences

IσΛ

T (r → v̂) over all copies v̂ of v.

The way we establish this fact is by viewing the partition

function as a polynomial in λ. In fact, it will be useful to

consider the more general case with an arbitrary external
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field λv for every v ∈ V . Let λ = {λv : v ∈ V } denote

the fields. For Λ ⊆ V and σΛ ∈ {0, 1}Λ, the weight of

σ ∈ {0, 1}V \Λ conditional on σΛ is defined to be wG(σ |
σΛ) = βm1(σ|σΛ)γm0(σ|σΛ)

∏
v∈V \Λ λσv

v where mi(· | σΛ)
is the number of i-i edges with at least one endpoint in

V \Λ for i = 0, 1. Furthermore, ZσΛ

G =
∑

σ∈{0,1}V \Λ wG(σ |
σΛ) is the partition function conditioned on σΛ. We shall

view β and γ as some fixed constants and think of λ as

n = |V | variables. In this sense, we regard the weights

wG(σ | σΛ) as monomials in λ and the partition function

ZσΛ

G as a polynomial in λ. Moreover, the marginal ratios

RσΛ

G (v) and the influences IσΛ

G (r → v) for r, v ∈ V are all

functions in λ. Our main result is that the partition function

of G divides that of TSAW(G, r) for each r ∈ V . From that,

we show that the SAW tree preserves influences of the root,

as well as re-establishing Weitz’s celebrated result [23], see

Lemma 13.

Lemma 8. Let G = (V,E) be a connected graph, r ∈ V
be a vertex and Λ ⊆ V \{r} such that G\Λ is connected.
Let T = TSAW(G, r) be the self-avoiding walk tree of G
rooted at r. Then for every σΛ ∈ {0, 1}Λ, ZσΛ

G divides ZσΛ

T .
More precisely, there exists a polynomial PσΛ

G,r = P σΛ

G,r(λ)
independent of λr such that

ZσΛ

T = ZσΛ

G · PσΛ

G,r. (2)

As a corollary, for each vertex v ∈ V ,

IσΛ

G (r → v) =
∑
v̂∈Cv

IσΛ

T (r → v̂), (3)

where Cv is the set of all free (unfixed) copies of v in T .

Remark 1. We emphasize that for the purposes of bounding

the total influence of a vertex in G, only Eq. (3) of Lemma 8

is needed, which can be proved in a purely combinatorial

fashion. However, we believe the divisibility property Eq. (2)

of the multivariate partition function of G and its self-

avoiding walk tree may be of independent interest.

We note that a univariate version of the divisibility state-

ment Eq. (2) has already appeared in [4] for the hardcore

model and [13] for the zero-field Ising model in the study of

complex roots of the partition function. From Lemma 8, we

can get
∑

v∈V |IσΛ

G (r → v)| ≤ ∑
v∈VT

|IσΛ

T (r → v)| for any

fixed r. That means, we only need to upper bound the sum

of all influences for trees, in order to get an upper bound on

λmax(IσΛ

G ).
Step 3: Decay of influences given a good potential.: The

tree recursion provides us a great tool for computing the

(log) ratios of vertices recursively for trees. As we show in

Lemma 12, the influence IσΛ

G (r → v) is in fact a version

of derivative of the log marginal ratio at r. Thus, the tree

recursion can be used naturally to relate these influences. We

then apply the potential method, which has been widely used

in literature to establish the decay of correlations (strong

spatial mixing). The following lemma shows that the sum

of absolute influences to distance k has exponential decay

with k, which can be thought of as the decay of pairwise

influences.

Lemma 9. If there exists an (α, c)-potential function Ψ with
respect to Δ and (β, γ, λ) where α ∈ (0, 1) and c > 0, then
for every Λ ⊆ VT \{r}, σΛ ∈ {0, 1}Λ and all integers k ≥ 1,∑

v∈Lr(k)

|IσΛ

T (r → v)| ≤ c · (1− α)k−1

where Lr(k) denote the set of all free vertices at distance
k away from r.

Theorem 5 is then proved by combining Theorem 7,

Lemma 8 and Lemma 9. We leave its proof to the full version

[5] of the paper.

Step 4: Find a good potential.: As our final step, we need

to find an (α, c)-potential function as defined in Definition 4.

The potential Ψ we choose is exactly the one from [12],

adapted to the log marginal ratios and the tree recursion H
(see the full version [5] for more details). We show that if the

parameters (β, γ, λ) are up-to-Δ unique with gap δ ∈ (0, 1)
and either

√
βγ > Δ−2

Δ or γ ≤ 1, then Ψ is an (α, c)-
potential.

