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Abstract—For general antiferromagnetic 2-spin systems, in-
cluding the hardcore model on weighted independent sets and
the antiferromagnetic Ising model, there is an FPTAS for the
partition function on graphs of maximum degree A when
the infinite regular tree lies in the uniqueness region by Li
et al. (2013). Moreover, in the tree non-uniqueness region,
Sly (2010) showed that there is no FPRAS to estimate the
partition function unless NP = RP. The algorithmic results
follow from the correlation decay approach due to Weitz
(2006) or the polynomial interpolation approach developed by
Barvinok (2016). However the running time is only polynomial
for constant A. For the hardcore model, recent work of Anari
et al. (2020) establishes rapid mixing of the simple single-site
Markov chain known as the Glauber dynamics in the tree
uniqueness region. Our work simplifies their analysis of the
Glauber dynamics by considering the total pairwise influence
of a fixed vertex v on other vertices, as opposed to the total
influence of other vertices on v, thereby extending their work
to all 2-spin models and improving the mixing time.

More importantly our proof ties together the three disparate
algorithmic approaches: we show that contraction of the
so-called tree recursions with a suitable potential function,
which is the primary technique for establishing efficiency of
Weitz’s correlation decay approach and Barvinok’s polynomial
interpolation approach, also establishes rapid mixing of the
Glauber dynamics. We emphasize that this connection holds for
all 2-spin models (both antiferromagnetic and ferromagnetic),
and existing proofs for the correlation decay or polynomial
interpolation approach immediately imply rapid mixing of the
Glauber dynamics. Our proof utilizes that the graph partition
function is a divisor of the partition function for Weitz’s self-
avoiding walk tree. This fact leads to new tools for the analysis
of the influence of vertices, and may be of independent interest
for the study of complex zeros.

Keywords-approximate counting; Glauber dynamics; spec-
tral independence; phase transitions; correlation decay;

I. INTRODUCTION

A remarkable connection has been established between
the computational complexity of approximate counting prob-
lems in general graphs of maximum degree A and the
statistical physics phase transition on infinite, regular trees
of degree A (or up to A in the more general case). This
connection holds for 2-state antiferromagnetic spin systems
— the hardcore model on independent sets and the Ising
model are the most interesting examples of such systems.

Given an n-vertex graph G = (V, E), configurations of
the 2-spin model are the 2" assignments of spins 0, 1 to the
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vertices. A 2-spin system is defined by three parameters:
edge weights 3,7 > 0 and a vertex weight A > 0. Edge
parameter J controls the (relative) strength of interaction
between neighboring 1-spins, v corresponds to neighboring
0-spins, and A is the external field applied to vertices with
1-spins.

Every spin configuration o € {0, 1}" is assigned a weight

wg(U) _ 5m1 (J),Ymg (o) A (o) ,

where, for spin s € {0,1}, ms(o) = #{uwv € E : 0, =
0y = 8} is the number of monochromatic edges with spin s,
and nq (o) = #{v € V : g, = 1} is the number of vertices
with spin 1 (as is standard, the parameters are normalized so
we can avoid two additional parameters). The Gibbs distribu-
tion over spin configurations is given by ug(0) = #%7
where Zg(ﬁ,’y, )\) = ZJG{O,l}V ﬁrm(”),ymo(”))\'rn(”) is the
partition function.

There are two examples of particular interest: the hardcore
model and the Ising model. When 3 = 0 and «y = 1 then the
only configurations with non-zero weight are independent
sets of G and the weight of an independent set o is w(o) =
Ael: this example is known as the hardcore model where
the parameter A corresponds to the fugacity.

In the case 8 = -y then the important quantity is the total
number of monochromatic edges m(c) = mg(o) + mq (o)
and the weight of a configuration o is w(o) = 7@ \"1();
this is the classical Ising model where the parameter [
corresponds to the inverse temperature and A is the external
field (A = 1 means no external field). Note, when 3 > 1 then
the model is ferromagnetic as neighboring vertices prefer to
have the same spin, and 5 < 1 is the antiferromagnetic
Ising model. In the general 2-spin system, the model is
ferromagnetic when v > 1 and antiferromagnetic when
By < 1. (When 8y = 1 we get a trivial product distribution.)

The fundamental algorithmic tasks are to sample from the
Gibbs distribution and to estimate the partition function. For
the approximate sampling problem we are given a graph G
and an € > 0 and our goal is to generate a sample from a
distribution 7 which is within total variation distance < ¢
of the Gibbs distribution p¢ in time poly(n,log(1/e)). An
efficient approximate sampling algorithm implies an FPRAS
(fully-polynomial randomized approximation scheme) for
the approximate counting problem [9], [22]. Recall, given
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an n-vertex graph G, and ¢, > 0, an FPRAS outputs
a (1 & €)-approximation of Zg with probability > 1 — ¢
in time poly(n,1/e,log(1/d)), whereas an FPTAS is the
deterministic analog (i.e., § = 0).

A standard approach to the approximate sampling problem
is the Markov Chain Monte Carlo (MCMC) method; in
fact there is a simple Markov chain known as the Glauber
dynamics. The Glauber dynamics works as follows: from
a configuration X; at time ¢, choose a random vertex v,
we then set X;y1(w) = X;(w) for all w # v, and finally
we choose X;.1(v) from the conditional distribution of
w(oylow = X1 (w) for all w # v). For the case of the
hardcore model, then X;.1(v) is set to occupied (i.e., spin
1) with probability A/(1 + A) if no neighbors are currently
occupied, and otherwise it is set to unoccupied.

It is straightforward to verify that the Glauber dynamics is
ergodic with the Gibbs distribution as the unique stationary
distribution. The mixing time is the minimum number of
steps to guarantee, from the worst initial state X, that the
distribution of X is within total variation distance < 1/4 of
the Gibbs distribution. The goal is to prove that the mixing
time is polynomial in n, in which case the chain is said to
be rapidly mixing.

For the case of the ferromagnetic Ising model (with or
without an external field), a classical result of Jerrum and
Sinclair [8] gives an FPRAS for all graphs via the MCMC
method. This is the only case with an efficient algorithm
for general graphs. For antiferromagnetic 2-spin models the
picture is closely tied to statistical physics phase transitions
on the regular tree.

The uniqueness/non-uniqueness phase transition is nicely
illustrated for the case of the hardcore model. Consider the
infinite A-regular tree 7" rooted at r, and let 7}, denote the
tree truncated at the first i levels. This phase transition
captures whether the configuration at the leaves of T},
“influences” the root, in the limit h — oco. For the hardcore
model we can consider even height trees (corresponding to
the all even boundary condition) versus odd height trees. Let
pp, denote the marginal probability that the root is occupied
in the Gibbs distribution pi7, . Let peven = limp_; o0 p2p, and
Podd = liMp 00 Pon+1. We say that tree uniqueness holds
if Deven = Podd and tree non-uniqueness holds if they are
not equal. For all A > 3 there exists a critical fugacity
Ae(A) = (A=1)2"1/(A—2)?) [10], where tree uniqueness
holds iff A < A\.(A).

