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We prove an optimal mixing time bound for the single-site update Glauber dynamics, spectral independence, high-dimensional ex-
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in a variety of settings. Our work presents an improved version ACM Reference Format:
of the spectral inde.p?ndel.lce approach of Anari et al. (2020) and Zongchen Chen, Kuikui Liu, and Eric Vigoda. 2021. Optimal Mixing of
shows O(nlog n) mixing time on any n-vertex graph of bounded Glauber Dynamics: Entropy Factorization via High-Dimensional Expansion.
degree when the maximum eigenvalue of an associated influence In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
matrix is bounded. As an application of our results, for the hard-core Computing (STOC °21), June 21-25, 2021, Virtual, Italy. ACM, New York, NY,
model on independent sets weighted by a fugacity A, we establish USA, 14 pages. https://doi.org/10.1145/3406325.3451035

O(nlog n) mixing time for the Glauber dynamics on any n-vertex
graph of constant maximum degree A when A < A.(A) where A:(A) 1 INTRODUCTION

is the critical point for the uniqueness/non-uniqueness phase tran- This paper establishes a well-known conjecture that the Glauber
sition on the A-regular tree. More generally, for any antiferromag- dynamics converges very quickly to its stationary distribution in
netic 2-spin system we prove O(n log n) mixing time of the Glauber the tree uniqueness region, i.e., decay of correlations region. The
dynamics on any bounded degree graph in the corresponding tree Glauber dynamics is the quintessential example of a local Markov
uniqueness region. Our results apply more broadly; for example, chain, and its convergence rate is of great interest due to its sim-
we also obtain O(nlogn) mixing for g-colorings of triangle-free plicity and wide applicability.
graphs of maximum degree A when the number of colors satisfies Our setting is the general framework of spin systems. Spin sys-
g > alA where a ~ 1.763, and O(mlog n) mixing for generating tems capture many combinatorial models of interest, including the
random matchings of any graph with bounded degree and m edges. hard-core model on weighted independent sets, the Ising model,
Our approach is based on two steps. First, we show that the and colorings, and are equivalent to undirected graphical models.
approximate tensorization of entropy (i.e., factorizing entropy into For integer g > 2, a g-state spin system is defined by a g X g inter-
single vertices), which is a key step for establishing the modified log- action matrix A. For a given graph G = (V, E) with n = |V| vertices,
Sobolev inequality in many previous works, can be deduced from the configurations of the model are the collection Q of assignments
entropy factorization into blocks of fixed linear size. Second, we o : V — [g] of spins to the vertices of the graph. Each configura-
adapt the local-to-global scheme of Alev and Lau (2020) to establish tion o € Q has an associated weight w(c) defined by the pairwise
such block factorization of entropy in a more general setting of pure interactions weighted by the interaction matrix A, see Section 1.1
weighted simplicial complexes satisfying local spectral expansion; for a detailed definition.
this also substantially generalizes the result of Cryan et al. (2019). The Gibbs distribution y is the probability distribution over the
collection Q of configurations and is defined as p(o) = w(o)/Z
CCS CONCEPTS where Z = )}, w(o) is the normalizing factor known as the parti-

tion function. Approximately sampling from the Gibbs distribution
is polynomial-time equivalent to approximating the partition func-
tion [34, 50]. Given an ¢ > 0 and § > 0, an FPRAS for the partition
function outputs a (1 + ¢)-relative approximation of the partition
function with probability > 1 — §, whereas an FPTAS is the deter-
ministic analog (i.e., it achieves § = 0).

The canonical example of a spin system in statistical physics
is the Ising model. The Ising model is a 2-spin system (i.e., ¢ =
2); the spin space is denoted as {+, —} and the configurations of
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have maximum weight, whereas when f < 1 then the model is
antiferromagnetic.

The hard-core model is a natural combinatorial example of an
antiferromagnetic 2-spin system. The model is parameterized by a
fugacity A > 0. For a graph G = (V, E), configurations of the model
are the collection Q of independent sets of G, and the weight of an
independent set o is w(o) = Alel

In general, a 2-spin system is defined by three parameters 5,y >
0and A > 0. A spin configuration o € {0, 1}V is assigned weight:
w(o) = ﬂml(")ym(’(”)/lnl(”), where, for s € {0,1}, ms(o) is the
number of edges where both endpoints receive spin s and ng(o)
is the number of vertices assigned spin s. Note the Ising model
corresponds to the case f = y where A is the external field, and
the hard-core model corresponds to f = 0,y = 1. The model is
ferromagnetic when fy > 1 and antiferromagnetic when fy <1
(the model is trivial when fy = 1).

The Glauber dynamics is a simple Markov chain (X;) designed
for sampling from the Gibbs distribution p. The transitions X; —
X¢+1 update a randomly chosen vertex as follows: (i) select a vertex
v uniformly at random; (ii) for all u # v, set X;41(u) = X;(u); and
(iii) choose X;+1(v) from the marginal distribution for the spin at
v conditional on the configuration X;.1(N(v)) on the neighbors
N(v) of v. It is straightforward to verify that the chain is ergodic (in
the cases considered here, see the definition of totally-connected
in Section 1.1) and the unique stationary distribution is the Gibbs
distribution.

The mixing time is the number of transitions, for the worst initial
state X, to guarantee that X; is within total variation distance <
1/4 of the Gibbs distribution; for a formal statement, see Eq. (1). We
say the chain is rapidly mixing when the mixing time is polynomial
in n = |V|. Hayes and Sinclair [29] established that the mixing
time of the Glauber dynamics is Q(n log n) for a family of bounded-
degree graphs, and hence we say that the Glauber dynamics has
optimal mixing time when the mixing time is O(nlog n).

The computational complexity of approximating the partition
function is closely connected to statistical physics phase transi-
tions. For A > 3, consider the tree Ty of height ¢ where all of
the internal vertices have degree A, and let r denote its root. The
uniqueness/non-uniqueness phase transition captures whether the
leaves influence the root, in the limit as the height grows.

The uniqueness/non-uniqueness phase transition is nicely illus-
trated for the Ising model which has two extremal boundaries: the
all + boundary and all — boundary. For s € {+, -}, let pf, denote the
marginal probability that the root has spin + in the Gibbs distribu-
tion on Ty conditional on all leaves having spin s. The model is in the
uniqueness phase iff limy_, pz,r =limy_, 00 Py For the Ising model
(without an external field) the uniqueness/non-uniqueness phase
transition occurs at f¢(A) = (A — 2)/A for the antiferromagnetic
case and EC (A) = A/(A—-2) for the ferromagnetic case. For the hard-
core model, the critical fugacity is Ac(A) := (A — 1)271/(A - 2)A.
This phase transition on the A-regular tree is connected to the
complexity of approximating the partition function on graphs of
maximum degree A.

For the hard-core model, for constant A, for any § > 0, Weitz [53]
presented an FPTAS for the partition function on graphs of maxi-
mum degree A when A < (1 — §)A¢(A). In contrast, when A > A,
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Sly [48] (see also [25, 49], unless NP = RP, there is no FPRAS for
approximating the partition function on graphs of maximum degree
A. Li, Lu, and Yin [39] generalized Weitz’s correlation decay algo-
rithmic approach to all antiferromagnetic 2-spin systems when the
system is up-to-A unique. One important caveat to these correlation
decay approaches is that the running time depends exponentially
onlogA and 1/6.

Despite the algorithmic successes of the correlation decay ap-
proach, establishing rapid mixing of the Glauber dynamics in the
same tree uniqueness region was a vexing open problem. Anari,
Liu, and Oveis Gharan [2] introduced the spectral independence
approach based on the theory of high-dimensional expanders [1, 19,
35, 37, 45], and established rapid mixing of the Glauber dynamics
for the hard-core model on any graph of maximum degree A when
A < (1 =98)A:(A) for & > 0. However, while the mixing time had
polynomial dependence on A, it also had doubly exponential depen-
dence on 1/8. In [16] the authors established rapid mixing for all an-
tiferromagnetic 2-spin systems when the system is up-to-A-unique
with gap § and improved the mixing time to an exponential depen-
dence on 1/4. Here, roughly speaking, up-to-A uniqueness with
gap 6 means (multiplicative) gap § from the uniqueness threshold
on the A-regular tree for all d < A; see Definition 5.1 for a precise
statement, and [39] for more discussion.