Lemma 10. Let Δ ≥ 3 be an integer. Let β, γ, λ be reals
such that 0 ≤ β ≤ γ, γ > 0, βγ < 1 and λ > 0. Assume
that (β, γ, λ) is up-to-Δ unique with gap δ ∈ (0, 1). Define
the function Ψ implicitly by

Ψ′(y) = ψ(y) =

√
(1− βγ)ey

(βey + 1)(ey + γ)
=

√
|h(y)|,

Ψ(0) = 0.

(4)

If
√
βγ > Δ−2

Δ , then Ψ is an (α, c)-potential function with
α ≥ δ/2 and c ≤ 1.5. If γ ≤ 1, then Ψ is an (α, c)-potential
with c ≤ 18 and α ≥ δ/2; we can further take c ≤ 4 if
β = 0.

We deduce Theorem 3 for the case
√
βγ > Δ−2

Δ or γ ≤ 1
from Theorem 5 and Lemma 10. The proof of them can be

found in the full version [5]. The case that
√
βγ ≤ Δ−2

Δ and

γ > 1 is trickier. As discussed in Section 5 of [12], when√
βγ ≤ Δ−2

Δ and γ > 1, the threshold λc for the external

field is bounded below by some constant for all Δ; so for

some λ > 0 the spin system is in the uniqueness region for

arbitrary graphs, even with unbounded degrees (i.e., up-to-∞
unique). Thus, in this case the total influences of a vertex

can be as large as Θ(Δ/δ), resulting in nΘ(Δ/δ) mixing

time. To deal with this, we consider a suitably weighted sum

of absolute influences of a fixed vertex, which also upper

bounds the maximum eigenvalue of the influence matrix.

Definition 4 and Theorem 5 are then modified to a slightly

stronger version. The statements and proofs for this case are

presented in the full version [5] of the paper.
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IV. PRESERVATION OF INFLUENCES FOR SELF-AVOIDING

WALK TREES

In this section we show that the self-avoiding walk (SAW)

tree, introduced in [23] (see also [17]), maintains all the

influence of the root, and thus establishes Lemma 8. To do

this, we show that the partition function of G, viewed as a

polynomial of the external fields λ, divides that of the SAW

tree. From there we prove that the influence of the root vertex

r on another vertex v in G, is exactly equal to that on all

copies of v in the SAW tree. Using our proof approach, we

show that the marginal of the root is maintained in the SAW

tree, re-establishing Weitz’s celebrated result [23], and also

all pairwise covariances concerned with v are preserved.

Theorem 11. Let G = (V,E) be a connected graph, r ∈ V
be a vertex and Λ ⊆ V \{r} such that G\Λ is connected. Let
T = TSAW(G, r) be the self-avoiding walk tree of G rooted
at r. Then for every σΛ ∈ {0, 1}Λ, ZσΛ

G divides ZσΛ

T . More
precisely, there exists a polynomial PσΛ

G,r = PσΛ

G,r(λ) such
that

ZσΛ

T = ZσΛ

G · PσΛ

G,r.

Moreover, the polynomial PσΛ

G,r is independent of λr.

Remark 2. The proof of Theorem 11 can be adapted to

give a purely combinatorial proof of Eq. (3) in Lemma 8.

Like in the proof of [23, Theorem 3.1], one can proceed via

vertex splitting and telescoping, where instead of telescoping

a product of marginal ratios, one instead telescopes a sum

of single-vertex influences.

We remark that [4] proved a univariate version of Theo-

rem 11 for the hardcore model, and [13] showed a similar

result for the zero-field Ising model with a uniform edge

weight. Our result holds for all 2-spin systems and arbitrary

fields for each vertex. We can also generalize it to arbitrary

edge weights for each edge in a straightforward fashion. It

is crucial that the quotient polynomial PσΛ

G,r is independent

of the field λr at the root, from which we can deduce

the preservation of marginal and influences of the root

immediately.

Before proving Theorem 11, we first give a few conse-

quences of it. For all u, v ∈ V \Λ, we define the marginal at

v as MσΛ

G (v) = μG(v = 1 | σΛ) (henceforth we write v = i
for the event σv = i for convenience), and the covariance
of u and v as

KσΛ

G (u, v) = μG(u = v = 1 | σΛ)

− μG(u = 1 | σΛ)μG(v = 1 | σΛ).