The remarkable connection is that an algorithmic phase
transition for general graphs of maximum degree A occurs
at this same tree critical point. For all constant A, all § > 0,
all A < (1 —0)A:(A), all graphs of maximum degree A,
[23] presented an FPTAS for approximating the partition
function. On the other side, for all 6 > 0, all A > (1 +
0)Ac(A), [20], [21], [6] proved that, unless NP = RP, there
is no FPRAS for estimating the partition function.

One important caveat is that the running time of Weitz’s

algorithm is (n/€)¢1°82 where the approximation factor is
(1 £ €) and the constant C' depends polynomially on the
gap 0 (recall, A < (1 — d)A.). Weitz’s correlation decay
algorithm was extended to the antiferromagnetic Ising model
in the tree uniqueness region by Sinclair et al. [19], and to
all antiferromagnetic 2-spin systems in the corresponding
tree uniqueness region (as we detail below) by Li, Lu, and
Yin [12].

An intriguing new algorithmic approach was presented by
Barvinok [3] and refined by Patel and Regts [15], utilizing
the absence of zeros of the partition function in the complex
plane to efficiently approximate a suitable transformation
of the logarithm of the partition function using Taylor
approximation. This polynomial interpolation approach was
shown to be efficient in the same tree uniqueness region as
for Weitz’s result by Peters and Regts [16], although the
exponent in the running time depends exponentially on A.

It was long conjectured that the simple Glauber dynamics
is rapidly mixing in the tree uniqueness region. This was
recently proved by Anari, Liu, and Oveis Gharan [2]; they
proved, for all § > 0, the mixing time is nO(exp(1/6))
whenever A < (1 — §)A.(A). We improve this result. First,
we improve the mixing time from n@(©P(1/9) o nO1/9)
as detailed in the following theorem.

Theorem 1 (Hardcore model). Let A > 3 be an integer
and 0 € (0,1). For every n-vertex graph G of maximum
degree A and every 0 < XA < (1 —98)A.(A), the mixing time
of the Glauber dynamics for the hardcore model on G with
fugacity X is O(n?t32/%),

This bound is optimal barring further improvements in the
local-to-global arguments from [1]. Our improved result fol-
lows from a simpler, cleaner proof approach which enables
us to extend our result to a wide variety of 2-spin models,
matching the key results for the correlation decay algorithm
with vastly improved running times.

Our proof approach unifies the three major algorithmic
tools for approximate counting: correlation decay, polyno-
mial interpolation, and MCMC. Most known results for both
correlation decay and polynomial interpolation approach are
proved by showing contraction of a suitably defined potential
function on the so-called tree recursions; the tree recursions
arise as a result of Weitz’s self-avoiding walk tree that we
will describe in more detail later in this paper. A recent
work of Shao and Sun [18] unifies these two approaches
by showing that the contraction which is normally used
to prove efficiency of the correlation decay algorithm, also
implies (under some additional analytic conditions) that the
polynomial interpolation approach is efficient.

Here we prove that this same contraction of a potential
function also implies rapid mixing of the Glauber dynamics,
with our improved running time that is independent of A,
see Definition 4 and Theorem 5 for a detailed statement.
Our proof utilizes several new tools concerning Weitz’s self-

1308

Authorized licensed use limited to: University of Washington Libraries. Downloaded on June 30,2021 at 16:29:17 UTC from IEEE Xplore. Restrictions apply.



avoiding walk tree, which are detailed in Section III. In
particular, we show that the partition function of a graph G
divides the partition function of Weitz’s self-avoiding walk
tree; see Lemma 8. This result is potentially of independent
interest for establishing absence of zeros for the partition
function with complex parameters, as it enables one to
consider the self-avoiding walk tree. This result also yields
a new, useful equivalence for bounding the influence in a
graph in terms of the self-avoiding tree, which strength-
ens the previously known connection by Weitz [23]; see
Lemma 8 for details.

As an easy consequence we obtain rapid mixing for the
Glauber dynamics for the antiferromagnetic Ising model in
the tree uniqueness region. In terms of the edge activity, the
two critical points for the Ising model on the A-regular tree
are at B.(A) = 252 and B,(A) = m = <55 the first
lies in the antiferromagnetic regime, while the second lies
in the ferromagnetic regime. If 3.(A) < 8 < B.(A), then
uniqueness holds for all external field A on the A-regular
tree.

As mentioned earlier, for the ferromagnetic Ising model,
an FPRAS was known for general graphs [8]. Furthermore,
Mossel and Sly [14] proved O(nlogn) mixing time of
the Glauber dynamics for the ferromagnetic Ising model
when 1 < 3 < B.(A). However, rapid mixing for the
antiferromagnetic Ising model in the tree uniqueness region
was not known.

We provide the following mixing result for the case 8 >
B.(A). Note, when 8 < 3, there is an additional uniqueness
region for certain values of the external field A; this region
is covered by Theorem 3.

Theorem 2 (Antiferromagnetic Ising Model). Let A > 3 be
an integer and ¢ € (0,1). Assume that 1 > > B.(A) +
0(1 — B.(A)) and X\ > 0. Then for every n-vertex graph
G of maximum degree A, the mixing time of the Glauber
dynamics for the Ising model on G with edge weight 5 and
external field \ is O(n?t1:5/%),

Our results for the hardcore and Ising models fit within
a larger framework of general antiferromagnetic 2-spin sys-
tems. Recall that the antiferromagnetic case is when 5y < 1.

For general 2-spin systems the appropriate tree phase
transition is more complicated as there are models where the
tree uniqueness threshold is not monotone in A. Hence the
appropriate notion is “up-to-A uniqueness” as considered
by [12]. Roughly speaking, we say uniqueness with gap
d € (0,1) holds on the d-regular tree if for every integer
¢ > 1, all vertices at distance ¢ from the root have total
“influence” < (1 — 6)° on the marginal of the root. We
say up-to-A uniqueness with gap § holds if uniqueness with
gap 0 holds on the d-regular tree for all 1 < d < A; see
Section II for the precise definition.

Both Theorem | and Theorem 2 are corollaries of the
following general rapid mixing result which holds for gen-

eral antiferromagnetic 2-spin systems in the entire tree
uniqueness region.

Theorem 3 (General antiferromagnetic 2-spin system). Let
A > 3 be an integer and § € (0,1). Let 8,7, \ be reals
such that 0 < B < v v > 0, By < 1 and A > 0.
Assume that the parameters (3,7, \) are up-to-A unique
with gap d. Then for every n-vertex graph G of maximum
degree A, the mixing time of the Glauber dynamics for
the antiferromagnetic 2-spin system on G with parameters

(8,7, A) is O(n**72/9),

We also match existing correlation decay results [7], [18]
for ferromagnetic 2-spin models; see Section VI for results
and the full version [5] of this paper for proofs.