In this work, we not only establish a fixed polynomial upper
bound on the mixing time, but we also prove optimal mixing of the
Glauber dynamics. Our approach holds for general spin systems.
The spectral independence approach, first introduced for 2-spins in
[2] and subsequently extended to g-spins in [14, 23], considers the
qn % gn influence matrix. For spins i, j € [q] and vertices u,v € V,
the entry ((u, i), (v, j)) of the influence matrix measures the effect
of vertex u having spin i on the marginal probability that vertex v
has spin j, see Definition 1.7 for a precise statement. Here we prove
that if the maximum eigenvalue of the influence matrix is upper
bounded and the marginal probabilities are lower bounded then
the mixing time is O(nlog n) where the only dependence on 1/§
and A is in the constant factor captured by the big-O notation. Our
main result is stated in Theorem 1.9 in Section 1.1 after presenting
the necessary definitions.

We establish optimal mixing time of O(nlog n) by proving that
the Glauber dynamics contracts relative entropy (with respect to the
Gibbs distribution) at a constant rate. This is analogous to establish-
ing a modified log-Sobolev constant for the Glauber dynamics; there
are several recent results in other contexts also proving entropy
decay for various Markov chains [6, 11, 17]. In contrast, previous
works utilizing the spectral independence approach [2, 16] and
related works on high-dimensional expanders [1, 19, 35, 37, 45]
consider the spectral gap (or analogously, decay of variance); such
an approach is unable to establish optimal mixing time. Our proof
approach is outlined in Section 2.2.

The application of our results is nicely illustrated for the partic-
ular case of antiferromagnetic 2-spin systems. We prove O(nlog n)
mixing time of the Glauber dynamics when the system is up-to-A-
unique. This is the same region where the correlation decay results
of [39] and the rapid mixing results of [16] hold, which matches the
hardness results of [49]. Note, a mixing time of O(nlog n) implies an
O(n?) time FPRAS for approximating the partition function [38, 50].



Optimal Mixing of Glauber Dynamics: Entropy Factorization via High-Dimensional Expansion

Theorem 1.1. Forall A > 3, all § € (0,1), and all parameters
(B, v, A) specifying an antiferromagnetic 2-spin system which is up-
to-A unique with gap J, there exists C = C(A, 8, B, y, A) such that for
every n-vertex graph G = (V, E) of maximum degree at most A, the
mixing time of the Glauber dynamics for the 2-spin system on G with
parameters (B, y, A) is at most Cnlog n.

For the case of the hard-core model our theorem yields the fol-
lowing result.

Theorem 1.2. Forall A > 3 and all 5 € (0, 1), there exists C =
C(A, 8) such that for every n-vertex graph G = (V, E) of maximum
degree at most A and every A < (1 — §)Ac(A), the mixing time of the
Glauber dynamics for the hard-core model on G with fugacity A is at
most Cnlogn.

For the case of the Ising model in both the antiferromagnetic and
ferromagnetic case, our theorem yields optimal mixing whenever
B is between f.(A) = % and B.(A) = ﬁ,

Theorem 1.3. For all A > 3 and all § € (0, 1), there exists C =
C(A, ) such that for every n-vertex graph G = (V, E) of maximum
degree at most A, every € [A;Eg‘s, Aegfé], and every A > 0, the
mixing time of the Glauber dynamics for the Ising model on G with
inverse temperature § and external field A is at most Cnlog n.

Remark 1. We can actually show that specifically for the Ising
model, C = A°1/9) suffices when n is large enough and so we
obtain polynomial mixing time even when the graph has unbounded
degree.

Recall that the above results are tight as there is no efficient
approximation algorithm in the tree non-uniqueness region which
corresponds to A > A¢(A) for the hard-core model and § < f¢(A) for
the antiferromagnetic Ising model. The only analog of the above re-
sults establishing optimal mixing time in the entire tree uniqueness
region was the work of Mossel and Sly [44] for the ferromagnetic
Ising model. Their proof utilizes the monotonicity properties of the
ferromagnetic Ising model which allows the use of the censoring
inequality of Peres and Winkler [46]. The algorithm of Jerrum and
Sinclair [33] gives an FPRAS for the ferromagnetic Ising model for
any f and any G, but the polynomial exponent is a large constant.

Our results hold for multi-spin systems as well. The most no-
table example of a multi-spin system is the g-colorings problem,
namely, proper vertex g-colorings. Given a graph G = (V,E) of
maximum degree A, can we approximate the number of g-colorings
of G? Jerrum [30] proved O(nlogn) mixing time of the Glauber
dynamics whenever g > 2A. This was further improved in [13, 51]
to O(n?) mixing time when ¢ > (11/6 — ¢)A for some small £ > 0.
There are several further improvements with various assumptions
on the girth or maximum degree, c.f. [22]. On the hardness side,
Galanis et al. [24] proved that unless NP = RP there is no FPRAS
for approximating the number of g-colorings when g is even and
q <A.

For triangle-free graphs, a recent pair of works [14, 23] extended
the spectral independence approach to establish rapid mixing of
the Glauber dynamics when q > (a¢* + §)A for any § > 0 where
a* ~ 1.763; however the polynomial exponent in the mixing time
depends on 1/§ in these results. Using our main result we prove
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O(nlog n) mixing time of the Glauber dynamics under the same
conditions.

Theorem 1.4. Let a* ~ 1.763 denote the unique solution to x =
exp(1/x). Forall A > 3 and all § > 0, there exists C = C(A, §) such
that for every n-vertex triangle-free graph G = (V, E) of maximum
degree at most A and every q > (a* + §)A, the mixing time of the
Glauber dynamics for sampling random q-colorings on G is at most
Cnlogn.

We prove spectral independence bounds for the monomer-dimer
model on all matchings of a graph; no nontrivial bounds were
previously known. Given a graph G = (V, E) and a fugacity A > 0,
the Gibbs distribution y for the monomer-dimer model is defined
on the collection M of all matchings of G where (M) = w(M)/Z
for w(M) = MM The Glauber dynamics for the monomer-dimer
model adds or deletes a random edge in each step. In particular,
from X; € M, choose an edge e uniformly at random from E and
let X’ = Xy @ e. If X’ € M then let X;41 = X’ with probability
w(X’)/(w(X’) + w(X;)) and otherwise let X;4+1 = X;.

We prove O(mlog n) mixing time for the Glauber dynamics for
sampling matchings on bounded-degree graphs with n vertices and
m edges. A classical result of Jerrum and Sinclair [32] yields rapid
mixing of the Glauber dynamics for any graph, but the best mixing
time bound was O(n?mlog n) [31].

Theorem 1.5. Forall A > 3 and all A > 0, there exists C = C(A, 1)
such that for every n-vertex graph G = (V, E) of maximum degree at
most A, the mixing time of the Glauber dynamics for the monomer-
dimer model on G with fugacity A is at most Cmlogn.

For general ferromagnetic 2-spin systems the existing picture is
not as clear as for antiferromagnetic systems. Our work extends
to ferromagnetic 2-spin systems, proving O(nlog n) mixing time
for the same range of parameters as the previously best known
bounds [16, 28, 47]. In particular, we recover Theorems 26 and 27
in [16] with O(n log n) mixing time.

Finally, we mention that our techniques imply asymptotically
optimal bounds (up to constant factors) on both the standard and
modified log-Sobolev constants of the Glauber dynamics for spin
systems on bounded degree graphs in all of the regimes mentioned
above. This also applies for certain problems where prior works
have obtained rapid mixing via other techniques such as path cou-
pling and canonical paths.

1.1 Result for General Spin Systems

Our main results will follow from a general statement regarding the
Glauber dynamics for an arbitrary spin system satisfying marginal
bounds and spectral independence. We first proceed with a few
definitions.

Let ¢ > 2 be an integer and [g] = {1,...,q}. Given a graph

G = (V, E), we consider the g-spin system on G parameterized by a
qxq
>0

strengths” and a field vector h € RZ o Tepresenting “external fields”.

symmetric interaction matrix A € R representing “interaction

A configuration ¢ € [¢]V is an assignment of spins to vertices. The
Gibbs distribution i = g, 4 p over all configurations is given by

(o) [T Auoo) [] hioo.

u,v}€eE veV

_ 1 v
" Zah Vo < ldl
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where

Zoam= > ] Abwo) | ] how)

o€lq]V {u,v}€E veV

is called the partition function. The hard-core model, Ising model,
random colorings, and monomer-dimer model (equivalent to hard-
core model on line graphs) all belong to the family of spin systems.