The following lemma relates the quantities we are interested

in with appropriate derivatives of the (log) partition function.

Parts 1 and 2 of the lemma are folklore.

Lemma 12. For every graph G = (V,E), Λ ⊆ V and
σΛ ∈ {0, 1}Λ, the following holds:

1) For all v ∈ V ,(
λv

∂

∂λv

)
logZσΛ

G = MσΛ

G (v);

2) For all u, v ∈ V ,(
λv

∂

∂λv

)(
λu

∂

∂λu

)
logZσΛ

G = KσΛ

G (u, v);

3) For all u, v ∈ V ,(
λv

∂

∂λv

)
logRσΛ

G (u) = IσΛ

G (u → v).

Proof: The first two parts are standard. The proofs of

them can be found in the full version [5]. For Part 3, we

deduce from Part 2 that(
λv

∂

∂λv

)
logRσΛ

G (u) =

(
λv

∂

∂λv

)
log

(
MσΛ

G (u)

1−MσΛ

G (u)

)

=

(
λv

∂
∂λv

)
MσΛ

G (u)

MσΛ

G (u) (1−MσΛ

G (u))

=
KσΛ

G (u, v)

KσΛ

G (u, u)
.

It remains to show that

IσΛ

G (u → v) =
KσΛ

G (u, v)

KσΛ

G (u, u)
,

which actually holds for any two binary random variables.

To see this, we first compute KσΛ

G (u, u) · IσΛ

G (u → v) by

definition:

KσΛ

G (u, u) · IσΛ

G (u → v)

= μG(u = 1 | σΛ) · μG(u = 0 | σΛ)

· [μG(v = 1 | u = 1, σΛ)− μG(v = 1 | u = 0, σΛ)]

= μG(u = 1, v = 1 | σΛ) · μG(u = 0, v = 0 | σΛ)

− μG(u = 1, v = 0 | σΛ) · μG(u = 0, v = 1 | σΛ).

Meanwhile, the covariance can be written as

KσΛ

G (u, v) = μG(u = 1, v = 1 | σΛ)

− μG(u = 1 | σΛ) · μG(v = 1 | σΛ)

= μG(u = 1, v = 1 | σΛ) · μG(u = 0, v = 0 | σΛ)

− μG(u = 1, v = 0 | σΛ) · μG(u = 0, v = 1 | σΛ).

This shows that IσΛ

G (u → v) = KσΛ

G (u, v)/KσΛ

G (u, u) and

thus establishes Part 3.

We deduce Lemma 8 from Theorem 11 and the second

item of the following lemma. The proof of Theorem 11 is

presented in Section IV-A.

Lemma 13. Let G = (V,E) be a connected graph, r ∈ V
be a vertex and Λ ⊆ V \{r} such that G\Λ is connected. Let
T = TSAW(G, r) be the self-avoiding walk tree of G rooted
at r. Then for every σΛ ∈ {0, 1}Λ we have:
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1) ([23, Theorem 3.1]) Preservation of marginal of the
root r:

MσΛ

G (r) = MσΛ

T (r), RσΛ

G (r) = RσΛ

T (r);

2) Preservation of covariances and influences of r: for
every v ∈ V ,

KσΛ

G (r, v) =
∑
v̂∈Cv

KσΛ

T (r, v̂),

IσΛ

G (r → v) =
∑
v̂∈Cv

IσΛ

T (r → v̂).

where Cv is the set of all free copies of v in T .

Proof: By Theorem 11, there exists a polynomial

P σΛ

G,r = P σΛ

G,r(λ) such that ZσΛ

T = ZσΛ

G · PσΛ

G,r and P σΛ

G,r

is independent of λr. Then it follows from Lemma 12 that

MσΛ

T (r) =

(
λr

∂

∂λr

)
logZσΛ

T

=

(
λr

∂

∂λr

)(
logZσΛ

G + logP σΛ

G,r

)

=

(
λr

∂

∂λr

)
logZσΛ

G = MσΛ

G (r),

and therefore RσΛ

T (r) = RσΛ

G (r). For the second item, again

from Lemma 12 we get

KσΛ

G (r, v) =

(
λv

∂

∂λv

)
MσΛ

G (r) =

(
λv

∂

∂λv

)
MσΛ

T (r).

Recall that for the spin system on the SAW tree T , every free

copy v̂ of v from Cv has the same external field λv̂ = λv .

