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Abstract. The Yang–Mills equations generalize Maxwell’s equations to
nonabelian gauge groups, and a quantity analogous to charge is locally
conserved by the nonlinear time evolution. Christiansen and Winther
[8] observed that, in the nonabelian case, the Galerkin method with
Lie algebra-valued finite element differential forms appears to conserve
charge globally but not locally, not even in a weak sense. We introduce
a new hybridization of this method, give an alternative expression for
the numerical charge in terms of the hybrid variables, and show that a
local, per-element charge conservation law automatically holds.

1. Introduction

In 1954, Yang and Mills [18] introduced a nonabelian gauge theory, gener-
alizing and extending the abelian gauge theory of quantum electrodynamics.
As a quantum field theory, Yang–Mills theory came to form the foundation
of the Standard Model of particle physics. One may also consider classical
(as opposed to quantum) solutions to the Yang–Mills equations, which can
be seen as a nonlinear, nonabelian generalization of Maxwell’s equations.
Beyond physics, the study of classical Yang–Mills solutions has played an
important role in geometry and topology [9].

A seminal 1974 paper of Wilson [17] introduced lattice gauge theory, in
which quantum Yang–Mills theory is discretized using a finite-difference-like
approach. However, interest in discretization and numerical simulation of the
classical Yang–Mills equations seems to be more recent, motivated by a desire
to extend insights from computational electromagnetics to develop structure-
preserving methods for a more general class of nonlinear field theories.
In a 2006 paper, Christiansen and Winther [8] write, “The Yang–Mills
equations appear relatively ripe for numerical analysis and could therefore
serve as a stepping stone toward the successful simulation of more complicated
equations,” such as Einstein’s equations of general relativity.

Solutions to the Yang–Mills equations must satisfy a charge conservation
law. In the special case of Maxwell’s equations, this conservation law says
that, in the absence of current, the charge density ρ = divD is constant in
time. The equation ρ = divD is often viewed as a constraint, but since it is
automatically preserved by the evolution of D, the constraint need not be
“enforced” in any way. (A similar issue arises in Einstein’s equations, whose
nonlinear evolution also preserves physically important constraints.) One
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would also like the charge conservation law to continue to hold in numerical
simulations of the Yang–Mills equations, but this is not necessarily the case,
even for Maxwell’s equations.

Christiansen and Winther [8] observe that a standard Galerkin semidis-
cretization of the Yang–Mills equations only yields conservation of the total
charge on the whole domain. Locally, charge is not conserved, as they illus-
trate in Figure 3 of their paper. Christiansen and Winther solve this problem
with a constrained scheme that artificially imposes the charge conservation
constraint. A different low-order charge-conserving method, based on lattice
gauge theory, was given by Christiansen and Halvorsen [7]; this method
preserves the constraint automatically but requires commiting a “variational
crime” by modifying the Yang–Mills variational principle.

In contrast, we present an alternate approach, which automatically pre-
serves a local charge conservation law without modifying the Yang–Mills
variational principle. As in our work on Maxwell’s equations in [4], we
consider the domain-decomposed problem, where we use discontinuous fi-
nite element spaces for our vector and scalar potentials, and then impose
inter-element continuity and boundary conditions with Lagrange multipliers
ˆ︁H and ˆ︁D. Using the hybrid variable ˆ︁D, we obtain an expression for the
charge. While we are not able to get strong charge conservation when we
semidiscretize, as we did for Maxwell’s equations, we are able to get a local
conservation law: the total charge on each element is conserved.

The reader may naturally ask why we would be motivated to take this
approach. Why not simply project the solution onto the constraint manifold,
as Christiansen and Winther [8] did, so that D itself satisfies the constraint

rather than ˆ︁D? The reason is that Lagrangian and Hamiltonian dynamical
systems often have several conservation laws, and enforcing a single one via
projection can result in worse numerical solutions. A vivid illustration is
given in Hairer, Lubich, and Wanner [10, Section IV.4], who present numerical
simulations of the Kepler problem by the symplectic Euler method, with or
without enforcing conservation of energy via projection. Perhaps surprisingly,
projection makes the numerical solution much worse, destroying conservation
of other quantities such as angular momentum. In fact, the symplectic Euler
method automatically conserves a modified energy [10, Chapter IX]. This
illustrates that automatic preservation of a modified conservation law (in

the case of this paper, conservation of charge using ˆ︁D rather than D) may
be preferable to enforcing the original conservation law by projection, which
risks destroying other structures that one might also wish to preserve.

The paper is structured as follows. In Section 2, we introduce our notation
and discuss the Yang–Mills equations, leading up to the conservation of
total charge in the Galerkin semidiscretization observed by Christiansen
and Winther. In Section 3, we describe our domain-decomposed numerical
scheme for the Yang–Mills equations and prove that it satisfies a local charge
conservation property. In Section 4, we discuss our numerical implementation
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and illustrate with examples. Finally, in Section 5, we remark on how these
results generalize to the Yang–Mills equations with nonzero current.

2. Preliminaries

2.1. Lie algebra-valued differential forms. In this section, we introduce
Lie algebra-valued differential forms, largely following [9].

Let G be a compact Lie group with Lie algebra g. Let [·, ·] : g × g → g
denote the Lie bracket on g. Such a Lie algebra always has an Ad-invariant
inner product ⟨·, ·⟩ : g×g → R with the property that ⟨[ξ, η], ω⟩+⟨η, [ξ, ω]⟩ = 0
for all ξ, η, ω ∈ g.

Any compact Lie group can be represented as a group of unitary matrices,
whose algebra consists of skew-Hermitian matrices with the commutator
bracket [ξ, η] = ξη − ηξ. For simplicity of notation, we will thus view both
G and g as sets of matrices, in which case we can choose the inner product
to simply be ⟨ξ, η⟩ = tr(ξ∗η). where ξ∗ denotes the conjugate transpose of ξ.

Definition 2.1. Let Ω ⊂ Rn be a bounded Lipschitz domain. A g-valued

k-form on Ω is a section of the bundle
(︂⋀︁k T ∗Ω

)︂
⊗ g. We will denote the

space of g-valued k-forms by Λk(Ω, g). We will denote the Lp Lebesgue

spaces of sections of
(︂⋀︁k T ∗Ω

)︂
⊗ g by LpΛk(Ω, g).

Example 2.2. In the setting of electromagnetism, G = U(1), the unit complex
numbers. Then g = iR, the purely imaginary numbers. Thus, in this setting,
a g-valued k-form is simply an ordinary k-form times the imaginary unit
i. The Lie bracket [·, ·] is identically zero, and the inner product is simply
⟨ia, ib⟩ = ab.

The space Λk(Ω, g) is spanned by forms α ⊗ ξ, where α is a real-valued
k-form and ξ is an element of g. With this decomposition, we can define
several operations on g-valued k-forms.

Definition 2.3. Given u = α⊗ξ ∈ Λk(Ω, g) and v = β⊗η ∈ Λl(Ω, g), define

du = dα⊗ ξ ∈ Λk+1(Ω, g),

∗u = ∗α⊗ ξ ∈ Λn−k(Ω, g),

[u ∧ v] = (α ∧ β)⊗ [ξ, η] ∈ Λk+l(Ω, g),

⟨u ∧ v⟩ = (α ∧ β) ⟨ξ, η⟩ ∈ Λk+l(Ω,R),

and extend these operations to arbitrary g-valued forms by linearity.
In the case where either u or v is a 0-form, i.e., just a Lie algebra-valued

function, we will often write [·, ·] and ⟨·, ·⟩ instead of [· ∧ ·] and ⟨· ∧ ·⟩.

We have the following identities for g-valued forms.
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Proposition 2.4. For u ∈ Λk(Ω, g), v ∈ Λl(Ω, g), we have the Leibniz rules

d[u ∧ v] = [du ∧ v] + (−1)k[u ∧ dv],(1)

d⟨u ∧ v⟩ = ⟨du ∧ v⟩+ (−1)k⟨u ∧ dv⟩,(2)

and the commutativity relations

[u ∧ v] + (−1)kl[v ∧ u] = 0,(3)

⟨u ∧ v⟩ − (−1)kl⟨v ∧ u⟩ = 0.(4)

Additionally, given w ∈ Λp(Ω, g),
[︁
[u ∧ v] ∧ w

]︁
+ (−1)kl

[︁
v ∧ [u ∧ w]

]︁
=

[︁
u ∧ [v ∧ w]

]︁
,(5)

⟨︁
[u ∧ v] ∧ w

⟩︁
+ (−1)kl

⟨︁
v ∧ [u ∧ w]

⟩︁
= 0.(6)

Proof. It suffices to prove these identities for forms of the type u = α ⊗ ξ,
v = β ⊗ η, w = γ ⊗ ω, since they extend to arbitrary forms by linearity.

