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ABSTRACT
We prove an optimal mixing time bound for the single-site update

Markov chain known as the Glauber dynamics or Gibbs sampling

in a variety of settings. Our work presents an improved version

of the spectral independence approach of Anari et al. (2020) and

shows O(n logn) mixing time on any n-vertex graph of bounded

degree when the maximum eigenvalue of an associated influence

matrix is bounded. As an application of our results, for the hard-core

model on independent sets weighted by a fugacity λ, we establish
O(n logn) mixing time for the Glauber dynamics on any n-vertex
graph of constant maximum degree ∆when λ < λc (∆)where λc (∆)
is the critical point for the uniqueness/non-uniqueness phase tran-

sition on the ∆-regular tree. More generally, for any antiferromag-

netic 2-spin system we proveO(n logn)mixing time of the Glauber

dynamics on any bounded degree graph in the corresponding tree

uniqueness region. Our results apply more broadly; for example,

we also obtain O(n logn) mixing for q-colorings of triangle-free
graphs of maximum degree ∆ when the number of colors satisfies

q > α∆ where α ≈ 1.763, and O(m logn) mixing for generating

random matchings of any graph with bounded degree andm edges.

Our approach is based on two steps. First, we show that the

approximate tensorization of entropy (i.e., factorizing entropy into

single vertices), which is a key step for establishing the modified log-

Sobolev inequality in many previous works, can be deduced from

entropy factorization into blocks of fixed linear size. Second, we

adapt the local-to-global scheme of Alev and Lau (2020) to establish

such block factorization of entropy in a more general setting of pure

weighted simplicial complexes satisfying local spectral expansion;

this also substantially generalizes the result of Cryan et al. (2019).
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1 INTRODUCTION
This paper establishes a well-known conjecture that the Glauber

dynamics converges very quickly to its stationary distribution in

the tree uniqueness region, i.e., decay of correlations region. The

Glauber dynamics is the quintessential example of a local Markov

chain, and its convergence rate is of great interest due to its sim-

plicity and wide applicability.

Our setting is the general framework of spin systems. Spin sys-

tems capture many combinatorial models of interest, including the

hard-core model on weighted independent sets, the Ising model,

and colorings, and are equivalent to undirected graphical models.

For integer q ≥ 2, a q-state spin system is defined by a q × q inter-

action matrix A. For a given graphG = (V , E) with n = |V | vertices,

the configurations of the model are the collection Ω of assignments

σ : V → [q] of spins to the vertices of the graph. Each configura-

tion σ ∈ Ω has an associated weightw(σ ) defined by the pairwise

interactions weighted by the interaction matrix A, see Section 1.1

for a detailed definition.

The Gibbs distribution µ is the probability distribution over the

collection Ω of configurations and is defined as µ(σ ) = w(σ )/Z
where Z =

∑
σ w(σ ) is the normalizing factor known as the parti-

tion function. Approximately sampling from the Gibbs distribution

is polynomial-time equivalent to approximating the partition func-

tion [34, 50]. Given an ε > 0 and δ > 0, an FPRAS for the partition

function outputs a (1 ± ε)-relative approximation of the partition

function with probability ≥ 1 − δ , whereas an FPTAS is the deter-
ministic analog (i.e., it achieves δ = 0).

The canonical example of a spin system in statistical physics

is the Ising model. The Ising model is a 2-spin system (i.e., q =
2); the spin space is denoted as {+,−} and the configurations of

the model are the 2
n
assignments of spins {+,−} to the vertices

of the underlying graph. In the simpler case without an external

field the Ising model has a single parameter β > 0 corresponding

to the inverse temperature. A configuration σ ∈ Ω has weight

w(σ ) = βm(σ )
where m(σ ) = |{(u,v) ∈ E : σ (u) = σ (v)}| is the

number of monochromatic edges in σ . When β > 1 then the model

is ferromagnetic as the two fully monochromatic configurations

1537

https://doi.org/10.1145/3406325.3451035
https://doi.org/10.1145/3406325.3451035


STOC ’21, June 21–25, 2021, Virtual, Italy Zongchen Chen, Kuikui Liu, and Eric Vigoda

have maximum weight, whereas when β < 1 then the model is

antiferromagnetic.

The hard-core model is a natural combinatorial example of an

antiferromagnetic 2-spin system. The model is parameterized by a

fugacity λ > 0. For a graph G = (V , E), configurations of the model

are the collection Ω of independent sets of G , and the weight of an

independent set σ isw(σ ) = λ |σ |
.

In general, a 2-spin system is defined by three parameters β,γ ≥

0 and λ > 0. A spin configuration σ ∈ {0, 1}V is assigned weight:

w(σ ) = βm1(σ )γm0(σ )λn1(σ ), where, for s ∈ {0, 1}, ms (σ ) is the
number of edges where both endpoints receive spin s and ns (σ )
is the number of vertices assigned spin s . Note the Ising model

corresponds to the case β = γ where λ is the external field, and

the hard-core model corresponds to β = 0,γ = 1. The model is

ferromagnetic when βγ > 1 and antiferromagnetic when βγ < 1

(the model is trivial when βγ = 1).

The Glauber dynamics is a simple Markov chain (Xt ) designed
for sampling from the Gibbs distribution µ. The transitions Xt →
Xt+1 update a randomly chosen vertex as follows: (i) select a vertex

v uniformly at random; (ii) for all u , v , set Xt+1(u) = Xt (u); and
(iii) choose Xt+1(v) from the marginal distribution for the spin at

v conditional on the configuration Xt+1(N (v)) on the neighbors

N (v) ofv . It is straightforward to verify that the chain is ergodic (in

the cases considered here, see the definition of totally-connected

in Section 1.1) and the unique stationary distribution is the Gibbs

distribution.

Themixing time is the number of transitions, for the worst initial

state X0, to guarantee that Xt is within total variation distance ≤

1/4 of the Gibbs distribution; for a formal statement, see Eq. (1). We

say the chain is rapidly mixing when the mixing time is polynomial

in n = |V |. Hayes and Sinclair [29] established that the mixing

time of the Glauber dynamics is Ω(n logn) for a family of bounded-

degree graphs, and hence we say that the Glauber dynamics has

optimal mixing time when the mixing time is O(n logn).
The computational complexity of approximating the partition

function is closely connected to statistical physics phase transi-

tions. For ∆ ≥ 3, consider the tree Tℓ of height ℓ where all of

the internal vertices have degree ∆, and let r denote its root. The
uniqueness/non-uniqueness phase transition captures whether the

leaves influence the root, in the limit as the height grows.

The uniqueness/non-uniqueness phase transition is nicely illus-

trated for the Ising model which has two extremal boundaries: the

all + boundary and all − boundary. For s ∈ {+,−}, let ps
ℓ
denote the

marginal probability that the root has spin + in the Gibbs distribu-

tion onTℓ conditional on all leaves having spin s . Themodel is in the

uniqueness phase iff limℓ→∞ p+
ℓ
= limℓ→∞ p−

ℓ
. For the Ising model

(without an external field) the uniqueness/non-uniqueness phase

transition occurs at βc (∆) = (∆ − 2)/∆ for the antiferromagnetic

case and βc (∆) = ∆/(∆−2) for the ferromagnetic case. For the hard-

core model, the critical fugacity is λc (∆) := (∆ − 1)∆−1/(∆ − 2)∆.

This phase transition on the ∆-regular tree is connected to the

complexity of approximating the partition function on graphs of

maximum degree ∆.
For the hard-core model, for constant ∆, for any δ > 0, Weitz [53]

presented an FPTAS for the partition function on graphs of maxi-

mum degree ∆ when λ < (1 − δ )λc (∆). In contrast, when λ > λc ,

Sly [48] (see also [25, 49], unless NP = RP, there is no FPRAS for

approximating the partition function on graphs of maximum degree

∆. Li, Lu, and Yin [39] generalized Weitz’s correlation decay algo-

rithmic approach to all antiferromagnetic 2-spin systems when the

system is up-to-∆ unique. One important caveat to these correlation

decay approaches is that the running time depends exponentially

on log∆ and 1/δ .
Despite the algorithmic successes of the correlation decay ap-

proach, establishing rapid mixing of the Glauber dynamics in the

same tree uniqueness region was a vexing open problem. Anari,

Liu, and Oveis Gharan [2] introduced the spectral independence

approach based on the theory of high-dimensional expanders [1, 19,

35, 37, 45], and established rapid mixing of the Glauber dynamics

for the hard-core model on any graph of maximum degree ∆ when

λ < (1 − δ )λc (∆) for δ > 0. However, while the mixing time had

polynomial dependence on ∆, it also had doubly exponential depen-
dence on 1/δ . In [16] the authors established rapid mixing for all an-

tiferromagnetic 2-spin systems when the system is up-to-∆-unique
with gap δ and improved the mixing time to an exponential depen-

dence on 1/δ . Here, roughly speaking, up-to-∆ uniqueness with

gap δ means (multiplicative) gap δ from the uniqueness threshold

on the ∆-regular tree for all d ≤ ∆; see Definition 5.1 for a precise

statement, and [39] for more discussion.

In this work, we not only establish a fixed polynomial upper

bound on the mixing time, but we also prove optimal mixing of the

Glauber dynamics. Our approach holds for general spin systems.

