
Mathematical 

and Computational 

Applications

Article

Markov Chain-Based Sampling for Exploring RNA
Secondary Structure under the Nearest Neighbor
Thermodynamic Model and Extended Applications

Anna Kirkpatrick 1, Kalen Patton 1,2, Prasad Tetali 1,2 and Cassie Mitchell 3,*
1 School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA; akirkpatrick3@gatech.edu
2 School of Computer Science, Georgia Institute of Technology, Atlanta, GA 30332, USA;

kpatton33@gatech.edu (K.P.); tetali@math.gatech.edu (P.T.)
3 Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
* Correspondence: cassie.mitchell@bme.gatech.edu

Received: 7 July 2020; Accepted: 1 October 2020; Published: 10 October 2020

Abstract: Ribonucleic acid (RNA) secondary structures and branching properties are important for
determining functional ramifications in biology. While energy minimization of the Nearest Neighbor
Thermodynamic Model (NNTM) is commonly used to identify such properties (number of hairpins,
maximum ladder distance, etc.), it is difficult to know whether the resultant values fall within
expected dispersion thresholds for a given energy function. The goal of this study was to construct
a Markov chain capable of examining the dispersion of RNA secondary structures and branching
properties obtained from NNTM energy function minimization independent of a specific nucleotide
sequence. Plane trees are studied as a model for RNA secondary structure, with energy assigned
to each tree based on the NNTM, and a corresponding Gibbs distribution is defined on the trees.
Through a bijection between plane trees and 2-Motzkin paths, a Markov chain converging to the Gibbs
distribution is constructed, and fast mixing time is established by estimating the spectral gap of the
chain. The spectral gap estimate is obtained through a series of decompositions of the chain and also
by building on known mixing time results for other chains on Dyck paths. The resulting algorithm
can be used as a tool for exploring the branching structure of RNA, especially for long sequences,
and to examine branching structure dependence on energy model parameters. Full exposition is
provided for the mathematical techniques used with the expectation that these techniques will prove
useful in bioinformatics, computational biology, and additional extended applications.

Keywords: Markov chain Monte Carlo; RNA secondary structure; nearest neighbor thermodynamic
Model; Markov chain convergence

1. Introduction

Computational and mathematical applications play a critical role in the analysis of the structure
and function of biological molecules, including ribonucleic acid (RNA). RNA is an essential biological
polymer with many roles including information transfer, regulation of gene expression, and catalysis
of chemical reactions. The primary structure of an RNA molecule may be understood as a sequence of
amino acids: arginine, urasil, guanine, and cytosine. As is standard, we frequently abbreviate these
as A, U, G, and C, respectively. RNA molecules are single-stranded and may therefore interact with
themselves, forming A–U, G–U, and G–C bonds. The secondary structure of an RNA molecule is a set
of such bonds.

The determination of secondary structure is an important step to understanding an RNA
molecule’s full shape and therefore its function [1,2]. Accordingly, secondary structure information is
commonly used in tertiary structure prediction algorithms, see, e.g., [3–6]. Identifying the secondary
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structure of RNA is crucial to understanding its function and mechanism in a cell [7]. Thus,
the structure of RNA is critical to the development of biological and pharmaceutical therapeutics.
Biologists use inexpensive and expedient means to sequence RNA, but the experimental determination
of structure is more difficult and time-consuming. Therefore, computational methods are the primary
means to determine possible RNA secondary structures.

For decades, one of the main computational approaches for examining RNA structure and
branching properties has been thermodynamic free energy minimization using Nearest Neighbor
Thermodynamics Modeling (NNTM) [8–10]. This free energy is in turn used in algorithms to predict
secondary structure given an RNA sequence, see, e.g., [11–13]. Under the NNTM, the free energy
of a structure is computed as the sum of the free energy of its various substructures. Many common
programs (e.g., mFold, RNAFold, RNA Structure, sFold, Vienna RNA, etc.) intake a single sequence
to produce secondary structures based on NNTM energy minimizations performed via dynamic
programming. Nearest neighbor parameter sets include both a set of rules, referred to as equations
or features, and a set of parameter values used by the equations. Separate rules exist for predicting
stabilities of helices, hairpin loops, small internal loops, large internal loops, bulge loops, multi-branch
loops, and exterior loops. Other branching properties of interest include, but are not limited to, average
ladder distance, maximum ladder distance, maximum branching degree, average contact distance,
average branching degree, degree of branching at the exterior loop, number of multi-loops with n
braches, etc. The online nearest neighbor database (NNDB) archives and stores complete nearest
neighbor sets, including rules and corresponding parameter values [14].

A common challenge is inferring whether the predicted results of NNTM for a set of RNA
structural features or branching properties are within expected dispersion thresholds for a given
energy model. For example, is the number of hairpins more than 2–3 standard deviations greater than
the expected mean for a given energy model? This challenge is particularly vexing if the sequence
is relatively long (greater than 1000 nucleotides). If structural features or branching properties are
determined to exceed expected energy model dispersion thresholds, it relays potential scientific and/or
mechanistic insight. Continuing with our hairpin example, what if an NNTM model produces a result
where the number of hairpins seems rather large for the given sequence length? If the number of
hairpins exceeds the expected dispersion of the NNTM model, it might be inferred that the greater
number of hairpins is evidence of natural selection.

The primary objective of the present study is to enable mathematical determination of the
dispersion of RNA secondary structural features for a given sequence length. We present a
Markov-based algorithm to provide samples of the branching structure under the NNTM and Gibbs
distribution, but without reference to a particular sequence of nucleotides. The algorithm enables the
determination of where the predicted feature or branching property for an actual sequence falls within
this distribution, which in turn enables the determination of whether the predicted NNTM feature or
branching property is within expected dispersion limits.

In particular, this work investigates RNA substructures called multi-loops, the places where three
or more helices join. Though multi-loops are crucial to the overall shape of a secondary structure,
the models used to predict them algorithmically do not produce accurate results [15]. This investigation
builds on an existing model of RNA branching [16] and provides a theoretical grounding for a Markov
chain which may be used to algorithmically investigate branching properties of secondary structure
models. The investigational foundation is a model for RNA secondary structure developed by Hower
and Heitsch [16], in which secondary structures are in bijection with plane trees and the minimal
energy structures of the model have been previously characterized. The present study characterizes the
full Gibbs distribution of possible structures. Notably, Bakhtin and Heitsch [17] analyzed a very similar
model and determined degree sequence properties of the distribution of plane trees asymptotically.
However, the present study utilizes a Markov chain-based sampling algorithm to investigate the Gibbs
distribution in the finite case. A full explanation of the plane tree model as well as the derivation of the
energy functions is provided in Section 2.1.
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2. Methods

The methods are divided into an overview of the RNA secondary structure NNTM plane tree
model and energy functions (Section 2.1) and an all-encompassing explanation of the mathematical
preliminaries that lay the foundation for the derived results and corresponding algorithms (Section 2.2).

2.1. Derivation of Energy Functions

The energy function studied here is derived from the Nearest Neighbor Thermodynamic Model
(NNTM). The numerical parameters from the NNTM can be found in the NNDB [14]. In calculating
energy functions for the sequences, we consider thermodynamic parameter values published by Turner
in 1989 [8], 1999 [9], and 2004 [10].

The plane trees that we study in this paper come from two combinatorial RNA sequences, both
of the form A4(Y5ZA4YZ5 A4)n. The sequences of interest have (Y, Z) = (C, G) or (Y, Z) = (G, C).
For both of these sequences, the set of maximally-paired secondary structures is in bijection with the set
of plane trees of size n [18]. Figure 1 shows one example of a secondary structure and corresponding
plane tree.

These specific combinatorial sequences are chosen because they allow for the study of the
relationship between NNTM multiloop parameters and the branching behavior of secondary
structures without interference from the energy contributions have specific base pairing combinations.
In particular, the only places where the free energy differs between different secondary structures
(for the same sequence) is in the type and number of multi-loops, the branching at the exterior loop,
the number of hairpins, and the number of internal nodes. All of these energies directly relate to
branching, not to specific base pairs. This simplification achieved by focusing only on multi-loops and
branching both creates a model that is more amenable to theoretical analysis and speed computation.

