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Abstract

Given the aging infrastructure and the anticipated growing number of highway work zones in the U.S.A,, it is important to
investigate work zone merge control, which is critical for improving work zone safety and capacity. This paper proposes and
evaluates a novel highway work zone merge control strategy based on cooperative driving behavior enabled by artificial intel-
ligence. The proposed method assumes that all vehicles are fully automated, connected, and cooperative. It inserts two
metering zones in the open lane to make space for merging vehicles in the closed lane. In addition, each vehicle in the closed
lane learns how to adjust its longitudinal position optimally to find a safe gap in the open lane using an off-policy soft actor
critic reinforcement learning (RL) algorithm, considering its surrounding traffic conditions. The learning results are captured
in convolutional neural networks and used to control individual vehicles in the testing phase. By adding the metering zones
and taking the locations, speeds, and accelerations of surrounding vehicles into account, cooperation among vehicles is impli-
citly considered. This RL-based model is trained and evaluated using a microscopic traffic simulator. The results show that this
cooperative RL-based merge control significantly outperforms popular strategies such as late merge and early merge in terms
of both mobility and safety measures. It also performs better than a strategy assuming all vehicles are equipped with coopera-
tive adaptive cruise control.

Bottlenecks generated by work zones as well as traffic
incidents are among the most important contributors to
non-recurring congestion and secondary crashes. Many
previous work zone studies focused on merge control
and proposed a variety of strategies such as early merge
(EM) (/) and late merge (LM) (2) to improve work zone
throughput. EM typically uses a sequence of “Do Not
Pass” signs that can be activated/deactivated depending
on traffic to create a no-passing zone of varying length.
A traffic sensor is mounted on each sign to monitor traf-
fic in the open lane. The purpose of the no-passing zone
is to encourage drivers in the closed lane to switch to the
open lane before reaching the end of the dynamically
changing queue (or slow-moving traffic) to improve
safety and efficiency. EM often creates high-speed but
low-density flow at the merging point. While for LM,
drivers in both open and closed lanes are urged to stay in
their respective lanes until the merging point, where they
take turns to merge. Compared with EM, LM can effec-
tively reduce the overall queue length, since both lanes
are used for queue storage. However, LM often generates
low-speed but high-density flow at the merging point.

Ideally, the best merge control should result in high-
speed and high-density flow.

Some advanced driving assistant systems, such as
adaptive cruise control (ACC) (3), enable vehicles to
drive at a high speed while maintaining a small gap (i.e.,
high density). Such a feature is only intended for improv-
ing vehicle longitudinal control and cannot address the
challenging work zone merge problem. Also, an ACC-
equipped vehicle only considers its interactions with the
vehicle immediately in front of it and in the same lane
(including vehicles attempting to merge into its lane), try-
ing to make optimal decisions locally. To improve work
zone traffic operations, it is important for individual
vehicles to take global traffic conditions into
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consideration and cooperate with other vehicles in both
the open and closed lanes.

To enable collaborative driving behavior among con-
nected and automated vehicles (CAV), there are three
main challenges: (a) how to take the vast amount of
unstructured traffic information into consideration effec-
tively; (b) how to choose an optimal control policy based
on the dynamically changing surrounding traffic that
maximizes the benefits of the subject vehicle in the long
run instead of just the next few time steps; and (c) how
to make the best decisions based not only on the subject
merging vehicle’s state, but also on its surrounding vehi-
cles’ current states and possible moves in the future.
Some previous studies have attempted to address the col-
laborative merge problem. Chen et al. (4) applied a gap
acceptance algorithm and proposed several rules to
decide a vehicle’s actions before merging into the target
lane. Urmson et al. (5) used a slot-based approach for
cooperative merging control. Van et al. (6) proposed a
cooperative adaptive cruise control (CACC) to allow
CAVs to drive in a cooperative manner. However, these
rule-based methods depend heavily on specific situations
which are pragmatically vulnerable due to their inability
to adapt to unforeseen environments.