The spectral independence approach, first introduced for 2-spins in

[2] and subsequently extended to q-spins in [14, 23], considers the

qn × qn influence matrix. For spins i, j ∈ [q] and vertices u,v ∈ V ,
the entry ((u, i), (v, j)) of the influence matrix measures the effect

of vertex u having spin i on the marginal probability that vertex v
has spin j , see Definition 1.7 for a precise statement. Here we prove

that if the maximum eigenvalue of the influence matrix is upper

bounded and the marginal probabilities are lower bounded then

the mixing time is O(n logn) where the only dependence on 1/δ
and ∆ is in the constant factor captured by the big-O notation. Our

main result is stated in Theorem 1.9 in Section 1.1 after presenting

the necessary definitions.

We establish optimal mixing time of O(n logn) by proving that

the Glauber dynamics contracts relative entropy (with respect to the

Gibbs distribution) at a constant rate. This is analogous to establish-

ing amodified log-Sobolev constant for the Glauber dynamics; there

are several recent results in other contexts also proving entropy

decay for various Markov chains [6, 11, 17]. In contrast, previous

works utilizing the spectral independence approach [2, 16] and

related works on high-dimensional expanders [1, 19, 35, 37, 45]

consider the spectral gap (or analogously, decay of variance); such

an approach is unable to establish optimal mixing time. Our proof

approach is outlined in Section 2.2.

The application of our results is nicely illustrated for the partic-

ular case of antiferromagnetic 2-spin systems. We prove O(n logn)
mixing time of the Glauber dynamics when the system is up-to-∆-
unique. This is the same region where the correlation decay results

of [39] and the rapid mixing results of [16] hold, which matches the

hardness results of [49]. Note, a mixing time ofO(n logn) implies an

Õ(n2) time FPRAS for approximating the partition function [38, 50].
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Theorem 1.1. For all ∆ ≥ 3, all δ ∈ (0, 1), and all parameters

(β,γ , λ) specifying an antiferromagnetic 2-spin system which is up-

to-∆ unique with gap δ , there exists C = C(∆, δ , β,γ , λ) such that for

every n-vertex graph G = (V , E) of maximum degree at most ∆, the
mixing time of the Glauber dynamics for the 2-spin system onG with

parameters (β,γ , λ) is at most Cn logn.

For the case of the hard-core model our theorem yields the fol-

lowing result.

Theorem 1.2. For all ∆ ≥ 3 and all δ ∈ (0, 1), there exists C =
C(∆, δ ) such that for every n-vertex graph G = (V , E) of maximum

degree at most ∆ and every λ ≤ (1 − δ )λc (∆), the mixing time of the

Glauber dynamics for the hard-core model on G with fugacity λ is at

most Cn logn.

For the case of the Ising model in both the antiferromagnetic and

ferromagnetic case, our theorem yields optimal mixing whenever

β is between βc (∆) =
∆−2
∆ and βc (∆) =

∆
∆−2 .

Theorem 1.3. For all ∆ ≥ 3 and all δ ∈ (0, 1), there exists C =
C(∆, δ ) such that for every n-vertex graph G = (V , E) of maximum

degree at most ∆, every β ∈ [∆−2+δ∆−δ ,
∆−δ

∆−2+δ ], and every λ > 0, the

mixing time of the Glauber dynamics for the Ising model on G with

inverse temperature β and external field λ is at most Cn logn.

Remark 1. We can actually show that specifically for the Ising

model, C = ∆O (1/δ )
suffices when n is large enough and so we

obtain polynomial mixing time evenwhen the graph has unbounded

degree.

Recall that the above results are tight as there is no efficient

approximation algorithm in the tree non-uniqueness region which

corresponds to λ > λc (∆) for the hard-coremodel and β < βc (∆) for
the antiferromagnetic Ising model. The only analog of the above re-

sults establishing optimal mixing time in the entire tree uniqueness

region was the work of Mossel and Sly [44] for the ferromagnetic

Ising model. Their proof utilizes the monotonicity properties of the

ferromagnetic Ising model which allows the use of the censoring

inequality of Peres and Winkler [46]. The algorithm of Jerrum and

Sinclair [33] gives an FPRAS for the ferromagnetic Ising model for

any β and any G, but the polynomial exponent is a large constant.

Our results hold for multi-spin systems as well. The most no-

table example of a multi-spin system is the q-colorings problem,

namely, proper vertex q-colorings. Given a graph G = (V , E) of
maximum degree ∆, can we approximate the number of q-colorings
of G? Jerrum [30] proved O(n logn) mixing time of the Glauber

dynamics whenever q > 2∆. This was further improved in [13, 51]

to O(n2) mixing time when q > (11/6 − ε)∆ for some small ε > 0.

There are several further improvements with various assumptions

on the girth or maximum degree, c.f. [22]. On the hardness side,

Galanis et al. [24] proved that unless NP = RP there is no FPRAS
for approximating the number of q-colorings when q is even and

q < ∆.
For triangle-free graphs, a recent pair of works [14, 23] extended

the spectral independence approach to establish rapid mixing of

the Glauber dynamics when q > (α∗ + δ )∆ for any δ > 0 where

α∗ ≈ 1.763; however the polynomial exponent in the mixing time

depends on 1/δ in these results. Using our main result we prove

O(n logn) mixing time of the Glauber dynamics under the same

conditions.

Theorem 1.4. Let α∗ ≈ 1.763 denote the unique solution to x =
exp(1/x). For all ∆ ≥ 3 and all δ > 0, there exists C = C(∆, δ ) such
that for every n-vertex triangle-free graph G = (V , E) of maximum

degree at most ∆ and every q ≥ (α∗ + δ )∆, the mixing time of the

Glauber dynamics for sampling random q-colorings on G is at most

Cn logn.

We prove spectral independence bounds for the monomer-dimer

model on all matchings of a graph; no nontrivial bounds were

previously known. Given a graph G = (V , E) and a fugacity λ > 0,

the Gibbs distribution µ for the monomer-dimer model is defined

on the collectionM of all matchings of G where µ(M) = w(M)/Z

forw(M) = λ |M |
. The Glauber dynamics for the monomer-dimer

model adds or deletes a random edge in each step. In particular,

from Xt ∈ M, choose an edge e uniformly at random from E and

let X ′ = Xt ⊕ e . If X ′ ∈ M then let Xt+1 = X ′
with probability

w(X ′)/(w(X ′) +w(Xt )) and otherwise let Xt+1 = Xt .
We prove O(m logn) mixing time for the Glauber dynamics for

sampling matchings on bounded-degree graphs with n vertices and

m edges. A classical result of Jerrum and Sinclair [32] yields rapid

mixing of the Glauber dynamics for any graph, but the best mixing

time bound was O(n2m logn) [31].

Theorem 1.5. For all ∆ ≥ 3 and all λ > 0, there exists C = C(∆, λ)
such that for every n-vertex graph G = (V , E) of maximum degree at

most ∆, the mixing time of the Glauber dynamics for the monomer-

dimer model on G with fugacity λ is at most Cm logn.

For general ferromagnetic 2-spin systems the existing picture is

not as clear as for antiferromagnetic systems. Our work extends

to ferromagnetic 2-spin systems, proving O(n logn) mixing time

for the same range of parameters as the previously best known

bounds [16, 28, 47]. In particular, we recover Theorems 26 and 27

in [16] with O(n logn) mixing time.

Finally, we mention that our techniques imply asymptotically

optimal bounds (up to constant factors) on both the standard and

modified log-Sobolev constants of the Glauber dynamics for spin

systems on bounded degree graphs in all of the regimes mentioned

above. This also applies for certain problems where prior works

have obtained rapid mixing via other techniques such as path cou-

pling and canonical paths.

1.1 Result for General Spin Systems
Our main results will follow from a general statement regarding the

Glauber dynamics for an arbitrary spin system satisfying marginal

bounds and spectral independence. We first proceed with a few

definitions.

Let q ≥ 2 be an integer and [q] = {1, . . . ,q}. Given a graph

G = (V , E), we consider the q-spin system onG parameterized by a

symmetric interaction matrix A ∈ R
q×q
≥0

representing “interaction

strengths” and a field vector h ∈ R
q
>0 representing “external fields”.

A configuration σ ∈ [q]V is an assignment of spins to vertices. The

Gibbs distribution µ = µG ,A,h over all configurations is given by

µ(σ ) =
1

ZG (A,h)

∏
{u ,v }∈E

A(σu ,σv )
∏
v ∈V

h(σv ), ∀σ ∈ [q]V
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where

ZG (A,h) =
∑

σ ∈[q]V

∏
{u ,v }∈E

A(σu ,σv )
∏
v ∈V

h(σv )

is called the partition function. The hard-core model, Ising model,

random colorings, and monomer-dimer model (equivalent to hard-

core model on line graphs) all belong to the family of spin systems.

Let µ be an arbitrary distribution over [q]V . A configuration

σ ∈ [q]V is said to be feasible with respect to µ if µ(σ ) > 0. Let

Ω = Ω(µ) denote the collection of all feasible configurations (we

omit µ when it is clear from the context); namely, Ω is the support of

µ. Furthermore, for Λ ⊆ V let ΩΛ = {τ ∈ [q]Λ : µΛ(τ ) > 0} denote

the collection of all feasible (partial) configurations on Λ, with the

convention that Ωv = Ω{v } for a single vertex v . Observe that

ΩV = Ω. For any subset Λ ⊆ V and boundary condition τ ∈ ΩΛ,

we often consider the conditional distribution µτS (·) = µ(·|σΛ =τ )
over configurations on S = V \Λ, and we shall write Ωτ

U for the set

of feasible (partial) configurations onU ⊆ S under this conditional

measure.

For a subset S ⊆ V , the Hamming graph HS is defined to be the

graph with vertex set [q]S of all configurations on S such that two

configurations are adjacent iff they differ at exactly one vertex. A

collection Ω0 ⊆ [q]S of configurations on S is said to be connected

if the induced subgraph H[Ω0] is connected. A distribution µ over

[q]V is said to be totally-connected if for every nonempty subset

S ⊆ V and every boundary condition τ ∈ ΩV \S , the set Ωτ
S is

connected.