Let y1 be an arbitrary distribution over [¢]V. A configuration
o€ [q]V is said to be feasible with respect to p if u(c) > 0. Let
Q = Q(p) denote the collection of all feasible configurations (we
omit ¢ when it is clear from the context); namely, Q is the support of
1. Furthermore, for A € V let Qa = {z € [¢]" : pa(r) > 0} denote
the collection of all feasible (partial) configurations on A, with the
convention that Q, = Q) for a single vertex v. Observe that
Qy = Q. For any subset A C V and boundary condition 7 € Qj,
we often consider the conditional distribution pg(-) = p(-|lop=7)
over configurations on S = V'\ A, and we shall write Q{, for the set
of feasible (partial) configurations on U C S under this conditional
measure.

For a subset S C V, the Hamming graph H is defined to be the
graph with vertex set [¢]° of all configurations on S such that two
configurations are adjacent iff they differ at exactly one vertex. A
collection Qg C [¢]® of configurations on S is said to be connected
if the induced subgraph H|[Qq] is connected. A distribution y over
[q]" is said to be totally-connected if for every nonempty subset
S C V and every boundary condition 7 € Qy\s, the set QF is
connected.

Assumption. Throughout the paper, we always assume that the
distribution p we are interested in is totally-connected.

We remark that all soft-constraint models (i.e., A(i,j) > 0 for
all i, j € [q]) satisfy this assumption and common hard-constraint
models, including the hardcore model, g-colorings when g > A + 2,
and matchings, all satisfy this assumption as well.

The Glauber dynamics, also known as the Gibbs sampling, is
a simple, natural, and popular Markov chain for sampling from
a distribution y over [¢]”. The dynamics starts with some (pos-
sibly random) configuration Xo. For every ¢t > 1, a new random
configuration X;41 is generated from X; as follows: pick a coor-
dinate v € V uniformly at random, set X;41(u) = X;(u) for all
u € V \ {v}, and sample X;;1(v) from the conditional distribution
plow=""| oy\({v)=Xe(V \ {0})). Denote the transition matrix of
the Glauber dynamics by Pg,. If y1 is totally-connected, then the
Glauber dynamics is ergodic (i.e., irreducible and aperiodic) and
has stationary distribution p.

Let P be the transition matrix of an ergodic Markov chain (X;)
on a finite state space Q with stationary distribution p. For t > 0
and o € Q, let P!(o, -) denote the distribution of X; when starting
the chain with Xy = 0. For ¢ € (0, 1), the mixing time of P is defined
as

— i . ||pt
Tix(P, €) = I;leas))(mln {t >0: ||P (o,:) - ”“TV < 5} . (1)
We will require two conditions of the distribution p. The first is
that the marginal probability of each vertex is bounded away from
0 under any conditioning.
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Definition 1.6 (Bounded Marginals). We say a distribution u over
[q]V is b-marginally bounded if for every A C V and 7 € Qp, it
holds for every v € V\ Aand i € QF that,

p(oy=i|op=1) 2 b.

The second condition is the notion of spectral independence,
first given by [2] and later generalized to multi-spin systems in
[14, 23]. Here we use the definitions from [14].

Definition 1.7 (Influence Matrix). Given A C V and 7 € Qy, let
Ve ={(ui):ueV\AiecQl}.

For every (u, i), (v,j) € V, with u # v, we define the (pairwise)
influence of (u, i) on (v, j) conditioned on 7 by

\I]ﬁ ((u’ i), (U’])) = (op=j | ou=i,07=7) — (o =j | oA=T).
Furthermore, let ¥, (v, i), (v, j)) = 0 for all (v, i), (v, )) € V;. We
call ¥/ the (pairwise) influence matrix conditioned on 7.

Note that all eigenvalues of the influence matrix ¥ are real; see

[2, 5, 14].

Definition 1.8 (Spectral Independence). We say a distribution p
over [q]V is n-spectrally independent if for every A € V and 7 € Qy,
the largest eigenvalue 41(¥};) of the influence matrix ¥ satisfies

M(¥y) <.
The work of [23] defined another version of influence matrix by
¥, (u,v) =
max_|lu(oy="|ou=i,0n =7) = plov="1 ou=j,0n = T)l1y.
i,jeQy

and the spectral independence correspondingly. We remark that
Definition 1.8 is weaker than the notion of spectral independence
given in [23], and for all current applications as in [14, 23] or here
in this paper, both definitions work.

Our main result is that if the Gibbs distribution on a bounded-
degree graph is both marginally bounded and spectrally indepen-
dent, then the Glauber dynamics satisfies the modified log-Sobolev
inequality with constant Q(1/n) (see Definition 3.3) and mixes in
O(nlog n) steps, where n is the number of vertices of the graph.

Theorem 1.9. Let A > 3 be an integer and b, > 0 be reals. Suppose
that G = (V, E) is an n-vertex graph of maximum degree at most A
and y is a totally-connected Gibbs distribution of some spin system on
G. If u is both b-marginally bounded and n-spectrally independent,
then the Glauber dynamics for sampling from u satisfies the modified
log-Sobolev inequality with constant ﬁ where

O(b—'72+1)
- (275

Furthermore, the mixing time of the Glauber dynamics satisfies

5 o oo (1)

A

A

b

b2

Tmix(Per. €) = (

Remark 2. More specifically, when n > zlzl—zA(i—Z + 1) we can choose
4,
_ 18log(1/b) (24A as
Ci= T |\ ’
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and the mixing time is bounded by

|

Previous results [2, 14, 16, 23] could obtain poly(A) X O mix-
ing but without the assumption of marginal boundedness. In the
setting of spin systems, we always have b-marginal boundedness
with b depending only on the parameters A, h of the spin system and
the maximum degree A of the graph, and so our results supersede
those of [2, 14, 16, 23] in the bounded degree regime.

Tmix(Por, ) <

24A

bZ

18log(1/b)

241
” 1 +loglo ! + 1o !
ogn Z _
b nilog £108 7 L)

Remark 3. After the first version of this paper, the work [5] refor-
mulates the proof of Theorem 1.9 without using simplicial com-
plexes; in particular, the constant Cj is brought down to C; =
(A/b)On/b)+1) The proof approach in this paper can also be mod-
ified to achieve the same bound, by considering Lemma 5.8 from
the full version [15] of this paper specified to simplicial complexes
corresponding to spin systems.

1.2 Result for General Simplicial Complexes

The recent work [2] studied spin systems, and more generally any
distribution over [¢]", in a novel way by viewing full and partial
configurations as a high dimensional simplicial complex and utiliz-
ing tools such as high-dimensional expansion. Subsequent works
[14, 16, 23] follow the same path as well. In this paper we also study
spin systems in the framework of simplicial complexes. Moreover,
we obtain new bounds on the mixing time and modified log-Sobolev
constant of the global down-up and up-down walks for arbitrary
pure weighted simplicial complexes. Before presenting our results,
we first review some standard notation.

A simplicial complex X is a collection of subsets (called faces)
of a ground set U which is downwards closed; that is, if 0 € X
and 7 C o then r € X. The dimension of a face is its size, and
the dimension of X is defined to be the maximum dimension of its
faces. We say an n-dimensional simplicial complex X is pure if every
face is contained in a maximal face of size n. We write X(k) for the
collection of faces of size k. For a k-dimensional face 7 € ¥(k), we
can define a pure (n — k)-dimensional simplicial subcomplex X; by
taking X; = {E CU\7:7U¢& € X}

For a pure n-dimensional simplicial complex X, consider a posi-
tive weight function w : ¥(n) — R, which induces a distribution
7, on X(n) with 7,(0) < w(o). Furthermore, we can also define a
distribution . over X(k) for each nonnegative integer k < n via the
following process: sample o from 7, and select a uniformly random
subset of size k. For 7 € X(k), the weight function w induces the
weights for the simplicial subcomplex X; by w (&) = w(r U &) for
each & € X;(n—k). The distribution 7, ; is also defined accordingly
for each nonnegative integer j < n — k.