Reinforcement learning (RL) has been successfully
applied to a variety of fields with the growing availability
of cost-effective high-performance computing hardware.
RL together with deep neural networks can take large
dimensions of state space into consideration, making it
very appealing for work zone control. Using RL, ana-
lysts do not need to specify explicitly how a work zone
changes from one state into another (i.e., state transition
probability matrix), which dramatically reduces the mod-
eling effort needed, particularly the trouble associated
with specifying the uncertain state transition probability
matrix. Vehicle agents can learn from a huge number of
simulated scenarios about the complex nonlinear rela-
tionship between their next moves and work zone traffic
operations, and find actions with the maximum long-
term reward.

Due to these desirable features, RL has been applied
in self-driving vehicles such as NVIDIA (7), Tesla
Autopilot (8), and Google Waymo. RL has also been
adopted for CACC (9, 10), and it has been demonstrated
that RL can lead to safe and efficient longitudinal con-
trol in a connected vehicles environment. Additionally,
RL-based vehicle controllers have been tested and vali-
dated in both simulated environments and real-world
experiments (/7). However, no merging maneuvers were
considered in these studies. Several researchers have pro-
posed RL approaches to tackle the problem of on-ramp
merge control (/2, 13). Although similar, on-ramp and
work zone controls are fundamentally different. For

example, for work zone control it is ideal for vehicles in
both the open and closed lanes to travel at approxi-
mately the same speed and flow rate, while for on-ramp
control ramp vehicles usually need to yield to highway
mainline traffic. Some researchers have also applied RL
in ramp metering (14, 15). Specifically, Fares et al. (/4)
developed a RL model to optimally control the density
of freeway mainstream for maximizing traffic through-
put and minimizing travel time. Their model was formu-
lated as a Markov decision process (/6) and solved by Q-
learning (/7). Yang et al. (15) proposed a deep Q-net-
work (DQN) (/8) control strategy to identify the optimal
ramp metering rate. The DQN considered upstream and
downstream traffic volumes as the input state and chose
either green or red for the ramp meter traffic light as the
action at each decision interval. Yu et al. (19) applied
deep Q-learning to control a simulated car for turning
and obstacle avoidance maneuvers. These studies all con-
sidered a discrete action space due to its simplicity and
fast convergence, although many vehicle control prob-
lems [e.g., (19)] very likely may benefit more from using
a continuous action space. Sallab et al. (20) compared a
discrete action-space DQN with a continuous action-
space deep deterministic actor critic (DDAC) (21) for
lane-keeping assistance based on an open source car
simulator, and the results showed that the discrete DQN
method led to abrupt steering maneuvers while the con-
tinuous DDAC method generated better performance
and smoother control.

This research proposes a deep neural network-based
RL control approach that guides automated vehicles
(AVs) through work zones. Specifically, a work zone is
divided into two metering zones and a merging zone (see
Figure 1). In the metering zones, AVs are not allowed to
change lanes and they focus on adjusting longitudinal
positions using the proposed RL method. By the time
AVs reach the merging/lane reduction point, they will be
able to maintain a sufficient front gap if all vehicles were
projected onto a single lane. In this way, they can merge
safely and form a high-speed and high-density vehicle
platoon. The key to this proposed approach is how to
adjust AVs’ longitudinal positions properly in the meter-
ing zones. In this research, each AV in the closed lane is
considered as a RL agent. It learns the best control strat-
egy through its interactions with the simulated traffic
environment using VISSIM. At each time step, this agent
takes an action (i.e., acceleration, deceleration). At the
next time step, the value for its previous action is updated
based on a set of reward functions and the interactions
between the agent and the environment. To improve the
control model’s generalization ability, a deep neural net-
work is used to store the learning results. The proposed
RL approach is detailed in the next section.
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Figure 1. Overview of work zone model to evaluate reinforcement learning (RL)-based control.