Assumption. Throughout the paper, we always assume that the

distribution µ we are interested in is totally-connected.

We remark that all soft-constraint models (i.e., A(i, j) > 0 for

all i, j ∈ [q]) satisfy this assumption and common hard-constraint

models, including the hardcore model, q-colorings when q ≥ ∆ + 2,
and matchings, all satisfy this assumption as well.

The Glauber dynamics, also known as the Gibbs sampling, is

a simple, natural, and popular Markov chain for sampling from

a distribution µ over [q]V . The dynamics starts with some (pos-

sibly random) configuration X0. For every t ≥ 1, a new random

configuration Xt+1 is generated from Xt as follows: pick a coor-

dinate v ∈ V uniformly at random, set Xt+1(u) = Xt (u) for all
u ∈ V \ {v}, and sample Xt+1(v) from the conditional distribution

µ(σv = · | σV \{v } =Xt (V \ {v})). Denote the transition matrix of

the Glauber dynamics by Pgl. If µ is totally-connected, then the

Glauber dynamics is ergodic (i.e., irreducible and aperiodic) and

has stationary distribution µ.
Let P be the transition matrix of an ergodic Markov chain (Xt )

on a finite state space Ω with stationary distribution µ. For t ≥ 0

and σ ∈ Ω, let P t (σ , ·) denote the distribution of Xt when starting

the chain withX0 = σ . For ε ∈ (0, 1), themixing time of P is defined

as

Tmix(P, ε) = max

σ ∈Ω
min

{
t ≥ 0 :



P t (σ , ·) − µ



TV

≤ ε
}
. (1)

We will require two conditions of the distribution µ. The first is
that the marginal probability of each vertex is bounded away from

0 under any conditioning.

Definition 1.6 (Bounded Marginals). We say a distribution µ over

[q]V is b-marginally bounded if for every Λ ⊊ V and τ ∈ ΩΛ, it

holds for every v ∈ V \ Λ and i ∈ Ωτ
v that,

µ(σv =i | σΛ =τ ) ≥ b .

The second condition is the notion of spectral independence,

first given by [2] and later generalized to multi-spin systems in

[14, 23]. Here we use the definitions from [14].

Definition 1.7 (Influence Matrix). Given Λ ⊊ V and τ ∈ ΩΛ, let

Ṽτ = {(u, i) : u ∈ V \ Λ, i ∈ Ωτ
u }.

For every (u, i), (v, j) ∈ Ṽτ with u , v , we define the (pairwise)

influence of (u, i) on (v, j) conditioned on τ by

Ψτ
µ
(
(u, i), (v, j)

)
= µ(σv = j | σu =i,σΛ =τ ) − µ(σv = j | σΛ =τ ).

Furthermore, let Ψτ
µ
(
(v, i), (v, j)

)
= 0 for all (v, i), (v, j) ∈ Ṽτ . We

call Ψτ
µ the (pairwise) influence matrix conditioned on τ .

Note that all eigenvalues of the influence matrix Ψτ
µ are real; see

[2, 5, 14].

Definition 1.8 (Spectral Independence). We say a distribution µ
over [q]V is η-spectrally independent if for every Λ ⊊ V and τ ∈ ΩΛ,

the largest eigenvalue λ1(Ψ
τ
µ ) of the influence matrix Ψτ

µ satisfies

λ1(Ψ
τ
µ ) ≤ η.

The work of [23] defined another version of influence matrix by

Ψτ
µ (u,v) =

max

i , j ∈Ωτ
u
∥µ(σv = · | σu =i,σΛ = τ ) − µ(σv = · | σu = j,σΛ = τ )∥TV ,

and the spectral independence correspondingly. We remark that

Definition 1.8 is weaker than the notion of spectral independence

given in [23], and for all current applications as in [14, 23] or here

in this paper, both definitions work.

Our main result is that if the Gibbs distribution on a bounded-

degree graph is both marginally bounded and spectrally indepen-

dent, then the Glauber dynamics satisfies the modified log-Sobolev

inequality with constant Ω(1/n) (see Definition 3.3) and mixes in

O(n logn) steps, where n is the number of vertices of the graph.

Theorem 1.9. Let ∆ ≥ 3 be an integer and b,η > 0 be reals. Suppose

that G = (V , E) is an n-vertex graph of maximum degree at most ∆
and µ is a totally-connected Gibbs distribution of some spin system on

G. If µ is both b-marginally bounded and η-spectrally independent,

then the Glauber dynamics for sampling from µ satisfies the modified

log-Sobolev inequality with constant
1

C1n where

C1 =

(
∆

b

)O (
η
b2
+1

)
.

Furthermore, the mixing time of the Glauber dynamics satisfies

Tmix(Pgl, ε) =

(
∆

b

)O (
η
b2
+1

)
×O

(
n log

(n
ε

))
.

Remark 2. More specifically, when n ≥ 24∆
b2

(
4η
b2
+ 1) we can choose

C1 =
18 log(1/b)

b4

(
24∆

b2

) 4η
b2
+1

,

1540



Optimal Mixing of Glauber Dynamics: Entropy Factorization via High-Dimensional Expansion STOC ’21, June 21–25, 2021, Virtual, Italy

and the mixing time is bounded by

Tmix(Pgl, ε) ≤
18 log(1/b)

b4

(
24∆

b2

) 4η
b2
+1

n

(
logn + log log

1

b
+ log

1

2ε2

) .
Previous results [2, 14, 16, 23] could obtain poly(∆) × nO (η)

mix-

ing but without the assumption of marginal boundedness. In the

setting of spin systems, we always have b-marginal boundedness

withb depending only on the parametersA,h of the spin system and

the maximum degree ∆ of the graph, and so our results supersede

those of [2, 14, 16, 23] in the bounded degree regime.

Remark 3. After the first version of this paper, the work [5] refor-

mulates the proof of Theorem 1.9 without using simplicial com-

plexes; in particular, the constant C1 is brought down to C1 =

(∆/b)O ((η/b)+1)
. The proof approach in this paper can also be mod-

ified to achieve the same bound, by considering Lemma 5.8 from

the full version [15] of this paper specified to simplicial complexes

corresponding to spin systems.

1.2 Result for General Simplicial Complexes
The recent work [2] studied spin systems, and more generally any

distribution over [q]V , in a novel way by viewing full and partial

configurations as a high dimensional simplicial complex and utiliz-

ing tools such as high-dimensional expansion. Subsequent works

[14, 16, 23] follow the same path as well. In this paper we also study

spin systems in the framework of simplicial complexes. Moreover,

we obtain new bounds on the mixing time and modified log-Sobolev

constant of the global down-up and up-down walks for arbitrary

pure weighted simplicial complexes. Before presenting our results,

we first review some standard notation.

A simplicial complex X is a collection of subsets (called faces)

of a ground set U which is downwards closed; that is, if σ ∈ X

and τ ⊆ σ then τ ∈ X. The dimension of a face is its size, and

the dimension of X is defined to be the maximum dimension of its

faces. We say an n-dimensional simplicial complex X is pure if every

face is contained in a maximal face of size n. We write X(k) for the
collection of faces of size k . For a k-dimensional face τ ∈ X(k), we
can define a pure (n − k)-dimensional simplicial subcomplex Xτ by

taking Xτ = {ξ ⊆ U \ τ : τ ∪ ξ ∈ X}.

For a pure n-dimensional simplicial complex X, consider a posi-

tive weight functionw : X(n) → R>0, which induces a distribution

πn on X(n) with πn (σ ) ∝ w(σ ). Furthermore, we can also define a

distribution πk overX(k) for each nonnegative integer k < n via the

following process: sampleσ from πn , and select a uniformly random

subset of size k . For τ ∈ X(k), the weight function w induces the

weights for the simplicial subcomplex Xτ bywτ (ξ ) = w(τ ∪ ξ ) for
each ξ ∈ Xτ (n−k). The distribution πτ , j is also defined accordingly
for each nonnegative integer j ≤ n − k .

As noticed in [2], there is a natural way to represent every distri-

bution µ over [q]V with |V | = n as a pure n-dimensional weighted

simplicial complex (X = XΩ, µ), which is defined as follows. The

ground set of X consists of pairs

Ṽ = {(v, i) : v ∈ V , i ∈ Ωv }.

The maximal faces of X consist of collections of n pairs forming

a valid configuration σ ∈ Ω; i.e., every configuration σ ∈ Ω cor-

responds to a maximal face {(v,σv ) : v ∈ V }. The rest of X is

generated by taking downwards closure so that X is pure by con-

struction. Namely, everyU ⊆ V and τ ∈ ΩU corresponds to a face

{(v, τv ) : v ∈ U }; we shall denote it by (U , τ ) for simplicity. Note

that the faces of intermediate dimension can be thought of as partial

configurations. Now, if there is a weight function w : Ω → R>0
associated with µ such that µ(σ ) ∝ w(σ ) for each σ ∈ Ω, then it

also gives a weight functionw : X(n) → R>0 by the one-to-one cor-
respondence between Ω and X(n), and thus induces the associated

distribution πn on X(n). Observe that πn is exactly the distribu-

tion µ. Moreover, for each k < n, the distribution πk on X(k) is
given by

πk (U , τ ) =
1(n
k
) µ(σU =τ )

for everyU ⊆ V and τ ∈ ΩU .