The Leibniz rules (1) and (2) follow immediately from the Leibniz rule
d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ for ordinary real-valued forms.

The commutativity relations (3) and (4) follow from α ∧ β = (−1)klβ ∧ α,
together with the antisymmetry of [·, ·] and symmetry of ⟨·, ·⟩, respectively.

Finally, (5) and (6) follow from α∧β∧γ = (−1)klβ∧α∧γ, together with the
Jacobi identity for [·, ·] and the invariance property ⟨[ξ, η], ω⟩+ ⟨η, [ξ, ω]⟩ = 0
of ⟨·, ·⟩, respectively. □

In the classical formulation of electromagnetics, the electric field E and
electric flux density D = ϵE are vector fields, where ϵ is the electric per-
mittivity tensor. Likewise, the magnetic flux density B and magnetic field
H = µ−1B are vector fields, where µ is the magnetic permeability tensor.
When expressed in terms of differential forms, E and H are 1-forms, D and
B are 2-forms, and ϵ and µ−1 correspond to the Hodge star operator mapping
1-forms and 2-forms to (3 − 1)-forms and (3 − 2)-forms, respectively. In
vacuum, with appropriately chosen units, each of these is simply the ordinary
Hodge star operator ∗. For more on the differential forms point of view for
finite element methods in computational electromagnetics, see Hiptmair [11]
and references therein.

This motivates the following generalized notion of electric permittivity
and magnetic permeability, in arbitrary dimension n, for both ordinary and
g-valued differential forms.

Definition 2.5. The electric permittivity tensor ϵ and magnetic permeability
tensor µ are pointwise symmetric isomorphisms

ϵx :
⋀︁1 T ∗

xΩ →
⋀︁n−1 T ∗

xΩ, µ−1
x :

⋀︁2 T ∗
xΩ →

⋀︁n−2 T ∗
xΩ.

for each x ∈ Ω. The symmetry of ϵ and µ−1 is in the sense that

α ∧ ϵβ = β ∧ ϵα for any α, β ∈ Λ1(Ω,R),
α ∧ µ−1β = β ∧ µ−1α for any α, β ∈ Λ2(Ω,R).
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We can extend these isomorphisms to maps

ϵx :
⋀︁1 T ∗

xΩ⊗ g →
⋀︁n−1 T ∗

xΩ⊗ g, µ−1
x :

⋀︁2 T ∗
xΩ⊗ g →

⋀︁n−2 T ∗
xΩ⊗ g

by ignoring the Lie algebra coefficient; that is ϵx(αx ⊗ ξx) := ϵxαx ⊗ ξx.

As before, these operators have (anti)symmetry properties.

Proposition 2.6.

[u ∧ ϵv] = −[v ∧ ϵu], ⟨u ∧ ϵv⟩ = ⟨v ∧ ϵu⟩, u, v ∈ Λ1(Ω, g)

[u ∧ µ−1v] = −[v ∧ µ−1u], ⟨u ∧ µ−1v⟩ = ⟨v ∧ µ−1u⟩, u, v ∈ Λ2(Ω, g).

In particular, [u∧ϵu] = 0 for u ∈ Λ1(Ω, g) and [u∧µ−1u] = 0 for u ∈ Λ2(Ω, g).

Proof. As before, we can prove these claims for basic tensors u = α⊗ ξ and
v = β ⊗ η using the symmetry of ϵ, µ−1, and ⟨·, ·⟩ and the antisymmetry of
[·, ·]. We then extend to general u and v by linearity. □

2.2. Connections, curvature, and the exterior covariant derivative.
We now discuss connections, again following [9]. As in [8], we restrict our
attention to the trivial bundle case. In this setting, a connection A is just a
g-valued one-form.

Definition 2.7. Let A ∈ Λ1(Ω, g). The curvature of A, denoted FA ∈
Λ2(Ω, g), is defined by

FA = dA+ 1
2 [A ∧A].

The exterior covariant derivative with respect to A, denoted dA : Λk(Ω, g) →
Λk+1(Ω, g), is defined by

dAu = du+ [A ∧ u].

Example 2.8. In the setting of electromagnetism with G = U(1), the Lie
algebra has trivial commutator [ξ, η] = 0. Thus, FA = dA and dA = d.

Unlike in electromagnetism, d2A ̸= 0. Instead, d2A = FA, in the following
sense:

Proposition 2.9. Let u ∈ Λk(Ω, g). Then

dA(dAu) = [FA ∧ u] ∈ Λk+2(Ω, g).

Additionally, we will make use of the Bianchi identity

Proposition 2.10 (Bianchi identity).

dAFA = 0.

We have a product rule for the exterior covariant derivative

Proposition 2.11. If A ∈ Λ1(Ω, g), u ∈ Λk(Ω, g) and v ∈ Λl(Ω, g), then

dA[u ∧ v] = [dAu ∧ v] + (−1)k[u ∧ dAv].



6 YAKOV BERCHENKO-KOGAN AND ARI STERN

Proof. The Leibniz rule (1) gives d[u ∧ v] = [du ∧ v] + (−1)k[u ∧ dv], while
(5) implies [A ∧ [u ∧ v]] = [[A ∧ u] ∧ v] + (−1)k[u ∧ [A ∧ v]]. Adding these
together gives the claimed identity. □

Finally, we can integrate by parts using the exterior covariant derivative.

Proposition 2.12. Let u ∈ Λk(Ω, g) and v ∈ Λn−k−1(Ω, g). Then
∫︂

∂Ω
⟨u ∧ v⟩ =

∫︂

Ω
⟨du ∧ v⟩+ (−1)k

∫︂

Ω
⟨u ∧ dv⟩

=

∫︂

Ω
⟨dAu ∧ v⟩+ (−1)k

∫︂

Ω
⟨u ∧ dAv⟩.

Proof. The first line follows from Stokes’ theorem and the Leibniz rule (2).
The second line follows from the fact that ⟨[A∧u]∧v⟩+(−1)k⟨u∧ [A∧v]⟩ = 0,
which is a special case of (6). □

2.3. Electric and magnetic fields. In order to define the Yang–Mills
analogues of the scalar and vector potentials and the electric and magnetic
fields, we will need some regularity assumptions. We define the following
spaces

Definition 2.13. Let

V 0 =
{︁
ϕ ∈ L∞Λ0(Ω, g) : dϕ ∈ L4Λ1(Ω, g)

}︁
,

V 1 =
{︁
A ∈ L4Λ1(Ω, g) : dA ∈ L2Λ2(Ω, g)

}︁
.

We let V̊
0
and V̊

1
denote the subspaces of V 0 and V 1 containing those forms

ϕ and A, respectively, whose tangential traces vanish on the boundary of Ω

in the sense of [16]. In the smooth setting, V̊
0
contains those scalar fields

that vanish on the boundary, and, in terms of vector proxies, V̊
1
contains

those vector fields that are normal to the boundary.

The regularity assumptions on A ensure that FA ∈ L2Λ2(Ω, g). The
regularity assumptions on ϕ ensure that dAϕ ∈ V 1 for A ∈ V 1, which will
be necessary later to show charge conservation. See Equation (13) and
Proposition 3.5.

We can now define the Yang–Mills analogues of the scalar and vector
potentials, the electric field, and the magnetic flux density. Note that we
still refer to these as “scalar” and “vector” potentials, even though they are
actually g-valued forms in this generalized setting. Here and henceforth, we
employ the commonly-used “dot” notation for partial differentiation with
respect to time, e.g., Ȧ means ∂tA.

Definition 2.14. Let the scalar potential ϕ be a C0 curve in V 0 and let the
vector potential A be a C1 curve in V 1. Then define the electric field E and
magnetic flux density B by

E := −(Ȧ+ dAϕ), B := FA.
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From this, we immediately see that E ∈ L4Λ1(Ω, g) and B ∈ L2Λ2(Ω, g).