Methodology
Overview

As shown in Figure 1, a work zone is divided into two
metering zones followed by a merging zone. All vehicles
approaching the work zone are instructed to increase
their distance headways upon entering Metering Zone 1.
Specifically, each vehicle needs to increase its front dis-
tance headway to twice the safe distance needed for the
corresponding speed (assuming 70 km/h). Metering Zone
I is used to provide sufficient distance (i.e., reaction time)
for vehicles to double their front gaps, and lane changing
is prohibited in this zone. In Metering Zone 11, vehicles
in the open lane (left lane in Figure 1) will adopt the same
car-following behavior as in Metering Zone I, while vehi-
cles in the closed lane (right lane in Figure 1) are required
to adjust their longitudinal positions. By the time vehicles
reach the merging/lane reduction point, they will be able
to maintain a sufficient front gap if all vehicles were pro-
jected onto a single lane. Following this longitudinal con-
trol strategy, toward the end of Metering Zone II, if
vehicles in both lanes are projected onto a single virtual
lane, all the distance headways are expected to be close to
but greater than the minimum safe distance gap. In the
Merging Zone, lane changes are allowed and vehicles in
the two lanes take turns to merge. In summary, the core
of the RL-based method is the longitudinal control in the
two metering zones, where lane changes are prohibited.
Before Metering Zone 1, vehicles follow normal driving
behavior. After Metering Zone II, vehicles also follow
normal driving behavior other than being instructed to
merge in the merging zone.

In this study, the deep neural network-based RL strat-
egy and other benchmark strategies are evaluated using
VISSIM microscopic traffic simulation. VISSIM pro-
vides a DriverModel DLL (DLL stands for dynamic
link library) interface that allows users to replace the
default driving behavior models with custom-developed
models. In Metering Zone II, vehicles in the right lane
are controlled by a convolutional neural network trained

by RL, and left-lane vehicles are controlled by a modified
VISSIM default driving behavior model. The modifica-
tion simply doubles the default time headway to create
sufficient gaps for right-lane vehicles to merge in the
Merging Zone.

Our initial goals included determining the optimal
lengths (either dynamic or static values) for the two
metering zones using RL, or letting individual vehicles
decide where to merge depending on real-time traffic.
However, this subtask alone turned out to be very chal-
lenging. In the current study, the lengths of the two
zones are determined empirically based on VISSIM
simulation to be 800m. Their optimal values are not
necessarily the same as in this study. It is anticipated that
optimal lengths will further improve the performance of
the proposed RL control. As a new merge control strat-
egy focusing on vehicle cooperation, the proposed
method can be expanded or improved in many direc-
tions. Therefore, the results reported in this study only
set the floor for the performance of the proposed RL
merge control.

Deep RL

In this section, a detailed description of the RL approach
is provided, including the basics of RL, state representa-
tion, neural network architecture, and soft actor critic
(22) RL, and reward shaping.

In this research, the control of right-lane vehicles (see
Figure 1) is formulated as a Markov decision process
consisting of numerous states s primarily defined by the
surrounding traffic. Based on the learned policy m, an
action « is selected at each state and executed. After the
execution, the system (i.e., work zone traffic operations)
will react to the action, from which a reward r can be
observed, and transit to a new state s. The reward and
the current and new states are then used to update the
policy. To take each action’s long-term reward into con-
sideration, the expected discounted cumulative reward
>R is calculated along with the policy from the initial
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Figure 2. State representation for the proposed deep reinforcement learning algorithm.

state (a vehicle enters the work zone) to the terminal state
(a vehicle merges into the open lane in the merging zone).

The RL results can be stored either by function
approximation or in a table. The function approximation
approach, such as deep deterministic policy gradient
(DDPG) (21) and the proposed soft actor critic, employs
mathematical models (e.g., deep neural networks) to
approximate the value function and/or policy function,
while the table approach, such as Q-learning, uses a table
to store value or policy function values. Table based RL
methods cannot handle the estimation of large Q tables
(e.g., when the action space is continuous). Therefore,
the function approximation approach is adopted in this
study, which can handle well the curse of the dimension-
ality problem due to continuous state and action spaces
and result in stable model performance in a highly com-
plex environment (e.g., highway work zone traffic).