Note that these secondary structures should not be considered representative of naturally
occurring secondary structures. Instead, the only properties of interest in these structures are
branching-related properties.
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Figure 1. A ribonucleic acid (RNA) secondary structure for one of the combinatorial RNA sequences
used in this work and its corresponding plane tree. The ordering of the edges in the plane tree is
derived from the 3’ to 5’ ordering of the RNA sequence. Note that the exterior loop corresponds to the
root of the plane tree. The diagram in (a) was generated by ViennaRNA [19]. (a) A maximally-paired
secondary structure for A4(C5GA4CG5 A4)4 has 4 helices; (b) The corresponding plane tree has 4 edges
and encodes the branching pattern seen in the secondary structure.
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Three constants determine the free energy contribution of multiloops under NNTM, a, b, and c.
The value of a encodes the energy penalty per multiloop. The constant b specifies the energy penalty
per single-stranded nucleotide in a multiloop. The value of c gives the energy penalty for each helix
branching from a multiloop.

In addition to the multiloop parameters a, b, c discussed above, we must account for the energy
contributions of stacking base pairs, hairpins, interior loops, and dangling energy contributions.
The energy of one helix is given by h. The energy associated with a hairpin is f , and the energy
contribution of an interior loop is i. Finally, the parameter g encodes the dangling energy contributions.
All of these values can be computed directly from the parameters found in the NNTM.

We wish to compute the energy of the structure corresponding to plane tree t having (down)
degree sequence d0, d1, . . . , dn−1 and root degree r. Note that the down degree of a node x is equal
to the number of children of x, and, in the down degree sequence, di is the number of non-root
nodes with exactly i children. The energy contribution of all hairpin loops will be d0 f , and similarly,
the total energy of all interior loops will be d1i. For a multi-loop having down degree j, the energy
contribution will be a + 4b(j + 1) + c(j + 1) + (j + 1)g, and so the contribution of all multi-loops is
given by ∑n

j=2 dj(a + 4b(j + 1) + c(j + 1) + g(j + 1)). The root vertex of the tree corresponds to the
exterior loop and has energy contribution gr. Finally, our structure has n helices, each with energy h.
Summing all of these components gives the total energy.

d0 f + d1i +
n

∑
j=2

dj(a + 4b(j + 1) + c(j + 1) + g(j + 1)) + nh + gr (1)

= ( f − a− 4b− c− g)d0 + (i− a− 8b− 2c− 2g)d1 + (−4b− c)r + (a + 8b + 2c + h + 2g)n, (2)

where we have used the facts ∑n−1
k=0 dk = n and ∑n−1

k=0 kdk = n− r.
Set α = f − a− 4b− c− g, β = i− a− 8b− 2c− 2g, γ = −4b− c, and δ = a + 8b + 2c + h + 2g.

Then, the energy function is αd0 + βd1 + γr + δn. Since n will be fixed, we disregard the term δn, giving

E(t) = αd0 + βd1 + γr. (3)

Though we study these energy functions for arbitrary values of (α, β, γ), numerical values for
both the input energy parameters from NNTM and the resulting energy function coefficients are given
in Table 1.

Table 1. Nearest Neighbor Thermodynamic Model (NNTM) parameters and resulting energy functions.
Energy functions are of the form αd0 + βd1 + γr.

Y Z Turner a b c h f i g α β γ

C G 89 4.6 0.4 0.1 −10.9 3.8 3.0 −1.6 −0.9 −1.8 −1.7

G C 89 4.6 0.4 0.1 −16.5 3.5 3.0 −1.9 −0.9 −1.2 −1.7

C G 99 3.4 0 0.4 −12.9 4.5 2.3 −1.6 2.3 1.3 −0.4

G C 99 3.4 0 0.4 −16.9 4.1 2.3 −1.9 2.2 1.9 −0.4

C G 04 9.3 0 −0.9 −12.9 4.5 2.3 −1.1 −2.8 −3.0 0.9

G C 04 9.3 0 −0.9 −16.9 4.1 2.3 −1.5 −2.8 −2.2 0.9

2.2. Mathematical Preliminaries

Section 2.2 of this manuscript provides the necessary mathematical background, including a
formal introduction of combinatorial objects and a review of the relevant Markov chain mixing results
used to construct our resultant sampling Markov chain and corresponding mixing time proof in
Section 3.



Math. Comput. Appl. 2020, 25, 67 5 of 26

2.2.1. Combinatorial Objects

A plane tree is a rooted, ordered tree. We will use Tn to denote the set of plane trees with n
edges. It is known that |Tn| is given by the nth Catalan number Cn = 1

n+1 (
2n
n ). In a plane tree, a leaf

is a node with down degree 0, and an internal node is a non-root node with down degree 1. For a
given plane tree t, we will use d0(t) to denote the number of leaves and d1(t) to denote the number of
internal nodes.

For a plane tree t, the energy of the tree is given by

E(t) = αd0(t) + βd1(t), (4)

where α and β are real parameters of the energy function. Note that this function is a simplification
of the model due to Hower and Heitsch [16] discussed in Section 2.1. Making this simplification
effectively disregards the energy contribution of the exterior loop, which is small in comparison to the
total energy of a structure, especially for the longer sequences that are of interest to us. Other authors
have made similar simplifications, e.g., [17].

For our purposes, we consider α and β to be arbitrary but fixed. We will consider a Gibbs
distribution g on the set Tn, where the weight of each tree t is given by

g(t) =
e−E(t)

Z
, (5)

where Z = ∑y∈Tn e−E(y) is a normalizing constant.
A Motzkin path of length n is a lattice path from (0, 0) to (n, 0), which consists of steps along

the vectors U = (1, 1), H = (1, 0), and D = (1,−1) and never crosses below the x-axis. We can also
represent Motzkin paths as strings from the alphabet {U, H, D} where, in any prefix, the number of
Us is greater than or equal to the number of Ds. The number of Motzkin paths of length n is given by
the Motzkin numbers Mn where

Mn =
bn/2c

∑
k=0

(
n
2k

)
Ck. (6)

Motzkin numbers and Motzkin paths have been well-studied in the combinatorics literature, see,
e.g., [20–24].

A Dyck path is a Motzkin path with no H steps. It is easy to see that a Dyck path must have even
length, so we will use Dn to denote the set of Dyck paths on length 2n. It is well known that |Dn| = Cn

(see, e.g., [25]).
A 2-Motzkin path is a Motzkin path in which (1, 0) steps are given one of two distinguishable

colors. Let M2
m be the set of all 2-Motzkin paths of length m. We can also represent 2-Motzkin paths as

strings from the alphabet {U, H, I, D}, where, as before, the number of Ds never exceeds the number of
Us in any prefix. In a such a string x, we denote by |x|a the number of times the symbol a appears in x,
where a ∈ {U, H, I, D}. Notice that we always have |x|U = |x|D. For any x ∈M2

n and k ∈ {1, · · · , n},
let x(k) denote the symbol at index k in the string representation of x. Additionally, the skeleton of a
2-Motzkin path x is the Dyck path of Us and Ds which results from removing all Hs and Is from x.
We will denote the skeleton of x by σ(x).

2.2.2. A Bijection Between Tn and M2
n−1

We will use the particular bijection Φ : Tn → M2
n−1 between plane trees and 2-Motzkin paths

from Deutsch [26], which neatly encodes information about d0 and d1. For clarity, we will overview
the bijection here.

For a given plane tree t with n edges, assign a label from the set {U, H, I, D} to each edge e
according to the following rules:
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• If e is the leftmost edge off a non-root node of down degree at least 2, assign the label U.
• If e is the rightmost edge off a non-root node of down degree at least 2, assign the label D.
• If e is the only edge off a non-root node of degree 1, assign the label I.
• If e is an edge off the root node, or if e is neither the leftmost nor the rightmost edge off its parent

node, assign the label H.

Now, if we traverse t in a preorder reading off these labels, we get a 2-Motzkin path of length
n. However, this path will always begin with H, so we define Φ(t) to be the 2-Motzkin path of
length n − 1 after this initial H is removed. Figure 2 gives an example of this labeling process.
From Deutsch, we know not only that Φ is a bijection, but also that if x = Φ(t) then |x|I = d1(t) and
|x|U + |x|H + 1 = d0(t).

H H H

I

U H D

U D I

I

DU

I U H U D D I H H U I D

Figure 2. A plane tree with edges labeled according to the bijection Φ, along with its corresponding
2-Motzkin path.