Example 2.15. Recall that in the setting of electromagnetism with G = U(1),
a g-valued one-form is a real-valued one-form times the imaginary unit i. By
omitting the imaginary unit and converting the one-form to a vector field,
we obtain a correspondence between the vector potential A expressed as a
g-valued one-form and the vector potential A expressed clasically as a vector
field. Similarly, the scalar potential ϕ in this notation is a function with
purely imaginary values. By omitting the imaginary unit, we obtain the
usual real-valued scalar potential.

Recall that when G = U(1), we have FA = dA and dA = d, so the

equations for E and B simplify to E = −(Ȧ+ dϕ) and B = dA. Converting
these differential forms to vector fields, we obtain the usual equations E =
−(Ȧ+ gradϕ) and B = curlA.

Using the identities dAdAϕ = [FA, ϕ] and dAFA = 0, we obtain that

Ḃ − [ϕ,B] = dAȦ+ dAdAϕ = −dAE

dAB = 0.

In the setting of electromagnetism, these equations correspond to the Maxwell
equations Ḃ = − curlE and divB = 0.

To define the electric flux density D and the magnetic field H, we utilize
the electric permittivity tensor ϵ and magnetic permeability tensor µ of
Definition 2.5. We assume that both ϵ and µ−1 are L∞ maps.

Definition 2.16. Let

D := ϵE ∈ L4Λn−1(Ω, g)

H := µ−1B ∈ L2Λn−2(Ω, g).

From these definitions, D and H need only be C0 curves in L∗Λ∗(Ω, g). We
make the stronger assumption that D is in fact a C1 curve in L4Λn−1(Ω, g).

2.4. The Yang–Mills Lagrangian. For this discussion, we will set the
current J to be zero, and we will view the charge density ρ as a C1 curve in
L1Λn(Ω, g). (The generalization to nonzero current is discussed in Section 5.)

Definition 2.17. The Yang–Mills Lagrangian is

(7) L(A, ϕ, Ȧ, ϕ̇) :=

∫︂

Ω

(︃
1

2
⟨E ∧D⟩ − 1

2
⟨B ∧H⟩ − ⟨ϕ, ρ⟩

)︃
,

where, as before, E := −(Ȧ+ dAϕ), B := FA, D := ϵE, and H := µ−1B.

Note that each term in the Lagrangian is a real-valued n-form in at least
the L1 Lebesgue space, so we can indeed integrate this expression over Ω.
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The Euler–Lagrange equations are
∫︂

Ω

(︂⟨︂
A′ ∧ (Ḋ − [ϕ,D])

⟩︂
−
⟨︁
dAA

′ ∧H
⟩︁)︂

= 0, ∀A′ ∈ V̊
1
,(8a)

∫︂

Ω

(︁⟨︁
dAϕ

′ ∧D
⟩︁
+
⟨︁
ϕ′, ρ

⟩︁)︁
= 0, ∀ϕ′ ∈ V̊

0
.(8b)

These are weak expressions of the Yang–Mills equations

Ḋ − [ϕ,D] = dAH,(9a)

dAD = ρ.(9b)

Example 2.18. In the setting of electromagnetism with G = U(1), recall that
[·, ·] = 0 and that dA = d. Thus, the Yang–Mills equations in this context are

Ḋ = dH, dD = ρ,

which are differential form expressions of Maxwell’s equations,

Ḋ = curlH, divD = ρ.

The Yang–Mills equations imply a charge conservation law.

Proposition 2.19. Equations (9) imply that ρ satisfies

ρ̇ = [ϕ, ρ].

In particular |ρ| is conserved.

Proof. We compute

ρ̇ =
d

dt
(dAD)

= dAḊ + [Ȧ ∧D]

= dAdAH + dA[ϕ,D] + [Ȧ ∧D]

= [FA ∧H] + [dAϕ ∧D] + [ϕ, dAD]− [E ∧D]− [dAϕ ∧D]

= [B ∧ µ−1B] + [ϕ, ρ]− [E ∧ ϵE]

= [ϕ, ρ].

Then,

d

dt
|ρ|2 dvol =

d

dt
⟨ρ∧ ∗ρ⟩ = 2⟨ρ̇∧ ∗ρ⟩ = 2⟨[ϕ∧ ρ]∧ ∗ρ⟩ = 2⟨ϕ∧ [ρ∧ ∗ρ]⟩ = 0.

□

2.5. Gauge symmetry.

Definition 2.20. A gauge transformation is a time-dependent G-valued field
on Ω. That is, a gauge transformation is a function g : Ω×R → G. A gauge
transformation acts on the vector and scalar potentials by the transformation

g : (A, ϕ) ↦→
(︁
gAg−1 − (dg)g−1, gϕg−1 + ġg−1

)︁
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To explain the notation, recall that we view G and g as subsets of matrices,
so g(α ⊗ ξ)g−1 means α ⊗ gξg−1, where the expression gξg−1 is matrix
multiplication. Meanwhile, fixing a point in time and viewing g as a map
Ω → G, we take the derivative to obtain a map dg : TxΩ → TgG. Thus we
can view dg as a TgG-valued one-form, and so (dg)g−1 is a one-form with
values in TeG = g. Similarly, fixing a point in space, we can view g as map
R → G. The velocity of this path ġ is a tangent vector TgG, and, again,
ġg−1 is in g.

Example 2.21. In the setting of electromagnetism with G = U(1), recall that
a g-valued k-form is simply a real-valued k-form times the imaginary unit i.
Let ξ be a scalar field on Ω. Then, setting g = e−iξ, we see that g is a gauge
transformation, and

g : (iA, iϕ) ↦→
(︂
i(A+ dξ), i(ϕ− ξ̇)

)︂
,

matching the formula for gauge transformations in electromagnetism. Seeing
A as a vector field and ϕ as a scalar field, this is (A, ϕ) ↦→ (A+grad ξ, ϕ− ξ̇),
leaving E and B invariant.

One can compute the resulting action of g on E and B. Unlike in the
electromagnetic situation, if G is a nonabelian group, then E and B are
not invariant under gauge transformations. Instead, g acts on E and B by
conjugating the Lie algebra values.

g : E ↦→ gEg−1, g : B ↦→ gBg−1.

However, because ⟨gξg−1, gηg−1⟩ = ⟨ξ, η⟩ for ξ, η ∈ g, the expressions ⟨E∧D⟩
and ⟨B ∧ H⟩ in the Lagrangian are invariant under the action of gauge
transformations. Thus, provided we transform ρ ↦→ gρg−1, we obtain another
solution to the Yang–Mills equations.

2.6. Temporal gauge. By applying a gauge transformation, we can set the
scalar potential ϕ to zero. More precisely, we solve the linear differential
equation

ġ = −gϕ

for g. This gauge transformation sends (A, ϕ) to (gAg−1 − (dg)g−1, 0).
Restricting to the case ϕ = 0, called temporal gauge, we now have

E = −Ȧ, B = FA.(10)

The Lagrangian becomes

L(A, Ȧ) :=

∫︂

Ω

(︃
1

2
⟨E ∧D⟩ − 1

2
⟨B ∧H⟩

)︃
.

The corresponding Euler–Lagrange equations are

(11)

∫︂

Ω

(︂⟨︂
A′ ∧ Ḋ

⟩︂
−
⟨︁
dAA

′ ∧H
⟩︁)︂

= 0, ∀A′ ∈ V̊
1
.
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This is a weak form of the equation

(12) Ḋ = dAH.

Setting ρ = dAD, we see that ρ is constant by Proposition 2.19 with
ϕ = 0. However, when we discretize, we will find the following variational-

principle-based proof of this fact more helpful. For all ϕ′ ∈ V̊
0
, we have that

A′ = dAϕ
′ ∈ V̊

1
, so plugging this value of A′ into (11), we find

0 =

∫︂

Ω

(︂⟨︂
dAϕ

′ ∧ Ḋ
⟩︂
−
⟨︁
dAdAϕ

′ ∧H
⟩︁)︂

=

∫︂

Ω

(︂
−
⟨︂
ϕ′, dAḊ

⟩︂
−
⟨︁
[B,ϕ′] ∧H

⟩︁)︂

=

∫︂

Ω

(︃
−
⟨︃
ϕ′,

d

dt
(dAD)

⟩︃
+
⟨︂
ϕ′, [Ȧ ∧D]

⟩︂
+
⟨︁
ϕ′, [B ∧H]

⟩︁)︃

=

∫︂

Ω

⟨︃
ϕ′,− d

dt
(dAD)− [E ∧ ϵE] + [B ∧ µ−1B]

⟩︃
,

=

∫︂

Ω

⟨︃
ϕ′,− d

dt
(dAD)

⟩︃
.