A. Mixing by the potential method

The tree recursion is very useful in the study of ap-
proximating counting. Consider a tree rooted at r. Sup-
pose that r has d children, denoted by vi,...,v4. For
1 < i < A, we define T,, to be the subtree of T'
rooted at v; that contains all descendant of v;. Let R, =
pur (o, =1)/ur(o. =0) denote the marginal ratio of the
root, and R,, = pur, (04, =1)/p7, (0y, =0) for each
subtree. The free recursion is a formula that computes R,
given R, , ..., R,,, due to the independence of T,,’s. More
specifically, we can write R, = Fy(R,,,...,R,,) where
Fy : [0,4+00]? — [0,+400] is a multivariate function such
that for (z1,...,24) € [0, 00]%,

d
6.%‘i +1
FdI,...,Id =A _— .
(21 ) £[1 e
In this paper, however, we pay particular interest in the log
of marginal ratios. The reason is that we will carefully study
the pairwise influence matrix Zg of the Gibbs distribution
e, introduced in [2] and defined as for every r,v € V

Zo(r - v) = pelow =1 0, = 1) = paloy = 1| 0, = 0).

In [2], the authors show that if the maximum eigenvalue of
I is bounded appropriately, then the Glauber dynamics is
rapid mixing. One crucial observation we make in this paper
is that the influence Zg(r — v) of r on v can be viewed
as the derivative of log R, with respect to the log external
field at v (see Lemma 12). Thus, it is more convenient for
us to work with the log ratios. To this end, we rewrite the
tree recursion as log R, = Hy(log Ry, , . ..,log R,,) where
Hy : [~00,+00]? — [~00,+00] is a function such that for
(Y15 -,ya) € [—o0, +00]%,

d
Ha(yi, .-, ya) log/\+210g(

i=1

Be¥i +1
evi+v )
Observe that H = log oF' o exp. Moreover, we define

-y
") =" Ger e )
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for y € [—o0, +00], so that %Hd(yh e
each 1.

To prove our main results, we use the potential method,
which has been widely used to establish the decay of
correlation. By choosing a suitable potential function for
the log ratios, we show that the total influence from a
given vertex decays exponentially with the distance, and thus
establish rapid mixing of the Glauber dynamics. Let us first
specify our requirements on the potential. For every integer
d > 0, we define a bounded interval J; which contains
all log ratios at a vertex of degree d. More specifically,
we let J; = [log(/\ﬁd),log()\/*yd)] when B~y < 1, and
Jg = [log()\/vd),log()\ﬁd)} when 3y > 1. Furthermore,
define J = UdA;OI Jq to be the interval containing all log
ratios with degree less than A.

7yd) = h(yl) for

Definition 4 ((«, ¢)-Potential function). Let A > 3 be an
integer. Let 3,7, A be reals such that 0 < 8 < ~, v > 0 and
A > 0. Let ¥ : [—o0,+00] — (—00,+00) be a differen-
tiable and increasing function with image S = ¥[—o0, +00]
and derivative ¢ = U’. For any o € (0,1) and ¢ > 0, we
say U is an («, ¢)-potential function with respect to A and
(8,7, A) if it satisfies the following conditions:

1) (Contraction) For every integer d such that 1 < d < A

and every (71, ..., Ja4) € S% we have

Y(y)
Jhy) < 1-a
¥(yi) '
where HY = Wo HyoWU™1, y; = U1(g;) for 1 <i <
d,and y = Hy(y1, ..., Yd)-
2) (Boundedness) For every y1,ys € J, we have
¥(y2)
¥(y1)
In the definition of («, ¢)-potential, one should think of y
as the log marginal ratio at a vertex and the potential function

is of log R. The following theorem establishes rapid mixing
of the Glauber dynamics given an («, c)-potential function.

d
IVHY G-l =D
i=1

h(y)| < %

Theorem 5. Let A > 3 be an integer. Let 3,7, A be reals
such that 0 < B < ~, v > 0 and X > 0. Suppose
that there is an (o, c)-potential with respect to A and
(B,7,A) for some o € (0,1) and ¢ > 0. Then for every
n-vertex graph G of maximum degree A, the mixing time
of the Glauber dynamics for the 2-spin system on G with
parameters (3,7, \) is O(n?T¢/®),

We outline our proofs in Section III. Note that in both
Definition 4 and Theorem 5, the constant ¢ is allowed to
depend on the maximum degree A and parameters (3,7, \)
in general. For example, a straightforward black-box ap-
plication of the potential in [12] would give ¢ = O(A)
for the Boundedness condition, resulting in n°(®) mixing.
However, this is undesirable for graphs with potentially
unbounded degrees. One of our contributions is that we show

the Boundedness condition holds for a universal constant ¢
independent of A and (3,7, ). Thus, our mixing time is
O(n2+c/ 5) with no parameters in the exponent except for
1/6.

In the full version [5] of this paper, we give a slightly
more general definition of (c, c)-potentials, which relaxes
the Boundedness condition, and is necessary for our analysis
of antiferromagnetic 2-spin systems with 0 < § < 1 < 7.
Theorem 5 still holds for this larger class of potentials.

We remark that in all previous works of the potential
method, results and proofs are always presented in terms of
Fy, the tree recursion of R, and &, a potential function of R.
In fact, our results can also be translated into the language of
(Fy, ®). To see this, since Hy = log oF;0exp, it is straight-
forward to check that HY = Wo H o0~ = o Fjod~1 =
F? if we pick ® = Wolog, and thereby VH} = VF{. This
implies that the Contraction condition in Definition 4 holds
for (Hy, W) if and only if the corresponding contraction
condition holds for (F,, ®). The Boundedness condition can
also be stated equivalently for (Fy, ®). Nevertheless, in this
paper we choose to work with (H,4, ¥) for the following two
reasons. First, as mentioned earlier, the fact that Zg (r — v)
is a derivative of log R, makes it natural to consider the tree
recursion for the log ratios. Indeed, it is easier and cleaner to
present our results and proofs using (H4, ¥) directly rather
than switching to (Fy, ®). Second, the potential function
¥ we will use is obtained from the exact potential ® in
[12], by the transformation ¥ = ® o exp.' It is intriguing
to notice that the derivative of this potential is simply
RS \/W . Then the Contraction condition has a nice form:
Zle v/ h(y)h(y;) < 1—a; and the Boundedness condition
only involves an upper bound on A(y). This seems to shed
some light on the mysterious potential function ¢ from [12],
and also indicates that H; is a meaningful variant of the tree
recursion to consider. To add one more evidence, for a lot
of cases (e.g., 852 < /By < z25) where the potential
® = log is picked, that just means we can pick ¥ to be the
identity function and Hj itself is contracting without any
nontrivial potential.