Using this bijection, it is natural to extend our energy function to 2-Motzkin paths. We define the
energy of a 2-Motzkin path x to be

E(x) = α(|x|U + |x|H + 1) + β|x|I , (7)

and we extend our definition of the distribution g to M2
n accordingly. We note that, while this energy

function does not capture all possible weightings on 2-Motzkin paths, it does capture all weightings
possible under our simplification of the model due to Hower and Heitsch [16] after applying the
bijection due to Deutsch [26].

2.2.3. Markov Chains

A Markov chain M is a sequence of random variables X0, X1, X2, · · · taking values in a state
space Ω subject to the condition that

Pr(Xt+1 = y | Xt = x, Xt−1 = st−1, · · · , X0 = s0) = Pr(Xt+1 = y | Xt = x). (8)

All Markov chains that we consider will be implicitly time-homogeneous (meaning Pr(Xt+1 =

y | Xt = x) does not depend on t) and finite (meaning |Ω| < ∞). The transition matrix of a
time-homogeneous Markov chain is the matrix P : Ω×Ω→ [0, 1] given by

P(x, y) = Pr(Xt+1 = y | Xt = x). (9)

It is easy to see that if X0 has distribution vector x, then Xt has distribution vector Ptx.
A finite Markov chain with transition matrix P is said to be ergodic if it has the following

two properties.

1. Irreducibility: For any x, y ∈ Ω, there is some integer t ∈ N for which Pt(x, y) > 0.
2. Aperiodicity: For any state x ∈ Ω, we have gcd{t ∈ N : Pt(x, x) > 0} = 1.
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It is well-known that ifM is ergodic, then there exists a unique distribution vector π, the stationary
distribution, such that Pπ = π, and limt→∞ Pt(x, y) = π(y) for any states x, y ∈ Ω. Additionally,
we callM reversible if for all states x, y ∈ Ω, we have π(x)P(x, y) = π(y)P(y, x).

For ε > 0, the mixing time τ(ε) ofM is given by

τ(ε) = min

{
t ∈ N : ∀s ≥ t, max

x∈Ω

(
1
2 ∑

y∈Ω
|Ps(x, y)− π(y)|

)
< ε

}
. (10)

Intuitively, the mixing time gives a measure of the number of steps required for M to get
sufficiently close to its stationary distribution from any starting state.

LetM be a finite ergodic Markov chain over a state space Ω with transition matrix P. Let the
eigenvalues of P be λ0, λ1, . . . , λ|Ω|−1 such that 1 = λ0 > |λ1| ≥ . . . ≥ |λ|Ω|−1|. The spectral gap of
M is given by Gap(M) = 1− |λ1|. As is standard, it will be convenient to denote the inverse of the
spectral gap by relaxation time τrel(M) := 1/Gap(M).

Additionally, the spectral gap is given by the following functional definition [27].

Gap(M) = inf
f

∑x,y∈Ω | f (x)− f (y)|2π(x)P(x, y)

∑x,y∈Ω | f (x)− f (y)|2π(x)π(y)
, (11)

where the infimum is taken over all non-constant functions f : Ω→ R. A direct consequence of this
definition of the spectral gap is the following lemma.

Lemma 1. LetM1 andM2 be ergodic Markov chains over Ω with the same stationary distribution. Let P1

and P2 be the transition matrices ofM1 andM2 respectively. If for all x, y ∈ Ω and for some constant c > 0
we have P1(x, y) ≤ cP2(x, y), then Gap(M1) ≤ cGap(M2).

Additionally, spectral gap is related to the mixing time by the following lemma [28].

Lemma 2. LetM be an ergodic Markov chain with state space Ω, and let λ0, λ1, . . . , λ|Ω|−1 be the eigenvalues
of the transition matrix P as defined above. Then, for all ε > 0 and x ∈ Ω, we have

|λ1|
Gap(M)

log
(

1
2ε

)
≤ τ(ε) ≤ 1

Gap(M)
log
(

1
π(x)ε

)
. (12)

We say that a Markov chainM, whose state space depends on a variable n ∈ N, is rapidly mixing
if τ(ε) is bounded above by some polynomial in n and log(ε−1). For the specific chains studied in this
manuscript, we will show that τ(ε)(M) is bounded by a polynomial in n and log(ε−1) if and only if
τrel(M) is bounded by a polynomial in n and log(ε−1). Our next lemma presents sufficient conditions.

Lemma 3. LetM be an ergodic Markov chain with state space Ω and let λ0, λ1, . . . , λ|Ω|−1 be the eigenvalues
of its transition matrix. Let ε > 0. If τ(ε) is bounded by a polynomial in n and log(ε−1), then τrel is
also bounded by a polynomial in n and log(ε−1). Further, suppose we have log(1/π(x)) bounded by some
polynomial q(n) for all x ∈ Ω. Then, τrel(M) being bounded by a polynomial in n and log(ε−1) implies that
τ(ε) is also bounded by some polynomial in n and log(ε−1).

Proof. Suppose that τ(ε) ≤ p(n, log(ε−1)), where p is a polynomial. Beginning with the left hand
side of Lemma 2, note that

|λ1|
1− |λ1|

log
(

1
2ε

)
= (τrel(M)− 1) log

(
1
2ε

)
.



Math. Comput. Appl. 2020, 25, 67 8 of 26

Then, applying Lemma 2 and the bound on τ(ε),

τrel(M) ≤ τ(ε)

log((2ε)−1)
+ 1 ≤ p(n, log(ε−1))

log((2ε)−1)
+ 1 ≤ p′(n, log(ε−1)),

where p′ is again a polynomial in n and log(ε−1).
Turning now to converse, suppose that we have τrel ≤ p(n, log(ε−1)) , for some polynomial p.

Additionally suppose log(1/π(x)) ≤ q(n) for all x ∈ Ω, for some polynomial q.
Applying Lemma 2,

τ(ε) ≤ τrel(M) log
(

1
π(x)ε

)
≤ p(n, log(ε−1)) log(ε−1)q(n) ≤ p′(n, log(ε−1)),

where p′ is some polynomial.

2.2.4. Coupling

A coupling of a Markov chainM on Ω is a chain (Xt, Yt)∞
t=0 on Ω×Ω for which the following

properties hold.

1. Each chain (Xt)∞
t=0 and (Yt)∞

t=0, when viewed in isolation, is a copy ofM, given initial states
X0 = x and Y0 = y.

2. Whenever Xt = Yt, we have Xt+1 = Yt+1.

Formally, the first item above requires that the joint distribution of (Xt, Yt) (given (Xt−1, Yt−1)) should
satisfy the property that the marginal of Xt (and also Yt) is consistent with the probability transitions
ofM. We define the coupling time T to be

T = max
x,y∈Ω

E [min{t : Xt = Yt | X0 = x, Y0 = y}] . (13)

The following lemma [29] is useful in bounding the coupling time T.

Lemma 4. Suppose that (Xt, Yt)∞
t=0 is a coupling of a Markov chain M. Let ϕ be an integer-valued distance

function on Ω × Ω taking values in the range [0, B], and suppose that ϕ(x, y) = 0 if and only if x = y.
Let ϕ(t) = ϕ(xt, yt). Suppose that the coupling satisfies E (ϕ(t + 1)− ϕ(t)|Xt, Yt) ≤ 0. Additionally,
suppose that whenever ϕ(t) > 0, E

(
|ϕ(t + 1)− ϕ(t)|2|Xt, Yt

)
≥ V. Then, the expected coupling time

satisfies E (Tx,y) ≤ ϕ(0)(2B− ϕ(0))/V.

Coupling time and mixing time are then related by the following theorem [28].

Theorem 1. A Markov chain M with coupling time T has mixing time τ(ε) bounded by

τ(ε) ≤ dTe log ε−1e. (14)

2.2.5. Decomposition

We use two disjoint decomposition methods for bounding the spectral gap, one developed by
Martin and Randall [30], and a very recent one given by Hermon and Salez [31], building on the
work by Jerrum, Son, Tetali and Vigoda [32]. We use both theorems because, while the latter gives
better bounds, the former has more relaxed conditions, which is necessary in one of our applications.
The setup for both methods is the same.