(13)

Thus, d
dt(dAD) = 0.

In vacuum using Gaussian units, both ϵ and µ are the Hodge star ∗, and
by taking the Hodge star of (12) and substituting D = ∗E = −∗Ȧ and
H = ∗B = ∗FA, we obtain the standard formulation of the time-dependent
Yang–Mills equation

Ä = −∗dA∗FA = −d∗AFA.

Remark 2.22. One may ask about other choices of gauge, such as Coulomb
gauge or Lorentz gauge. The issue is that, unlike in the linear setting of electro-
magnetism, once we have a nonlinear problem, it may not be possible to gauge
transform a given connection into Coulomb gauge; that is, given A, there
may not be a solution g to the nonlinear equation d∗

(︁
gAg−1 − (dg)g−1

)︁
= 0.

Indeed, a seminal paper of Uhlenbeck [15] shows with some difficulty that

such a gauge transformation exists, provided that the energy ∥FA∥2L2(Ω) is

sufficiently small, which allows a reduction to the linear problem via the
implicit function theorem. To make use of this fact, one would need to
adaptively refine the mesh so to ensure that ∥FA∥2L2(K) is sufficiently small

on each element K, giving a local gauge transformation g|K that transforms
the connection into Coulomb gauge on K. We believe that this adaptive
mesh refinement and gauge fixing would be a fruitful direction for further
investigation that would be especially useful when simulating the Yang–Mills
equations for high-energy connections, but it is beyond the scope of the
current paper.

2.7. Galerkin semidiscretization. To find numerical solutions to the
Yang–Mills equations, we apply Galerkin semidiscretization by restricting



CHARGE-CONSERVING HYBRID METHODS FOR YANG–MILLS 11

the trial functions A and test functions A′ in (11) to a finite dimensional

subspace V 1
h ⊂ V̊

1
. That is, we seek a curve Ah : t ↦→ Ah(t) ∈ V̊

1
h such that

(14)

∫︂

Ω

(︂⟨︂
A′

h ∧ Ḋh

⟩︂
−

⟨︁
dAh

A′
h ∧Hh

⟩︁)︂
= 0, ∀A′

h ∈ V̊
1
h.

Here, as in (10), we define Eh := −Ȧh, Bh := FAh
, and we define Dh := ϵEh

and Hh = µ−1Bh.
Unlike the corresponding situation for Maxwell’s equations, (14) is a non-

linear finite-dimensional system of ODEs, since FAh
contains the quadratic

term [Ah ∧Ah] and since Ah appears in dAh
A′

h.
We would like to show that ρh := dAh

Dh is conserved, at least in some

weak sense. We still have that [Ȧh ∧ Dh] = −[Eh ∧ ϵEh] = 0. Thus,

ρ̇h = dAh
Ḋh + [Ȧh ∧Dh] = dAh

Ḋh. However, showing that dAh
Ḋh vanishes

even in a weak sense cannot be done the same way as with Maxwell’s
equations.

As in (13), we would like to plug A′
h = dAh

ϕ′
h into (14), but the requirement

that A′
h be in V̊

1
h is difficult to satisfy because of the [Ah, ϕ

′
h] term in dAh

ϕ′
h.

In general, if V̊
1
h is a space of piecewise polynomials of degree r, then Ah

will have degree r, so [Ah, ϕ
′
h] will generally have degree higher than r, and

thus be an invalid choice of A′
h.

As noted by Christiansen and Winther [8], there is a valid choice of ϕ′
h,

namely, constant g-valued functions on Ω, giving us the conservation law
∫︂

Ω

⟨︂
ϕ′
h, dAh

Ḋh

⟩︂
= 0 for any constant ϕ′

h ∈ g.

In other words, the total charge
∫︁
Ω ρh on the whole domain Ω is conserved.

However, we’d like to have local charge conservation, a much stronger condi-
tion.

3. The domain-decomposed Yang–Mills equations

3.1. Domain decomposition. Roughly speaking, the challenge we faced
above is that ϕ′

h had to be constant, but to get local charge conservation, we
needed ϕ′

h to be supported on a small region. With domain decomposition,
we can resolve this issue by allowing discontinuous test functions. With a
discontinuous locally constant ϕ′

h, we can get local charge conservation.

We decompose our domain Ω ⊂ Rn using a triangulation Th and define
discontinuous function spaces with respect to this triangulation.

Definition 3.1. Let

DV 0 =
{︁
ϕ ∈ L∞Λ0(Ω, g) : d(ϕ|K) ∈ L4Λ1(K, g) for all K ∈ Th

}︁
,

DV 1 =
{︁
A ∈ L4Λ1(Ω, g) : d(A|K) ∈ L2Λ2(K, g) for all K ∈ Th

}︁
.
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That is, DV 0 and DV 1 are discontinuous versions of the spaces V 0 and
V 1; the exterior derivatives are only defined after we restrict to a particular
element K of the triangulation.

Via Lagrange multipliers, we can characterize when a discontinuous form
in DV 0 or DV 1 is actually “continuous” in the sense of being in V 0 or V 1

respectively, analogously to how it is done in [6, Section III.1.2] for scalar
fields. We define our spaces of Lagrange multipliers.

Definition 3.2. Let

ˆ︁V n−1 =
{︂
ˆ︁D ∈ L4/3Λn−1(Ω, g) : d ˆ︁D ∈ L1Λn(Ω, g)

}︂
,

ˆ︁V n−2 =
{︂
ˆ︁H ∈ L2Λn−2(Ω, g) : d ˆ︁H ∈ L4/3Λn−1(Ω, g)

}︂
.

The level of regularity in these definitions is chosen so that
∫︁
∂K⟨ϕ, ˆ︁D⟩ and∫︁

∂K⟨A ∧ ˆ︁H⟩ are well-defined for K ∈ Th, ϕ ∈ DV 0, A ∈ DV 1, ˆ︁D ∈ ˆ︁V n−1

and ˆ︁H ∈ ˆ︁V n−2 via the formula∫︂

∂K
⟨u ∧ λ⟩ =

∫︂

K

(︂
⟨du ∧ λ⟩+ (−1)k⟨u ∧ dλ⟩

)︂
.

Each term is in L1 via Hölder’s inequality. See also [13, 16].

Proposition 3.3. Let ϕ ∈ DV 0. Then ϕ ∈ V̊
0
if and only if

∑︂

K∈Th

∫︂

∂K
⟨ϕ, ˆ︁D⟩ = 0

for all ˆ︁D ∈ ˆ︁V n−1.

Likewise, let A ∈ DV 1. Then A ∈ V̊
1
if and only if

∑︂

K∈Th

∫︂

∂K
⟨A ∧ ˆ︁H⟩ = 0

for all ˆ︁H ∈ ˆ︁V n−2.

Proof. For k = 1, 2, let u ∈ V k. Then for λ ∈ ˆ︁V n−k−1, we have

∑︂

K∈Th

∫︂

∂K
⟨u ∧ λ⟩ =

∑︂

K∈Th

∫︂

K

(︂
⟨du ∧ λ⟩+ (−1)k⟨u ∧ dλ⟩

)︂

=

∫︂

Ω

(︂
⟨du ∧ λ⟩+ (−1)k⟨u ∧ dλ⟩

)︂

=

∫︂

∂Ω
⟨u ∧ λ⟩.

(15)

In particular, if u ∈ V̊
k
, then this expression is zero as claimed.

Conversely, assume that ϕ ∈ DV 0 and that
∑︁

K∈Th
∫︁
∂K⟨ϕ, ˆ︁D⟩ = 0 for

all ˆ︁D ∈ ˆ︁V n−1. We can define dϕ as a distribution on Ω. To show that
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dϕ ∈ L4Λk+1(Ω, g), let ˆ︁D ∈ ˆ︁V n−1 have vanishing trace on ∂Ω. By the
definition of the distributional derivative, we have

∫︂

Ω
⟨dϕ ∧ ˆ︁D⟩ = −

∫︂

Ω
⟨ϕ, d ˆ︁D⟩.