As noticed in [2], there is a natural way to represent every distri-
bution y over [q]” with |V| = n as a pure n-dimensional weighted
simplicial complex (X = X%, 1), which is defined as follows. The
ground set of X consists of pairs

V={(v,):veV,ieQy}
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The maximal faces of X consist of collections of n pairs forming
a valid configuration o € Q; i.e., every configuration ¢ € Q cor-
responds to a maximal face {(v,0,) : v € V}. The rest of X is
generated by taking downwards closure so that X is pure by con-
struction. Namely, every U C V and 7 € Qg corresponds to a face
{(v,7y) : v € U}; we shall denote it by (U, r) for simplicity. Note
that the faces of intermediate dimension can be thought of as partial
configurations. Now;, if there is a weight function w : Q — R
associated with g such that u(o) « w(o) for each o € Q, then it
also gives a weight function w : ¥(n) — R by the one-to-one cor-
respondence between Q and X(n), and thus induces the associated
distribution 7, on X(n). Observe that , is exactly the distribu-
tion 1. Moreover, for each k < n, the distribution 73 on X(k) is
given by
1

(%)

k

(U, 1) = - ploy =7)
forevery U C Vand 7 € Q.

For simplicial complexes, the global down-up and up-down walks
between faces of distinct dimensions have attracted a lot of attention
in recent years [1, 3, 17, 19, 35, 37, 45]. For integers 0 < r <s < n,
define the order-(s, r) (global) down-up walk with transition matrix
denoted by Py, to be the following random walk over X(s): in each
step we remove s — r elements, chosen uniformly at random, from
the current face o; € X(s) to obtain a face r; € X(r), and then
pick & 41 € X, (s — r) from the distribution 77, s, and set 641 =
7t U &r41. The stationary distribution of P;” , is 5. In particular,
observe that the Glauber dynamics for a distribution y over [¢]V
is the same as the order-(n, n — 1) down-up walk for the weighted
simplicial complex (X, p). Similarly, the order-(r, s) (global) up-down
walk with transition matrix P;\’ s is arandom walk over ¥(r) with
stationary distribution r,: given the current face 7; € ¥(r), sample
Er41 € X, (s —r) from 7y, s—p, set 0441 = 74 U &41, and finally
remove s — r elements from o041 uniformly at random to obtain
Tr+1 € X(1).

We establish the modified log-Sobolev inequality and give mean-
ingful bounds on the mixing time for the down-up and up-down
walks for arbitrary weighted simplicial complexes. Our proof uti-
lizes the local-to-global scheme as in [1] and establishes contraction
of entropy extending the result of [17]. Before stating our main re-
sult, we first give the definitions of marginal boundedness and local
spectral expansion for simplicial complexes. As we shall see from
Claims 1.11 and 1.13 below, our requirements of marginal bounded-
ness and spectral independence in Theorem 1.9 is translated from
the corresponding conditions needed for simplicial complexes.

Definition 1.10 (Bounded Marginal). We say a pure n-dimensional
weighted simplicial complex (X, w) is (by, ..., bn—1)-marginally
bounded if forall0 < k < n—1, every 7 € X(k), and every i € X(1),
we have

71’1—,1(1') > bk .
Claim 1.11. Ifa distribution i over[q]V is b-marginally bounded,

then the weighted simplicial complex (X, y) for p is (b, . . ., bn-1)-
marginally bounded with by = ﬁ for each k.

The proof of Claim 1.11 can be found in the full version [15] of
this paper.
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The global walks in simplicial complexes can be studied by
decomposition into local walks which we define now. For every
0 < k < n—2and every face r € ¥(k), the local walk at t with tran-
sition matrix Py is the following random walk over X (1): given the
current element i € X, (1), the next element is generated from the
distribution 7, (;} 1. One can relate mixing properties of the local
walks to the mixing properties of the global walks; see [1, 3, 17, 37].
In nearly all prior works, such a relation was quantified using the
spectral gap of the walks. Like in [17], while our ultimate goal is to
show the modified log-Sobolev inequality of the global walks, we
will still need the notion of local spectral expansion for local walks.
Let us now capture this idea using the following definition, taking
after [1, 19, 35-37, 45].

Definition 1.12 (Local Spectral Expansion [1]). We say a pure n-
dimensional weighted simplicial complex (¥, w) is a ({p, . . ., {n-2)-
local spectral expander if for every 0 < k < n—2and every 7 € X(k),
we have

AZ(PT) < gk‘
Claim 1.13. Ifa distribution i over[q]V is n-spectrally independent,

then the weighted simplicial complex (X, i) is a ({p, . . ., {n—2)-local
spectral expander with {j. = # foreach k.
Proor. This is Theorem 8 from [14]. O

We then show that for any pure weighted simplicial complexes,
the modified log-Sobolev inequality (see Definition 3.3) holds for
down-up and up-down walks if the marginal probabilities of the
simplicial complex are bounded away from zero and all local walks
have good expansion properties. This also bounds the mixing times
of these random walks.

Theorem 1.14. Let (X, w) be a pure n-dimensional weighted simpli-
cial complex. If (X, w) is (bo, . . ., bp—1)-marginally bounded and has
(20, - - - » {n—2)-local spectral expansion, then for every0 <r <s < n,
both the order-(s, r) down-up walk and the order-(r, s) up-down walk
satisfy the modified log-Sobolev inequality with constant k = k(r, s)
defined as
-1
=
-1
2o Tk
where:Ty = 1;for1 <k <s—1,T} = ]_[I.‘_O1 aj;and for0 < k < s-2,

]:
ap = max {1 } .

Furthermore, the mixing time of the order-(s,r) down-up walk is
bounded by

4 1-0k
bi(s —k)? 4+ zlog(m)

1 1 1
Tmix(P;/,r,s) < h (loglog P + log ﬁﬂ (2)
S

where 1y = mingcx(s) 7s(0). The mixing time of the order-(r,s)
up-down walk is also bounded by Eq. (2) with ny replaced by ;.

Theorem 1.14 generalizes both the result of [17] for simplicial
complexes with respect to strongly log-concave distributions and
the result of [1] for the Poincaré inequality (i.e., bounding the
spectral gap). It in some sense answers a question of [17] on local-
to-global modified log-Sobolev inequalities in high-dimensional
expanders, at least in the bounded marginals setting.
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Even though Theorem 1.14 can give a bound on the mixing time
of the Glauber dynamics, which is the order-(n,n — 1) down-up
walk in the corresponding weighted simplicial complex, our main
result Theorem 1.9 does not follow directly from Theorem 1.14.
In fact, we will only consider the order-(n, n — €) down-up walk
for £ = ©(n), which corresponds to the heat-bath block dynamics
that updates a uniformly random subset of ¢ vertices in every step.
One of our main technical contributions is to compare this block
dynamics with the single-site Glauber dynamics; we shall detail this
in Section 2.1 below. Nevertheless, we find Theorem 1.14 interesting
of its own and possible for future applications in other problems.

2 PROOF OUTLINE

In this section, we outline our proofs of Theorems 1.9 and 1.14.

2.1 Approximate Tensorization and Uniform
Block Factorization

One way of establishing rapid mixing of the Glauber dynamics is to
show that the Gibbs distribution satisfies the approximate tensoriza-
tion of entropy. This approach has been (implicitly) used in many
literature to establish the log-Sobolev inequalities, from which one
can deduce an optimal bound on the mixing time. Before giving the
formal definition, we first review some standard definitions.
Consider a distribution y supported on Q C [q]V. For every
f: Q — Rxp, we denote the expectation of f under y by u(f) =

Yoea H(o)f(o) and the entropy of f by Entﬂ(f) = u(flog %)
We often simply write Ent(f) for the entropy and drop the subscript
4 when it is clear from the context. More generally, given S C V
and 7 € Qyng, for every f : QF — Ry we use pg(f) to denote the
expectation of f under the conditional distribution g and Entg(f)
for the corresponding entropy. For most of the time we are actually
given a function f : Q — Ry, and we will still write pg(f) and
Ent{(f) where we think of f as restricted to the space Qf and
implicitly assume that the configuration outside S is given by z;i.e.,
for an argument o € QF the value of f is f(o U 7). It is helpful to
think of 4¢(f) and Ent5(f) as a function of the boundary condition
7. In this sense, the notation y[Entg(f)], for example, represents the
expectation of the function Entg(f) where 7 € Qy\g is distributed
as the marginal of pon V'\ S.

The notion of approximate tensorization of entropy is formally
defined as follows.