State Representation. In this study, the system state is
defined by three components: network speed grid map,
network acceleration grid map, and an eight-element vec-
tor (see explanation later in this section) representing the
traffic surrounding the subject vehicle (i.e., the red vehi-
cle in Figure 2) being controlled by RL.

As in Figure 2, the 800 m Metering Zone 11 is divided
into 2 X 800 cells for the network speed grid map and
network acceleration grid map. Each row is for a lane
and each cell is for a 1 m segment. The numbers in each
cell represent either the speed or the acceleration of the
vehicle occupying that cell. If a vehicle occupies multiple
cells, then the speed/acceleration values in the corre-
sponding cells will be equal.

The speed values illustrated in Figure 2 are normalized
based on the actual vehicle speeds and are bounded by 0

and 1. The normalization is done via dividing the original
speed values by the maximum speed in the training and
testing processes. Similarly, the acceleration values in
Figure 2 are normalized using the maximum absolute
value and are bounded by —1 and 1.

In addition to the two grid maps, an eight-element
vector is included to describe the relationship between
the subject vehicle s (the red vehicle in Figure 2) and three
surrounding vehicles ( n;, n,, and n3 in Figure 2). Among
the eight elements, three are for the longitudinal distance
gaps between vehicles (s,n;), (s,n2), and (s, n3); another
three are for the longitudinal speed differences (relative
speeds) between vehicles (s,n;), (s,ny), and (s,n3); and
the last two are for the speed of the subject vehicle s and
its distance to the lane closure point.

The two grid maps give the subject vehicle a global
view of the current traffic conditions in the work zone,
while the eight-element vector is to provide the subject
vehicle with more detailed local traffic information. In
total, the proposed RL method takes 3,208 state vari-
ables. Given such a large input dimension, it is reason-
able to use neural networks to capture the learned
control policy.

Neural Network Architecture. When the state space is dis-
crete and compact, the Q function can be easily formu-
lated as a table. When state space is continuous and
multi-dimensional, however, it is impossible to formulate
the Q function as a table or Monte Carlo tree (23) such
as in AlphaGo Zero (24). In such a case, the Q function
is often approximated by a parameterized function of
states and actions Q(s,a,w), and the learning process is
to find the optimal parameter set w. This study adopts a
modified impala convolutional neural network (25) to



Ren et al

Action (Normal Distribution) or Q value ]

""" t

| Residual Block

Residual Block

t t

S~

[16, | Residual Block ] |

Residual Block

32]

—1

-@

| Conv. 3 x 3 stride 1 ] |

Conv. 3 x 3 stride 1 ]

‘ Conv. 3 x 3 stride 1 ‘

1
1
1
1
1
:
32, !
1
:
1
1
1
1
1
1
1
1
1

T
[weucto s> |

-

Figure 3. Convolutional neural network architecture.

approximate the Q function as well as the policy (actor)
function.

As shown in Figure 3, the speed and acceleration grid
maps are reshaped to two <40, 40> matrices and fed
into a convolutional neural network (CNN). The CNN
includes three main blocks with filter sizes 16, 32, and
32, respectively. The first two main blocks correspond to
the speed and acceleration grid maps, and the last block
is for the eight-element vector. Each of the first two main
blocks starts from a 3 X 3 convolutional layer, includes a
3 X 3 maxpooling layer down sampling with stride 2, and
serves two residual blocks that have a similar architec-
ture as ResNet (26). The reason for adopting this CNN
architecture is that as the network depth increases, accu-
racy becomes saturated and degrades rapidly. The two
residual blocks are included to increase the data sample
efficiency by reusing activations from a previous layer
until the adjacent layer learns its weights. This signifi-
cantly simplifies the network and reduces the number of
layers in it.

Via each of the first two main blocks, the raw state
input is converted to a 32-dimension embedding that
saves nonlinear and highly correlated information of the
input. The two embeddings are concatenated with the
eight-dimension vector as the input for the policy func-
tion, which output a final normal distribution with mean
value and variance. The same CNN architecture is used
for the Q function Q(s,a) and value function V(s). For
the Q function, the action set is also added to the above
concatenated vector to generate Q values for each state
and action pair.