Computing further, using the fact that ϕ ∈ L∞Λ0(Ω, g), d ˆ︁D ∈ L1Λn−1(Ω, g),
and d(ϕ|K) ∈ L4Λk(K, g), we have that

−
∫︂

Ω
⟨ϕ, d ˆ︁D⟩ = −

∑︂

K∈Th

∫︂

K
⟨ϕ, d ˆ︁D⟩

=
∑︂

K∈Th

∫︂

K
⟨dϕ ∧ ˆ︁D⟩ −

∑︂

K∈Th

∫︂

∂K
⟨ϕ, ˆ︁D⟩

=
∑︂

K∈Th

∫︂

K
⟨dϕ ∧ ˆ︁D⟩.

Using Hölder’s inequality, we can bound this expression by
⃓⃓
⃓⃓
⃓⃓
∑︂

K∈Th

∫︂

K
⟨dϕ ∧ ˆ︁D⟩

⃓⃓
⃓⃓
⃓⃓ ≤

∑︂

K∈Th

⃓⃓
⃓⃓
∫︂

K
⟨dϕ ∧ ˆ︁D⟩

⃓⃓
⃓⃓

≤
∑︂

K∈Th
∥dϕ∥L4Λ1(K,g)

⃦⃦
⃦ ˆ︁D

⃦⃦
⃦
L4/3Λn−1(K,g)

≤

⎛
⎝ ∑︂

K∈Th
∥dϕ∥4L4Λ1(K,g)

⎞
⎠

1/4⎛
⎝ ∑︂

K∈Th

⃦⃦
⃦ ˆ︁D

⃦⃦
⃦
4/3

L4/3Λn−1(K,g)

⎞
⎠

3/4

=

⎛
⎝ ∑︂

K∈Th
∥dϕ∥4L4Λ1(K,g)

⎞
⎠

1/4 ⃦⃦
⃦ ˆ︁D

⃦⃦
⃦
L4/3Λn−1(Ω,g)

.

We conclude that the functional ˆ︁D ↦→
∫︁
Ω⟨dϕ∧ ˆ︁D⟩ is bounded on L4/3Λn−1(Ω, g),

so dϕ ∈ L4Λ1(Ω, g), as desired. We conclude that ϕ ∈ V 0.

Likewise, assume that A ∈ DV 1 and that
∑︁

K∈Th
∫︁
∂K⟨A ∧ ˆ︁H⟩ = 0 for all

ˆ︁H ∈ ˆ︁V n−2. We define dA as a distribution on Ω, and in the same way that

we computed for ϕ, we can compute that for all ˆ︁H ∈ ˆ︁V n−2 with vanishing
trace, we have ∫︂

Ω
⟨dA ∧ ˆ︁H⟩ =

∑︂

K∈Th

∫︂

K
⟨dA ∧ ˆ︁H⟩.

Like we did for ϕ, we can bound this expression using the Cauchy–Schwarz
inequality.

⃓⃓
⃓⃓
⃓⃓
∑︂

K∈Th

∫︂

K
⟨dA ∧ ˆ︁H⟩

⃓⃓
⃓⃓
⃓⃓ ≤

⎛
⎝ ∑︂

K∈Th

∥dA∥2L2Λ2(K,g)

⎞
⎠

1/2 ⃦⃦
⃦ ˆ︁H

⃦⃦
⃦
L2Λn−2(Ω,g)

.
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We conclude that the functional ˆ︁H ↦→
∫︁
Ω⟨dA∧ ˆ︁H⟩ is bounded on L2Λn−2(Ω, g),

so dA ∈ L2Λ2(Ω, g), as desired. We conclude that A ∈ V 1.
We’ve shown that ϕ ∈ V 0 and A ∈ V 1. It remains to show that their traces

are zero. For k = 0, 1, considering λ ∈ ˆ︁V n−k−1, not necessarily traceless, we
have by Equation (15) and the assumption that

∑︁
K∈Th

∫︁
∂K⟨u ∧ λ⟩ = 0 that∫︁

∂Ω⟨u ∧ λ⟩ = 0 for all λ, so u is traceless. □

3.2. The domain-decomposed Yang–Mills equations. We now modify
the Lagrangian from (7) to allow A and ϕ to come from the discontinuous
function spaces, and we enforce continuity through Lagrange multipliers
ˆ︁H ∈ ˆ︁V n−2 and ˆ︁D ∈ ˆ︁V n−1. That is, let A be a C1 curve in DV 1, and let ϕ
be a C0 curve in DV 0. As before, we let E = −(Ȧ+ dAϕ) and B = FA, but
in this definition we take the derivative element-wise on each K; in general,
A and ϕ are not weakly differentiable on Ω due to jumps across element
boundaries.

As before, the regularity assumptions on ϕ and A imply that E ∈
L4Λ1(Ω, g) and B ∈ L2Λ2(Ω, g), and so this implies that D = ϵE ∈
L4Λn−1(Ω, g) and H = µ−1B ∈ L2Λn−2(Ω, g). Again, we impose the addi-

tional assumption that Ḋ ∈ L4Λn−1(Ω, g). Our Lagrangian is now

L(A, ϕ, ˆ︁H, ˆ︁D, Ȧ, ϕ̇, ˆ︁Ḣ , ˆ︁Ḋ ) =
∑︂

K∈Th

(︃∫︂

K

(︃
1

2
⟨E ∧D⟩ − 1

2
⟨B ∧H⟩ − ⟨ϕ, ρ⟩

)︃

+

∫︂

∂K

(︂
⟨A ∧ ˆ︁H⟩+ ⟨ϕ, ˆ︁D⟩

)︂)︃
.

The Euler–Lagrange equations are then

∫︂

K

(︂⟨︂
A′ ∧ (Ḋ − [ϕ,D])

⟩︂
−
⟨︁
dAA

′ ∧H
⟩︁)︂

+

∫︂

∂K
⟨A′ ∧ ˆ︁H⟩ = 0, ∀A′ ∈ DV 1,

(16a)

∫︂

K

(︁⟨︁
dAϕ

′ ∧D
⟩︁
+
⟨︁
ϕ′, ρ

⟩︁)︁
−
∫︂

∂K
⟨ϕ′, ˆ︁D⟩ = 0, ∀ϕ′ ∈ DV 0,(16b)

∑︂

K∈Th

∫︂

∂K
⟨A ∧ ˆ︁H ′⟩ = 0, ∀ ˆ︁H ′ ∈ ˆ︁V n−2,(16c)

∑︂

K∈Th

∫︂

∂K
⟨ϕ, ˆ︁D′⟩ = 0, ∀ ˆ︁D′ ∈ ˆ︁V n−1,(16d)

where (16a) and (16b) hold for all K ∈ Th. We now relate these equations
to the non-domain-decomposed Euler–Lagrange equations (8).

Proposition 3.4. (A, ϕ, ˆ︁H, ˆ︁D) is a solution to (16) if and only if (A, ϕ) is

a solution to (8), ˆ︁H|∂K = H|∂K , and ˆ︁D|∂K = D|∂K for all K, where |∂K
denotes the tangential trace of differential forms.

Proof. Suppose (A, ϕ, ˆ︁H, ˆ︁D) is a solution to (16). By Proposition 3.3, Equa-

tions (16c) and (16d) imply that A ∈ V̊
1
and ϕ ∈ V̊

0
. Also by Proposition 3.3,
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if we take A′ ∈ V̊
1
, then

∑︁
K∈Th

∫︁
∂K⟨A′ ∧ ˆ︁H⟩ = 0, so if we sum Equation

(16a) over K, we obtain Equation (8a). Similarly, by summing Equation
(16b) over K, we obtain Equation (8b).

It remains to show that ˆ︁H|∂K = H|∂K and ˆ︁D|∂K = D|∂K . Equations (8)

imply that Ḋ − [ϕ,D] = dAH and dAD = ρ in the sense of distributions. By

assumption, Ḋ ∈ L4Λn−1(Ω, g). Since ϕ ∈ L∞Λ0(Ω, g), we conclude then

that Ḋ − [ϕ,D] ∈ L4Λn−1(Ω, g), so dAH ∈ L4Λn−1(Ω, g). Consequently, the
expression

∫︁
∂K⟨A′ ∧H⟩ is well-defined by the formula

(17)

∫︂

∂K
⟨A′ ∧H⟩ =

∫︂

K

(︁
⟨dAA′ ∧H⟩ − ⟨A′ ∧ dAH⟩

)︁
.

Indeed, the first term is the product of two L2 functions, so it is in L1(K),
and the second term is the product two L4 functions, so it is in L2 ⊂ L1.