II. PRELIMINARIES

Mixing time and spectral gap: Let P be the transition
matrix of an ergodic (i.e., irreducible and aperiodic) Markov
chain on a finite state space ) with stationary distribution
. Let Pt(zq,-) denote the distribution of the chain after ¢
steps starting from z¢ € €. The mixing time of P is defined
to be

. 1
TInix(P) = maXmln{t 2 O . ||Pt($0’ ) — /”L()HTV S 4}

€N

'To be more precise, we also multiply a constant factor which only
simplifies our calculation and does not matter much; also notice that [12]
denotes the potential function by ¢ and its derivative by & = ¢'.
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We say P is reversible if u(x)P(z,y) = p(y)P(y,x) for all
x,y € Q.If P is reversible, then P has only real eigenvalues
which can be denoted by 1 = Ay > -+ > Aqg > -1
The spectral gap of P is defined to be 1 — Ay and the
absolute spectral gap of P is defined as A*(P) = 1 —
max{[Az|, [Ajq/|}. If P is also positive semidefinite with
respect to the inner product (-,-),, then all eigenvalues of
P are nonnegative and thus \*(P) = 1 — \,. Finally, the
mixing time and the absolute spectral gap are related by

Tix(P) < A*zp)log < 4 ).

mingeq u(x)

Uniqueness: Let A > 3 be an integer or A = oo. Let
B,7v, A be reals such that 0 < § <, v >0, By < 1 and
BR+1

A>0.Forl<d<A, define
d

R)= )\
fa(R) <R+7>

and denote the unique fixed point of f; by R}. For § €
(0,1), we say the parameters (3,7, \) are up-to-A unique
with gap 6 if |fi(R5)| <1—¢d forall 1 <d < A.

Ratio and influence: Consider the 2-spin system on a
graph G = (V,E). Let A C V and o5 € {0,1}*. For
all v € V\A, we define the marginal ratio at v to be

6]

_ pelow=1] o)

pc(oy =0 o)
For all u,v € V\A, we define the (pairwise) influence of u
on v by

R (v)

I (u—v) = pgloy =10y =1, 0a)
—pg(oy =10, =0, o).

Write Z2* for the (pairwise) influence matrix whose entries
are given by ZZ* (u — v).

Weitz’s self-avoiding walk tree: Let G = (V,E) be a
connected graph and r € V be a vertex of G. The self-
avoiding walk (SAW) tree is defined as follows. Suppose that
there is a total ordering of the vertex set V. A self-avoiding
walk from r is a path r = v9g — v; — --- — vg such that
v; # vj for all 0 < 4 < j < . The SAW tree Ts\w (G, 1)
is a tree rooted at r, consisting of all self-avoiding walks
r =vg—v1—--+—vp with deg(vy) = 1, and those appended
with one more vertex that closes the cycle (i.e., r = vg—v1 —
-+« — vy —v; for some 0 < ¢ < ¢—2 such that {v,v;} € E).
Note that a vertex of G might have many copies in the
SAW tree, and the degrees of vertices are preserved except
for leaves.

We can define a 2-spin system on T (G, 7) with the
same parameters (f3,7,A), in which some of the leaves
are fixed to a particular spin. More specifically, for a self-
avoiding walk r» = vg—v; —- - - —vy appended with v;, we fix
v; to be spin 1 if v;4; < v, with respect to the total ordering
on V, and spin 0 if v;41 > v,. For each v € V we denote the
set of all free (unfixed) copies of v in Tsaw (G, r) by C,. For
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A C V and a partial configuration oy € {0,1}*, we define
the SAW tree with conditioning o by assigning the spin o,
to every copy ¢ of v from C, and removing all descendants
of v, for each v € A. Note that in general, different copies
of v from C, can receive different spin assignments. Finally,
in the case that every vertex v has a distinct field \,, all
copies of v from C, will have the same field A, in the SAW
tree.

III. PROOF OUTLINE FOR MAIN RESULTS

Step 1 ([2]): Spectral Independence implies rapid mixing.:
Our proof builds on [2] who showed that the Glauber dynam-
ics for sampling from the hardcore distribution on graphs of
maximum degree at most A mixes in O(n®P(©(1/9)) steps
whenever A < (1 — 0)A.(A). One of the key ingredients
of their proof is a notion they call spectral independence.
[2] shows that the spectral independence property implies
rapid mixing. Note that the diagonal entries of ZZ* are 1,
as opposed to 0 in the original definition in [2].

Definition 6 (Spectral Independence [2]). We say that
the Gibbs distribution pe on an n-vertex graph G is
(Mo, - - - y Mn—2)-spectrally independent, if for every 0 < k <
n—2 A C V of size k and o5 € {0,1}*, one has
Amax(Z&*) — 1 < .

Theorem 7 ([21). If p is an (no,...,NMn—2)-spectrally
independent distribution, then the Glauber dynamics for
sampling from p has spectral gap at least

ST

Our primary goal now is to bound the maximum eigen-
value of Z72/.

Step 2: Self-avoiding walk trees preserve influences.:
From standard linear algebra, we know that the maximum
eigenvalue of ZZ* is upper bounded by both the 1-norm
IZ3M I, = max,ev ), ey |ZE" (v — )|, which corresponds
to total influences on a vertex 7, and the infinity-norm
1Z¢ . = maxeey D, oy [Z&* (1 — v)|, corresponding to
total influences of r. In [2] the authors use [ ZZ*[|, as an
upper bound on Amax(ZZ"). Roughly speaking, they show
that the sum of absolute influences on a fixed vertex r, is
upper bounded by the maximum absolute influences on 7 in
the self-avoiding walk tree rooted at r, over all boundary
conditions. Here in this paper, we will use [|ZZ*|_ to
upper bound Apax(ZZ*) instead. In fact, much more is true
if we look at the influences from 7 in the self-avoiding
tree. We show that for every vertex v € V, the influence
ZIZM(r — ) in G is preserved in the self-avoiding walk tree
T = Tsaw (G, ) rooted at r, in the form of sum of influences
Z7(r — v) over all copies v of v.

The way we establish this fact is by viewing the partition
function as a polynomial in A. In fact, it will be useful to
consider the more general case with an arbitrary external

oW
n—i—1
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field A\, for every v € V. Let A = {)\, : v € V} denote
the fields. For A C V and o) € {O,l}A, the weight of
o € {0,1}V\* conditional on o is defined to be we(o |
on) = ﬁml(UIUA),ymo(o\UA)Hvev\A 7> where m;(- | o)
is the number of ¢-¢ edges with at least one endpoint in
V\A for i = 0, L. Furthermore, Zg* = 37 (o 13v\a WG (0 |
oa) is the partition function conditioned on . We shall
view § and ~ as some fixed constants and think of A as
n = |V| variables. In this sense, we regard the weights
weg(o | op) as monomials in A and the partition function
ZZ* as a polynomial in A. Moreover, the marginal ratios
RZ*(v) and the influences ZZA (r — v) for r,v € V are all
functions in A. Our main result is that the partition function
of G divides that of Ty (G, r) for each r € V. From that,
we show that the SAW tree preserves influences of the root,
as well as re-establishing Weitz’s celebrated result [23], see
Lemma 13.