Soft Actor Critic. On-policy RL algorithms, such as proxi-
mal policy optimization (PPO) (27), asynchronous actor
critic agents (A3C) (28, 29), and trust region policy opti-
mization (TRPO) (30), although very popular, suffer
from sample inefficiency because they need to generate
new samples after each policy update and cannot utilize
historical samples. On the contrary, Q-learning-based
off-policy approaches, such as DDPG and DQN, are
able to learn efficiently from past experience sampled
from memory replay buffer. However, these off-policy
optimization algorithms are very sensitive to hyperpara-
meters and require a lot of tuning for the model to con-
verge. To address this issue, this study uses a novel soft
actor critic (SAC) RL. SAC is also an off-policy algo-
rithm but includes new features to overcome the conver-
gence brittleness problem.

SAC was initially proposed by Haarnoja et al. (22) and
is adopted in this study. The main difference between
SAC and other off-policy RL algorithms is that SAC aims
to maximize both long-term rewards and the entropy of a
policy. It encourages policy exploration by assigning
approximately the same probabilities to actions that have
similar Q values. These new features prevent the policy
from always selecting a small set of actions with high Q
values in the training process, while missing the chance of
exploring other low Q-value actions that are potentially
very rewarding in the long run. By encouraging policy
exploration, SAC is able to address the convergence prob-
lem of other off-policy algorithms.

ZT
t=1

J(@) = E(S[,a‘)Npﬂe [I’(St, at) + OLH(’ITQ(.‘St))] (1)
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The policy function is obtained by maximizing the objec-
tive function in Equation 1, which consists of a reward
term and an entropy term H weighted by a. SAC has
three networks: a policy function 7 parameterized by @,
a soft Q approximator function Q parameterized by 6,
and a state value function V' parameterized by . The
two separate approximators for ¥ and Q functions are
helpful for the learning process to converge.

To train the three CNNS, a series of loss functions are
defined. The policy network 7 is trained by minimizing
the following loss function in Equation 2:

(Q™ (s, -)))

. ex
Thew — arg }TI}EIH DL (ﬂ/(- |Sl)‘ pz’n'old (S[)
= arg mig Dy (7 (.]st)| exp(Q™ (sy, .) — log Z™4(sy)))
e
(2)

To update the policy network, SAC restricts the policy
to a subset of policies IT which could be represented as a
Gaussian distribution. In Equation 2, SAC uses the
information projection defined in terms of the Kullback-
Leibler divergence (37) between the old policy distribu-
tion and exponential of the old Q approximator function
divided by the partition function Z which normalizes the
old Q distribution. Function Z can be dropped since it is
intractable in general and it does not affect the gradient
with respect to the new policy.

Based on the Bellman equation, the soft Q-value can
be computed iteratively starting from any function
Q0 : 8 XA — R given by

Q(Sta az) = ’”(St,at) + vE,,, 1NPﬂ(S)[V(St + 1)] (3)

where

V(s1) = E4n[O(s1,ar) — alogm(als;)] (4)

V(S;) in Equation 4 is the soft state value function. The
soft state value function is trained by minimizing the
squared residual error in

Fo) = o |5 (Vals) — E[Qy(5,2) — log ma(aifs)])

(5)

with gradient

Vidv() = Vi V() (Vi (s0) — Qulsi.ar) + logm(asi))
(6)

where D is the distribution of previously sampled states
and actions saved in the replay buffer. The soft Q func-
tion is trained by minimizing the soft Bellman residual
using the stochastic gradient descent method:

JQ(G) = E(Su‘dt)“D
1 2 (7)
3 (Qo(si.ar) — (r(sia0) + ¥Es, —p_(s) [Va(si+1)]))
with gradient
Vwlo(w
Q(w) ®)

= VwQu(s6a0) (Qy(siar) — r(si, ar) — yVy(se+1))

The target state value network Vy, weights are updated by
an exponential moving average considering the current
value state network weights.