With this equation, and substituting dAH for Ḋ− [ϕ,D] in (16a), we find
that

−
∫︂

∂K
⟨A′ ∧H⟩+

∫︂

∂K
⟨A′ ∧ ˆ︁H⟩ = 0, ∀A′ ∈ DV 1,

so ˆ︁H|∂K = H|∂K . Likewise, substituting dAD for ρ in (16b) and using

(18)

∫︂

∂K
⟨ϕ′, D⟩ =

∫︂

K

(︁
⟨dAϕ′ ∧D⟩+ ⟨ϕ, dAD⟩

)︁

gives ∫︂

∂K
⟨ϕ′, D⟩ −

∫︂

∂K
⟨ϕ′, ˆ︁D⟩ = 0, ∀ϕ′ ∈ DV 0,

so ˆ︁D|∂K = D|∂K , as desired.

Conversely, suppose (A, ϕ) is a solution to (8). Then Ḋ−[ϕ,D] = dAH and

dAD = ρ in the sense of distributions. By assumption, Ḋ ∈ L4Λn−1(Ω, g).
Along with ϕ ∈ L∞Λ0(Ω, g), A ∈ L4Λ1(Ω, g), and D ∈ L4Λn−1(Ω, g), we see
that

dH = Ḋ − [ϕ,D]− [A ∧H] ∈ L4/3Λn−1(Ω, g).

Indeed, the first two terms are in L4 ⊂ L4/3, and the last term is in L4 ·L2 =

L4/3. Thus, H ∈ ˆ︁V n−2, and so we can set ˆ︁H = H. Similarly, because

ρ ∈ L1Λn(Ω, g), we can use dD = ρ − [A ∧D] to conclude that D ∈ ˆ︁V n−1,

and so we can set ˆ︁D = D.
Because A ∈ V̊

1
and ϕ ∈ V̊

0
, equations (16c) and (16d) hold by Proposi-

tion 3.3. By substituting dAH for Ḋ − [ϕ,D] and H for ˆ︁H and using (17),

we see that (16a) holds. Similarly, substituting dAD for ρ and D for ˆ︁D and
using (18), we see that (16b) holds.

□

3.3. Domain decomposition in temporal gauge. If (A, ϕ, ˆ︁H, ˆ︁D) is a
solution to (16), then we can apply a gauge transformation g to get a
solution (︂

gAg−1 − (dg)g−1, gϕg−1 + ġg−1, g ˆ︁Hg−1, g ˆ︁Dg−1
)︂
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of (16) with ρ replaced by gρg−1.

To ensure that this solution is in DV 1 ×DV 0 × ˆ︁V n−2 × ˆ︁V n−1, it suffices
to assume that dg ∈ L4Λ1(Ω, g) and ġ ∈ L∞Λ0(Ω, g), as we already have
that g ∈ L∞Λ0(Ω, g) because the group G is compact.

As discussed above, we can apply a gauge transformation so that ϕ = 0 by
solving ġ = −gϕ. Note, however, that the situation is slightly more delicate
because we need g ∈ V 0 whereas, a priori, ϕ is only in DV 0; we must use

that ϕ ∈ V̊
0
by (16d).

Setting ϕ to zero gives us a simpler Lagrangian,

L(A, ˆ︁H, Ȧ, ˆ︁Ḣ ) =
∑︂

K∈Th

(︃∫︂

Ω

(︃
1

2
⟨E ∧D⟩ − 1

2
⟨B ∧H⟩

)︃
+

∫︂

∂K

(︂
⟨A ∧ ˆ︁H⟩

)︂)︃
.

The Euler–Lagrange equations then simplify to
∫︂

K

(︂⟨︂
A′ ∧ Ḋ

⟩︂
−
⟨︁
dAA

′ ∧H
⟩︁)︂

+

∫︂

∂K
⟨A′ ∧ ˆ︁H⟩ = 0, ∀A′ ∈ DV 1,(19a)

∑︂

K∈Th

∫︂

∂K
⟨A ∧ ˆ︁H ′⟩ = 0, ∀ ˆ︁H ′ ∈ ˆ︁V n−2,(19b)

with D = −ϵȦ and H = µ−1FA.
We now show that equations (19) imply equations (16) for an appropriate

choice of ˆ︁D.

Proposition 3.5. Let (A, ˆ︁H) be a solution to (19). Given an initial value

for ˆ︁D, evolve ˆ︁D by the equation ˆ︁Ḋ = dA ˆ︁H. Then, assuming (16b) holds at

the initial time, it holds for all time, so (A, 0, ˆ︁H, ˆ︁D) is a solution to (16).

Proof. We first note that dA ˆ︁H ∈ ˆ︁V n−1, so it makes sense to set ˆ︁Ḋ equal to

this form. Indeed, d ˆ︁H is in L4/3Λn−1(Ω, g) by assumption, and [A ∧ ˆ︁H] ∈
L4/3Λn−1(Ω, g) because it is the product of an L4 form with an L2 form.

Next, dd ˆ︁H = 0 and d[A∧ ˆ︁H] = [dA∧ ˆ︁H]− [A∧ d ˆ︁H], and one can check that

our regularity assumptions on A and ˆ︁H imply that both of these terms are
in L1Λn(Ω, g).

Note that if ϕ′ ∈ DV 0|K and A ∈ DV 1|K , then dAϕ
′ ∈ DV 1|K . Thus,

dAϕ
′ is a valid choice of test function A′ in (19a), from which we obtain that

∫︂

K

(︂⟨︂
dAϕ

′ ∧ Ḋ
⟩︂
−

⟨︁
dAdAϕ

′ ∧H
⟩︁)︂

+

∫︂

∂K

⟨︂
dAϕ

′ ∧ ˆ︁H
⟩︂
= 0,

∫︂

K

(︂⟨︂
dAϕ

′ ∧ Ḋ
⟩︂
−
⟨︁
[B,ϕ′] ∧H

⟩︁)︂
+

∫︂

∂K

⟨︂
dAϕ

′ ∧ ˆ︁H
⟩︂
= 0,

∫︂

K

(︂⟨︂
dAϕ

′ ∧ Ḋ
⟩︂
+
⟨︁
ϕ′, [B ∧ µ−1B]

⟩︁)︂
+

∫︂

∂K

⟨︂
dAϕ

′ ∧ ˆ︁H
⟩︂
= 0,

∫︂

K

⟨︂
dAϕ

′ ∧ Ḋ
⟩︂
+

∫︂

∂K

⟨︂
dAϕ

′ ∧ ˆ︁H
⟩︂
= 0.
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for all ϕ′ ∈ DV 0 and K ∈ Th.
Recall that, in temporal gauge, ρ̇ = 0. Thus, taking the time derivative of

the left-hand side of (16b), we obtain
∫︂

K

(︂⟨︂
[Ȧ, ϕ′] ∧D

⟩︂
+
⟨︂
dAϕ

′ ∧ Ḋ
⟩︂)︂

−
∫︂

∂K

⟨︂
ϕ′, ˆ︁Ḋ

⟩︂

=

∫︂

K

(︂⟨︁
ϕ′, [E ∧ ϵE]

⟩︁
+
⟨︂
dAϕ

′ ∧ Ḋ
⟩︂)︂

−
∫︂

∂K

⟨︂
ϕ′, dA ˆ︁H

⟩︂

=

∫︂

K

⟨︂
dAϕ

′ ∧ Ḋ
⟩︂
+

∫︂

∂K

⟨︂
dAϕ

′ ∧ ˆ︁H
⟩︂

= 0.

Thus, if (16b) holds at the initial time, it holds for all time. Meanwhile,
(16a) is just (19a) with ϕ = 0, (16c) is the same as (19b), and (16d) is trivial
when ϕ = 0. □

3.4. Hybrid semidiscretization. We now discretize the Yang–Mills domain-
decomposed variational problem in temporal gauge. Let DV 0

h , DV 1
h , and

ˆ︁V n−2
h be finite-dimensional subspaces of DV 0, DV 1, and ˆ︁V n−2, respectively,

such that for all K ∈ Th, Ah ∈ DV 1
h

⃓⃓
K
, and ϕh ∈ DV 0

h

⃓⃓
K

we have

dAh
ϕh ∈ DV 1

h

⃓⃓
K
.

Recall that dAh
ϕh = dϕh + [Ah, ϕh]. Using standard finite element spaces of

differential forms, we can achieve dϕh ∈ DV 1
h

⃓⃓
K

without difficulty. However,
unless G is abelian and the Lie bracket is zero, we generally expect that if
the coefficients of Ah have polynomial degree r and the coefficients of ϕh

have polynomial degree s, then the coefficients of [Ah, ϕh] have polynomial
degree r + s. Thus, in the nonabelian setting, we cannot expect dAh

ϕh to be
in the same space as Ah unless s = 0.