Then, by the chain rule of derivatives and Lemma 12, we

deduce that

KσΛ

G (r, v) =
∑
v̂∈Cv

(
λv̂

∂

∂λv̂

)
MσΛ

T (r) · ∂λv̂

∂λv
· λv

λv̂

=
∑
v̂∈Cv

KσΛ

T (r, v̂).

Finally, we have

IσΛ

G (r → v) =

(
λv

∂

∂λv

)
logRσΛ

G (r)

=

(
λv

∂

∂λv

)
logRσΛ

T (r) =
∑
v̂∈Cv

IσΛ

T (r → v̂),

where the last equality follows as above.

A. Proof of Theorem 11

Before presenting our proof, let us first review the no-

tations and definitions introduced earlier. Denote the set of

fields at all vertices by λ = {λv : v ∈ V }. For Λ ⊆ V and

σΛ ∈ {0, 1}Λ, the weight of σ ∈ {0, 1}V \Λ conditional on

σΛ is given by

wG(σ | σΛ) = βm1(σ|σΛ)γm0(σ|σΛ)
∏

v∈V \Λ
λσv
v ,

where for i = 0, 1, mi(· | σΛ) denotes the number of edges

such that both endpoints receive the spin i and at least one

of them is in V \Λ. The partition function conditional on

σΛ is defined as ZσΛ

G =
∑

σ∈{0,1}V \Λ wG(σ | σΛ). For the

SAW tree, we define the conditional weights and partition

function in the same way. In particular, recall that when we

fix a conditioning σΛ on the SAW tree, we also remove all

descendants of v̂ ∈ Cv for each v ∈ Λ.

For every v ∈ V \Λ and i ∈ {0, 1}, we shall write v = i
to represent the set of configurations such that σv = i (i.e.,

{σ ∈ {0, 1}V \Λ : σv = i}) and let ZσΛ

G (v = i) be sum of

weights of all configurations with v = i. We further extend

this notation and write ZσΛ

G (U = σU ) for every U ⊆ V \Λ
and σU ∈ {0, 1}U . For the SAW tree we adopt the same

notations as well.

Proof of Theorem 11: We will show that there exists a

polynomial PσΛ

G,r = PσΛ

G,r(λ), independent of λr, such that

ZσΛ

T (r = 1) = ZσΛ

G (r = 1) · PσΛ

G,r,

ZσΛ

T (r = 0) = ZσΛ

G (r = 0) · PσΛ

G,r.
(5)

The high-level proof idea of Eq. (5) is similar to the

corresponding result in [23, Theorem 3.1]. Let m be the

number of edges with at least one endpoint in V \Λ. We

use induction on m. When m = 0 the statement is trivial

since T = G. Assume that Eq. (5) holds for all graphs and

all conditioning with less than m edges. Suppose that the

root r has d neighbors v1, . . . , vd. Define G′ to be the graph

obtained by replacing the vertex r with d vertices r1, . . . , rd
and then connecting {ri, di} for 1 ≤ i ≤ d.

Consider first the case where (G\{r})\Λ is still con-

nected. For each i, let Gi = G′−ri. Define the 2-spin system

on Gi with the same parameters (β, γ,λ), plus an additional

conditioning that the vertices r1, . . . , ri−1 are fixed to spin

0 while ri+1, . . . , rd are fixed to spin 1; we denote this

conditioning by σUi
with Ui = {v1, . . . , vd}\{vi}. Then,

T = TSAW(G, r) can be generated by the following recursive

procedure.

Algorithm: TSAW(G, r):

1) For each i, let Ti = TSAW(Gi, vi) plus the conditioning

σUi
;

2) Let T = TSAW(G, r) be the union of r and T1, . . . , Td

by connecting {r, vi} for 1 ≤ i ≤ d; output T .

For the purpose of proof, we also consider the 2-spin

system on G′ with the same parameters (β, γ,λ), with an

exception that we let the vertices r1, . . . , rd have no fields

(i.e., setting λri = 1 for 1 ≤ i ≤ d instead of λr). We then

observe that

ZσΛ

G (r = 1) = λr · ZσΛ

G′ (r1 = 1, . . . , rd = 1),

and the same holds with spin 1 replaced by 0. For 1 ≤ i ≤ d,

let σΛi
denote the union of the conditioning σΛ and σUi

,
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where Λi = Λ ∪ Ui. Then for every 1 ≤ i ≤ d we have

ZσΛ

G′ (r1 = 0, . . . , ri−1 = 0, ri = 1, . . . , rd = 1)

= β · ZσΛi

Gi
(vi = 1) + Z

σΛi

Gi
(vi = 0).