For simplicial complexes, the global down-up and up-downwalks

between faces of distinct dimensions have attracted a lot of attention

in recent years [1, 3, 17, 19, 35, 37, 45]. For integers 0 ≤ r < s ≤ n,
define the order-(s, r ) (global) down-up walk with transition matrix

denoted by P∨s ,r to be the following random walk over X(s): in each

step we remove s − r elements, chosen uniformly at random, from

the current face σt ∈ X(s) to obtain a face τt ∈ X(r ), and then

pick ξt+1 ∈ Xτt (s − r ) from the distribution πτt ,s−r and set σt+1 =
τt ∪ ξt+1. The stationary distribution of P∨s ,r is πs . In particular,

observe that the Glauber dynamics for a distribution µ over [q]V

is the same as the order-(n,n − 1) down-up walk for the weighted

simplicial complex (X, µ). Similarly, the order-(r , s) (global) up-down
walk with transition matrix P∧r ,s is a random walk over X(r ) with
stationary distribution πr : given the current face τt ∈ X(r ), sample

ξt+1 ∈ Xτt (s − r ) from πτt ,s−r , set σt+1 = τt ∪ ξt+1, and finally

remove s − r elements from σt+1 uniformly at random to obtain

τt+1 ∈ X(r ).
We establish the modified log-Sobolev inequality and give mean-

ingful bounds on the mixing time for the down-up and up-down

walks for arbitrary weighted simplicial complexes. Our proof uti-

lizes the local-to-global scheme as in [1] and establishes contraction

of entropy extending the result of [17]. Before stating our main re-

sult, we first give the definitions of marginal boundedness and local

spectral expansion for simplicial complexes. As we shall see from

Claims 1.11 and 1.13 below, our requirements of marginal bounded-

ness and spectral independence in Theorem 1.9 is translated from

the corresponding conditions needed for simplicial complexes.

Definition 1.10 (BoundedMarginal). We say a puren-dimensional

weighted simplicial complex (X,w) is (b0, . . . ,bn−1)-marginally

bounded if for all 0 ≤ k ≤ n−1, every τ ∈ X(k), and every i ∈ Xτ (1),
we have

πτ ,1(i) ≥ bk .

Claim 1.11. If a distribution µ over [q]V is b-marginally bounded,

then the weighted simplicial complex (X, µ) for µ is (b0, . . . ,bn−1)-

marginally bounded with bk =
b

n−k for each k .

The proof of Claim 1.11 can be found in the full version [15] of

this paper.
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The global walks in simplicial complexes can be studied by

decomposition into local walks which we define now. For every

0 ≤ k ≤ n− 2 and every face τ ∈ X(k), the local walk at τ with tran-

sition matrix Pτ is the following random walk over Xτ (1): given the

current element i ∈ Xτ (1), the next element is generated from the

distribution πτ∪{i },1. One can relate mixing properties of the local

walks to the mixing properties of the global walks; see [1, 3, 17, 37].

In nearly all prior works, such a relation was quantified using the

spectral gap of the walks. Like in [17], while our ultimate goal is to

show the modified log-Sobolev inequality of the global walks, we

will still need the notion of local spectral expansion for local walks.

Let us now capture this idea using the following definition, taking

after [1, 19, 35–37, 45].

Definition 1.12 (Local Spectral Expansion [1]). We say a pure n-
dimensional weighted simplicial complex (X,w) is a (ζ0, . . . , ζn−2)-
local spectral expander if for every 0 ≤ k ≤ n−2 and every τ ∈ X(k),
we have

λ2(Pτ ) ≤ ζk .

Claim 1.13. If a distribution µ over [q]V is η-spectrally independent,
then the weighted simplicial complex (X, µ) is a (ζ0, . . . , ζn−2)-local
spectral expander with ζk =

η
n−k−1 for each k .

Proof. This is Theorem 8 from [14]. □

We then show that for any pure weighted simplicial complexes,

the modified log-Sobolev inequality (see Definition 3.3) holds for

down-up and up-down walks if the marginal probabilities of the

simplicial complex are bounded away from zero and all local walks

have good expansion properties. This also bounds the mixing times

of these random walks.

Theorem 1.14. Let (X,w) be a pure n-dimensional weighted simpli-

cial complex. If (X,w) is (b0, . . . ,bn−1)-marginally bounded and has

(ζ0, . . . , ζn−2)-local spectral expansion, then for every 0 ≤ r < s ≤ n,
both the order-(s, r ) down-up walk and the order-(r , s) up-down walk

satisfy the modified log-Sobolev inequality with constant κ = κ(r , s)
defined as

κ =

∑s−1
k=r Γk∑s−1
k=0 Γk

where: Γ0 = 1; for 1 ≤ k ≤ s−1, Γk =
∏k−1

j=0 α j ; and for 0 ≤ k ≤ s−2,

αk = max

{
1 −

4ζk

b2k (s − k)2
,

1 − ζk

4 + 2 log( 1

2bkbk+1
)

}
.

Furthermore, the mixing time of the order-(s, r ) down-up walk is

bounded by

Tmix(P
∨
s ,r , ε) ≤

⌈
1

κ

(
log log

1

π∗
s
+ log

1

2ε2

)⌉
(2)

where π∗
s = minσ ∈X(s) πs (σ ). The mixing time of the order-(r , s)

up-down walk is also bounded by Eq. (2) with π∗
s replaced by π∗

r .

Theorem 1.14 generalizes both the result of [17] for simplicial

complexes with respect to strongly log-concave distributions and

the result of [1] for the Poincaré inequality (i.e., bounding the

spectral gap). It in some sense answers a question of [17] on local-

to-global modified log-Sobolev inequalities in high-dimensional

expanders, at least in the bounded marginals setting.

Even though Theorem 1.14 can give a bound on the mixing time

of the Glauber dynamics, which is the order-(n,n − 1) down-up

walk in the corresponding weighted simplicial complex, our main

result Theorem 1.9 does not follow directly from Theorem 1.14.

In fact, we will only consider the order-(n,n − ℓ) down-up walk

for ℓ = Θ(n), which corresponds to the heat-bath block dynamics

that updates a uniformly random subset of ℓ vertices in every step.

One of our main technical contributions is to compare this block

dynamics with the single-site Glauber dynamics; we shall detail this

in Section 2.1 below. Nevertheless, we find Theorem 1.14 interesting

of its own and possible for future applications in other problems.

2 PROOF OUTLINE
In this section, we outline our proofs of Theorems 1.9 and 1.14.

2.1 Approximate Tensorization and Uniform
Block Factorization

One way of establishing rapid mixing of the Glauber dynamics is to

show that the Gibbs distribution satisfies the approximate tensoriza-

tion of entropy. This approach has been (implicitly) used in many

literature to establish the log-Sobolev inequalities, from which one

can deduce an optimal bound on the mixing time. Before giving the

formal definition, we first review some standard definitions.

Consider a distribution µ supported on Ω ⊆ [q]V . For every
f : Ω → R≥0, we denote the expectation of f under µ by µ(f ) =∑
σ ∈Ω µ(σ )f (σ ) and the entropy of f by Entµ (f ) = µ(f log

f
µ(f ) ).

We often simply write Ent(f ) for the entropy and drop the subscript
µ when it is clear from the context. More generally, given S ⊆ V
and τ ∈ ΩV \S , for every f : Ωτ

S → R≥0 we use µ
τ
S (f ) to denote the

expectation of f under the conditional distribution µτS and Ent
τ
S (f )

for the corresponding entropy. For most of the time we are actually

given a function f : Ω → R≥0, and we will still write µτS (f ) and
Ent

τ
S (f ) where we think of f as restricted to the space Ωτ

S and

implicitly assume that the configuration outside S is given by τ ; i.e.,
for an argument σ ∈ Ωτ

S the value of f is f (σ ∪ τ ). It is helpful to
think of µτS (f ) and Ent

τ
S (f ) as a function of the boundary condition

τ . In this sense, the notation µ[EntS (f )], for example, represents the

expectation of the function Ent
τ
S (f ) where τ ∈ ΩV \S is distributed

as the marginal of µ on V \ S .
The notion of approximate tensorization of entropy is formally

defined as follows.

Definition 2.1 (Approximate Tensorization). We say that a distri-

bution µ over [q]V satisfies the approximate tensorization of entropy

(with constant C1) if for all f : Ω → R≥0 we have

Ent(f ) ≤ C1

∑
v ∈V

µ[Entv (f )]. (3)

Approximate tensorization can be understood as closeness of µ
to a product distribution, or weak dependency of variables. In fact, if

µ is exactly a product distribution (e.g., the Gibbs distribution on an

empty graph), then approximate tensorization holds with constant

C1 = 1; e.g., see [10, 12]. If µ satisfies approximate tensorization

with a constant C1 independent of n, then the Glauber dynamics

for sampling from µ mixes in O(n logn) steps. In fact, given ap-

proximate tensorization, one can deduce tight bounds on all of the

following quantities: the spectral gap, both standard and modified
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log-Sobolev constants, relative entropy decay rate, mixing time,

and concentration bounds. See Fact 3.5 for a detailed summary.

In many cases, especially on the integer lattice Zd , log-Sobolev
inequalities for the Glauber dynamics are established through the

approximate tensorization of entropy, which is more intuitive and

easier to handle; e.g., see [11, 12, 27, 40]. Despite the success on

Zd , there is not much study for spin systems on bounded-degree

graphs. The works of [10, 42] considered approximate tensorization

for general discrete product spaces, and gave sufficient conditions

to derive it; however, for spin systems these results do not cover

the whole uniqueness region.