Consequently, we set DV 0
h

⃓⃓
K

to be the space of constant g-valued 0-forms

on K. In other words, DV 0
h is the space of piecewise constant functions

Ω → g.

We then solve equations corresponding to (19) for Ah ∈ DV 1
h and ˆ︁Hh ∈

ˆ︁V n−2
h .

∫︂

K

(︂⟨︂
A′

h ∧ Ḋh

⟩︂
−
⟨︁
dAh

A′
h ∧Hh

⟩︁)︂
+

∫︂

∂K
⟨A′

h ∧ ˆ︁Hh⟩ = 0, ∀A′
h ∈ DV 1

h ,

(20a)

∑︂

K∈Th

∫︂

∂K
⟨Ah ∧ ˆ︁H ′

h⟩ = 0, ∀ ˆ︁H ′
h ∈ ˆ︁V n−2

h ,(20b)

where Dh = −ϵȦh, Hh = µ−1FAh
, and (20a) holds for all K ∈ Th.

Given an initial value for ˆ︁Dh, we define ˆ︁Dh for all time via the equation

ˆ︁Ḋ h = dAh
ˆ︁Hh.
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Note that if DV 1
h and ˆ︁V n−2

h are spaces of polynomials, then ˆ︁Dh will in general

have higher polynomial degree than ˆ︁Hh because of the [Ah ∧ ˆ︁Hh] term.
We now prove the analogue of Proposition 3.5.

Proposition 3.6. Let (Ah, ˆ︁Hh) be a solution to (20). Given an initial value

for ˆ︁Dh, evolve ˆ︁D by ˆ︁Ḋ h = dAh
ˆ︁Hh. Then, assuming

(21)

∫︂

K

(︁⟨︁
dAh

ϕ′
h ∧Dh

⟩︁
+ ⟨ϕ′

h, ρ⟩
)︁
−

∫︂

∂K

⟨︂
ϕ′
h,

ˆ︁Dh

⟩︂
= 0, ∀ϕ′

h ∈ DV 0
h .

holds at the initial time, it holds for all time.

Proof. Let ϕ′
h ∈ DV 0

h . By assumption, dAh
ϕ′
h ∈ DV 1

h . Thus, we can plug in
A′

h = dAh
ϕ′
h into equation (20a). We obtain, for all ϕ′

h ∈ DV 0
h ,

(22)

∫︂

K

(︂⟨︂
dAh

ϕ′
h ∧ Ḋh

⟩︂
−
⟨︁
dAh

dAh
ϕ′
h ∧Hh

⟩︁)︂
+

∫︂

∂K

⟨︂
dAh

ϕ′
h ∧ ˆ︁Hh

⟩︂
= 0.

The first term of (22) is equal to d
dt ⟨dAh

ϕ′
h ∧Dh⟩. Indeed,

d

dt

⟨︁
dAh

ϕ′
h ∧Dh

⟩︁
=

⟨︂
dAh

ϕ′
h ∧ Ḋh

⟩︂
+
⟨︂
[Ȧh, ϕh] ∧Dh

⟩︂
,

and
⟨︂
[Ȧh, ϕ

′
h] ∧Dh

⟩︂
= −

⟨︂
ϕ′
h, [Ȧh ∧Dh]

⟩︂
=

⟨︂
ϕ′
h, [Ȧh ∧ ϵȦh]

⟩︂
= 0,

by the symmetry of ϵ and the antisymmetry of the Lie bracket.
The second term of (22) is zero. Indeed,

⟨︁
dAh

dAh
ϕ′
h ∧Hh

⟩︁
=

⟨︁
[FAh

, ϕ′
h] ∧ µ−1FAh

⟩︁
= −

⟨︁
ϕ′
h, [FAh

∧ µ−1FAh
]
⟩︁
= 0.

Meanwhile, by integration by parts and using ∂∂K = 0, the third term of
(22) is

∫︂

∂K

⟨︂
dAh

ϕ′
h ∧ ˆ︁Hh

⟩︂
= −

∫︂

∂K

⟨︂
ϕ′
h, dAh

ˆ︁Hh

⟩︂
= −

∫︂

∂K

⟨︂
ϕ′
h,

ˆ︁Ḋ h
⟩︂
.

Combining this information with the fact that ρ̇ = 0, we have that

(23)
d

dt

(︃∫︂

K

(︁⟨︁
dAh

ϕ′
h ∧Dh

⟩︁
+ ⟨ϕ′

h, ρ⟩
)︁
−
∫︂

∂K

⟨︂
ϕ′
h,

ˆ︁Dh

⟩︂)︃
= 0,

for all K and for all ϕ′
h ∈ DV 0

h , as desired. □

3.5. Local charge conservation. We can interpret Proposition 3.6 as
giving us an approximate charge ˆ︁ρh that satisfies a local conservation law.
Namely, for any ϕ′ ∈ DV 0

h , we have that ϕ′ is constant on K, so dϕ′ = 0 on
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K, and so (21) simplifies to
∫︂

K

(︂⟨︁
[Ah, ϕ

′
h] ∧Dh

⟩︁
+ ⟨ϕ′

h, ρ⟩ − ⟨dϕ′
h ∧ ˆ︁Dh⟩ − ⟨ϕ′

h, d
ˆ︁Dh⟩

)︂
= 0,

∫︂

K

(︂
−⟨ϕ′

h, [Ah ∧Dh]⟩+ ⟨ϕ′
h, ρ⟩ − ⟨ϕ′

h, d
ˆ︁Dh⟩

)︂
= 0,

∫︂

K

⟨︂
ϕ′
h, d

ˆ︁Dh + [Ah ∧Dh]
⟩︂
=

∫︂

K
⟨ϕ′

h, ρ⟩.

We know that ρ̇ = 0. Thus, if we set

ˆ︁ρh := d ˆ︁Dh + [Ah ∧Dh],

we have that ˆ︁ρh is an approximation to the charge ρ = dAD = dD + [A ∧D]
and that

d

dt

∫︂

K
⟨ϕ′

h, ˆ︁ρh⟩ = 0, ∀ϕ′
h ∈ DV 0

h .

for all K ∈ Th. Note that ˆ︁ρh depends on both ˆ︁Dh and Dh.
Since DV 0

h is the space of piecewise constant g-valued functions, we can
state the above equation more simply as

d

dt

∫︂

K
ˆ︁ρh = 0, ∀K ∈ Th.

This equation is our local conservation law: The total charge in each element
is conserved.

4. Numerical implementation

We implemented our domain decomposed hybrid method for the Yang–
Mills equations in FEniCS [12, 1] and verified that ˆ︁ρh is conserved in the
sense above. As illustrated in Figure 1, when we simulated the Yang–
Mills equations, the total charge in each element as measured by ˆ︁ρh :=

d ˆ︁Dh+ [Ah ∧Dh] remained zero. In contrast, the total charge in each element
as measured by ρh := dAh

Dh = dDh + [Ah ∧ Dh] drifted away from zero,
showing the advantage of this hybrid scheme. We implemented our method
on a square, a flat torus (a square with periodic boundary conditions), and
the surface of a sphere. We simulated the Yang–Mills equations in vacuum,
that is, with ϵ and µ−1 being just the Hodge star operator on the domain.

We obtained solutions of the domain-decomposed problem (20) in the

simpler setting where our space of Lagrange multipliers ˆ︁V n−2
h has degree large

enough so that (20b) forces Ah to be in the conforming space V̊
1
h. In this

setting, we can use the evolution equation (14) from the conforming setting

to evolve Ah ∈ V̊
1
h, and then use (20a) to solve for ˆ︁Hh as a post-processing

step. We note, however, that equations (20) could also be used in a more

general setting where the space of Lagrange multipliers ˆ︁V n−2
h is smaller, in

which case we would obtain solutions Ah ∈ DV 1
h that are not conforming.
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Figure 1. Numerical evolution of charge for the Yang–Mills
equations on various domains, comparing the standard expres-
sion ρh = dAh

Dh = dDh + [Ah ∧Dh] with our new expression

ˆ︁ρh = d ˆ︁Dh + [Ah ∧Dh] incorporating the hybrid variable ˆ︁Dh.
Projecting to piecewise constant g-valued functions shows
that the total charge in each element remains zero using ˆ︁ρh,
whereas it drifts away from zero using ρh.
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We approximated 1-forms using the PrΛ
1 family of finite element differen-

tial forms [2, 3], whose two-dimensional vector field proxies correspond to
curl-conforming Brezzi–Douglas–Marini edge elements [5]. Tuples of these

1-forms gives us our space V̊
1
h of g-valued 1-forms. Meanwhile, in this two-

dimensional setting, ˆ︁H is a g-valued zero-form, so we can represent it with a

tuple of continuous Galerkin elements, giving us our space ˆ︁V n−2
h .