Notice that both sides are independent of the field λr: for the

left side, all ri’s do not have a field for the spin system on

G′; for the right side, recall that we do not count the weight

of fixed vertices for the conditional partition function for

each Gi. Now define QσΛ

G,r = QσΛ

G,r(λ) by

QσΛ

G,r =
d∏

i=2

ZσΛ

G′ (r1 = 0, . . . , ri−1 = 0, ri = 1, . . . , rd = 1),

which is independent of λr. Then we get

ZσΛ

G (r = 1) ·QσΛ

G,r

= λr ·
d∏

i=1

ZσΛ

G′ (r1 = 0, . . . , ri−1 = 0, ri = 1, . . . , rd = 1)

= λr ·
d∏

i=1

(
β · ZσΛi

Gi
(vi = 1) + Z

σΛi

Gi
(vi = 0)

)
.

Using a similar argument, we also have

ZσΛ

G (r = 0) ·QσΛ

G,r

=
d∏

i=1

ZσΛ

G′ (r1 = 0, . . . , ri = 0, ri+1 = 1, . . . , rd = 1)

=

d∏
i=1

(
Z

σΛi

Gi
(vi = 1) + γ · ZσΛi

Gi
(vi = 0)

)
.

Since we assume that (G\{r})\Λ is connected, the graph

Gi\Λ is also connected for each i. Then, by the induction

hypothesis, for each i there exists a polynomial P
σΛi

Gi,vi
=

P
σΛi

Gi,vi
(λ) such that

Z
σΛi

Ti
(r = 1) = Z

σΛi

Gi
(r = 1) · PσΛi

Gi,vi
,

Z
σΛi

Ti
(r = 0) = Z

σΛi

Gi
(r = 0) · PσΛi

Gi,vi
;

these polynomials are independent of λr since the condi-

tional partition functions for Gi’s do not involve λr. Now

if we let

PσΛ

G,r = QσΛ

G,r ·
d∏

i=1

P
σΛi

Gi,vi
,

then it follows from the tree recursion that

ZσΛ

T (r = 1) = λr ·
d∏

i=1

(
β · ZσΛi

Ti
(vi = 1) + Z

σΛi

Ti
(vi = 0)

)

= λr ·
d∏

i=1

(
β · ZσΛi

Gi
(vi = 1)P

σΛi

Gi,vi
+ Z

σΛi

Gi
(vi = 0)P

σΛi

Gi,vi

)

= ZσΛ

G (r = 1) ·QσΛ

G,r ·
d∏

i=1

P
σΛi

Gi,vi

= ZσΛ

G (r = 1) · PσΛ

G,r.

The other equality ZσΛ

T (r = 0) = ZσΛ

G (r = 0) · P σΛ

G,r is

established in the same way. This completes the proof for

the case that (G\{r})\Λ is connected.

If (G\{r})\Λ has two or more connected components,

then we can construct TSAW(G, r) by the SAW tree of each

component. Recall that G′ is defined by splitting the vertex r
into d copies in the graph G. Suppose that G′\Λ has k con-

nected component for an integer k ≥ 2. Let G′
(1), . . . , G

′
(k)

be the subgraphs induced by each component, along with

vertices from Λ that are adjacent to it. For each j, let G(j)

be the graph obtained from G′
(j) by contracting all copies

of r into one vertex r(j), and let T(j) = TSAW(G
′
(j), r(j)).

Observe that once we contract the roots r(1), . . . , r(k) of

T(1), . . . , T(k), the resulting tree is TSAW(G, r).
We define the 2-spin system on each G(j) with the same

parameters (β, γ,λ), except that the vertex r(j) does not

have a field (i.e., λr(j) = 1 instead of λr). For 1 ≤ j ≤ k,

let Λ(j) = Λ ∩ V (G(j)) and σΛ(j)
be the configuration σΛ

restricted on Λ(j). Then G(j)\Λ(j) is connected for every

j and, since k ≥ 2, each G(j) with conditioning σΛ(j)

has fewer than m edges. Thus, we can apply the induction

hypothesis; namely, for 1 ≤ j ≤ k there exists a polynomial

P
σΛ(j)

G(i),r(i)
= P

σΛ(j)

G(i),r(i)
(λ), which is independent of λr, such

that

Z
σΛ(j)

T(j)
(r(j) = 1) = Z

σΛ(j)

G(j)
(r(j) = 1) · PσΛ(j)

G(j),r(j)
,

Z
σΛ(j)

T(j)
(r(j) = 0) = Z

σΛ(j)

G(j)
(r(j) = 0) · PσΛ(j)

G(j),r(j)
.