Reward Shaping. The main goal of reward shaping is to
avoid creating “stop-and-go” traffic when a vehicle
merges from the closed lane into the open lane. It
requires the subject vehicle to keep a minimum safe dis-
tance with its lead vehicle and lag vehicle in the open
lane when making a lane change. When the subject vehi-
cle merges into the open lane, all vehicles surrounding it
are supposed to continue smoothly without having to
accelerate or decelerate.

Vehicles in the closed lane trying to merge are either
in a non-terminal state or the terminal state. Non-termi-
nal state represents when a vehicle is in Metering Zone 11
and adjusting its position, while terminal state is when a
vehicle successfully merges into the open lane. The termi-
nal state reward is calculated by

R = —max(0,(70 — a,)*0.2) 9)

where a, is the speed of the subject vehicle. The reward is
negative if the subject vehicle is slower than 70km/h,
since this may create a backward shockwave. In addi-
tion, if dx1>v)*thmin, dx>vo*thmin, and |(vy — (v +
v2)/2)|<2, R+ = 10, where thy, is the minimum time
headway, v is for speed, dx; is the distance headway
between the subject vehicle and the lag vehicle in the tar-
get lane, and dx; is the distance headway between the
subject vehicle and the lead vehicle in the target lane.

For non-terminal states, the reward is determined
based on the following equations:

R = —0.01*acc? (10)

R — =10 if a crash occurs (11)

R —=2.5ifv;<||30 km/h|| v;> (12)
|I100 km/h|| front headway <2m

R —= (v; — 80)*0.01 if v;>80 km/h (13)

R — = (60 — v4)*0.01 if vy <60 km/h (14)

Equation 10 encourages the subject vehicle to drive
smoothly with minimum acceleration/deceleration.
Equation 11 means that the simulation will be
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terminated and restarted if a crash occurs. Equations 12,
13, and 14 aim to minimize the vehicle’s speed fluctua-
tions around the speed limit (assuming 70km/h in this
study). The reward functions are carefully designed and
help the subject vehicle learn how to follow the lead vehi-
cle without a crash, travel at a reasonable speed, and
maintain a safe distance with both the lead and lag vehi-
cles in the target lane.

Simulation Analysis
Experiment Design

This research adopts VISSIM to evaluate the perfor-
mance of the proposed RL control strategy and to com-
pare it with EM, LM, CACC, and no control (Base case)
under two input traffic volumes: 1,600 vehicles per hour
(vph) and 2,000 vph. In the Base case, vehicles are com-
pletely controlled by the default VISSIM car-following
and lane-changing models with a modified time headway,
which is set to be 1.7 s based on the findings in Yang
et al. (32). EM and LM are the same as the Base case
except that vehicles are advised to change to the open
lane at different locations. Also, EM and LM simply
advise vehicles to change lanes, and the lane-changing
maneuvers (e.g., adjust longitudinal position to find a
suitable gap and change lane) are still carried out by the
default VISSIM models. No metering zones or vehicle
cooperation are considered in EM, LM, and the no con-
trol Base case.

Compared with the Base case, the CACC case has the
following rule changes: (a) it assumes that the longitudi-
nal controls of all vehicles are automated and no
perception—reaction time is needed; and (b) these vehicles
can form platoons in the metering zones. Similar to the
Base case but different from EM and LM, in the CACC
case VISSIM decides where a vehicle should change
lanes. This is also different from the RL case, where vehi-
cles are not allowed to change lanes in the metering
zones.

RL also adds two changes to the Base case in the
metering zones: (a) vehicles in the left (open) lane are still
controlled by the default VISSIM model with a modified
time headway (i.e., doubled) to create large gaps. The
default perception—reaction time is still considered for
these vehicles; and (b) vehicles in the right lane (i.e., to
be closed) are controlled by the RL algorithm without
considering perception—reaction time. They behave coop-
eratively and try to maintain appropriate gaps with sur-
rounding vehicles to facilitate the merge downstream.
Once entering the merging zone, vehicles in the right lane
are required to change to the left open lane. The lane-
changing process again is controlled by the default
VISSIM models just like in the Base case.