Lemma 8. Let G = (V, E) be a connected graph, r € V
be a vertex and A C V\{r} such that G\A is connected.
Let T = Tsaw(G, 1) be the self-avoiding walk tree of G
rooted at 1. Then for every o5 € {0,1}~, ZZ divides Z3*.
More precisely, there exists a polynomial PZh = P25 (X)
independent of A\, such that ’ '

Zh = Zgh - P 2)
As a corollary, for each vertex v € V,
I (r—v) =Y If(r - ), 3)
DEC,

where C, is the set of all free (unfixed) copies of v in T.

Remark 1. We emphasize that for the purposes of bounding
the total influence of a vertex in G, only Eq. (3) of Lemma 8
is needed, which can be proved in a purely combinatorial
fashion. However, we believe the divisibility property Eq. (2)
of the multivariate partition function of G and its self-
avoiding walk tree may be of independent interest.

We note that a univariate version of the divisibility state-
ment Eq. (2) has already appeared in [4] for the hardcore
model and [13] for the zero-field Ising model in the study of
complex roots of the partition function. From Lemma 8, we
can get y -, oy |ZGM(r - v)| < X0 ey [Z7" (7 — v)] for any
fixed r. That means, we only need to upper bound the sum
of all influences for trees, in order to get an upper bound on
Amax (ZZ).

Step 3: Decay of influences given a good potential.: The
tree recursion provides us a great tool for computing the
(log) ratios of vertices recursively for trees. As we show in
Lemma 12, the influence ZJ*(r — v) is in fact a version
of derivative of the log marginal ratio at . Thus, the tree
recursion can be used naturally to relate these influences. We
then apply the potential method, which has been widely used
in literature to establish the decay of correlations (strong
spatial mixing). The following lemma shows that the sum

of absolute influences to distance k has exponential decay
with k, which can be thought of as the decay of pairwise
influences.

Lemma 9. If there exists an («, ¢)-potential function U with
respect to A and (8,7, ) where o € (0,1) and ¢ > 0, then
for every A C Vo\{r}, op € {0,1}" and all integers k > 1,

Z 1Z5A (r »v)| < ¢ (1—a)k?
vE Ly (k)

where L, (k) denote the set of all free vertices at distance
k away from r.

Theorem 5 is then proved by combining Theorem 7,
Lemma 8 and Lemma 9. We leave its proof to the full version
[5] of the paper.

Step 4: Find a good potential.: As our final step, we need
to find an («, ¢)-potential function as defined in Definition 4.
The potential U we choose is exactly the one from [12],
adapted to the log marginal ratios and the tree recursion H
(see the full version [5] for more details). We show that if the
parameters ((3,~, \) are up-to-A unique with gap § € (0, 1)
and either /3y > 252 or v < 1, then ¥ is an (a,c)-
potential.

Lemma 10. Let A > 3 be an integer. Let 3,7, A be reals
such that 0 < B <, v >0, By <1 and X\ > 0. Assume
that (8,7, \) is up-to-A unique with gap § € (0, 1). Define
the function V implicitly by

/ _ _ (1 _67)6‘7! _
V(y) =) = \/(56y+1)(6y+7) =

T(0) = 0.

IO

If /B~y > %, then U is an («, ¢)-potential function with
a>6/2and ¢ < 1.5.If v <1, then U is an («, ¢)-potential
with ¢ < 18 and o > §/2; we can further take ¢ < 4 if

B8 =0.

We deduce Theorem 3 for the case /37 > % ory<1
from Theorem 5 and Lemma 10. The proof of them can be
found in the full version [5]. The case that /37 < 252 and
~ > 1 is trickier. As discussed in Section 5 of [12], when
VBy < % and v > 1, the threshold A, for the external
field is bounded below by some constant for all A; so for
some A > 0 the spin system is in the uniqueness region for
arbitrary graphs, even with unbounded degrees (i.e., up-to-oco
unique). Thus, in this case the total influences of a vertex
can be as large as ©(A/4), resulting in n®(A/9) mixing
time. To deal with this, we consider a suitably weighted sum
of absolute influences of a fixed vertex, which also upper
bounds the maximum eigenvalue of the influence matrix.
Definition 4 and Theorem 5 are then modified to a slightly
stronger version. The statements and proofs for this case are
presented in the full version [5] of the paper.
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IV. PRESERVATION OF INFLUENCES FOR SELF-AVOIDING
WALK TREES

In this section we show that the self-avoiding walk (SAW)
tree, introduced in [23] (see also [17]), maintains all the
influence of the root, and thus establishes Lemma 8. To do
this, we show that the partition function of G, viewed as a
polynomial of the external fields A, divides that of the SAW
tree. From there we prove that the influence of the root vertex
r on another vertex v in G, is exactly equal to that on all
copies of v in the SAW tree. Using our proof approach, we
show that the marginal of the root is maintained in the SAW
tree, re-establishing Weitz’s celebrated result [23], and also
all pairwise covariances concerned with v are preserved.

Theorem 11. Let G = (V, E) be a connected graph, r € V
be a vertex and A C V\{r} such that G\A is connected. Let
T = Tsaw(G, 1) be the self-avoiding walk tree of G rooted
at 1. Then for every oy € {0,1}", ZZ divides Z3". More
precisely, there exists a polynomial PZ". = P2 (X) such
that 7 7

25 = 230 - P

Moreover, the polynomial P&AT is independent of \,.

Remark 2. The proof of Theorem 11 can be adapted to
give a purely combinatorial proof of Eq. (3) in Lemma 8.
Like in the proof of [23, Theorem 3.1], one can proceed via
vertex splitting and telescoping, where instead of telescoping
a product of marginal ratios, one instead telescopes a sum
of single-vertex influences.

We remark that [4] proved a univariate version of Theo-
rem 11 for the hardcore model, and [13] showed a similar
result for the zero-field Ising model with a uniform edge
weight. Our result holds for all 2-spin systems and arbitrary
fields for each vertex. We can also generalize it to arbitrary
edge weights for each edge in a straightforward fashion. It
is crucial that the quotient polynomial Pg{‘r is independent
of the field A\, at the root, from which we can deduce
the preservation of marginal and influences of the root
immediately.

Before proving Theorem 11, we first give a few conse-
quences of it. For all u,v € V\A, we define the marginal at
vas MZ*(v) = pg(v =1 oa) (henceforth we write v = ¢
for the event o, = ¢ for convenience), and the covariance
of w and v as

K& (u,0) = pa(u=v=1] o)
—pc(u=1[or)pc(v=1]0s).
The following lemma relates the quantities we are interested

in with appropriate derivatives of the (log) partition function.
Parts 1 and 2 of the lemma are folklore.