We define the polynomial PσΛ

G,r = PσΛ

G,r(λ) to be

PσΛ

G,r =
k∏

j=1

P
σΛ(j)

G(j),r(j)
.

It is then easy to check that

ZσΛ

T (r = 1) = λr ·
k∏

j=1

Z
σΛ(j)

T(j)
(r(j) = 1)

= λr ·
k∏

j=1

(
Z

σΛ(j)

G(j)
(r(j) = 1) · PσΛ(j)

G(j),r(j)

)

= ZσΛ

G (r = 1) ·
k∏

j=1

P
σΛ(j)

G(j),r(j)
= ZσΛ

G (r = 1) · PσΛ

G,r,

and similarly ZσΛ

T (r = 0) = ZσΛ

G (r = 0) ·PσΛ

G,r. The theorem

then follows.

V. INFLUENCE BOUND FOR TREES

In this section, we study the influences of the root on

other vertices in a tree. We give an upper bound on the

total influences of the root on all vertices at a fixed distance

away. To do this, we apply the potential method, which has

been used to establish the correlation decay property (see,

e.g., [11], [12], [7]). Given an arbitrary potential function Ψ,

our upper bound is in terms of properties of Ψ, involving
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bounds on
∥∥∇HΨ

d

∥∥
1

and |ψ| where ψ = Ψ′. We then deduce

Lemma 9 in the case that Ψ an (α, c)-potential.

Assume that T = (VT , ET ) is a tree rooted at r of maxi-

mum degree at most Δ. Let Λ ⊆ VT \{r} and σΛ ∈ {0, 1}Λ
be arbitrary and fixed. Consider the 2-spin system on T with

parameters (β, γ, λ), conditioned on σΛ. We need to bound

the influence IσΛ

T (r → v) from the root r to another vertex

v ∈ VT . Notice that if v is disconnected from r when Λ is

removed, then IσΛ

T (r → v) = 0 by the Markov property of

spin systems. Therefore, we may assume that, by removing

all such vertices, Λ contains only leaves of T .

For a vertex v ∈ VT , let Tv = (VTv , ETv ) be the subtree

of T rooted at v that contains all descendant of v; note that

Tr = T . We will write Lv(k) ⊆ VT \Λ for the set of all free

vertices at distance k away from v in Tv . We pay particular

interest in the marginal ratio at v in the subtree Tv , and write

Rv = RσΛ

Tv
(v) for simplicity. The logRv’s are related by the

tree recursion H . If a vertex v has d children, denoted by

u1, . . . , ud, then the tree recursion is given by

logRv = Hd(logRu1
, . . . , logRud

),

where for 1 ≤ d ≤ Δ and (y1, . . . , yd) ∈ [−∞,∞]d,

Hd(y1, . . . , yd) = log λ+
d∑

i=1

log

(
βeyi + 1

eyi + γ

)
.

Also recall that for y ∈ [−∞,+∞], we define

h(y) = − (1− βγ)ey

(βey + 1)(ey + γ)

and ∂
∂yi

Hd(y1, . . . , yd) = h(yi) for all 1 ≤ i ≤ d ≤ Δ.

The following lemma allows us to bound the sum of all

influences from the root to distance k, using an arbitrary

potential function.

Lemma 14. Let Ψ : [−∞,+∞] → (−∞,+∞) be a
differentiable and increasing (potential) function with image
S = Ψ[−∞,+∞] and derivative ψ = Ψ′. Denote the degree
of the root r by Δr. Then for every integer k ≥ 1,∑

v∈Lr(k)

|IσΛ

T (r → v)|

≤ ΔrAΨBΨ

(
max

1≤d<Δ
sup
ỹ∈Sd

∥∥∇HΨ
d (ỹ)

∥∥
1

)k−1

where

AΨ = max
u∈Lr(1)

{ |h(logRu)|
ψ(logRu)

}
,

BΨ = max
v∈Lr(k)

{ψ(logRv)} .

Before proving Lemma 14, we first present two useful

properties of the influences on trees. Firstly, it was shown

in [2] that the influences satisfy the following form of chain

rule on trees.

Lemma 15 ([2, Lemma B.2]). Suppose that u, v, w ∈ VT

are three distinct vertices such that u is on the unique path
from v to w. Then

IσΛ

T (v → w) = IσΛ

T (v → u) · IσΛ

T (u → w).