One can regard approximate tensorization of entropy as factor-

izing entropy into all single vertices. Motivated by tools from high

dimensional simplicial complexes [1, 2] and study on general block

factorization of entropy [11], we consider in this paper a more gen-

eral notion of entropy factorization, where the entropy is factorized

into subsets of vertices of a fixed size. The formal definition is given

as follows.

Definition 2.2 (Uniform Block Factorization). We say that a dis-

tribution µ over [q]V satisfies the ℓ-uniform block factorization of

entropy (with constant C) if for all f : Ω → R≥0 we have

ℓ

n
Ent(f ) ≤ C ·

1(n
ℓ

) ∑
S ∈(Vℓ )

µ[EntS (f )]. (4)

We remark that uniform block factorization of entropy is a spe-

cial case of block factorization given by equation (1.3) in [11]; there,

the entropy factorizes into arbitrary blocks with arbitrary weights.

Also observe that 1-uniform block factorization is the same as

approximate tensorization of entropy. Just as the approximate ten-

sorization corresponds to the single-site Glauber dynamics, the

ℓ-uniform block factorization corresponds to the heat-bath block

dynamics where in each step a subset of vertices of size ℓ is chosen

uniformly at random and gets updated. Moreover, similar results

as in Fact 3.5 can be deduced for this block dynamics.

Our first key result is a reduction from approximate tensorization

to uniform block factorization. For b-marginally bounded Gibbs

distributions on graphs with maximum degree ≤ ∆, we show that

approximate tensorization is implied by ℓ-uniform block factoriza-

tion for ℓ = ⌈θn⌉ and an appropriate constant θ depending on b
and ∆. This is given by the following lemma.

Lemma 2.3. Let ∆ ≥ 3 be an integer and b > 0 be a real. Consider

the Gibbs distribution µ on an n-vertex graph G of maximum de-

gree at most ∆ and assume that µ is b-marginally bounded. Suppose

there exist positive reals θ ≤ b2

12∆ and C such that µ satisfies the

⌈θn⌉-uniform block factorization of entropy with constant C . Then µ
satisfies the approximate tensorization of entropy with constant

C1 =
18 log(1/b)

b4
C .

Remark 4. The notion of approximate tensorization and uniform

block factorization with respect to variance is also meaningful. In

fact, for variance these definitions are equivalent to bounding the

spectral gap of the corresponding chains. Moreover, Lemma 2.3

holds for variance as well, which can already provide a tight bound

on the spectral gap of the Glauber dynamics combining results

from [2, 14, 16, 23]. See the full version [15] of this paper for more

details.

2.2 Simplicial Complexes and Entropy
Contraction

Our next goal is to establish ℓ-uniform block factorization of en-

tropy for ℓ = Θ(n), which relies on the spectral independence

property. The following lemma holds for all distributions over [q]V ,
not only Gibbs distributions.

Lemma 2.4. Let b,η > 0 be reals. Then for every real θ ∈ (0, 1) and

every integer n ≥ 2

θ (
4η
b2
+ 1) the following holds.

LetV be a set of size n and µ be a distribution over [q]V . If µ is both
b-marginally bounded and η-spectrally independent, then µ satisfies

⌈θn⌉-uniform block factorization of entropy with constant

C =

(
2

θ

) 4η
b2
+1

.

Recall that there is a natural correspondence between a distri-

bution µ over [q]V and the weighted simplicial complex (X, µ). For
general weighted simplicial complexes, one property studied in [17]

is how the entropy of a function defined on faces contracts when it

projects down from higher dimensions to lower. This can be cap-

tured by the definition below. For a pure n-dimensional weighted

simplicial complex (X,w) and a nonnegative integer k < n, let P
↑

k
denote the |X(k)| × |X(k + 1)| dimensional transition matrix cor-

responding to adding a random element i < τ to some τ ∈ X(k)
where i is distributed as πτ ,1. Also for any 0 ≤ r < s ≤ n and

any function f (s) : X(s) → R≥0, define f (r ) : X(r ) → R≥0 by

f (r ) = P
↑
r · · · P

↑

s−1 f
(s)
.

Definition 2.5 (Global Entropy Contraction). We say a pure n-
dimensional weighted simplicial complex (X,w) satisfies the order-

(r , s) global entropy contraction with rate κ = κ(r , s) if for all f (s) :
X(s) → R≥0 we have

Entπr (f
(r )) ≤ (1 − κ)Entπs (f

(s)).

It turns out, as a remarkable fact, that uniform block factorization

of entropy for a distribution µ over [q]V is equivalent to global

entropy contraction for the weighted simplicial complex (X, µ).

Lemma 2.6. A distribution µ over [q]V satisfies the ℓ-uniform block

factorization of entropy with some constantC if and only if the corre-

sponding weighted simplicial complex (X, µ) satisfies order-(n − ℓ,n)
global entropy contraction with rate κ, where Cκ = ℓ/n.

The proof of Lemma 2.6 can be found in the full version [15]. As

a consequence, to prove Lemma 2.4, it suffices to establish global

entropy contraction for the weighted simplicial complex (X, µ).
Just like approximate tensorization and uniform block factoriza-

tion havingmany implications for the corresponding single-site and

block dynamics (e.g., see Fact 3.5), the notion of global entropy con-

traction can provide for weighted simplicial complexes meaningful

bounds on the spectral gap, modified log-Sobolev constant, relative

entropy decay rate, mixing time, and concentration bounds; see the

full version [15] for details. In Lemma 11 of [17], the authors es-

tablished order-(r , s) global entropy contraction with rate κ = s−r
s

for simplicial complexes with respect to homogeneous strongly
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log-concave distributions. From this, they deduced the modified

log-Sobolev inequality for the down-up and up-down walks and

showed rapid mixing of it.

We then show that for an arbitrary weighted simplicial complex

(X,w), one can deduce global entropy contraction from local spec-

tral expansion whenever the marginals of the induced distributions

are nicely bounded. For this, we prove a local-to-global result for

entropy contraction in the spirit of [1]. If we additionally know that

the marginals are nicely bounded, we can further reduce the local

entropy contraction to local spectral expansion.

Lemma 2.7. Let (X,w) be a pure n-dimensional weighted simplicial

complex. Suppose that (X,w) is (b0, . . . ,bn−1)-marginally bounded

and has (ζ0, . . . , ζn−2)-local spectral expansion. Then for all 0 ≤ r <
s ≤ n, (X,w) satisfies order-(r , s) global entropy contraction with rate

κ = κ(r , s) given as in Theorem 1.14.

Theorem 1.14 follows immediately from Lemma 2.7 and [15,

Fact 5.2]. We remark that Lemma 2.7 recovers Lemma 11 of [17]

for simplicial complexes corresponding to discrete log-concave

distributions, since there one has ζk = 0 for all k as shown in [3].

We present next the proof of Lemma 2.4, which follows directly

from Lemmas 2.6 and 2.7.

Proof of Lemma 2.4. From Claims 1.11 and 1.13 we know that

the weighted simplicial complex (X, µ) regarding µ is (b0, . . . ,bn−1)-

marginally bounded with bk =
b

n−k and has (ζ0, . . . , ζn−2)-local

spectral expansion with ζk =
η

n−k−1 . Then, Lemma 2.7 implies

that (X, µ) satisfies order-(n − ℓ,n) global entropy contraction for

ℓ = ⌈θn⌉ with rate

κ =

∑n−1
k=n−ℓ Γk∑n−1
k=0 Γk

where Γ0 = 1, Γk =
∏k−1

j=0 α j , and

αk =

max

{
1 −

4η

b2(n − k − 1)
,

1 − η/(n − k − 1)

4 + 2 log((n − k)(n − k − 1)/(2b2))

}
.

Define an integer R =
⌈
4η
b2

⌉
and observe that n ≥ ℓ ≥ θn ≥ 2R by

our assumption. Thus, we have

αk ≥ α̂k := max

{
1 −

R

n − k − 1

, 0

}
.

Notice that κ, when viewed as a function of αk ’s, is monotone

increasing with each αk . Thus, to lower bound κ, we can plug in

the lower bounds α̂k ’s and get

κ ≥

∑n−1
k=n−ℓ Γ̂k∑n−1
k=0 Γ̂k

where Γ̂0 = 1 and Γ̂k =
∏k−1

j=0 α̂ j for each k ≥ 1. We will show that

for every 0 ≤ k ≤ n − 1 one actually has

Γ̂k =
(n − k − 1)(n − k − 2) · · · (n − k − R)

(n − 1)(n − 2) · · · (n − R)
. (5)

For k = 0 we have Γ̂0 = 1 and Eq. (5) holds. For 1 ≤ j ≤ n − R − 2

we have

α̂ j = max

{
n − j − 1 − R

n − j − 1

, 0

}
=

n − j − 1 − R

n − j − 1

and thus for 1 ≤ k ≤ n − R − 1

Γ̂k =
k−1∏
j=0

n − j − 1 − R

n − j − 1

=
(n − k − 1)(n − k − 2) · · · (n − k − R)

(n − 1)(n − 2) · · · (n − R)
.

Finally, since α̂ j = 0 when n − R − 1 ≤ j ≤ n − 2, we have Γ̂k = 0

for n − R ≤ k ≤ n − 1 . Therefore, Eq. (5) is true for all k . It then
follows that

κ ≥

∑n−1
k=n−ℓ(n − k − 1)(n − k − 2) · · · (n − k − R)∑n−1
k=0(n − k − 1)(n − k − 2) · · · (n − k − R)

=

∑ℓ−1
j=0 j(j − 1) · · · (j − R + 1)∑n−1
j=0 j(j − 1) · · · (j − R + 1)

.