Lemma 12. For every graph G = (V,E), A C V and
op € {0,1}2, the following holds:

1) ForallveV,

8 OAN OA .
<)\U8)\U> logZ = MG (’U),

2) For all u,v €V,

a 8 OAN __ OA .
(Ava)\v> <)\ua)\u> IOgZG _KG (U,U),

3) For all u,v €V,

a leg (e
<)\U3)\u> log RZM (u) = Z2M (u — v).

Proof: The first two parts are standard. The proofs of
them can be found in the full version [5]. For Part 3, we
deduce from Part 2 that

90 o () = (A, -2 Mg ()
()\U 8)\U> log R (u) = <)\v3)\v> log <1 — Mg"(u)>

(k) Mer
M () (1 - M (W)

_ KZM(u,v)
" KoM uwu)
It remains to show that
KZ* (u,v)
ToA — G ’
A v T

which actually holds for any two binary random variables.
To see this, we first compute K" (u,u) - ZZ* (u — v) by
definition:
KZM(u,u) - Z2M (u — v)
=pc(u=1]0on) pc(u=0]0s)
Juetv=1]u=10p) —pg(v=1u=0, op)]
=pclu=1,v=1]0p) pcg(u=0,v=0]0s)
—pelu=1v=0]|0a) pelu=0,v=1]|04).

Meanwhile, the covariance can be written as

KZ*(u,v) = pglu=1,v=1]0,4)
—pc(u=1[0r) pe(v=1]0s)
=pugu=1,v=1]0p) pgu=0,v=0]0,)
—pgu=1v=0]0p) pugu=0,v=1]0,).
This shows that ZZ* (u — v) = KZ*(u,v)/KZ" (u,u) and
thus establishes Part 3. ]
We deduce Lemma 8 from Theorem 11 and the second

item of the following lemma. The proof of Theorem 11 is
presented in Section IV-A.

Lemma 13. Let G = (V, E) be a connected graph, r € V
be a vertex and A C V\{r} such that G\A is connected. Let
T = Tsaw(G, 1) be the self-avoiding walk tree of G rooted
at r. Then for every o € {0,1}* we have:
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1) ([23, Theorem 3.1]) Preservation of marginal of the

root r:
Mgh(r) = Mz*(r), R (r) = Rz (r);
2) Preservation of covariances and influences of r: for
everyv €V,
Kgr(rv) = ) K72 (r,0),
DEC,
I (r —v) ZIA(rav
VEC,

where C,, is the set of all free copies of v in T.

Proof: By Theorem 11, there exists a polynomial
PZA = PZA(A) such that Z7* = ZZ* - P2 and P25,
is independent of A,.. Then it follows from Lemma 12 that

o a oA
M7 (r )—( "o >10gZ
— a OA TA
<)\ o > (logZ + log P2, T)

- 9 oA on
< 6)\)logZG = MZ*(r),

and therefore R7*(r) = RZ*(r). For the second item, again

from Lemma 12 we get
0 0
Kz = MZA(r) = M7A
300 = (Mg ) 100 = (Mg ) M7 ),
Recall that for the spin system on the SAW tree 7', every free
copy v of v from C, has the same external field Ay = A,.
Then, by the chain rule of derivatives and Lemma 12, we

deduce that

- a - Oy Ay
KM (r,v) = Z (A s )MA( )'W';
deC, v
=Y KA (r,0).
DEC,

Finally, we have
(o3 8 o
IGA(rav)—( W )1ogR Mr)

( ai)logR (r)=Y_ I (r -0

),
DEC,
where the last equality follows as above.

A. Proof of Theorem 11

Before presenting our proof, let us first review the no-
tations and definitions introduced earlier. Denote the set of
fields at all vertices by A ={\, : v € V}. For A CV and
op € {0,1}*, the weight of o € {0,1}"\A conditional on
oy 1s given by

walo | ox) = Brllonymotlon) T ag,

veEV\A
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where for ¢ =0, 1, m;(- | oa) denotes the number of edges
such that both endpoints receive the spin ¢ and at least one
of them is in V\A. The partition function conditional on
o is defined as ZZ* = > o 1yvia wi (o | o). For the
SAW tree, we define the conditional weights and partition
function in the same way. In particular, recall that when we
fix a conditioning o5 on the SAW tree, we also remove all
descendants of © € C, for each v € A.

For every v € V\A and i € {0,1}, we shall write v =4
to represent the set of configurations such that o, =7 (i.e.,
{0 € {0,1}V\A : o, = i}) and let ZZ* (v =1) be sum of
weights of all configurations with v = 7. We further extend
this notation and write ZZ* (U = oy) for every U C V\A
and oy € {0,1}Y. For the SAW tree we adopt the same
notations as well.

Proof of Theorem 11: We will show that there exists a
polynomial PZ. = PZ%.(X), independent of A, such that

Z3(r 1) = 23 (r=1) - PG, .
Zgt(r=0) = Zg(r=0) - P&, ©)

The high-level proof idea of Eq. (5) is similar to the
corresponding result in [23, Theorem 3.1]. Let m be the
number of edges with at least one endpoint in V\A. We
use induction on m. When m = 0 the statement is trivial
since T' = G. Assume that Eq. (5) holds for all graphs and
all conditioning with less than m edges. Suppose that the
root r has d neighbors vy, . .., vg. Define G’ to be the graph
obtained by replacing the vertex r with d vertices r1,...,7q4
and then connecting {r;,d;} for 1 <i <d.

Consider first the case where (G\{r})\A is still con-
nected. For each 4, let G; = G’ —r;. Define the 2-spin system
on G; with the same parameters (3,7, X), plus an additional
conditioning that the vertices r1,...,7;_1 are fixed to spin
0 while 7;41,...,r4 are fixed to spin 1; we denote this
conditioning by oy, with U; = {v1,...,v4}\{v:}. Then,
T = Tsaw(G, 1) can be generated by the following recursive
procedure.

Algorithm: Tsaw (G, 1):

1) For each i, let T; = Tsaw (G, v;) plus the conditioning
ou;s

2) Let T' = Tsaw(G, 1) be the union of r and T7,...
by connecting {r,v;} for 1 <i < d; output 7.

7Td

For the purpose of proof, we also consider the 2-spin
system on G’ with the same parameters (f,,A), with an
exception that we let the vertices ry,...,rs have no fields
(i.e., setting A, =1 for 1 <4 < d instead of \,). We then
observe that

ZM(r=1)=XN\-Z&(r1=1,...,1q=1),

PRI

and the same holds with spin 1 replaced by 0. For 1 < i < d,
let op, denote the union of the conditioning o, and oy,
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where A; = A U U;. Then for every 1 < ¢ < d we have
Zg;’,‘(rl s Ti— 170 7"171 .,T‘dzl)
= 8-z (vl—l)—i—ZJA (v; = 0).
Notice that both sides are independent of the field \,.: for the
left side, all r;’s do not have a field for the spin system on
G’; for the right side, recall that we do not count the weight

of fixed vertices for the conditional partition function for
each G;. Now define Q. = Q¢",.(A) by

d
:HZE/,\(’IH:O .77’1',1:077‘1':1,...,7’51:1)7
i=2
which is independent of \.. Then we get
2 r=1)-QZ,
d
:)\r~HZU/,\(T‘1 :07...77‘1‘,1 :0,Ti:17...,7"d:1)
i=1
d
=M ] (B 280 (wi=1) + 25 (v = 0)) .
i=1
Using a similar argument, we also have
2 r=0)-QZ,
d
=128 01=0,...,ri=0rip1=1,...,ra=1)

D) +7-Z¢, (vi=0)).