LetM be an ergodic, reversible Markov chain over a state space Ω with transition matrix P and
stationary distribution π. Suppose Ω can be partitioned into disjoint subsets Ω1, . . . , Ωm. For each
i ∈ [m], letMi be the restriction ofM to Ωi, which is obtained by rejecting any transition that would
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leave Ωi. Let Pi be the transition matrix ofMi Additionally, we defineM to be the projection chain of
M over the state space [m] as follows. Let the transition matrix P ofM be given by

P(i, j) =
1

π(Ωi)
∑

x∈Ωi
y∈Ωj

π(x)P(x, y). (15)

One can check thatM is reversible and has stationary distribution

π(i) = π(Ωi),

while eachMi has stationary distribution

πi(x) =
π(x)
π(i)

.

With this notation, we have the following theorem by Martin and Randall [30].

Theorem 2. DefiningMi andM as above, we have

Gap(M) ≥ 1
2

Gap(M) min
i∈[m]

Gap(Mi). (16)

The theorem due to Hermon and Salez obtains better bounds if, for each pair (i, j) ∈ [m]× [m] with
P(i, j) > 0, we can find an effective joint distribution (often referred to as a “coupling”) κij : Ωi ×Ωj →
[0, 1] of the distributions πi and πj. In other words, we must have

∀x ∈ Ωi, ∑
y∈Ωj

κij(x, y) = πi(x), (17)

∀y ∈ Ωj, ∑
x∈Ωi

κij(x, y) = πj(y). (18)

The quality of the joint distribution κ is defined as

χ := χ(κ) := min

{
π(x)P(x, y)

π(i)P(i, j)κij(x, y)

}
, (19)

where the minimum is taken over all (x, y, i, j) with x ∈ Ωi, y ∈ Ωj for which P(i, j) > 0 and
κij(x, y) > 0. Hermon and Salez [31] prove the following.

Theorem 3. With P, P̄, Pi, and χ defined as above,

Gap(M) ≥ min
{

χGap(M), min
i∈[m]

Gap(Mi)

}
. (20)

The utility of these decomposition theorems is that they allow us to break down a more
complicated Markov chain into pieces that are easier to analyze. If we can show that the pieces
rapidly mix, and the projection chain rapidly mixes, then we may conclude that the original chain
rapidly mixes as well.

Additionally, to aid with the analysis of some projection chains, we will need another lemma
from [30].
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Let MM be the Markov chain on [m] with Metropolis transitions PM(i, j) = 1
2∆ min{1,

π(Ωj)

π(Ωi)
}

whenever P(i, j) > 0, where ∆ is the maximum degree of vertices in the transition graph of M. Let
∂i(Ωj) = {y ∈ Ωj : ∃x ∈ Ωi with P(x, y) > 0}. Then we have the following

Lemma 5. WithMM as defined above, suppose there exist constants a > 0 and b > 0 with

1. P(x, y) ≥ a for all x, y such that P(x, y) > 0.
2. π(∂i(Ωj)) ≥ bπ(Ωj) for all i, j with P(i, j) > 0.

Then Gap(M) ≥ ab ·Gap(MM).

In order to help analyze the mixing time ofMM, we will also require the following two lemmas.
Note that Lemma 6 is used only in the proof of Lemma 7.

Lemma 6. Let (ai)
m
i=1 be a log concave sequence, with ai > 0 for all 1 ≤ i ≤ m. Then,

ai+1

ai
≥

aj+1

aj
(21)

for all 1 ≤ i ≤ j ≤ m.

Proof. In order to use induction, we will slightly reframe the statement. We will prove

ai+1

ai
≥ ai+1+k

ai+k

for all i + k ≤ n.
We now proceed by induction on k. The base case, k = 0, is trivial.
Now fix l > 0 and suppose that the induction hypothesis is true for k = l − 1, that is,

ai+1

ai
≥ ai+l

ai+l−1
.

By log concavity a2
i+l ≥ ai+l−1ai+l+1, or, equivalently,

ai+l
ai+l−1

≥ ai+l+1
ai+l

.

Therefore,
ai+1

ai
≥ ai+l

ai+l−1
≥ ai+l+1

ai+l
,

where the first inequality follows from the induction hypothesis, and the second inequality follows
from log concavity.

Lemma 7. Let π be a probability distribution on [m]. Let M be a Markov chain on [m] with the
transition probabilities

P(i, j) =

 1
4 min

{
1, π(j)

π(i)

}
if |i− j| = 1

0 if |i− j| > 1
(22)

and the appropriate self-loop probabilities P(i, i). If π(i) is log-concave in i, thenM has mixing time (and hence
also relaxation time) O(m2).

Proof. We define a coupling (Xt, Yt) onM as follows. If Xt 6= Yt, then at time step t + 1, flip a fair coin.
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• If heads, set Yt+1 = Yt. Let l be either 1 or −1, each with probability 1/2. If possible, let Xt+1 =

Xt + l with probability 1
2 min

{
1, π(Xt+l)

π(Xt)

}
. Otherwise, let Xt+1 = Xt.

• If tails, set Xt+1 = Xt, and update Yt+1 the same way as we did for Xt+1 in the previous case.

Now, suppose that for some t we have Xt = i and Yt = j for i 6= j. WLOG, assume that i < j.
Let ϕ(t) = ϕ(Xt, Yt) = j− i, and let ∆ϕ(t) = ϕ(t)− ϕ(t− 1). Note that we have two moves, with
probabilities P(i, i− 1) and P(j, j + 1), which will increase the distance ϕ by 1 and similarly two moves,
with probabilities P(i, i + 1) and P(j, j + 1), will decrease the distance by 1. Then we have

E(∆ϕ(t)) = −P(i, i + 1) + P(i, i− 1) + P(j, j + 1)− P(j, j− 1).

By the log-concavity of π(i) and Lemma 6, we have P(i, i + 1) ≥ P(j, j + 1) and P(i, i − 1) ≤
P(j, j− 1). Therefore, the expected change in ϕ(t) is always non-positive. We also have

E
(
(∆ϕ(t))2 |Xt, Yt

)
= P(j, j + 1) + P(i, i + 1) + P(j, j− 1) + P(i, i− 1)

=
1
4

(
min

{
1,

π(j + 1)
π(j)

}
+ min

{
1,

π(i + 1)
π(i)

}
+ min

{
1,

π(j− 1)
π(j)

}
+ min

{
1,

π(i− 1)
π(i)

})
.

We claim that E
(
(∆ϕ)2 |Xt, Yt

)
≥ 1

4 . Suppose, for contradiction, that the expectation is less than
1
4 . Then, for each of the minimum functions in the above expression, 1 must be the larger argument.
Equivalently, π(i− 1) < π(i), π(i) > π(i + 1), π(j− 1) < π(j), and π(j) > π(j + 1).

Therefore, π(i) is not unimodal in i and is therefore also not log-concave in i, contradicting our
hypothesis. Therefore we have E

(
(∆ϕ)2 |Xt, Yt

)
≥ 1

4 , as desired.

3. Results

Here we present the constructed Markov chain and corresponding algorithms devised for the
sampling task and the proof of an upper bound on the relaxation time—that the chain mixes rapidly.
Collectively, the results illustrate an analytical approach to calculate the dispersion of the secondary
structure and corresponding branching properties of RNA based on the NNTM energy function
minimization and without reference to a specific nucleotide sequence.

3.1. Our Markov Chain on M2
m

We define a Markov chain M = X0, X1, X2, · · · on M2
m to sample 2-Motzkin paths as a

representation of plane trees. Here, we use m = n− 1 to denote the length of the 2-Motzkin paths
corresponding to plane trees with n edges.

We define each step ofM as follows. First, pick a random element l uniformly from {1, 2, 3, 4}.
Now choose y as follows.

• If l = 1, pick a random pair of consecutive symbols in Xt, and call this pair s. If s is UD or HH,

let s′ be either UD or HH with probabilities 1
1+e−α and e−α

1+e−α respectively. Let y be the string Xt

with s replaced by s′. Otherwise, let y = Xt.
• If l = 2, pick i uniformly from {1, · · · , m}. If Xt(i) is H or I, choose a symbol c to be either H or I

with probabilities e−α

e−α+e−β and e−β

e−α+e−β respectively. Let y be the 2-Motzkin path given by changing
the symbol in Xt(j) to c. Otherwise, we let y = Xt.