Definition 2.1 (Approximate Tensorization). We say that a distri-
bution y over [q]V satisfies the approximate tensorization of entropy
(with constant Cy) if for all f : Q@ — R we have

Ent(f) < C1 ), ulEnto(f)]-

veV

(3)

Approximate tensorization can be understood as closeness of y
to a product distribution, or weak dependency of variables. In fact, if
1 is exactly a product distribution (e.g., the Gibbs distribution on an
empty graph), then approximate tensorization holds with constant
C1 = 1; e.g., see [10, 12]. If y satisfies approximate tensorization
with a constant C; independent of n, then the Glauber dynamics
for sampling from p mixes in O(nlogn) steps. In fact, given ap-
proximate tensorization, one can deduce tight bounds on all of the
following quantities: the spectral gap, both standard and modified
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log-Sobolev constants, relative entropy decay rate, mixing time,
and concentration bounds. See Fact 3.5 for a detailed summary.

In many cases, especially on the integer lattice 74, log-Sobolev
inequalities for the Glauber dynamics are established through the
approximate tensorization of entropy, which is more intuitive and
easier to handle; e.g., see [11, 12, 27, 40]. Despite the success on
74, there is not much study for spin systems on bounded-degree
graphs. The works of [10, 42] considered approximate tensorization
for general discrete product spaces, and gave sufficient conditions
to derive it; however, for spin systems these results do not cover
the whole uniqueness region.

One can regard approximate tensorization of entropy as factor-
izing entropy into all single vertices. Motivated by tools from high
dimensional simplicial complexes [1, 2] and study on general block
factorization of entropy [11], we consider in this paper a more gen-
eral notion of entropy factorization, where the entropy is factorized
into subsets of vertices of a fixed size. The formal definition is given
as follows.

Definition 2.2 (Uniform Block Factorization). We say that a dis-
tribution p over [q]V satisfies the £-uniform block factorization of
entropy (with constant C) if for all f : Q@ — R we have

= > ulEnts()

se(y)

g Ent(f) < C- )

)

We remark that uniform block factorization of entropy is a spe-
cial case of block factorization given by equation (1.3) in [11]; there,
the entropy factorizes into arbitrary blocks with arbitrary weights.
Also observe that 1-uniform block factorization is the same as
approximate tensorization of entropy. Just as the approximate ten-
sorization corresponds to the single-site Glauber dynamics, the
£-uniform block factorization corresponds to the heat-bath block
dynamics where in each step a subset of vertices of size £ is chosen
uniformly at random and gets updated. Moreover, similar results
as in Fact 3.5 can be deduced for this block dynamics.

Our first key result is a reduction from approximate tensorization
to uniform block factorization. For b-marginally bounded Gibbs
distributions on graphs with maximum degree < A, we show that
approximate tensorization is implied by {-uniform block factoriza-
tion for £ = [On] and an appropriate constant 6 depending on b
and A. This is given by the following lemma.

Lemma 2.3. Let A > 3 be an integer and b > 0 be a real. Consider

the Gibbs distribution pi on an n-vertex graph G of maximum de-

gree at most A and assume that p is b-marginally bounded. Suppose
; L b2 .

there exist positive reals § < {3~ and C such that u satisfies the

[On]-uniform block factorization of entropy with constant C. Then

satisfies the approximate tensorization of entropy with constant

18log(1/b)

C = T
Remark 4. The notion of approximate tensorization and uniform
block factorization with respect to variance is also meaningful. In
fact, for variance these definitions are equivalent to bounding the
spectral gap of the corresponding chains. Moreover, Lemma 2.3
holds for variance as well, which can already provide a tight bound
on the spectral gap of the Glauber dynamics combining results
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from [2, 14, 16, 23]. See the full version [15] of this paper for more
details.

2.2 Simplicial Complexes and Entropy
Contraction

Our next goal is to establish £-uniform block factorization of en-
tropy for ¢ = ©(n), which relies on the spectral independence
property. The following lemma holds for all distributions over [¢]V,
not only Gibbs distributions.

Lemma 2.4. Letb,n > 0 be reals. Then for every real 6 € (0, 1) and
every integern > %(2—2 + 1) the following holds.
Let V be a set of size n and y be a distribution over [q]" . If i is both

b-marginally bounded and n-spectrally independent, then y satisfies
[@n]-uniform block factorization of entropy with constant

B+
°=[3)

Recall that there is a natural correspondence between a distri-
bution p over [¢]" and the weighted simplicial complex (¥, ). For
general weighted simplicial complexes, one property studied in [17]
is how the entropy of a function defined on faces contracts when it
projects down from higher dimensions to lower. This can be cap-
tured by the definition below. For a pure n-dimensional weighted
simplicial complex (¥, w) and a nonnegative integer k < n, let P,I
denote the |X(k)| X |X(k + 1)| dimensional transition matrix cor-
responding to adding a random element i ¢ 7 to some 7 € X(k)
where i is distributed as 77 1. Also forany 0 < r < s < nand
any function f) : X(s) — R, define ") : ¥(r) = Rxq by
f(r) - prT . 'PsT—lf(s)'

Definition 2.5 (Global Entropy Contraction). We say a pure n-
dimensional weighted simplicial complex (¥, w) satisfies the order-
(r, s) global entropy contraction with rate k = «(r, s) if for all f() :
X(s) = R we have

Enty, (f) < (1 - k) Enty, (f¥)).

It turns out, as a remarkable fact, that uniform block factorization
of entropy for a distribution y over [q]" is equivalent to global
entropy contraction for the weighted simplicial complex (X, p).

Lemma 2.6. A distribution ji over[q]V satisfies the C-uniform block
factorization of entropy with some constant C if and only if the corre-
sponding weighted simplicial complex (X, i) satisfies order-(n — ¢, n)
global entropy contraction with rate x, where Ck = {/n.

The proof of Lemma 2.6 can be found in the full version [15]. As
a consequence, to prove Lemma 2.4, it suffices to establish global
entropy contraction for the weighted simplicial complex (X, p).

Just like approximate tensorization and uniform block factoriza-
tion having many implications for the corresponding single-site and
block dynamics (e.g., see Fact 3.5), the notion of global entropy con-
traction can provide for weighted simplicial complexes meaningful
bounds on the spectral gap, modified log-Sobolev constant, relative
entropy decay rate, mixing time, and concentration bounds; see the
full version [15] for details. In Lemma 11 of [17], the authors es-
tablished order-(r, s) global entropy contraction with rate kx = =
for simplicial complexes with respect to homogeneous strongly



STOC ’21, June 21-25, 2021, Virtual, Italy

log-concave distributions. From this, they deduced the modified
log-Sobolev inequality for the down-up and up-down walks and
showed rapid mixing of it.

We then show that for an arbitrary weighted simplicial complex
(X, w), one can deduce global entropy contraction from local spec-
tral expansion whenever the marginals of the induced distributions
are nicely bounded. For this, we prove a local-to-global result for
entropy contraction in the spirit of [1]. If we additionally know that
the marginals are nicely bounded, we can further reduce the local
entropy contraction to local spectral expansion.

Lemma 2.7. Let (X, w) be a pure n-dimensional weighted simplicial
complex. Suppose that (X, w) is (bo, . . ., bp—1)-marginally bounded
and has ({p, . . ., {n—2)-local spectral expansion. Then for all0 < r <
s < n, (X, w) satisfies order-(r, s) global entropy contraction with rate
Kk = k(r,s) given as in Theorem 1.14.

Theorem 1.14 follows immediately from Lemma 2.7 and [15,
Fact 5.2]. We remark that Lemma 2.7 recovers Lemma 11 of [17]
for simplicial complexes corresponding to discrete log-concave
distributions, since there one has { = 0 for all k as shown in [3].

We present next the proof of Lemma 2.4, which follows directly
from Lemmas 2.6 and 2.7.