Since we assume that (G\{r})\A is connected, the graph
G;\A is also connected for each ¢. Then, by the induction
hypothesis, for each ¢ there exists a polynomial Pg’\w

a

PG?)"UI, (A) such that

27 (r=1) = 28 (r=1) - PEY,.
Zghi(r=0)=Zg (r=0)-Pg,;

these polynomials are independent of A, since the condi-
tional partition functions for G;’s do not involve A,.. Now

if we let
d
oA TA;
el | R
i=1

then it follows from the tree recursion that

oA
PG,T

d
Zir(r=1) =\~ H (B 23" (v =1) + Z7 (v; = 0))
i=1

d
=1 (8- 28 = VPG, + 25 (- 0P,
i=1
d
= ZUA (T = 1) G r’ g:\,ivi
=1

= ZgM\r=1)- P

Authorized licensed use limited to: University of Washington Libraries.
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The other equality Z7*(r=0) = ZZ*(r=0) - PZ" is
established in the same way. This completes the pr003f for
the case that (G\{r})\A is connected.

If (G\{r})\A has two or more connected components,
then we can construct Ts,w (G, ) by the SAW tree of each
component. Recall that G’ is defined by splitting the vertex r
into d copies in the graph G. Suppose that G'\ A has k con-
nected component for an integer k > 2. Let G’(l), cee G’(k)
be the subgraphs induced by each component, along with
vertices from A that are adjacent to it. For each j, let G(j)
be the graph obtained from G’( ) by contracting all copies
of r into one vertex r(;), and let T(;) = TSAW(G/(J-),TU)).
Observe that once we contract the roots r(1),...,7y) of
Ty, - -+ T(x) the resulting tree is Tsaw (G, 7).

We define the 2-spin system on each G ;) with the same
parameters (3,7, ), except that the vertex T(j) does not
have a field (i.e., )\T(j) = 1 instead of \;). For 1 < j <k,
let Ajy = ANV(G(;) and o4, be the configuration oy
restricted on A(;). Then G(;)\A;) is connected for every
j and, since k > 2, each G(j) with conditioning TAG
has fewer than m edges. Thus, we can apply the induction
hyopothesm namely, for 1 < j < k there exists a polynomial

A
G(L()J)r(,) = G(L()”T( )()\), which is independent of ),., such
that
AG) TA) TAG)
T( Gy =1 =267 (rgy = 1) P,
A(]) TAGY (0. PTAG)
T(n (T =0)= ZG( ) (rjy = 0) PG(j)vTu)'

We define the polynomial Pg%. = Pg%.(A) to be
k
TAG)

poa .
Gr G(5)>"(5)

j=1
It is then easy to check that
Z7M(

= )\ H ZTA(J) T(j) = 1)

k
oA
(€]
(rey =1
H( G() =Y Fg 7"(1))
Jj=1
k
— 79 (7“ _ 1) . TN () — 70A (T‘ _ 1) . pos
G G(j)ar(j) G G,T’

1

j
and similarly Z7* (r = 0)
then follows.

= Z¢ (r =0)- Pg’.. The theorem
|

V. INFLUENCE BOUND FOR TREES

In this section, we study the influences of the root on
other vertices in a tree. We give an upper bound on the
total influences of the root on all vertices at a fixed distance
away. To do this, we apply the potential method, which has
been used to establish the correlation decay property (see,
e.g., [11], [12], [7]). Given an arbitrary potential function ¥,
our upper bound is in terms of properties of U, involving
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bounds on ||VH Hl and |1)| where 1) = ¥’. We then deduce
Lemma 9 in the case that ¥ an («, ¢)-potential.

Assume that T' = (Vr, Er) is a tree rooted at r of maxi-
mum degree at most A. Let A C Vr\{r} and o5 € {0,1}*
be arbitrary and fixed. Consider the 2-spin system on 1" with
parameters (3,7, A), conditioned on . We need to bound
the influence Z7* (r — v) from the root r to another vertex
v € V. Notice that if v is disconnected from r when A is
removed, then Z7* (r — v) = 0 by the Markov property of
spin systems. Therefore, we may assume that, by removing
all such vertices, A contains only leaves of 7.

For a vertex v € Vp, let T,, = (V,, E,) be the subtree
of T rooted at v that contains all descendant of v; note that
T, =T. We will write L, (k) C Vp\A for the set of all free
vertices at distance k£ away from v in 7,. We pay particular
interest in the marginal ratio at v in the subtree 7,, and write
R, = R7(v) for simplicity. The log R,’s are related by the
tree recursion H. If a vertex v has d children, denoted by
u1,...,uq, then the tree recursion is given by

log R, = Hy(log Ry, , ... ,log R,,),
where for 1 <d < A and (y1,...,yq) € [—00, 00]?
d
. /Beyi +1
Ha(y1,...,ya) = log)\—i-Zlog (W .

i=1
Also recall that for y € [—o0, +00], we define

1—By)eY
hy) = - =)
(Bev +1)(e¥ +7)
and 30~ Ha(y1,. .., ya) = h(y;) forall 1 <i <d <A
The following lemma allows us to bound the sum of all
influences from the root to distance k, using an arbitrary
potential function.

Lemma 14. Let U : [—o0,+o0] — (—00,+00) be a
differentiable and increasing (potential) function with image
S = U[—o00, +00] and derivative 1) = ¥'. Denote the degree
of the root v by A,.. Then for every integer k > 1,

Y I - w)

veL, (k)

k—1
< A,AgBy <1r<1%ia<XA ;;1& ||VH<}I](@)||1>

where
|7 (log Ry,)|
A =
v uénLa)((l){ ¥(log Ry,)
By = max {w(logR )}
vEL

Before proving Lemma 14, we first present two useful
properties of the influences on trees. Firstly, it was shown
n [2] that the influences satisfy the following form of chain
rule on trees.

Lemma 15 ([2, Lemma B.2]). Suppose that w,v,w € Vp
are three distinct vertices such that u is on the unique path
from v to w. Then

I8 (v » w) =27 (v = u) - 7 (u - w).

Secondly, for two adjacent vertices on a tree, the influence
from one to the other is given by the function h.

Lemma 16. Let v € Vi and u be a child of v in the subtree
Ty. Then

Z7* (v - u) = h(log Ry,).