• If l = 3, pick i and j each uniformly from {1, · · · , m}. If each of Xt(i) and Xt(j) are either U or D,
let y be the string Xt with the symbols at indices i and j swapped. Otherwise, let y = Xt.

• If l = 4, pick a random pair of consecutive symbols in Xt, and call this pair s. If s is of the form ab
or ba for some a ∈ {U, D} and b ∈ {H, I}, let s′ be the reverse of s, and let y be the string Xt with
s replaced by s′. Otherwise, let y = Xt.
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If y is a valid 2-Motzkin path, set Xt+1 = y with probability 1
2 . Otherwise, set Xt+1 = Xt.

One can see that M is irreducible by noting that every path can be transformed to the path
consisting of all H’s. To make this transformation, first use the l = 4 rule to move all H’s and I’s to
the end of the path. If there are any U’s in the path, we must now have at least one consecutive pair
UD. Use the l = 1 rule to convert the UD to a HH. From here we can repeat, again moving all H’s
to the end and replacing UD with HH, until only H’s and I’s remain. Finally, we can use the l = 2
rule to convert all I’s to H’s. Since all of these steps can also be taken in reverse, this gives a procedure
to move between two arbitrary paths, demonstrating irreducibility. We can also conclude thatM is
aperiodic, due to the existence of self-loops. Combined with irreducibility, this establishes thatM
is ergodic.

We claim thatM is reversible with respect to the stationary distribution π(x) = e−E(x)

Z , where Z =

∑y∈M2
m

e−E(y). This can be easily verified by considering the four move types listed above. For example,
for the first move type given above (transforming UD to HH and vice versa), let x and y be the states
of interest. Suppose that y has the consecutive symbols HH where x contains UD. Then,

π(x)P(x, y) =
e−α(|x|U+|x|H+1)−β|x|I

Z
· e−α

1 + e−α

=
e−α((|y|U+1)+(|y|H−2)+1)−β|y|I

Z
· e−α

1 + e−α

=
e−α(|y|U+|y|H+1)−β|y|I

Z
· 1

1 + e−α

= π(y)P(y, x).

One can verify that similar computations hold for the remaining three types of moves. Therefore,
we conclude that the chainM has stationary distribution π(x) = e−E(x)

Z .
The Markov chainM can be implemented in pseudocode as in Algorithm 1. Here, the Ber(p)

function returns true with probability p, and false otherwise. We also use the addition of strings to
denote concatenation.

Additionally, in order to convert the 2-Motzkin path Xt into a plane tree, we use the algorithm in
Algorithm 2, which assumes the existence of a Node object with children and parent attributes.

3.2. Mixing Time Results

Our main result is to prove the rapid mixing of the Markov chain defined in Section 3.1. An upper
bound on the relaxation time is achieved by bounding the spectral gap from below. A spectral gap
bound for the complex chain at hand is obtained through the use of multiple decomposition theorems,
which give bounds on the spectral gap of the complex chain in terms of the spectral gaps of multiple
simpler chains. The disjoint decomposition theorem due to Martin and Randall [30] provides a flexible
approach to the decomposition of Markov chains. Very recent work by Hermon and Salez [31], building
on the work of Jerrum, Son, Tetali, and Vigoda [32], proves a decomposition theorem with tighter
bounds but stronger hypotheses.

Since this proof involves multiple decomposition steps, we provide an overview here. The primary
tools used in this proof are the two decomposition theorems presented in Section 2.2.5. We first partition
the state space of all 2-Motzkin paths by the number of Us in the path. The projection chain from
this first decomposition is linear and is proved to be rapidly mixing using a result of Martin and
Randall [30] (Lemma 8). Each of the restriction chains are decomposed again, this time by the pattern
of H and I symbols. The projection chains for this second decomposition are shown to be rapidly
mixing by coupling (Lemma 9). The restriction chains are decomposed a third time, this time according
to the skeleton of U and D steps. The projection chains for this third decomposition are shown to be
rapidly mixing by comparison to the classic mountain valley moves chain on Dyck paths (Lemma 10).
This last set of restriction chains are found to be rapidly mixing by isomorphism to the chain consisting
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of adjacent transpositions on binary strings (Lemma 11). Finally, starting from the most restricted
chains, we use the decomposition theorems to obtain a bound on the spectral gap of the original chain
(Theorem 4).

Algorithm 1: The main Markov chain algorithm. This pseudocode calculates Xt given X0.
Require: X0 is a valid 2-Motzkin path of length m.

x ← X0
for s = 1→ t do

y← x
l ← randInt(1, 4)
if l = 1 then

i← randInt(1, m− 1)
if x[i : i + 1] = UD and Ber

(
e−α

2(1+e−α)

)
then

y[i : i + 1]← HH
else if x[i : i + 1] = HH and Ber

(
1

2(1+e−α)

)
then

y[i : i + 1]← UD
else if l = 2 then

i← randInt(1, m)
if x[i] = I and Ber

(
e−α

2(e−α+e−β)

)
then

y[i]← H
else if x(i) = H and Ber

(
e−β

2(e−α+e−β)

)
then

y[i]← I
else if l = 3 then

i← randInt(1, m)
j← randInt(1, m)
if (x[i] ∈ {U, D} and x[j] ∈ {U, D}) and Ber

(
1
2

)
then

y[i]← x[j]
y[j]← x[i]
if y is not a valid 2-Motzkin path then

y← x
else if l = 4 then

i← randInt(1, m− 1)
if (x[i] ∈ {U, D} and x[j + 1] ∈ {H, I}) or (x[i] ∈ {H, I} and x[j + 1] ∈ {U, D}) and Ber

(
1
2

)
then

y[i : i + 1]← x[j + 1] + x[j]
x ← y

return x

We now proceed with a formal presentation. We will use a series of decompositions ofM. We will
first decompose our state space M2

m into S0, · · · , Sbm/2c, where

Sk = {x ∈M2
m : |x|U = k}.

LetMk denote the Markov chainM restricted to the set Sk, and letM be the projection chain over
this decomposition as outlined for Theorem 2.

Additionally, we will decompose each Sk into the sets {Tk,q : q ∈ (H + I)m−2k}, where (H + I)m−2k

denotes the set of strings with length m− 2k from the alphabet {H, I}. We define Tk,q to be the set of
2-Motzkin paths x ∈ Sk such that the substring of H and I symbols in x is q. LetMk,q denote the chain
Mk restricted to Tk,q, and let Mk be the projection chain ofMk over this decomposition.
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Finally, we decompose each Tk,q into the partition {Uk,q,s : s ∈ Dk} based on the skeletons of the
2-Motzkin paths. For each s ∈ Dk, we define

Uk,q,s = {x ∈ Tk,q | σ(x) = s}.

As before, we letMk,q,s be the Markov chainMk,q restricted to Uk,q,s, and letMk,q be the appropriate
projection chain. For clarity, this four-level decomposition is summarized in Figure 3.

Algorithm 2: Algorithm to convert a sampled 2-Motzkin path to a plan tree. The pseudocode
calculates Φ−1(x).

Require: x is a valid 2-Motzkin path of length m.
root← new Node()
// u will be where a new node will be added for an H or D symbol
u← root
// v will be always the last node added
v← new Node()
// the stack will keep track of previous values of u
stack = new Stack()
root.children.append(v)
for i = 1→ m do

node← new Node()
if x[i] = U then

v.children.append(node)
stack.push(u)
u← v

else if x[i] = I then

v.children.append(node)
else if x[i] = H then

u.children.append(node)
else if x[i] = D then

u.children.append(node)
u← stack.pop()

v← node
return root

Lemma 8. M has relaxation time τrel(M) = O(m4) .

Proof. The chainM is a linear chain with states k in {0, . . . , bm/2c}, and with stationary distribution

π(k) = π(Sk) =
Ck
Zm
·

m−2k

∑
i=0

(
m
2k

)(
m− 2k

i

)
e−α(k+i+1)−β(m−2k−i)

=
e−α(k+1)

Zm

(
m
2k

)
Ck · (e−α + e−β)m−2k,

where π is defined as in Section 2.2.5. Notice that transitions inM which move between the Sk sets are
those which change a HH substring into a UD or DU substring, or vise versa. Thus, the transitions in
M only increase or decrease k by at most 1. We seek to apply Lemma 5. To choose a, notice that for
x ∈ Sk and y ∈ Sk±1 with P(x, y) > 0, we have

P(x, y) =
1

4(m− 1)
1

1 + eα
or P(x, y) =

1
4(m− 1)

1
1 + e−α

.
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Note that the factor 1/4 comes from the choice l = 4, and the factor 1/(m− 1) comes from the
fact that there are m− 1 adjacent pairs to pick from. Then,

P(x, y) ≥ 1
4(m− 1)(1 + e−|α|)

.