ProoF oF LEMMA 2.4. From Claims 1.11 and 1.13 we know that
the weighted simplicial complex (X, y) regarding y is (bo, . . ., bp—1)-
marginally bounded with by = -2 and has ({p, ..., {n-2)-local
spectral expansion with (i % Then, Lemma 2.7 implies
that (X, p) satisfies order-(n — ¢, n) global entropy contraction for
¢ = [0n] with rate

— Z:k n— é’
Yico Tk
where Iy = 1, Ty = H}C:_Ol aj, and
ag =
max{l— 4n 1-n/(n—k-1) }
b2(n—k—1) 4+ 2log((n—k)(n—k—1)/(2b%)) ]

Define an integer R = [hz-‘ and observe that n > £ > 6n > 2R by
R

our assumption. Thus, we have
—,0;.
n—k-1 }

Notice that k, when viewed as a function of a;’s, is monotone
increasing with each ay. Thus, to lower bound «, we can plug in
the lower bounds d;’s and get

ant’

I lrk
where Ty = 1and I}, = Hj.:ol a@j for each k > 1. We will show that
for every 0 < k < n — 1 one actually has
(n-k-1)(n-k-2)---(n—-k—-R) 5)
(n-1)(n-2)---(n—R)
For k = 0 we have [ = 1 and Eq. (5) holds. For1 < j<n—-R-2
we have

g > dy = max{l—

fy =
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andthusfor1<k<n-R-1
k-1

[

Jj=0

n-j-—1-R _

__]_1

k-1)(n-k-2)---(n—-k-R)
(m-1)(n-2)---(n—-R)

Iy = (-

Finally, since &; = 0 whenn—R-1<j < n—2,wehavel} =0
forn— R < k < n— 1. Therefore, Eq. (5) is true for all k. It then
follows that

Zk ne [(n—k—1)(n—k—2)--~(n—k—R)
Z fmo (n—k—l)(n—k—Z)--~(n—k—R)
_ ZjLii-1DG-R+D
S G- G-R+ 1)

The following is a standard equality which can be proved by induc-
tion:

N-1
Zj(j—l) “j-R+1)= —N(N—l) -(N=R).
j=0
Hence, we obtain
(t-1)---(€-R)
“nn-1)---(n—-R)’
Finally, we deduce from Lemma 2.6 that
4
61 (n-1)---R (n-R\E [2n\R [2)\a2"!
C<—---X< < <\|\—= <l|=
nk o ((-1---((-R “\r-Rr 7 0

where we use our assumption £ > 0n > 2R.

2.3 Wrapping up

Combining Lemmas 2.3 and 2.4, we establish approximate tensoriza-
tion of entropy with a constant independent of n, when the Gibbs
distribution is marginally bounded and spectrally independent. This
is stated in the following theorem.

Theorem 2.8. Let A > 3 be an integer and b, > 0 be reals. Suppose
that G = (V, E) is an n-vertex graph of maximum degree at most /A
and 1 is a totally-connected Gibbs distribution of some spin system
on G. If p is both b-marginally bounded and n-spectrally independent
andn > 2;1—?(2—2 + 1), then p satisfies the approximate tensorization

of entropy with constant
( ) % +1

Theorem 1.9 then follows immediately from Theorem 2.8 and
Fact 3.5.

Our main results Theorems 1.1 to 1.5 will follow from Theo-
rem 1.9 by establishing marginal boundedness and spectral inde-
pendence for each model. The detailed proofs are contained in
Section 5, we include here a brief sketch. The marginal bounded-
ness is a trivial bound. The spectral independence was previously
established for antiferromagnetic 2-spin systems including the hard-
core model and the Ising model in the whole uniqueness region
[2, 16], and for random g-colorings when q is sufficiently large
[14, 23]. For the monomer-dimer model, spectral independence is
not known previously. Following the proof strategy of [16] and
utilizing the two-step recursion from [4], we show the following.

_ 18log(1/b)
=—0

24A
2



Optimal Mixing of Glauber Dynamics: Entropy Factorization via High-Dimensional Expansion

Theorem 2.9. Let A > 3 be an integer and A > 0 be a real. Then for
every graph G = (V, E) of maximum degree at most A withm = |E|,
the Gibbs distribution u of the monomer-dimer model on G with

fugacity A is n-spectrally independent for n = min {ZAA, 2V1 + AA}.

The rest of the paper is organized as follows. In Section 3, we
collect relevant preliminaries. In Section 4, we show how to re-
duce approximate tensorization to uniform block factorization with
linear-sized blocks; specifically, we prove Lemma 2.3. In the full
version [15] of this paper, we reduce uniform block factorization
and, more generally, global entropy contraction in the setting of
weighted simplicial complexes to local entropy contraction; we then
further reduce local entropy contraction to local spectral expansion
when the simplicial complexes have bounded marginals and thus
prove Lemma 2.7. We also bound the spectral independence of the
monomer-dimer model on bounded degree graphs and prove Theo-
rem 2.9 in the full version [15]. Finally, we finish off the proofs of
our main mixing time results in Section 5 and conclude with some
open problems in Section 6. We also discuss analogous results for
variance in the full version [15].

3 PRELIMINARIES

In this section we review some standard definitions.
In the following definition, we assume the underlying distribu-
tion y is fixed and omit it from the subscript.

Definition 3.1. Let Q be a finite set and p be a distribution over
Q. For all functions f,g: Q — R:

(a) The expectation of f is defined as
()= pE)f);

x€eQ

(b) The variance of f is defined as

Var(f) = ul(f ~ p(N] = p(f?) = p(N)*
(c) The covariance of f and g is defined as

Cov(f.g) = ul(f = p(f)g = pg)] = p(fg) = p(fHpg);
(d) If f > 0, the entropy of f is defined as

fMg(MfJ]=uqmgf)—uuvmng>

with the convention that 0log 0 = 0.

Ent(f) = p

For two distributions y, v over a finite set Q, the Kullback-Leibler
divergence (KL divergence), also called relative entropy, is defined
D(v [l p) = ) v(x)log

as
(i)
xeQ

p(x)
Let f = v/pu be the relative density of v with respect to y; i.e.,
f(x) = v(x)/p(x) for all x € Q. Then Ent(f) = Dgr(v || p). The
following is a well-known fact; see, e.g., [21].

Fact 3.2 (Donsker-Varadhan'’s Variational Representation). For two
distributions p, v over a finite set Q, the KL divergence admits the
following variational formula:

Dia vl p) = sup {v(f)=logpel)}.
f:Q-R
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We then review some standard functional inequalities, and refer
to [7, 43] for more backgrounds.

Definition 3.3. Let Q be a finite set and y be a distribution over Q.
Let P denote the transition matrix of an ergodic, reversible Markov
chain on Q with stationary distribution p.

(a) The Dirichlet form of P is defined as for every f,g: Q — R,

Ep(f.9) =5 D HOPE )~ FW)g) - )

x,y€Q

In particular, if Q C [¢]" and P = Pq; is the Glauber dynamics
for y, then we can write

Er,(f.9)= 5 2 HCovu(f. 9]

veV
(b) We say the Poincaré inequality holds with constant A if for every
f:Q—>R,
AVar(f) < Ep(f, f).
The spectral gap of P is

&p(f. f)
Var(f)

(c) We say the standard log-Sobolev inequality holds with constant
y g q y
p if for every f : Q — R,

pEnt(f) < Ep(F. V)

The standard log-Sobolev constant of P is

Ep(VF-AF)
Ent(f)

(d) We say the modified log-Sobolev inequality holds with constant
po if for every f: Q — R,

poEnt(f) < Ep(f.log f).
The modified log-Sobolev constant of P is

Ep(f.log f)
Ent(f)

(e) We say the relative entropy decays with rate « if for every dis-
tribution v over Q,

Dre(vP || p) < (1= @) D (v | p).

Next, we consider the case that Q C [q]V for a finite set V. Let
S € Vand r € Qy\s. Recall that for every function f : Q — Ry,
we write u¢(f) and Entg(f) = Entﬂg (f) for the expectation and
entropy of f under the conditional distribution pg(-) = p(os=- |
oy\s = 7), where f = f is understood as a function of the configu-
ration on S with 7 fixed outside S. We think of u¢(f) and Entg(f) as
functions of 7, and we will use, for example, Ent[pg(f)] to represent
the entropy of pg(f) under y, and p[Entg(f)] for the expectation
of Entg(f). We give below a useful property of the expectation and
entropy; see, e.g., [41] for proofs.

A(P):inf{ ‘f:Q—>R,Var(f)¢0}.

p(P) = inf{ |f . Q — R, Ent(f) # 0}.

po(P) = inf{ f:Q — Rso,Ent(f) # 0}.

Fact3.4. LetS C V andt € Qy\s. Forevery function f : Q — Ry,
we have

u(f) = plps ()]

and

Ent(f) = p[Ents(f)] + Ent[us(f)].
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Implications of Approximate Tensorization. We summarize here a
few corollaries of approximate tensorization of entropy for arbitrary
distributions over discrete product spaces.