The following is a standard equality which can be proved by induc-

tion:

N−1∑
j=0

j(j − 1) · · · (j − R + 1) =
1

R + 1
N (N − 1) · · · (N − R).

Hence, we obtain

κ ≥
ℓ(ℓ − 1) · · · (ℓ − R)

n(n − 1) · · · (n − R)
.

Finally, we deduce from Lemma 2.6 that

C ≤
ℓ

n
·
1

κ
≤

(n − 1) · · · (n − R)

(ℓ − 1) · · · (ℓ − R)
≤

(
n − R

ℓ − R

)R
≤

(
2n

ℓ

)R
≤

(
2

θ

) 4η
b2
+1

where we use our assumption ℓ ≥ θn ≥ 2R. □

2.3 Wrapping up
Combining Lemmas 2.3 and 2.4, we establish approximate tensoriza-

tion of entropy with a constant independent of n, when the Gibbs

distribution is marginally bounded and spectrally independent. This

is stated in the following theorem.

Theorem 2.8. Let ∆ ≥ 3 be an integer and b,η > 0 be reals. Suppose

that G = (V , E) is an n-vertex graph of maximum degree at most ∆
and µ is a totally-connected Gibbs distribution of some spin system

onG . If µ is both b-marginally bounded and η-spectrally independent

and n ≥ 24∆
b2

(
4η
b2
+ 1), then µ satisfies the approximate tensorization

of entropy with constant

C1 =
18 log(1/b)

b4

(
24∆

b2

) 4η
b2
+1

.

Theorem 1.9 then follows immediately from Theorem 2.8 and

Fact 3.5.

Our main results Theorems 1.1 to 1.5 will follow from Theo-

rem 1.9 by establishing marginal boundedness and spectral inde-

pendence for each model. The detailed proofs are contained in

Section 5, we include here a brief sketch. The marginal bounded-

ness is a trivial bound. The spectral independence was previously

established for antiferromagnetic 2-spin systems including the hard-

core model and the Ising model in the whole uniqueness region

[2, 16], and for random q-colorings when q is sufficiently large

[14, 23]. For the monomer-dimer model, spectral independence is

not known previously. Following the proof strategy of [16] and

utilizing the two-step recursion from [4], we show the following.
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Theorem 2.9. Let ∆ ≥ 3 be an integer and λ > 0 be a real. Then for

every graph G = (V , E) of maximum degree at most ∆ withm = |E |,
the Gibbs distribution µ of the monomer-dimer model on G with

fugacity λ is η-spectrally independent for η = min

{
2λ∆, 2

√
1 + λ∆

}
.

The rest of the paper is organized as follows. In Section 3, we

collect relevant preliminaries. In Section 4, we show how to re-

duce approximate tensorization to uniform block factorization with

linear-sized blocks; specifically, we prove Lemma 2.3. In the full

version [15] of this paper, we reduce uniform block factorization

and, more generally, global entropy contraction in the setting of

weighted simplicial complexes to local entropy contraction; we then

further reduce local entropy contraction to local spectral expansion

when the simplicial complexes have bounded marginals and thus

prove Lemma 2.7. We also bound the spectral independence of the

monomer-dimer model on bounded degree graphs and prove Theo-

rem 2.9 in the full version [15]. Finally, we finish off the proofs of

our main mixing time results in Section 5 and conclude with some

open problems in Section 6. We also discuss analogous results for

variance in the full version [15].

3 PRELIMINARIES
In this section we review some standard definitions.

In the following definition, we assume the underlying distribu-

tion µ is fixed and omit it from the subscript.

Definition 3.1. Let Ω be a finite set and µ be a distribution over

Ω. For all functions f ,д : Ω → R:

(a) The expectation of f is defined as

µ(f ) =
∑
x ∈Ω

µ(x)f (x);

(b) The variance of f is defined as

Var(f ) = µ[(f − µ(f ))2] = µ(f 2) − µ(f )2;

(c) The covariance of f and д is defined as

Cov(f ,д) = µ[(f − µ(f ))(д − µ(д))] = µ(f д) − µ(f )µ(д);

(d) If f ≥ 0, the entropy of f is defined as

Ent(f ) = µ

[
f log

(
f

µ(f )

)]
= µ(f log f ) − µ(f ) log µ(f )

with the convention that 0 log 0 = 0.

For two distributions µ,ν over a finite set Ω, the Kullback–Leibler
divergence (KL divergence), also called relative entropy, is defined

as

DKL(ν ∥ µ) =
∑
x ∈Ω

ν (x) log

(
ν (x)

µ(x)

)
.

Let f = ν/µ be the relative density of ν with respect to µ; i.e.,
f (x) = ν (x)/µ(x) for all x ∈ Ω. Then Ent(f ) = DKL(ν ∥ µ). The
following is a well-known fact; see, e.g., [21].

Fact 3.2 (Donsker-Varadhan’s Variational Representation). For two

distributions µ,ν over a finite set Ω, the KL divergence admits the

following variational formula:

DKL(ν ∥ µ) = sup

f :Ω→R

{
ν (f ) − log µ(ef )

}
.

We then review some standard functional inequalities, and refer

to [7, 43] for more backgrounds.

Definition 3.3. Let Ω be a finite set and µ be a distribution over Ω.
Let P denote the transition matrix of an ergodic, reversible Markov

chain on Ω with stationary distribution µ.

(a) The Dirichlet form of P is defined as for every f ,д : Ω → R,

EP (f ,д) =
1

2

∑
x ,y∈Ω

µ(x)P(x,y)(f (x) − f (y))(д(x) − д(y)).

In particular, if Ω ⊆ [q]V and P = Pgl is the Glauber dynamics

for µ, then we can write

EPgl (f ,д) =
1

n

∑
v ∈V

µ[Covv (f ,д)].

(b) We say the Poincaré inequality holds with constant λ if for every
f : Ω → R,

λ Var(f ) ≤ EP (f , f ).

The spectral gap of P is

λ(P) = inf

{EP (f , f )
Var(f )

��� f : Ω → R,Var(f ) , 0

}
.

(c) We say the standard log-Sobolev inequality holds with constant

ρ if for every f : Ω → R≥0,

ρ Ent(f ) ≤ EP (
√
f ,

√
f ).

The standard log-Sobolev constant of P is

ρ(P) = inf

{
EP (

√
f ,

√
f )

Ent(f )

���f : Ω → R≥0, Ent(f ) , 0

}
.

(d) We say the modified log-Sobolev inequality holds with constant

ρ0 if for every f : Ω → R≥0,

ρ0 Ent(f ) ≤ EP (f , log f ).

The modified log-Sobolev constant of P is

ρ0(P) = inf

{
EP (f , log f )

Ent(f )

��� f : Ω → R≥0, Ent(f ) , 0

}
.

(e) We say the relative entropy decays with rate α if for every dis-

tribution ν over Ω,

DKL(νP ∥ µ) ≤ (1 − α)DKL(ν ∥ µ).

Next, we consider the case that Ω ⊆ [q]V for a finite set V . Let
S ⊆ V and τ ∈ ΩV \S . Recall that for every function f : Ω → R≥0,
we write µτS (f ) and Ent

τ
S (f ) = EntµτS

(f ) for the expectation and

entropy of f under the conditional distribution µτS (·) = µ(σS = · |
σV \S = τ ), where f = fτ is understood as a function of the configu-

ration on S with τ fixed outside S . We think of µτS (f ) and Ent
τ
S (f ) as

functions of τ , and we will use, for example, Ent[µS (f )] to represent
the entropy of µτS (f ) under µ, and µ[EntS (f )] for the expectation
of Ent

τ
S (f ). We give below a useful property of the expectation and

entropy; see, e.g., [41] for proofs.

Fact 3.4. Let S ⊆ V and τ ∈ ΩV \S . For every function f : Ω → R≥0,
we have

µ(f ) = µ[µS (f )] and Ent(f ) = µ[EntS (f )] + Ent[µS (f )].
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Implications of Approximate Tensorization. We summarize here a

few corollaries of approximate tensorization of entropy for arbitrary

distributions over discrete product spaces.

Fact 3.5. LetV be a set of size n and µ be a distribution over [q]V . If
µ satisfies the approximate tensorization of entropy with constant C1,

then the Glauber dynamics for µ satisfies all of the following:

(1) The Poincaré inequality holds with constant λ = 1

C1n ;

(2) The modified log-Sobolev inequality holds with constant ρ0 =
1

C1n ;

(3) The relative entropy decays with rate α = 1

C1n ;

(4) The mixing time of the Glauber dynamics satisfies

Tmix(Pgl, ε) ≤

⌈
C1n

(
log log

1

µmin

+ log
1

2ε2

)⌉
where µmin = minσ ∈Ω µ(σ ); If furthermore µ is b-marginally

bounded, then we have µmin ≥ bn and thus

Tmix(Pgl, ε) ≤

⌈
C1n

(
logn + log log

1

b
+ log

1

2ε2

)⌉
;

(5) For every f : Ω → Rwhich is c-Lipschitz with respect to the Ham-

ming distance on [q]V and every a ≥ 0, we have the concentration

inequality

Pr

σ∼µ
[| f (σ ) − µ(f )| ≥ a] ≤ 2 exp

(
−

a2

2c2C1n

)
;

(6) If furthermore µ is b-marginally bounded, then the standard log-

Sobolev inequality holds with constant ρ = 1−2b
log(1/b−1) ·

1

C1n when

b < 1

2
, or ρ = 1

2C1n when b = 1

2
.

The ℓ-uniform block factorization of entropy implies similar

results for the heat-bath block dynamics that updates a random

subset of vertices of size ℓ in each step.