Thus, we pick a = 1
4(m−1)(1+e−|α|)

.

To pick b, we let
∂−(Sk) = {y ∈ Sk : ∃x ∈ Sk−1, P(x, y) > 0}

for k ∈ {1, · · · , bm/2c}, and we let

∂+(Sk) = {y ∈ Sk : ∃x ∈ Sk+1, P(x, y) > 0}

for k ∈ {0, · · · , bm/2c − 1}.

M2
m

Sk

Tk,q

Uk,q,s

S0 · · · Sk · · · Sbm/2c

Tk,q

Uk,q,s

0 · · · k · · · bm/2c
M

Mk

Mk,q

Mk,q,s

q

s

Figure 3. The four level decomposition of M2
m (left), and the projection chains corresponding to each

decomposition (right).

Additionally, let Ak for k ∈ {1, · · · , bm/2c} be the subset of Sk consisting of the 2-Motzkin paths
in which the first D symbol appears immediately after a U. Let Bk for k ∈ {0, · · · , bm/2c − 1} be the
subset of Sk consisting of the 2-Motzkin paths in which a pair of adjacent H symbols occur before all
other H or I symbols. It is easy to see that Ak ⊂ ∂−(Sk) and Bk ⊂ ∂+(Sk). We have

π(Ak) =
Cke−α(k+1)

Zm

(
m− 1
2k− 1

)
(e−α + e−β)m−2k,

as there are Ck ways to arrange the U and D symbols and (m−1
2k−1) ways to insert m− 2k H or I symbols

(treating H and I as being identical for now) without placing anything between the first D and the U
immediately before it. The energy contribution of the U and D symbols is given by e−α(k+1), and the

energy contribution of the H and I symbols is
(
e−α + e−β

)m−2k. The required normalizing constant is
Zn. Similarly, we also get
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π(Bk) =
Cke−α(k+3)e−2β

Zm

(
m− 1

2k

)
(e−α + e−β)m−2k−2

because there are Ck ways to arrange the U and D symbols and (m−1
2k ) ways insert m− 2k− 1 H or I

symbols (treating the initial pair of H’s as a single symbol gives us only m− 2k− 1 symbols to insert).
The energy contribution of the U’s, D’s, and the initial two H’s is given by e−α(k+3)e−2β, and the energy
contribution of the remaining H’s and I’s is (e−α + e−β)m−2k−2. Finally, Zm is again a normalizing
constant.

Hence combining these two results, we have

π(∂−(Sk))

π(Sk)
≥ π(Ak)

π(Sk)
=

2k
m

and

π(∂+(Sk))

π(Sk)
≥ π(Bk)

π(Sk)
=

m− 2k
m

(
e−αe−β

e−α + e−β

)2

.

Thus, we may let b = 1
m

(
e−αe−β

e−α+e−β

)2
.

Applying Lemma 5, we get that Gap(M) ≥ Gap(MM)
O(m2)

. Additionally, one can check that π(i) is

log concave in i. Hence, using Lemma 7, we get τrel(MM) = O(m2), and in turn τrel(M) = O(m4) ,
as claimed.

Lemma 9. Mk has mixing time τ(Mk) = O(m log m), for all k.

Proof. Notice that Mk appears as a chain with states q in the set Q = (H + I)m−2k. Additionally,
transitions in Mk only occur between strings in Q that differ at only one index. The stationary
distribution ofMk is given by πk(q) ∝ e(β−α)|q|H , where we have intentionally used the constant of
proportionality to remove all dependence on k, which we consider, in this context, to be fixed.

Additionally, for q1, q2 ∈ Q which differ at exactly one index, we have the transition probability

Pk(q1, q2) =


(m−2k)e−α

4m(e−α+e−β)
if |q2|H = |q1|H + 1

(m−2k)e−β

4m(e−α+e−β)
if |q2|H = |q1|H − 1

.

We may show that Mk rapidly mixes by a simple coupling argument. Let (Xt, Yt)∞
t=0 be our

coupled Markov chain on Q×Q. We define one step in this coupled chain as follows.

1. With probability 1− m−2k
4m , set (Xt+1, Yt+1) = (Xt, Yt).

2. Otherwise, pick a random index j ∈ [m − 2k]. Let a ∈ {H, I} be a random symbol such that
Pr(a = H) = e−α

e−α+e−β and Pr(a = I) = e−β

e−α+e−β . Now let Xt+1 and Yt+1 be Xt and Yt respectively,
each with the jth symbol changed to a.

One can check that each of (Xt)t and (Yt)t are indeed copies ofMk. Additionally, notice that we will
have Xt = Yt after all m− 2k possible indices j have been updated. By the Coupon Collector Theorem,
we have the coupling time of this chain to be TMk

= 4m
m−2k ·O((m− 2k) log(m− 2k)) = O(m log m).

Thus, using Theorem 1, we have the mixing time (and the relaxation time) also O(m log m).
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Lemma 10. Mk,q has relaxation time τrel(Mk,q) = O(m2), for all pairs (k, q).

Proof. Notice that all x ∈ Tk,q have equal energy, and that |Uk,q,s| = (m
2k) for all s. Thus,Mk,q has a

uniform stationary distribution. If we represent each set Uk,q,s by the Dyck path s, we can think of
Mk,q as a chain over Dk. Since all the transitions inMk,q that move between the Uk,q,s sets are moves
that exchange the positions of a U and a D, the transitions inMk,q are simply the moves on elements
of Dk which exchange a U with a D. We call these moves on the elements of Dk, transposition moves.

For each s1, s2 ∈ Dk that differ by a transposition move, the transition probabilities in our
projection chain are given by

Pk,q(s1, s2) =
1

π(Uk,q,s1)
∑

x∈Uk,q,s1
y∈Uk,q,s2

π(x)P(x, y) =
1

|Uk,q,s| ∑
x∈Uk,q,s1
y∈Uk,q,s2

P(x, y)

=
1

(m
2k)

∑
x,y

P(x,y)>0

1
4m2 =

1
4m2 .

The last equality above relies on counting the number of terms in the sum. Notice that for each
x ∈ Uk,q,s1 , there is a unique y ∈ Uk,q,s2 for which P(x, y) > 0. Therefore, the number of terms is simply
|Uk,q,s1 | = (m

2k). Compare this chain to the traditional mountain valley Markov chain on Dk, which we
will denote byM′. The transition probabilities ofM′ are given by P′(s1, s2) =

1
k2 for each pair (s1, s2)

which differ by a mountain-valley move. It is known from Cohen [33] that Gap(M′) = 1
O(k2)

. Thus,

applying Lemma 1 toMk,q andM′, we see that Gap(Mk,q) =
1

O(m2)
.

Lemma 11. Mk,q,s has relaxation time τrel(Mk,q,s) = O(m3) , for all valid triples (k, q, s).

Proof. Notice that transitions inMk,q,s consist only of moves which involve swapping an H or an
I with an adjacent U or D. Additionally, all 2-Motzkin paths in Uk,q,s have equal energy, so for all
x, y ∈ Uk,q,s such that P(x, y) > 0, we have P(x, y) = 1

8(m−1) .
To determine the mixing time ofMk,q,s, consider an isomorphic chain. Let U′ be the set of all

binary strings of length m with 2k zeros and m− 2k ones. LetM′ be the Markov chain on U′ where
each step does nothing with probability 7/8 and swaps a random pair of adjacent (potentially identical)
digits with probability 1/8. From Wilson [34], we know that the spectral gap ofM′ is 1

O(m3)
.

Finally, we can combine our bounds on the spectral gaps of all of these chains to prove our
main result.

Theorem 4. The Markov chainM has relaxation time τrel(M) = O(m7) , for all α, β ∈ R.