Fact 3.5. LetV be a set of size n and p be a distribution over [q]V . If
1 satisfies the approximate tensorization of entropy with constant Cy,
then the Glauber dynamics for p satisfies all of the following:
(1) The Poincaré inequality holds with constant A = ﬁ;
2) The modified log-Sobolev inequality holds with constant pg
g quality P
1

Cin’
(3) The relative entropy decays with rate a = ﬁ;
(4) The mixing time of the Glauber dynamics satisfies

+1lo !
g2£2

where pimin = mingeq p(o); If furthermore u is b-marginally
bounded, then we have i, > b™ and thus

Tmix(Pgr, €) < {Cln (log log

min

1 1
Tmix(Por, €) < {Cln (log n + loglog 7t log ﬁﬂ ;

(5) Forevery f : Q — R which is c-Lipschitz with respect to the Ham-

ming distance on [q]V and everya > 0, we have the concentration
inequality
a2
Pr - >a|l<2e — ;
' 1£0) = () > al < 2 xp (i

(6) If furthermore y is b-marginally bounded, then the standard log-
Sobolev inequality holds with constant p = log}l_% . ﬁ when

1 | -1
b<§,orp— o when b = 3

The ¢-uniform block factorization of entropy implies similar
results for the heat-bath block dynamics that updates a random
subset of vertices of size € in each step.

The implications in Fact 3.5 are all known and have been widely
used, often implicitly. In the proof below, we give references where
explicit statements or direct proofs are available.

Proor oF FacT 3.5. (1) and (2) are proved in [10, Proposition
1.1]. To show (3), let P, be the transition matrix corresponding to
updating the spin at v conditioned on all other vertices. Thus, we
have the decomposition

1
Po =~ > Po.

veV

Let f = v/p be the relative density of v with respect to y. Then we

get
ﬂ)

- Z Ent(P, f) = Z Ent{p1, (f)]

’UEV 'UEV

- Z Ent(f) — p[Enty(f)]

’UEV

<= > Dx(vPo |l )

’UGV

1
Dr(vPeu || 1) = Dy |~ Z vPy

veV

Bt(f) -~ " wlBnto(f)]

veV

1
< (1= g B =

1
1— —

o) Pt 1
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(4) can be deduced from (3) as shown by [6, Lemma 2.4]; see also
[7, Corollary 2.8] for the continuous time setting. (5) follows from
(2) and [17, Lemma 15]. Finally, (6) follows by an application of [18,
Theorem A.1]. O

4 APPROXIMATE TENSORIZATION VIA
UNIFORM BLOCK FACTORIZATION

Fix a graph G on n vertices of maximum degree at most A, and

assume that y is a b-marginally bounded Gibbs distribution defined

on G satisfying the [On]-uniform block factorization of entropy

with constant C where 8 < b%/(4eA); ie., for £ = [0n] and all

f:Q — Ry it holds that
CEni(f) < C- ( 2 HERS()

Se(y)

We will show that y also satisfies the approximate tensorization of

entropy with constant ©(C), which establishes Lemma 2.3.

The intuition behind our approach is that for ¢ as large as 0n, if
one picks a uniformly random subset S C V satisfying |S| = ¢, then
the induced subgraph G[S] of G on vertex set S is disconnected into
many small connected components, each of which has constant size
in expectation and at most O(log n) with high probability. Since the
conditional Gibbs distribution x5 is a product distribution of each
connected component, we can use entropy factorization for product
distributions to reduce approximate tensorization on G to that on
small connected subgraphs of G. This allows us to upper bound
the optimal approximate tensorization constant with a converging
series.

Towards fulfilling this intuition, for any S C V, let C(S) denote
the set of connected components of G[S], with each connected
component being viewed as a subset of vertices of S. Note that
C(S) is a partition of S. For any v € S, let S;, denote the (unique)
connected component in C(S) containing v; for v ¢ S, take Sy, = 0.
The following is a well-known fact regarding the factorization of
entropy for product measures; see, e.g., [10, 12].

Lemma 4.1. For every subset S C V, every boundary condition
TE QV\SJ and every function f : Qg — Rxg, we have

Entf(f)< ). p[Enty(f)].

UeC(S)

Recall that Enty (f) = Entg( f) is regarded as a function of the
boundary condition ¢ € Qg\U on S\ U, and pg[Enty(f)] is the
expectation of it under the conditional Gibbs measure yg.

We also need the following crude exponential upper bound on
the approximate tensorization constant for a Gibbs distribution
with bounded marginals.

Lemma 4.2. If p is b-marginally bounded, then for every subset
U C V, every boundary condition £ € Qy\y, and every function

f: Qg — R>g, we have

3JUJ log(1/b)
2b2|U|+Z

Ent}, (f) <

P

Finally, the lemma below shows that when a uniformly random
and sufficiently small subset of vertices is selected, the size of the

[Ento(f)].
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connected component containing a given vertex is small with high
probability.

Lemma 4.3. Let G = (V,E) be an n-vertex graph of maximum
degree at most A. Then for every k € N* we have

4
Ps(ISol = k) < ~ - (2e00)7",

where the probability P is taken over a uniformly random subset
S CV of size = [0n].

We postpone the proofs of Lemmas 4.2 and 4.3. We are now ready
to prove Lemma 2.3.

Proor oF LEMMA 2.3. Combining everything in this section, we
deduce that

Bni(f) € 3 gy D, lEnts()]
“ se(Y)
‘ (€-uniform block factorization)
<C- g . % Z Z ulEnty ()] (Lemma 4.1)
(Z) Se(y)UeC(S)
1 3|U log(1/b)
<C- 2 6] Z Z T op2lUR2 Z [Ento ()]
O se(Y)UeC(s)
(Lemma 4.2)
_ 3Clog(1/b) n £ ~ 2
=T 7 2 )] ;Psqsa =0 oy
(rearranging)
3Clog(1/b) 2eAO
<= Z;V u[Enty(f)] Zkz( ) (Lemma 4.3)
3Clog(1/b) )
S = Z prom Z;/ plEnto(f)] 0 < £5)
. 18Clog(1/b) 18C10g(1/b) Z (Ento(F)]. (Zz;lzl/:_: - 12)

veV

This establishes the lemma. )

Proof of Technical Lemmas. We first prove Lemma 4.2 which
gives a crude bound on the approximate tensorization constant for
any subset and boundary condition.

ProoF oF LEMMA 4.2. Fix a subset U C V of size k > 1 and some
boundary condition £ € Qy\y. Let C1 = C1(U, &) be the optimal

constant of approximate tensorization for ,ug; hence, for every

function f : Q§ — R one has

Entf,(f) < C1 . g [Ento(f)]-
velU
Let A = A(U, &) be the spectral gap of the Glauber dynamics for yé,
and let p = p(U, &) be the standard log-Sobolev constant. Thus, for

every function f : er — R it holds that

AVary (f) < = =S Varo ()

velU
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DN

velU

Since Varv(\/?) < Enty(f), we have

1
Ci £ —;
1 ok
see also [10, Proposition 1.1]. Next, [18, Corollary A.4] gives a
comparison between the standard log-Sobolev constant and the

spectral gap:

Varv(\/_) .

pEnt =

(6)

(1-2p%)
 log(1/p* =1)
where p* = min__ ¢ ,ug(o). Since p is b-marginally bounded, we
U
have y* > bk Also, notice that IQ(§]| =1land |Qi,| = 2 corresponds
to trivial cases where we have C; < 1, so we may assume that
|Q | > 3 which makes p* < 1/3. It follows that

> o)
P = 3klog(1/b)’
Finally, Cheeger’s inequality yields
cbz
A= — 8
4 ®
where ® is the conductance of the Glauber dynamics defined by
®= min &g,
Q,cQf,
TACHES
Pou(Q0. 25 \ Q)
b= ——p
,UU(Q())
1

> Hy(@Pafo.m).

¢
15 (Q0) €00 L eqF\q,

Our assumption that y is totally-connected guarantees ®q, > 0
for every Qo C Q‘fU with ,uig](Qo) < % Furthermore, since y is
b-marginally bounded, for every o € Qp and 7 € Q[g] \ Qp such
that Pg (o, 7) > 0 we have

bk+1
k

b
iy (@) Paule, 1) = bF - 2 =
This gives

2bk+1
d >

Combining Egs. (6) to (9), we finally conclude that

3k% log(1/b)

<
G 2b2k+2

>

as claimed. ]

Next we establish Lemma 4.3. We use the following lemma con-
cerning the number of connected induced subgraphs in a bounded
degree graph.

Lemma 4.4 ([8, Lemma 2.1]). Let G = (V,E) be a graph with
maximum degree at most A, and v € V. Then for every k € N*, the
number of connected induced subgraphs of G containing v with k
vertices is at most (eA)<1.
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We then prove Lemma 4.3.