The implications in Fact 3.5 are all known and have been widely

used, often implicitly. In the proof below, we give references where

explicit statements or direct proofs are available.

Proof of Fact 3.5. (1) and (2) are proved in [10, Proposition

1.1]. To show (3), let Pv be the transition matrix corresponding to

updating the spin at v conditioned on all other vertices. Thus, we

have the decomposition

Pgl =
1

n

∑
v ∈V

Pv .

Let f = ν/µ be the relative density of ν with respect to µ. Then we

get

DKL(νPgl ∥ µ) = DKL

(
1

n

∑
v ∈V

νPv






 µ

)
≤

1

n

∑
v ∈V

DKL(νPv ∥ µ)

=
1

n

∑
v ∈V

Ent(Pv f ) =
1

n

∑
v ∈V

Ent[µv (f )]

=
1

n

∑
v ∈V

Ent(f ) − µ[Entv (f )]

= Ent(f ) −
1

n

∑
v ∈V

µ[Entv (f )]

≤

(
1 −

1

C1n

)
Ent(f ) =

(
1 −

1

C1n

)
DKL(ν ∥ µ).

(4) can be deduced from (3) as shown by [6, Lemma 2.4]; see also

[7, Corollary 2.8] for the continuous time setting. (5) follows from

(2) and [17, Lemma 15]. Finally, (6) follows by an application of [18,

Theorem A.1]. □

4 APPROXIMATE TENSORIZATION VIA
UNIFORM BLOCK FACTORIZATION

Fix a graph G on n vertices of maximum degree at most ∆, and
assume that µ is a b-marginally bounded Gibbs distribution defined

on G satisfying the ⌈θn⌉-uniform block factorization of entropy

with constant C where θ ≤ b2/(4e∆); i.e., for ℓ = ⌈θn⌉ and all

f : Ω → R≥0 it holds that

ℓ

n
Ent(f ) ≤ C ·

1(n
ℓ

) ∑
S ∈(Vℓ )

µ[EntS (f )].

We will show that µ also satisfies the approximate tensorization of

entropy with constant Θ(C), which establishes Lemma 2.3.

The intuition behind our approach is that for ℓ as large as θn, if
one picks a uniformly random subset S ⊆ V satisfying |S | = ℓ, then
the induced subgraphG[S] ofG on vertex set S is disconnected into

many small connected components, each of which has constant size

in expectation and at mostO(logn) with high probability. Since the

conditional Gibbs distribution µτS is a product distribution of each

connected component, we can use entropy factorization for product

distributions to reduce approximate tensorization on G to that on

small connected subgraphs of G. This allows us to upper bound

the optimal approximate tensorization constant with a converging

series.

Towards fulfilling this intuition, for any S ⊆ V , let C(S) denote
the set of connected components of G[S], with each connected

component being viewed as a subset of vertices of S . Note that

C(S) is a partition of S . For any v ∈ S , let Sv denote the (unique)

connected component in C(S) containing v ; for v < S , take Sv = ∅.

The following is a well-known fact regarding the factorization of

entropy for product measures; see, e.g., [10, 12].

Lemma 4.1. For every subset S ⊆ V , every boundary condition

τ ∈ ΩV \S , and every function f : Ωτ
S → R≥0, we have

Ent
τ
S (f ) ≤

∑
U ∈C(S )

µτS [EntU (f )].

Recall that EntU (f ) = Ent
ϕ
U (f ) is regarded as a function of the

boundary condition ϕ ∈ Ωτ
S\U on S \ U , and µτS [EntU (f )] is the

expectation of it under the conditional Gibbs measure µτS .
We also need the following crude exponential upper bound on

the approximate tensorization constant for a Gibbs distribution

with bounded marginals.

Lemma 4.2. If µ is b-marginally bounded, then for every subset

U ⊆ V , every boundary condition ξ ∈ ΩV \U , and every function

f : Ω
ξ
U → R≥0, we have

Ent
ξ
U (f ) ≤

3|U |2 log(1/b)

2b2 |U |+2

∑
v ∈U

µ
ξ
U [Entv (f )].

Finally, the lemma below shows that when a uniformly random

and sufficiently small subset of vertices is selected, the size of the
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connected component containing a given vertex is small with high

probability.

Lemma 4.3. Let G = (V , E) be an n-vertex graph of maximum

degree at most ∆. Then for every k ∈ N+ we have

PS (|Sv | = k) ≤
ℓ

n
· (2e∆θ )k−1,

where the probability P is taken over a uniformly random subset

S ⊆ V of size ℓ = ⌈θn⌉.

We postpone the proofs of Lemmas 4.2 and 4.3. We are now ready

to prove Lemma 2.3.

Proof of Lemma 2.3. Combining everything in this section, we

deduce that

Ent(f ) ≤ C ·
n

ℓ
·

1(n
ℓ

) ∑
S ∈(Vℓ )

µ[EntS (f )]

(ℓ-uniform block factorization)

≤ C ·
n

ℓ
·

1(n
ℓ

) ∑
S ∈(Vℓ )

∑
U ∈C(S )

µ[EntU (f )] (Lemma 4.1)

≤ C ·
n

ℓ
·

1(n
ℓ

) ∑
S ∈(Vℓ )

∑
U ∈C(S )

3|U |2 log(1/b)

2b2 |U |+2

∑
v ∈U

µ[Entv (f )]

(Lemma 4.2)

=
3C log(1/b)

2b4
·
n

ℓ

∑
v ∈V

µ[Entv (f )]
ℓ∑

k=1

PS (|Sv | = k) ·
k2

b2(k−1)

(rearranging)

≤
3C log(1/b)

2b4

∑
v ∈V

µ[Entv (f )]
ℓ∑

k=1

k2
(
2e∆θ

b2

)k−1
(Lemma 4.3)

≤
3C log(1/b)

2b4

ℓ∑
k=1

k2

2
k−1

∑
v ∈V

µ[Entv (f )] (θ ≤ b2

12∆ )

≤
18C log(1/b)

b4

∑
v ∈V

µ[Entv (f )]. (

∑∞
k=1

k2

2
k−1 = 12)

This establishes the lemma. □

Proof of Technical Lemmas. We first prove Lemma 4.2 which

gives a crude bound on the approximate tensorization constant for

any subset and boundary condition.

Proof of Lemma 4.2. Fix a subsetU ⊆ V of size k ≥ 1 and some

boundary condition ξ ∈ ΩV \U . Let C1 = C1(U , ξ ) be the optimal

constant of approximate tensorization for µ
ξ
U ; hence, for every

function f : Ω
ξ
U → R≥0 one has

Ent
ξ
U (f ) ≤ C1

∑
v ∈U

µ
ξ
U [Entv (f )].

Let λ = λ(U , ξ ) be the spectral gap of the Glauber dynamics for µ
ξ
U ,

and let ρ = ρ(U , ξ ) be the standard log-Sobolev constant. Thus, for

every function f : Ω
ξ
U → R≥0 it holds that

λ Var
ξ
U (f ) ≤

1

k

∑
v ∈U

µ
ξ
U [Varv (f )];

ρ Ent
ξ
U (f ) ≤

1

k

∑
v ∈U

µ
ξ
U [Varv (

√
f )].

Since Varv (
√
f ) ≤ Entv (f ), we have

C1 ≤
1

ρk
; (6)

see also [10, Proposition 1.1]. Next, [18, Corollary A.4] gives a

comparison between the standard log-Sobolev constant and the

spectral gap:

ρ ≥
(1 − 2µ∗)

log(1/µ∗ − 1)
λ

where µ∗ = min
σ ∈Ω

ξ
U
µ
ξ
U (σ ). Since µ is b-marginally bounded, we

have µ∗ ≥ bk . Also, notice that |Ω
ξ
U | = 1 and |Ω

ξ
U | = 2 corresponds

to trivial cases where we have C1 ≤ 1, so we may assume that

|Ω
ξ
U | ≥ 3 which makes µ∗ ≤ 1/3. It follows that

ρ ≥
λ

3k log(1/b)
. (7)

Finally, Cheeger’s inequality yields

λ ≥
Φ2

2

(8)

where Φ is the conductance of the Glauber dynamics defined by

Φ = min

Ω0⊆Ω
ξ
U

µξU (Ω0)≤
1

2

ΦΩ0
,

ΦΩ0
=

Pgl(Ω0,Ω
ξ
U \ Ω0)

µ
ξ
U (Ω0)

=
1

µ
ξ
U (Ω0)

∑
σ ∈Ω0

∑
τ ∈Ωξ

U \Ω0

µ
ξ
U (σ )Pgl(σ , τ ).

Our assumption that µ is totally-connected guarantees ΦΩ0
> 0

for every Ω0 ⊆ Ω
ξ
U with µ

ξ
U (Ω0) ≤ 1

2
. Furthermore, since µ is

b-marginally bounded, for every σ ∈ Ω0 and τ ∈ Ω
ξ
U \ Ω0 such

that Pgl(σ , τ ) > 0 we have

µ
ξ
U (σ )Pgl(σ , τ ) ≥ bk ·

b

k
=
bk+1

k
.

This gives

Φ ≥
2bk+1

k
. (9)

Combining Eqs. (6) to (9), we finally conclude that

C1 ≤
3k2 log(1/b)

2b2k+2
,

as claimed. □

Next we establish Lemma 4.3. We use the following lemma con-

cerning the number of connected induced subgraphs in a bounded

degree graph.

Lemma 4.4 ([8, Lemma 2.1]). Let G = (V , E) be a graph with

maximum degree at most ∆, and v ∈ V . Then for every k ∈ N+, the
number of connected induced subgraphs of G containing v with k

vertices is at most (e∆)k−1.
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We then prove Lemma 4.3.