Proof. We use Lemmas 11 and 10 with Theorem 3 to obtain a bound on Gap(Mk,q). We define a
coupling κs1,s2 for each pair (s1, s2) ∈ Dk ×Dk with Pk,q(s1, s2) > 0. For each such pair, notice that the
set of pairs (x, y) ∈ Uk,q,s1 ×Uk,q,s2 with P(x, y) > 0 is a perfect matching. Thus, we may set

κs1,s2(x, y) =


1

(m
2k)

if P(x, y) > 0

0 P(x, y) = 0
.
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To compute χ, we begin by observing π(x) = π(y) for all x, y ∈ Mk,q. Note also
∣∣∣Uk,q,s

∣∣∣ = (m
2k)

for all skeletons s of length 2k. Before computing χ, we start by finding P(s1, s2).

P(s1, s2) =
1

π(Uk,q,s1)
∑

x∈Uk,q,s1
,y∈Uk,q,s2

π(x)P(x, y)

=
1

π(Uk,q,s1)
∑

x∈Uk,q,s1
,y∈Uk,q,s2

π(x)
1
4 (

m
2 )

=
1

π(Uk,q,s1)

∣∣∣Uk,q,s1

∣∣∣ 4π(x)
(m

2 )

=
4
(m

2 )
.

We now proceed with the calculation of χ. Recall that the minimum is taken over all tuples
x, y, s1, s2 where P(s1, s2) > 0 and κ01,s2(x, y) > 0.

χ = min

{
π(x)P (x, y)

π(s1)P(s1, s2)κs1,s2(x, y)

}

= min

 π(x) 4
(m

2 )

π(Uk,q,s1)
4
(m

2 )
1

(m
2k)


=

(m
2k)

(m
2k)

= 1.

Theorem 3 then gives

Gap(Mk,q) ≥ min
{

χGap(Mk,q), min
s

Gap(Mk,q,s)
}

min
{

1
O(m2)

,
1

O(m3)

}
=

1
O(m3)

.

Similarly, we define a coupling κq1,q2 for each pair (q1, q2) ∈ (H + I)m−2k × (H + I)m−2k with
Pk(q1, q2) > 0 to apply Theorem 3 to Mk. Notice that once again, the set of pairs (x, y) ∈ Tk,q1 × Tk,q2

for which P(x, y) > 0 forms a perfect matching. Thus, we take

κq1,q2(x, y) =


1

(m
2k)Ck

if P(x, y) > 0

0 P(x, y) = 0
.

To compute χ for this coupling, we again begin with a few preliminary computations. In all of
the following, let x ∈ Tk,q1 , y ∈ Tk,q2 with P(q1, q2) > 0. Note that q1 and q2 have the same length and
differ at only one index. We will show the computations for the case where q1 has a I where q2 has a H.
The computations for the other case are nearly identical.

Note that P(x, y) = e−α

e−α+a−β . Note also
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π(q1) = π(Tk,q1) = π(x)
∣∣∣Tk,q1

∣∣∣ = π(x)Ck

(
m
2k

)
and

P(q1, q2) =
1

π(Tk,q1)
∑

x′∈Tk,q1
,y′∈Tk,q2

P(x′, y′)

=
1∣∣Ts,q1

∣∣ · e−α

e−α + e−β

∣∣Ts,q1

∣∣
=

e−α

e−α + e−β
.

Now we can compute

χ = min
{

π(x)P(x, y)
π(q1)P

(q1, q2)κq1,q2(x, y)
}

= min

 π(x) e−α

e−α+e−β

π(x)Ck(
m
2k)

e−α

e−α+e−β · 1
Ck(

m
2k)


= 1.

Applying Theorem 3 then gives

Gap(Mk) ≥ min
{

χGap(Mk), min
q

Gap(Mk,q)

}
= min

{
1

O(m log m)
,

1
O(m3)

}
=

1
O(m3)

.

Unfortunately, we have not been able to find a useful coupling forM, so for the last step of our
decomposition, we apply Theorem 2. Since Gap(M) = O

(
1

m4

)
and Gap(Mk) = O( 1

m3 ) for all k,
we have

Gap(M) ≥ 1
2

Gap(M) min
k∈[m/2]

Gap(Mk)

=
1

2O(m4)O(m3)

=
1

O(m7)
,

establishing Theorem 4.

Finally, an application of Lemma 3 allows us to conclude that the mixing time is also
polynomially-bounded.

Corollary 1. M is rapidly mixing.
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Proof. In order to apply Lemma 3, we need to obtain a polynomial bound on log(1/π(x)) for all
x ∈ Ω. Let t ∈ Ω have maximum energy among all elements of Ω. For any x ∈ Ω,

log
(

1
π(x)

)
= log

(
∑y∈Ω e−αd0(y)−βd1(y)

e−αd0(x)−βd1(x)

)

≤ log

(
Cne−αd0(t)−βd1(t)

e−αd0(x)−βd1(x)

)

≤ log
(

Cne−αn−βn

e−α

)
= log

(
Cne−α(n−1)e−βn

)
≤ n log (2n) + log

(
1

n + 1

)
− α (n− 1)− βn.

This gives us the required polynomial bound, and therefore Lemma 3 implies that M is
rapidly mixing.

4. Discussion and Conclusions

The goal of this work was to identify a Markov chain and construct a corresponding algorithm by
which to examine the non-uniform distribution and dispersion properties of NNTM RNA secondary
structures and branching properties independent of a specific nucleotide sequence. This study
successfully identifies the existence of a Markov chain, with a provably polynomial mixing time,
which generates a Gibbs distribution on plane trees. This stationary probability distribution models
branching characteristics of RNA secondary structure under the NNTM. While the exploration of
sampled structures obtained from this algorithm are beyond the scope of the presented results,
pseudocode (see Section 3.1) is provided to facilitate future work in this area. Below we discuss the
direct applications and implications of this work to RNA modeling, the possibility of implementing
a dynamic programming approach, the possibility of an approach using stochastic context-free
grammars, other biological applications of this work, contributions of this work towards independent
mathematical research interests, and limitations and future directions of the present work.

4.1. Applications to RNA Modeling

The most straightforward application of this work is in understanding the background distribution
of the branching behavior for secondary structures predicted under the NNTM. While the NNTM
is widely used to predict secondary structures from sequence data, little is known about the general
branching characteristics of the predicted structures, independent of a specific input sequence.
Quantities such as the number of hairpins, the maximum branching in a multiloop, the average
branching in a multiloop, and the maximum ladder distance of the structure [7,35] help to characterize
the branching behavior and could be computed from samples obtained from this algorithm.
These quantities also have been studied in native structures and/or could be easily obtained from
databases such as RNA STRAND [36]. The parameter values of α, β, and γ corresponding to various
revisions of the NNTM are given in Table 1 in Section 2.1. The Markov chain and corresponding
algorithms presented will enable biologists to calculate the dispersion of key branching properties for a
specific energy function. As described with the detailed hairpin dispersion example in the Introduction
(Section 1), knowing whether branching properties fall within acceptable dispersion limits is crucial
for deducing potential functional insight or hypothesizing other scientific ramifications.

Another key application to RNA modeling of the presented algorithms is the ability to explore the
parameter space of possible values for α and β. While the various revisions of the NNTM correspond
to specific values for these parameters, in principle any real-valued parameters could be used. Finding
values for these parameters that approximate reality remains an open question. Yet, determination
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of how differences in parameter values change the distribution of NNTM branching properties,
such as maximum ladder distance, is crucial. Moreover, parameter space exploration is necessary
to identify and further explore the phase transitions that exist. The presented Markov chain and
corresponding algorithms expedite such future computational experimentation. Therefore, collectively,
the presented algorithm enables exploration that will greatly improve understanding of NNTM-based
RNA secondary structures and branching properties, as well as identify potential limitations or specific
branching structures where the NNTM models do not sufficiently emulate reality. For example,
NNTM-based free energy minimization algorithms achieved an accuracy of at least 60% in only 9% of
16S secondary structures analyzed by Doshi et. al. [15].

The algorithm presented here can only sample under an energy function of the form αd0 + βd1,
and this does not capture the entirety of the model presented in [16], which considers energy functions
of the form αd0 + βd1 + γr. However, the missing term, γr, represents the energy contribution of the
exterior loop, and the exterior loop contributes less of the total free energy as sequence length increases.
Therefore, when interested in sequences of at least moderate length, this algorithm may be able to
provide insight, as long as information about the exterior loop is not the specific object of study. Note
that other authors have made similar simplifications with respect to the exterior loop, e.g., [17].