As shown in Figure 1, a work zone on a two-lane high-
way with the right lane closed is considered. For all simu-
lations conducted, the percentage of heavy vehicles is set
as 3%, and the speed limit is set as 70km/h. For each
merge control and input volume combination, the simu-
lation is run 10 times with different random seeds. Each
simulation run lasts 45 min, with the first 15min serving
as the warm-up period.

Overall Mobility Performance

Table 1 shows the mobility performance for different
control strategies. The typical capacity for a two-lane
highway with one lane closed is about 1,340 vph (33).
When the input volume is 1,600 vph (i.e., above the nor-
mal capacity), the RL control gives the best results for
all performance measures, followed by CACC which
generates very competitive results as well. Compared
with EM and LM, the delay from RL control in this case
is much smaller. The throughput generated by RL con-
trol is almost the same as the input, demonstrating its
superior mobility performance. Not surprisingly, no con-
trol yields the worst results. The average throughput
without any control is 1,343 vph, which is consistent with
the capacity reported in (33).

When the input volume increases from 1,600 vph to
2,000 vph, even the average delay for RL control goes up
significantly. However, the trend observed under the
1,600 vph input volume level still holds. For EM and
LM, the percentage improvements in terms of average
delay and mean travel time both drop significantly com-
pared with the 1,600 vph demand level, while the percent-
age improvements in terms of throughput stay
approximately the same. Compared with EM, LM, and
the Base case, the overall performance of CACC is still
much better, suggesting that CACC has great potential
to improve highway work zone operations under
medium to high traffic. Even with such a strong competi-
tor, RL generates 83% less average delay and 50%
higher mean travel time than CACC.

Overall, the results in Table 1 suggest that RL control
significantly improves work zone mobility compared
with both CACC and traditional control strategies like
EM and LM. Under oversaturated condition (e.g.,
2,000 vph), the performance differences between EM and
LM become marginal, especially in terms of average
delay and mean travel time. On the other hand, RL con-
trol performs the best under both congested and oversa-
turated conditions.

Vehicle Trajectory Diagram

To illustrate how RL control adjusts the positions of
individual vehicles and the benefits of doing so, the
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Figure 4. Vehicle trajectory diagrams: (a) reinforcement learning (RL) control under 1,600 vph, (b) no control under 1,600 vph, (c) RL

control under 2,000 vph, (d) no control under 2,000 vph.

trajectories of vehicles in a randomly selected time
frame are plotted in Figure 4. Each line represents the
trajectory of a vehicle. The line color changes depend-
ing on which lane the vehicle is in. When the vehicle is
in the right lane (to be closed), the trajectory line is
green. When the vehicle changes into the left (open)
lane, the trajectory line turns red. Ideally, all trajectory
lines turn red before the lane closure point, meaning all
vehicles are in the left (open) lane. Under RL control
all green lines eventually turn red in the merging zone.
For no control, however, Figure 4 clearly shows that
many vehicles in the closed lane have to stop and wait
for an extended period of time before they can merge
into the open lane.

Other than the mobility benefits of RL control clearly
illustrated in Figure 4, the slopes of the trajectories show
that RL control can help reduce rear-end crash risk, by
avoiding sudden decelerations and stop-and-go traffic.
Additionally, the no control trajectories show that some
drivers in the closed lane have to wait for an extended
amount of time to be able to merge and may become
increasingly impatient. This intuitively may contribute to
aggressive and unsafe behaviors such as forced merge,
and increase the risk of angle crashes.