Proof of Lemma 4.3. IfAv (k) denotes the collection of subsets

of vertices U ⊆ V such that |U | = k , v ∈ U , and G[U ] is connected,

then by the union bound, we have

PS (|Sv | = k) ≤ PS (∃U ∈ Av (k) : U ⊆ S)

≤
∑

U ∈Av (k)

PS (U ⊆ S)

= |Av (k)| ·
ℓ

n
·
ℓ − 1

n − 1

· · ·
ℓ − k + 1

n − k + 1

≤ |Av (k)| ·
ℓ

n
·

(
ℓ − 1

n − 1

)k−1
.

We may assume that n ≥ 2 (when n = 1 the lemma holds trivially),

and thus

ℓ − 1

n − 1

≤
θn

n − 1

≤ 2θ .

The lemma then follows immediately from |Av (k)| ≤ (e∆)k−1 by
Lemma 4.4. □

5 PROOFS OF MAIN RESULTS
In this section we prove our main results Theorems 1.1 to 1.5.

By Theorem 1.9, to establish optimal mixing time bound it suf-

fices to show marginal boundedness and spectral independence for

the corresponding Gibbs distribution.

We first consider antiferromagnetic 2-spin systems. Let β,γ , λ
be reals such that 0 ≤ β ≤ γ , γ > 0, βγ < 1 and λ > 0 so the triple

(β,γ , λ) specifies parameters of an antiferromagnetic 2-spin system.

We state here the formal definition of up-to-∆ uniqueness with gap

δ given in [39].

Definition 5.1 (Up-to-∆ uniqueness with gap δ , [39]). For each

1 ≤ d < ∆ define

fd (R) = λ

(
βR + 1

R + γ

)d
and denote the unique fixed point of fd by R∗d . We say the parame-

ters (β,γ , λ) are up-to-∆ unique with gap δ if | f ′d (R
∗
d )| < 1 − δ for

all 1 ≤ d < ∆.

Proof of Theorem 1.1. The proof of [16, Theorem 3] showed

that for antiferromagnetic 2-spin systems that are up-to-∆ unique

with gap δ , the Gibbs distribution µ is O(1/δ )-spectrally indepen-

dent. Also, by considering the worst configuration of the neighbor-

hood for soft-constraint models (i.e., 0 < β ≤ γ ) or 2-hop neighbor-

hood for hard-constraint models (i.e., 0 = β < γ ), one can check

that µ is b-marginally bounded for some constant b = b(∆, β,γ , λ).
The theorem then follows from Theorem 1.9. □

Though in general the constantC = C(∆, δ , β,γ , λ) for bounding
the mixing time depends on the parameters (β,γ , λ) of the model,

in most applications such as the hard-core model (Theorem 1.2)

and the Ising model (Theorem 1.3) we can make the constant C
independent of all parameters. This is achieved by considering sepa-

rately when the parameters are pretty far away from the uniqueness

threshold, in which case we can deduce rapid mixing under the

Dobrushin uniqueness condition [20], see also [9, 52].

Lemma 5.2. Consider an arbitrary distribution µ over [q]V . For two
distinct vertices u,v ∈ V , define

R(u,v) =

max

τ ,ξ ∈ΩV \{v }

Dif(τ ,ξ )={u }



µ(σv = · | σV \{v } =τ ) − µ(σv = · | σV \{v } =ξ )



TV

where Dif(τ , ξ ) = {w ∈ V : τw , ξw }. If there exists c ∈ (0, 1) such

that for every vertex v ∈ V we have∑
u ∈V \{v }

R(u,v) ≤ 1 − c

(in which case we say the Dobrushin uniqueness condition holds

with constant c), then the mixing time of the Glauber dynamics for

sampling from µ satisfies

Tmix(Pgl, ε) ≤
n

c
log

(n
ε

)
.

We present next the proofs of Theorems 1.2 and 1.3.

Proof of Theorem 1.2. By Theorem 1.1, for every λ ≤ (1 −

δ )λc (∆) there exists C = C(∆, δ , λ) such that the Glauber dynamics

mixes inCn log(n/ε) steps. Meanwhile, it is easy to check that, when

λ ≤ 1

2∆ the Dobrushin uniqueness condition holds with c = 1/2,

and thus the mixing time is upper bounded by 2n log(n/ε). If we
take

C ′ = C ′(∆, δ ) := max

2, sup

1

2∆ <λ≤(1−δ )λc (∆)
C(∆, δ , λ)

 ,
then the mixing time of the Glauber dynamics is upper bounded by

C ′n log(n/ε), as claimed. □

Proof of Theorem 1.3. Consider the antiferromagnetic Ising

model (β = γ < 1) and by symmetry we may assume λ ≤ 1. It is

shown in [16] that the Gibbs distribution µ is O(1/δ )-spectrally in-

dependent in this case, and by considering the worst neighborhood

configuration one can check that µ is b-marginally bounded for

b = min

{
λβ∆

λβ∆ + 1
,

λ−1γ∆

λ−1γ∆ + 1

}
=

λβ∆

λβ∆ + 1
>

λ
(
∆−2
∆

)∆
λ

(
∆−2
∆

)∆
+ 1

≥
λ

28

.

Thus, when λ ≥ 1/500, Theorem 1.9 implies that the mixing time of

the Glauber dynamics is at most ∆O (1/δ )n log(n/ε) for large enough
n. Meanwhile, if λ < 1/500 then one can check that the Dobrushin

uniqueness condition holds with c = 1/2, and thus the mixing time

is upper bounded by 2n log(n/ε). This proves the theorem for the

antiferromagnetic case.

Next, consider the ferromagnetic Ising model (β = γ > 1). As-

sume λ ≥ 1 for convenience. The Gibbs distribution µ is O(1/δ )-
spectrally independent by Theorem 26 of [16] and b-marginally

bounded for

b = min

{
1

λβ∆ + 1
,

1

λ−1γ∆ + 1

}
=

1

λβ∆ + 1
>

1

λ( ∆
∆−2 )

∆ + 1
≥

1

28λ
.

1548



Optimal Mixing of Glauber Dynamics: Entropy Factorization via High-Dimensional Expansion STOC ’21, June 21–25, 2021, Virtual, Italy

If λ ≤ 500 the mixing time is ≤ ∆O (1/δ )n log(n/ε) by Theorem 1.9,

and if λ > 500 the mixing time is ≤ 2n log(n/ε) by the Dobrushin

uniqueness condition. This shows the ferromagnetic case, and com-

pletes the proof of the theorem. □

For random colorings, we can use the same argument.

Proof of Theorem 1.4. [23] showed that the uniform distribu-

tion µ of colorings is O(1/δ )-spectrally independent under our

assumption. (Note that the notion of spectral independence in [23]

implies the one in [14] which is Definition 1.8; see Lemma 3.6 of

[23] and Theorem 8 of [14]; also, [23] gave a better bound on the

spectral independence constant and applicable to a slightly larger

parameter region). Also, the proof of Lemma 3 from [26] can be

adapted to show that µ is Ω(1/q)-marginally bounded. Hence, The-

orem 1.9 implies that the mixing time of the Glauber dynamics is at

mostCn log(n/ε) for someC = C(∆, δ ,q). Notice that when q ≥ 3∆,
the Dobrushin uniqueness condition holds with c = 1/2 and thus

the mixing time is at most 2n log(n/ε). By taking

C ′ = C ′(∆, δ ) := max

{
2, max

(α ∗+δ )∆≤q<3∆
C(∆, δ ,q)

}
,

we get an upper bound C ′n log(n/ε) for the mixing time. □

Finally, we give the proof for the monomer-dimer model.

Proof of Theorem 1.5. Notice that the monomer-dimer model

on G is equivalent to the hard-core model on the line graph of

G; so Theorem 1.9 is still applicable. Theorem 2.9 shows that the

Gibbs distribution µ of the monomer-dimer model is η-spectrally
independent for

η = min

{
2λ∆, 2

√
1 + λ∆

}
.

Meanwhile, by considering the worst configuration on the 2-hop

neighborhood one can show that µ is b-marginally bounded for

some b = b(∆, λ). Thus, the theorem follows from Theorem 1.9. □

6 OPEN PROBLEMS
• Can we improve the approximate tensorization constant C1

in Theorem 2.8 and the mixing time bound in Theorem 1.9

with a better dependence on the maximum degree ∆ and on

the spectral independence η? For example, for the hard-core

model when λ ≤ (1 − δ )λc (∆), currently our mixing time

bound scales as ∆O (∆2/δ ) × O(n logn). Can we improve it

and get poly(∆, 1/δ )n logn?
• One can show the spectral independence of the monomer-

dimer model on the infinite ∆-regular tree T∆ is exactly
2x
1−x

where

x =
1

∆ − 1

(
1 −

2√
1 + 4λ(∆ − 1) + 1

)
is the (unsigned) pairwise influence between edges of T∆
sharing a vertex. Note that for ∆ = 2, this is

√
1 + 4λ − 1 =

Θ(
√
λ), while for ∆ ≥ 3, the spectral independence O(1/∆)

is independent of λ.
This suggests that while the bound on the total influence

of an edge is tight, the bound in Theorem 2.9 on the maxi-

mum eigenvalue obtained by controlling the ∞-norm of the

influence matrix is not tight, in contrast to the upper bound

in [16] for vertex two-spin systems (which has a matching

lower bound [2]). It would be interesting to obtain improved

bounds on the spectral independence for themonomer-dimer

model.

• Finally, we ask if spectral independence is equivalent to

the notion of strong spatial mixing which has been studied

extensively.
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