ProoF oF LEmmA 4.3. If Ay (k) denotes the collection of subsets
of vertices U C V such that |U| = k, v € U, and G[U] is connected,
then by the union bound, we have

Ps(|Su| = k) < Ps(3U € Ay(k) : U € S)

< Z Ps(U C S)
UeA, (k)
t -1 {—k+1
=@ e
k-1
t (€-1
smv(k)«—-( ) :
n \n-—-1

We may assume that n > 2 (when n = 1 the lemma holds trivially),
and thus

Y

—_

6n
<

< 26.
n-—1

<
n—1

The lemma then follows immediately from | A (k)| < (eA)*~! by

Lemma 4.4. m|

5 PROOFS OF MAIN RESULTS

In this section we prove our main results Theorems 1.1 to 1.5.

By Theorem 1.9, to establish optimal mixing time bound it suf-
fices to show marginal boundedness and spectral independence for
the corresponding Gibbs distribution.

We first consider antiferromagnetic 2-spin systems. Let f,y, A
be reals such that 0 < f < y,y > 0, fy < 1 and A > 0 so the triple
(B, v, ) specifies parameters of an antiferromagnetic 2-spin system.
We state here the formal definition of up-to-A uniqueness with gap
§ given in [39].

Definition 5.1 (Up-to-A uniqueness with gap §, [39]). For each
1 <d < A define

d
PR+1
Ry =1
faw =1
and denote the unique fixed point of f; by RZ. We say the parame-
ters (B, y, A) are up-to-A unique with gap § if |fé(R2)| <1-4 for
all1<d<A.

Proor oF THEOREM 1.1. The proof of [16, Theorem 3] showed
that for antiferromagnetic 2-spin systems that are up-to-A unique
with gap &, the Gibbs distribution u is O(1/8)-spectrally indepen-
dent. Also, by considering the worst configuration of the neighbor-
hood for soft-constraint models (i.e., 0 < f < y) or 2-hop neighbor-
hood for hard-constraint models (i.e., 0 = § < y), one can check
that y is b-marginally bounded for some constant b = b(A, S, y, A).
The theorem then follows from Theorem 1.9. ]

Though in general the constant C = C(A, 6, B, y, A) for bounding
the mixing time depends on the parameters (f, y, 1) of the model,
in most applications such as the hard-core model (Theorem 1.2)
and the Ising model (Theorem 1.3) we can make the constant C
independent of all parameters. This is achieved by considering sepa-
rately when the parameters are pretty far away from the uniqueness
threshold, in which case we can deduce rapid mixing under the
Dobrushin uniqueness condition [20], see also [9, 52].
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Lemma 5.2. Consider an arbitrary distribution y over [q]V . For two
distinct vertices u,v € V, define

R(u,v) =

max
T,feQV\{v}
Dif(z7,&)={u}

where Dif (7, &) = {w € V : 1y, # &, }. If there exists c € (0,1) such
that for every vertexv € V we have

Z R(u,v) <1-c¢

ueV\{v}

(o0 ="1 ov\ (0} =1) = mov="1 ov\ (0} =O)llpy

(in which case we say the Dobrushin uniqueness condition holds
with constant c), then the mixing time of the Glauber dynamics for
sampling from p satisfies
n n
Tix(Pos,€) < = log (%)
c €

We present next the proofs of Theorems 1.2 and 1.3.

PrOOF OF THEOREM 1.2. By Theorem 1.1, for every A < (1 —
8)Ac(A) there exists C = C(A, 8, A) such that the Glauber dynamics
mixes in Cn log(n/¢) steps. Meanwhile, it is easy to check that, when
A< ﬁ the Dobrushin uniqueness condition holds with ¢ = 1/2,
and thus the mixing time is upper bounded by 2nlog(n/¢). If we
take

C' =C'(A, §) := max {2,

sup C(A 6,0 ¢,

L <A<(1-8)Ac(D)
then the mixing time of the Glauber dynamics is upper bounded by
C’nlog(n/¢), as claimed. o

Proor oF THEOREM 1.3. Consider the antiferromagnetic Ising
model (f = y < 1) and by symmetry we may assume A < 1.1t is
shown in [16] that the Gibbs distribution y is O(1/6)-spectrally in-
dependent in this case, and by considering the worst neighborhood
configuration one can check that y is b-marginally bounded for

A -1,,A
b=min{l—,ﬂ—y}
AR +17 A yA 41
A
A-2
M) A
TOABA 41 - 28

2 (%)A v B

Thus, when A > 1/500, Theorem 1.9 implies that the mixing time of
the Glauber dynamics is at most AC0/8), log(n/e¢) for large enough
n. Meanwhile, if A < 1/500 then one can check that the Dobrushin
uniqueness condition holds with ¢ = 1/2, and thus the mixing time
is upper bounded by 2nlog(n/¢). This proves the theorem for the
antiferromagnetic case.

Next, consider the ferromagnetic Ising model (f = y > 1). As-
sume A > 1 for convenience. The Gibbs distribution y is O(1/6)-
spectrally independent by Theorem 26 of [16] and b-marginally
bounded for

>

1 1
AR +17 27 1yA 41
1
A +1

b:min{

1
= >
ABA+1 7 A

1
A 281"

A-2
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If A < 500 the mixing time is < AO(/8)y log(n/e) by Theorem 1.9,
and if A > 500 the mixing time is < 2nlog(n/¢) by the Dobrushin
uniqueness condition. This shows the ferromagnetic case, and com-
pletes the proof of the theorem. O

For random colorings, we can use the same argument.

ProoOF oF THEOREM 1.4. [23] showed that the uniform distribu-
tion p of colorings is O(1/8)-spectrally independent under our
assumption. (Note that the notion of spectral independence in [23]
implies the one in [14] which is Definition 1.8; see Lemma 3.6 of
[23] and Theorem 8 of [14]; also, [23] gave a better bound on the
spectral independence constant and applicable to a slightly larger
parameter region). Also, the proof of Lemma 3 from [26] can be
adapted to show that p is Q(1/q)-marginally bounded. Hence, The-
orem 1.9 implies that the mixing time of the Glauber dynamics is at
most Cnlog(n/e) for some C = C(A, 8, q). Notice that when g > 3A,
the Dobrushin uniqueness condition holds with ¢ = 1/2 and thus
the mixing time is at most 2nlog(n/e¢). By taking

max

C’ =C/(A, §) := max {2,
(a*+8)A<q<3A

C(A, 6, q)} ;
we get an upper bound C’nlog(n/¢) for the mixing time.
Finally, we give the proof for the monomer-dimer model.

Proor oF THEOREM 1.5. Notice that the monomer-dimer model
on G is equivalent to the hard-core model on the line graph of
G; so Theorem 1.9 is still applicable. Theorem 2.9 shows that the
Gibbs distribution y of the monomer-dimer model is -spectrally
independent for

n = min {ZAA, ZM} .

Meanwhile, by considering the worst configuration on the 2-hop
neighborhood one can show that y is b-marginally bounded for
some b = b(A, A). Thus, the theorem follows from Theorem 1.9. O

6 OPEN PROBLEMS

e Can we improve the approximate tensorization constant C;
in Theorem 2.8 and the mixing time bound in Theorem 1.9
with a better dependence on the maximum degree A and on
the spectral independence 7? For example, for the hard-core
model when A < (1 — §)A¢(A), currently our mixing time
bound scales as AOA*/9) x O(nlogn). Can we improve it
and get poly(A, 1/8) nlogn?

One can show the spectral independence of the monomer-
dimer model on the infinite A-regular tree T is exactly 12__xx

where
1 2
x = -
A-1

V1+4A(A-1)+1

is the (unsigned) pairwise influence between edges of Tx
sharing a vertex. Note that for A = 2, thisis V1+44 -1 =
©(V7), while for A > 3, the spectral independence O(1/A)
is independent of A.

This suggests that while the bound on the total influence
of an edge is tight, the bound in Theorem 2.9 on the maxi-
mum eigenvalue obtained by controlling the co-norm of the
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influence matrix is not tight, in contrast to the upper bound
in [16] for vertex two-spin systems (which has a matching
lower bound [2]). It would be interesting to obtain improved
bounds on the spectral independence for the monomer-dimer
model.

Finally, we ask if spectral independence is equivalent to
the notion of strong spatial mixing which has been studied
extensively.
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