Density

To investigate further how RL control performs, a
VISSIM tool is developed to visualize how traffic density
in the work zone changes over time and distance. The
density maps for input volume = 1,600 vph under the
RL control and LM strategies are presented in Figure 5,
where the vertical axis is for time and the horizontal axis
is for distance. A distance of 0 refers to the point 400 m
upstream of the metering zone. Larger distance values
are for locations downstream of the origin. Also, red col-
ors are for higher densities. Figure 5 clearly shows that,
compared with LM, the RL control can better reduce
and equalize the traffic densities of the open and closed
lanes. Equal densities in both lanes can help reduce driv-
ers’ desire for lane changes (e.g., seeking higher speeds)
and consequently reduce angle crash risk. A smaller
high-density area for RL control means the total vehicle
time spent in stop-and-go traffic is less, suggesting that
RL control is safer than LM at both input traffic
volumes. Figure 5 also shows that the queues from the
RL control grow at a much slower speed (i.e., backward
forming shockwave speed) than the LM control. A
slowly growing backward forming shockwave is likely to
be less dangerous than a fast growing one.
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Figure 5. Reinforcement learning (RL) control and late merge (LM) density map comparison.

Acceleration and Distance Headway

The majority of crashes in highway work zones are rear-
end crashes, which are often caused by sudden decelera-
tions and stop-and-go traffic. Therefore, the stability of
vehicle longitudinal acceleration behavior can be an
important surrogate safety measure. Figure 6 shows the
longitudinal acceleration distributions of vehicles under
RL control and no control. The acceleration distribu-
tions for no control clearly are more spread out than

those for RL control, and RL control generates much
less sudden decelerations (e.g., <= —5m?/s). This sug-
gests that RL control is safer than no control and leads
to smoother and more stable traffic flow.

The distance headway distributions for RL control
and no control are also compared. Under both input
flow conditions, overall RL control results in larger
(safer) distance headways than no control in the merging
zone.
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Table |. Performance of Different Control Strategies Compared

Merge control strategy

Reinforcement learning control

Cooperative adaptive cruise control

Early merge Late merge

Base case

Volume input 1,600 vph

Performance measure

42 (-97%)
1596 (19%)

15.7 (~94%)
1552 (15%)

64.8 (-76%)
1517 (13%)
174.3 (~55%)

121.9 (~55%)

1424 (6%)
231.4 (—40%)

274.8

Average delay (s)
Throughput (vph)

1343
384.3

116.5 (~70%)

129.7 (~66%)

Mean travel time (s)

Volume input 2,000 vph

28.4 (~94%)
1979 (48%)

167.0 (~70%)

1686 (26%)
281.5 (-58%)

372.5 (-34%)
1526 (14%)

482.0 (-28%)

374.6 (-33%)
1436 (7%)
484.0 (~28%)

561.6

Average delay (s)

1341
671.1

Throughput (vph)

140.8 (~79%)

Mean travel time (s)

Note: Numbers in parenthesis are relative differences, which are calculated as (control case — base case)/(base case) X 100%. vph = vehicles per hour.
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Figure 6. Acceleration histograms for reinforcement learning
(RL) control and no control.

Discussion and Conclusion

This study proposes a cooperative highway work zone
merge control strategy based on SAC RL. This strategy
is evaluated using VISSIM simulation and compared
with merging under conditions of: no control, LM, EM,
and CACC merge. The RL-based control performs sig-
nificantly better than the remaining control strategies
under congested to extremely heavy traffic conditions in
terms of both safety and mobility measures. Unlike other
autonomous and connected vehicle control algorithms
like CACC, which increases the capacity of the work
zone by reducing vehicle time headway and/or reaction
time, this RL-based control introduces two metering
zones where vehicles adjust their positions relative to
neighboring vehicles in the adjacent lane to achieve a col-
laborative and smooth merge and to maintain a safe time
headway in the merging zone. The results also suggest
the importance of AVs to collaborating with each other
in order to improve the overall system operations.

The proposed RL-based control strategy is applied to
a two-lane highway work zone example. It can be further
modified for multi-lane (more than two-lane) highway
work zones. For future studies, it would be interesting to
investigate how to improve the system so that it can work
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in an environment with both automated and human-
driven vehicles. Also, further research can be done to
optimize the lengths of the metering zones for improved
system performance.
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