4.2. Possibility of a Dynamic Programming Approach

This sampling problem to calculate the dispersion of NNTM RNA secondary structure and
properties utilized Markov chain techniques. However, is it possible to utilize a dynamic programming
algorithm? It is straightforward to sample Dyck paths under a uniform probability distribution using
dynamic programming techniques. However, it is not clear whether a similar technique could be used
for the Gibbs distribution we define here, due to the complexity of the energy function. In particular,
large numeric computations may be required to handle the variable k, the number of U steps in a
path. While Alonso presents a way to sample from the unweighted distribution Pr(k = l) ∝ (m

2l)Cl
in O(n) time without large computations [37], it is unclear if a similar method may be used for the
present application.

4.3. Possibility of an SCFG Approach

Stochastic context-free grammars (SCFGs) have been widely used in the field of RNA secondary
structure prediction, e.g., [38–41]. Most commonly, the probabilities for production rules in an SCFG are
determined by training on a set of known secondary structures, often including covariance information
from homologous structures. These approaches are not immediately applicable to the problem we
study here, as they do not give any insight into the NNTM multiloop energy parameters.

However, some authors have constructed SCFGs based on the NNTM. In particular, Nebel and
Scheid [38] construct an SCFG with 29 distinct production rules to mirror the NNTM features. They also
present a sampling algorithm allowing for sampling structures of a fixed size using the grammar.
However, they do not actually compute probabilities for the production rules that would allow one to
sample from a Gibbs distribution (with NNTM energy) and instead rely on training on a set of known
structures. Indeed, it is not clear from the paper whether such a set of probabilities must exist.

Even in the case of the simplified model we present in this manuscript, it is not clear how to assign
probabilities to production rules in an SCFG so that the probability of obtaining a given structure
matches the Gibbs probability under the NNTM. See Supplement 1: SCFG for more details.

Even if a suitable SCFG could be formulated, the SCFG approach is not necessarily superior.
The sampling algorithm presented by Nebel and Scheid has time complexity O(n3) and space
complexity O(n2). While the algorithm we present does have large time complexity, it only requires
linear space, which may be an advantage for some applications.

Even though we cannot easily formulate a SCFG, it is reasonable to consider whether a context-free
grammar (such as that presented in Supplement 1) could nonetheless be used as the basis for a dynamic
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programming algorithm. In fact, this is possible. The key idea is to create a table for each non-terminal
symbol X and then populate entry k of the table with

∑ eE(t),

where the sum is taken over all trees t ∈ Tk which can be derived from symbol X.
Once the tables been populated with these (non-normalized) probabilities, a stochastic

backtracking procedure can be used to obtain samples.
However, as in Section 4.2, an assumption that each arithmetic operation can be performed in

unit time is not appropriate here. Because the elements of our dynamic programming tables are in
fact parts of the partition function, we can conclude that the numbers involved could have up to O(n)
digits. Each arithmetic operation, therefore, becomes much more expensive. While a polynomial-time
dynamic programming algorithm based on a context-free grammar is possible, an efficient dynamic
programming algorithm would require substantially more work.

4.4. Extended Applications

The Markov chain mixing analysis techniques explored in this manuscript have the potential
for useful application in a variety of fields. Markov chain Monte Carlo algorithms are widely used
in several fields including, machine learning [42], econometrics [43], and Bayesian Statistics [44].
In virtually all applications, an understanding of mixing time increases confidence in the results. In
some situations, an understanding of mixing time may also allow for more efficient algorithm selection
and implementation.

While many Markov chains with nonuniform stationary distributions have been used for
biological applications (e.g., [45–48]), theoretical guarantees on the mixing time are generally not
known. Instead, researchers must rely on convergence heuristics, and in fact, many introductions to
Markov chain Monte Carlo written for biologists explain such heuristic techniques [49–52]. Of course,
heuristics can be misleading, and rigorous mixing time guarantees would be significantly preferable.
The same techniques used in this work might be used to generate algorithms with rigorous mixing
time bounds for other biological problems concerning a nonuniform distribution.

The mathematical techniques used in this manuscript have been widely used in mathematics,
physics, and computer science, demonstrating their broader applicability. For numerous examples,
we direct the reader to the books of Levin, Peres, and Wilmer [53]; Montenegro and Tetali [54];
and Jerrum [55].

As an example where similar techniques have found utility in biological applications, it is
interesting to briefly consider the study of cladograms, which arise from phylogenetic trees.
Mathematically, a cladogram is a binary tree with n labeled leaves and n − 2 unlabeled internal
nodes. While an explicit formula is known for the exact number of cladograms of a given size, mixing
time under certain dynamics has also been studied. For example, Aldous [56] studied a Markov
chain where a leaf is removed at random and then attached to a random edge in the tree, obtaining a
proof that the mixing time is bounded below by O(n2) and bounded above by O(n3). Further work
by Schweinsberg [57] later proved an upper bound of O(n2), closing the gap between the upper and
lower bounds.

4.5. Independent Mathematical Research Interests

The plane trees examined as a model for RNA secondary structure are of independent
mathematical interest. As Catalan objects, they have been studied combinatorially (see,
for example, [25,58]), and Markov chains on Catalan objects have received significant attention over
the years [33,34,59–61], but with very few results providing tight estimates on the corresponding
mixing times; most commonly these are discussed in the language of Dyck paths. Cohen’s thesis [33]
gives an overview of the known mixing time results for chains on Catalan objects. All of the chains
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surveyed there have a uniform distribution over the Catalan-sized state space as their stationary
distribution. Among these, essentially the only known chain with tight bounds (upper and lower
bounds differing by a small multiplicative constant) is due to Wilson [34] and gives the relaxation time
of O(n3) for the walk consisting of adjacent transpositions on Dyck paths. In comparison, in [59] the
chain using all (allowed) transpositions has been shown to have relaxation time of O(n2), and further
conjectured to have O(n) as the relaxation time, in analogy with the random transposition shuffle of
n cards.

Judging from the lack of progress on several of these chains, it is evident that determining mixing
or relaxation time for these chains is typically a challenging problem, even in the case where the
stationary distribution is uniform.

In the current work, the RNA secondary structure modeling naturally leads to a state-space on
Catalan objects with a nonuniform distribution, making the corresponding mixing time analysis even
more challenging. Another example where mixing times are estimated for Markov chains on Catalan
objects with nonuniform stationary distribution is the work of Martin and Randall [30], which examines
a Gibbs distribution on Dyck paths weighted by the number of returns to the x-axis.

4.6. Limitations and Future Directions

While the mixing time proved here is polynomial, it is almost certainly too large to allow for any
practical computational sampling experiments. However, we conjecture the actual mixing time to be
much smaller, and future work may provide a better bound. Even without additional theoretical results,
interesting work is possible using the algorithm we present and heuristic methods for evaluating
Markov chain mixing. See ([62], Ch. 8) for a discussion of heuristic methods for monitoring Markov
chain convergence.

The results of this study provide an important mathematical foundation for examining the
dispersion of RNA secondary structures and branching properties using a Markov chain. However,
more work is necessary to optimize the developed computational application for incorporation into
the software utilized by biologists that study RNA. Example questions that strongly compel further
investigation include:

1. Can the mixing time bound in our main result be improved?
2. Is there a rapidly mixing chain, with the same stationary distribution studied here,

whose transitions correspond naturally to moves on the set plane trees? Mixing time bounds on
the chain of matching exchange moves, as defined in [63], would be especially interesting, as such
a chain may relate to RNA folding kinetics.

3. Is there a rapidly mixing chain converging to the Gibbs distribution using the full energy function
for the utilized NNTM model [16]? The chain presented here uses only the parameters α and β,
setting γ = 0.

4. Is there a stochastic context-free grammar which generates secondary structures (in our simplified
model or using the full NNTM) according to a Gibbs distribution with NNTM energy?

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. Supplement 1: SCFG.
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Abbreviations

The following abbreviations are used in this manuscript:

RNA ribonucleic acid
NNTM Nearest Neighbor Thermodynamic Model
SCFG stochastic context free grammar
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