Proof: The lemma can be proved through an explicit
computation of the influence. Here we present a more del-
icate proof utilizing Lemma 12, which gives some insights
into the relation between the influence and the function h.
We assume that v has d children in the subtree T, denoted
by u1 = u and ug, ..., uq respectively. We also assume, as
a more general setting than uniform fields, that each vertex
w 1is attached to a field A\, of its own. Then Lemma 12 and
the tree recursion imply that

I (v —u) =T (v > u) = < 8? )logR

0
<)\ o, ) Hy(log Ry, ... ,log Ry,)

= Z <>\ua§> IOg Ruz

H;(log Ry, ... ,logR,,)

% Odlog R,
d
= ZI;A (u; - u) - h(log Ry,;) = h(log R,),
i=1
where the last equality is because Z7" (u; —u) = 0 for
u; #u and Z7M (u — u) = 1. ' |
We are now ready to prove Lemma 14.

Proof of Lemma 14: For a vertex v € Vp, denote
the number of its children by d,; note that d, = A,. Let
u1,...,ua, be the children of the root r. We may assume
that all these children of r are free, since if u; is fixed then
Z7M(r —u;) = 0 by definition. Then by Lemma 15 and
Lemma 16, we get

> I w)

vEL, (k)

— Zwm(r%m > T (- v))|
i=1 VELy,; (k—1)
AT‘

=Y |h(og Ry)l > |T7 (i v)|
i=1 VELy, (k—1)
<~ |h(log Ry,,)|

=y =g N y(log Ry,) [Z74 (u; - v)|.
1 W (log Ry,) VELy, (k—1)

i

1316

Authorized licensed use limited to: University of Washington Libraries. Downloaded on June 30,2021 at 16:29:17 UTC from IEEE Xplore. Restrictions apply.



Hence, we obtain that

. |h(log Ry,)
E |Z7A (r = v)| £ A, - max {1 (6)
e 1<i<A, | ¥(log Ry,)
ON(,,.
x max > Y(logRy,) |T7 (u; —+ v)|

vE Ly, (k—1)

Next, we show by induction that for every vertex u €
Vr\{r} and every integer k > 0 we have

> 9(log Ry) T34 (u — )] ©)

vE Ly (k)
k

max  sup ||VHd,,, y)H
Tu HESdw
Observe that once we establish Eq. (7), the lemma follows
immediately by plugging Eq. (7) into Eq. (6). We will use
induction on k to prove Eq. (7). When k£ = 0, if u € A
is fixed then L,(0) = () and there is nothing to show;
otherwise, Eq. (7) becomes

¢(log Ry) |Z7" (u - u)| < ¢(log Ru),

< max {¢(logRy)} -

vEL, (k)

which holds with equality since Z7"(u — u) 1. Now
suppose that Eq. (7) holds for some integer K — 1 > 0
(and for every vertex u € Vp\{r}). Let u € Vp\{r} be
arbitrary and denote the children of u by w1, ..., wq, where
1<d< A (fd=0 then L,(k) = 0 and Eq. (7) holds
trivially). Again by Lemma 15 and Lemma 16 we have

> W(log Ry) T34 (u - )|
vEL, (k)
d

- >

VE Ly, (k—1)

Y(log Ry) |Z7" (u — w;)| 27" (wi — )
1

i

d Y(log Ry,
¥(log Ry,

)) h(log Ru,)|

>

VE Ly, (k—1)

For U C Vi, we let

=1

X p(log Ry, ) |Z7 (w; — v)].

=

Z(U)

[l

p— lI} Y
= gleaécgiléﬁd)w HVHdw (y)Hl )

Using the induction hypothesis, we get
> ¢(log Ry) |Z7* (u - v)]

vE L, (k)
< max {¢(logR,)}- = (Vp, \{u})*
vEL, (k)
d
Y (log Ry,)
X ———— |h(log Ry,
;wﬂog%)‘ (108 R
< B k
S ax {Y(logR,)}-E(Vr,)",
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where the last inequality follows from that

1/1 logR
d
= Z LH(}I’ (T(10g Ru,), - - -, ¥(log Ry,))
P 9Y(log R,,) RO ¢

||VHC}I’ (Y(log Ry, ), - -, ¥(log Rwd))||1 .

This establishes Eq. (7), and thus proves the lemma.
We then derive Lemma 9 as a corollary.
Proof of Lemma 9: Since W is an («, ¢)-potential, the
Contraction condition implies that

max sup HVHd

1<d<A g Py <t-a

Meanwhile, since the degree of a vertex v € Vr\{r} in the
subtree T, is less than A, we have log R, € J. Then the
Boundedness condition implies that for all v € L,(1) and
v € L.(k),

Y(log R,)
w(log Ru)

Therefore, we get A, Ay By < c. The lemma then follows
immediately from Lemma 14. ]

- |h(log R,)| <

> o

VI. FERROMAGNETIC CASES

In the ferromagnetic case, the best known correlation
decay results are given in [7], [18]. Using the potential
functions in [7] and [18], we show the following two results,
which match the known correlation decay results.

Theorem 17. Fix an integer A > 3, positive real numbers
B,7, A and 0 < 6 < 1, and assume (83,7, \) satisfies one of
the following three conditions

1) 8550 < /By < 255 2+5, and X\ is arbitrary;

2) \/ > f and

v .
A0 A T (B =25 —4)
(A=2)87-A

3) VBY 2 f2g and A > 15 - gami A
Then the identity function VU (y) =y (based on the potential
given in [18]) is an («, ¢)-potential function for o = ©(J)
and ¢ < O(1). Furthermore, for every n-vertex graph G of
maximum degree at most A, the mixing time of the Glauber
dynamics for the 2-spin system on G with parameters
(B,7, ) is O(n**+¢/9), for a universal constant ¢ > 0.

Remark 3. Condition 1 includes both the ferromagnetic
case 1 < /By < Aei;fré and the antiferromagnetic case
82210 < /By < 1. Note that in both cases (3,7, A) is up-
to-A unique with gap J. For the antiferromagnetic case, the
identity function ¥ is an (, ¢)-potential with ¢ < 1.5 and
a better contraction rate o > §, compared with the bound

a > 0/2 of the potential ¥ given by Eq. (4) in Lemma 10.
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For the ferromagnetic case with 8 =~ > 1 (Ising model),
[14] proved a stronger result of O(nlogn) mixing.

The potential function from [7] is indeed an («,c)-
potential, but ¢ must, unfortunately, depend on A. We have
the following result, which is weaker than the correlation
decay algorithm in [7] for unbounded degree graphs.

Theorem 18. Fix an integer A > 3, and nonnegative real
numbers B,v, \ satisfying B < 1 < ~, /By > ﬁ, and
A
ol 71

A< 5
maximum degree at most A, the mixing time of the Glauber

dynamics for the ferromagnetic 2-spin system on G with
parameters (3,7, \) is O(n®), for a constant C depending
only on 3,7, )\, A, but not n.

. Then for every n-vertex graph G with

Proofs of these theorems are given in the full version [5].
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