Secondly, for two adjacent vertices on a tree, the influence

from one to the other is given by the function h.

Lemma 16. Let v ∈ VT and u be a child of v in the subtree
Tv . Then

IσΛ

T (v → u) = h(logRu).

Proof: The lemma can be proved through an explicit

computation of the influence. Here we present a more del-

icate proof utilizing Lemma 12, which gives some insights

into the relation between the influence and the function h.

We assume that v has d children in the subtree Tv , denoted

by u1 = u and u2, . . . , ud respectively. We also assume, as

a more general setting than uniform fields, that each vertex

w is attached to a field λw of its own. Then Lemma 12 and

the tree recursion imply that

IσΛ

T (v → u) = IσΛ

Tv
(v → u) =

(
λu

∂

∂λu

)
logRv

=

(
λu

∂

∂λu

)
Hd(logRu1

, . . . , logRud
)

=
d∑

i=1

(
λu

∂

∂λu

)
logRui

× ∂

∂ logRui

Hd(logRu1
, . . . , logRud

)

=

d∑
i=1

IσΛ

Tui
(ui → u) · h(logRui) = h(logRu),

where the last equality is because IσΛ

Tui
(ui → u) = 0 for

ui �= u and IσΛ

Tu
(u → u) = 1.

We are now ready to prove Lemma 14.

Proof of Lemma 14: For a vertex v ∈ VT , denote

the number of its children by dv; note that dr = Δr. Let

u1, . . . , uΔr
be the children of the root r. We may assume

that all these children of r are free, since if ui is fixed then

IσΛ

T (r → ui) = 0 by definition. Then by Lemma 15 and

Lemma 16, we get∑
v∈Lr(k)

|IσΛ

T (r → v)|

=

Δr∑
i=1

|IσΛ

T (r → ui)|
∑

v∈Lui
(k−1)

|IσΛ

T (ui → v)|

=

Δr∑
i=1

|h(logRui)|
∑

v∈Lui
(k−1)

|IσΛ

T (ui → v)|

=

Δr∑
i=1

|h(logRui
)|

ψ(logRui
)

∑
v∈Lui

(k−1)

ψ(logRui
) |IσΛ

T (ui → v)| .
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Hence, we obtain that∑
v∈Lr(k)

|IσΛ

T (r → v)| ≤ Δr · max
1≤i≤Δr

{ |h(logRui)|
ψ(logRui

)

}
(6)

× max
1≤i≤Δr

⎧⎨
⎩

∑
v∈Lui

(k−1)

ψ(logRui
) |IσΛ

T (ui → v)|
⎫⎬
⎭ .

Next, we show by induction that for every vertex u ∈
VT \{r} and every integer k ≥ 0 we have∑

v∈Lu(k)

ψ(logRu) |IσΛ

T (u → v)| (7)

≤ max
v∈Lu(k)

{ψ(logRv)} ·
(

max
w∈VTu

sup
ỹ∈Sdw

∥∥∇HΨ
dw

(ỹ)
∥∥
1

)k

.

Observe that once we establish Eq. (7), the lemma follows

immediately by plugging Eq. (7) into Eq. (6). We will use

induction on k to prove Eq. (7). When k = 0, if u ∈ Λ
is fixed then Lu(0) = ∅ and there is nothing to show;

otherwise, Eq. (7) becomes

ψ(logRu) |IσΛ

T (u → u)| ≤ ψ(logRu),

which holds with equality since IσΛ

T (u → u) = 1. Now

suppose that Eq. (7) holds for some integer k − 1 ≥ 0
(and for every vertex u ∈ VT \{r}). Let u ∈ VT \{r} be

arbitrary and denote the children of u by w1, . . . , wd, where

1 ≤ d < Δ (if d = 0 then Lu(k) = ∅ and Eq. (7) holds

trivially). Again by Lemma 15 and Lemma 16 we have∑
v∈Lu(k)

ψ(logRu) |IσΛ

T (u → v)|

=

d∑
i=1

ψ(logRu) |IσΛ

T (u → wi)|
∑

v∈Lwi
(k−1)

|IσΛ

T (wi → v)|

=

d∑
i=1

ψ(logRu)

ψ(logRwi
)
|h(logRwi)|

×
∑

v∈Lwi
(k−1)

ψ(logRwi
) |IσΛ

T (wi → v)| .

For U ⊆ VT , we let

Ξ(U) = max
w∈U

sup
ỹ∈Sdw

∥∥∇HΨ
dw

(ỹ)
∥∥
1
.

Using the induction hypothesis, we get∑
v∈Lu(k)

ψ(logRu) |IσΛ

T (u → v)|

≤ max
v∈Lu(k)

{ψ(logRv)} · Ξ (VTu
\{u})k−1

×
d∑

i=1

ψ(logRu)

ψ(logRwi)
|h(logRwi

)|

≤ max
v∈Lu(k)

{ψ(logRv)} · Ξ (VTu)
k
,

where the last inequality follows from that

d∑
i=1

ψ(logRu)

ψ(logRwi
)
|h(logRwi

)|

=

d∑
i=1

∣∣∣∣ ∂

∂Ψ(logRwi)
HΨ

d (Ψ(logRw1), . . . ,Ψ(logRwd
))

∣∣∣∣
=

∥∥∇HΨ
d (Ψ(logRw1

), . . . ,Ψ(logRwd
))
∥∥
1
.

This establishes Eq. (7), and thus proves the lemma.

We then derive Lemma 9 as a corollary.

Proof of Lemma 9: Since Ψ is an (α, c)-potential, the

Contraction condition implies that

max
1≤d<Δ

sup
ỹ∈Sd

∥∥∇HΨ
d (ỹ)

∥∥
1
≤ 1− α.

Meanwhile, since the degree of a vertex v ∈ VT \{r} in the

subtree Tv is less than Δ, we have logRv ∈ J . Then the

Boundedness condition implies that for all u ∈ Lr(1) and

v ∈ Lr(k),

ψ(logRv)

ψ(logRu)
· |h(logRu)| ≤ c

Δ
.

Therefore, we get ΔrAΨBΨ ≤ c. The lemma then follows

immediately from Lemma 14.

VI. FERROMAGNETIC CASES

In the ferromagnetic case, the best known correlation

decay results are given in [7], [18]. Using the potential

functions in [7] and [18], we show the following two results,

which match the known correlation decay results.

Theorem 17. Fix an integer Δ ≥ 3, positive real numbers
β, γ, λ and 0 < δ < 1, and assume (β, γ, λ) satisfies one of
the following three conditions:

1) Δ−2+δ
Δ−δ ≤ √

βγ ≤ Δ−δ
Δ−2+δ , and λ is arbitrary;

2)
√
βγ ≥ Δ

Δ−2 and

λ ≤ (1− δ)
γ

max{1, βΔ−1} · ((Δ− 2)βγ −Δ)
;

3)
√
βγ ≥ Δ

Δ−2 and λ ≥ 1
1−δ · (Δ−2)βγ−Δ

β·min{1,1/γΔ−1} .
Then the identity function Ψ(y) = y (based on the potential
given in [18]) is an (α, c)-potential function for α = Θ(δ)
and c ≤ O(1). Furthermore, for every n-vertex graph G of
maximum degree at most Δ, the mixing time of the Glauber
dynamics for the 2-spin system on G with parameters
(β, γ, λ) is O(n2+c/δ), for a universal constant c > 0.

Remark 3. Condition 1 includes both the ferromagnetic

case 1 <
√
βγ ≤ Δ−δ

Δ−2+δ and the antiferromagnetic case
Δ−2+δ
Δ−δ ≤ √

βγ < 1. Note that in both cases (β, γ, λ) is up-

to-Δ unique with gap δ. For the antiferromagnetic case, the

identity function Ψ is an (α, c)-potential with c ≤ 1.5 and

a better contraction rate α ≥ δ, compared with the bound

α ≥ δ/2 of the potential Ψ given by Eq. (4) in Lemma 10.
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For the ferromagnetic case with β = γ > 1 (Ising model),

[14] proved a stronger result of O(n log n) mixing.

The potential function from [7] is indeed an (α, c)-
potential, but c must, unfortunately, depend on Δ. We have

the following result, which is weaker than the correlation

decay algorithm in [7] for unbounded degree graphs.

Theorem 18. Fix an integer Δ ≥ 3, and nonnegative real
numbers β, γ, λ satisfying β ≤ 1 ≤ γ,

√
βγ ≥ Δ

Δ−2 , and

λ <
(

γ
β

) √
βγ√

βγ−1 . Then for every n-vertex graph G with
maximum degree at most Δ, the mixing time of the Glauber
dynamics for the ferromagnetic 2-spin system on G with
parameters (β, γ, λ) is O(nC), for a constant C depending
only on β, γ, λ,Δ, but not n.

Proofs of these theorems are given in the full version [5].
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