Using these curl-conforming elements, we evolved Ah and Dh using a

leapfrog scheme, while computing the hybrid variables ˆ︁Hh and ˆ︁Dh in a
post-processing step. The full numerical scheme is as follows.

(1) Let An+ 1
2
= An − 1

2∆tϵ−1Dn.

(2) Let Ḋn+ 1
2
∈ V̊

1
h be the solution to (14), that is,

∫︂

Ω

(︂⟨︂
A′

h ∧ Ḋn+ 1
2

⟩︂
−
⟨︂
dA

n+1
2

A′
h ∧Hn+ 1

2

⟩︂)︂
= 0, ∀A′

h ∈ V̊
1
h,

where Hn+ 1
2
:= µ−1FA

n+1
2

.

(3) Let ˆ︁Hn+ 1
2
∈ ˆ︁V n−2

h be the solution to (20a), that is,

∫︂

K

(︂⟨︂
A′

h ∧ Ḋn+ 1
2

⟩︂
−
⟨︂
dA

n+1
2

A′
h ∧Hn+ 1

2

⟩︂)︂
+

∫︂

∂K
⟨A′

h ∧ ˆ︁Hn+ 1
2
⟩ = 0,

∀A′
h ∈ DV 1

h , ∀K ∈ Th,

that minimizes
⃦⃦
⃦ ˆ︁Hn+ 1

2
−Hn+ 1

2

⃦⃦
⃦
2

L2(Ω)
+
⃦⃦
⃦ ˆ︁Ḋ n+ 1

2
− Ḋn+ 1

2

⃦⃦
⃦
2

L2(Ω)
, where

ˆ︁Ḋ n+ 1
2
:= dA

n+1
2

ˆ︁Hn+ 1
2
.

(4) Let Dn+1 = Dn +∆tḊn+1/2.

(5) Let ˆ︁Dn+1 = ˆ︁Dn +∆t ˆ︁Ḋ n+1/2.

(6) Let An+1 = An+ 1
2
− 1

2∆tϵ−1Dn+1.

(7) Let ρn+1 = dAn+1Dn+1.

(8) Let ˆ︁ρn+1 = d ˆ︁Dn+1 + [An+1 ∧Dn+1].

The minimization in step (3) is needed because (20a) does not determine
ˆ︁Hh uniquely. In particular, (20a) only involves the values of ˆ︁Hh on the
element boundaries, so it gives no information about its interior degrees
of freedom. Meanwhile, (20b) is automatically satisfied because Ah is curl-
conforming.

In these examples, we worked with the three-dimensional Lie algebra
g = su(2), which is isomorphic to R3 with the cross product structure, so
our connection A can be represented by a triple of ordinary 1-forms, one for
each component of g. Let ξ0, ξ1, and ξ2 denote a basis of su(2) such that
[ξ0, ξ1] = ξ2, [ξ1, ξ2] = ξ0, and [ξ2, ξ0] = ξ1. For the simulations illustrated in
Figure 1, the initial conditions we chose for A are

(y(π − y) dx+ x(π − x) dy)⊗ξ0+
(︁
y2(π − y) dx+ x2(π − x) dy

)︁
⊗ξ1+0⊗ξ2
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for the square,

(sin(4x+ 2y) dx+ dy)⊗ ξ0 + (dx+ sin(2x+ 6y) dy ⊗ ξ1 + 0⊗ ξ2

for the flat torus (square with periodic boundary conditions), and the restric-
tion of

(y(π − y) dx+ x(π − x) dy + z dz)⊗ξ0+
(︁
y2(π − y) dx+ x2(π − x) dy

)︁
⊗ξ1+0⊗ξ2

to the sphere for the sphere. We set D = 0 at the initial time for all three.
We chose these initial functions arbitrarily, except to ensure that they satisfy
the appropriate boundary conditions and give generic-seeming solutions. In
particular, the ξ2 component that initially starts at zero does not remain
zero, as expected since ξ2 = [ξ0, ξ1].

Table 1 shows the empirical errors and rates of convergence at t = π for the
square and torus. By contrast with Nédélec’s method for Maxwell’s equations,
we do not observe faster convergence of Ah in the L2 norm than in the energy
norm. In particular, Ah appears to converge with rate r rather than r+1 for
degree-r elements; compare the L2 error estimates for Maxwell’s equations
in Section 4 of Monk [14]. At t = 0, standard approximation theory implies
that the degree-r interpolant of the initial conditions has error O(hr+1),
but this is seen to worsen to O(hr) for longer times t. We suspect that
the reduced rate of L2 convergence is due to the quadratic nonlinear term
coupling the error in A with the (one degree lower) error in its derivatives.
Further analysis is needed but is beyond the scope of the present paper.

Recall that the evolution of ˆ︁ρh conserves the total charge in each element
K. To illustrate this conservation law, we projected both ρh and ˆ︁ρh to the
space of piecewise constant g-valued functions, giving us the average charge
on each element. The L2 norms of these projections are plotted in Figure 1,
showing that ˆ︁ρh conserved the total charge in each element, but ρh did not.
We also illustrate this behavior in Figure 2, where one can see that Dh

and ˆ︁Dh look identical, but there is a stark difference when we look at the
corresponding charges projected to the piecewise constant functions.

5. Remarks on the case of nonzero current

So far, we have discussed the Yang–Mills equations with zero current, in
contrast with our paper on Maxwell’s equations [4], where we do not impose
this condition. For Maxwell’s equations, the charge and current satisfy the
continuity equation ρ̇ = −div J . We can think of ρ and J as given data
satisfying this constraint, or, equivalently, we can think of the given data as
being the initial charge distribution ρ at time zero, along with the current J
for all time, and then we can use the equation ρ̇ = −div J to determine the
charge distribution at all future times, independently from our evolution of
the potentials ϕ and A and the corresponding fields E, B, D, and H.

In stark contrast, the corresponding relationship between ρ and J in the
Yang–Mills setting is

ρ̇− [ϕ, ρ] = −dAJ = −dJ − [A ∧ J ].
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r N A dA H

1 4 10.074 — 16.241 — 17.637 —
8 6.443 0.6 13.357 0.3 13.119 0.4

16 3.480 0.9 9.951 0.4 9.682 0.4
32 1.728 1.0 5.129 1.0 4.926 1.0
64 0.832 1.1 2.193 1.2 2.041 1.3
128 0.369 1.2 0.849 1.4 0.835 1.3
256 — — — — — —

2 4 5.970 — 13.762 — 12.077 —
8 2.004 1.6 7.245 0.9 6.656 0.9

16 0.554 1.9 2.331 1.6 2.203 1.6
32 0.144 1.9 0.603 2.0 0.568 2.0
64 0.036 2.0 0.223 1.4 0.216 1.4
128 0.009 2.0 0.081 1.5 0.078 1.5
256 — — — — — —

(a) N ×N square mesh

r N A dA H

1 4 5.199 — 6.887 — 6.050 —
8 2.547 1.0 6.963 -0.0 7.073 -0.2
16 1.316 1.0 4.530 0.6 4.705 0.6
32 0.612 1.1 2.326 1.0 2.267 1.1
64 0.282 1.1 0.748 1.6 0.721 1.7

128 0.123 1.2 0.249 1.6 0.219 1.7
256 — — — — — —

2 4 2.769 — 6.572 — 6.577 —
8 1.051 1.4 3.113 1.1 3.131 1.1
16 0.298 1.8 0.815 1.9 0.802 2.0
32 0.074 2.0 0.118 2.8 0.114 2.8
64 0.019 2.0 0.025 2.2 0.023 2.3

128 0.005 2.0 0.008 1.7 0.007 1.7
256 — — — — — —

(b) N ×N torus mesh

Table 1. L2 errors and rates for the numerical solution at
time π, when compared to the solution on a 256× 256 mesh.
The results suggest linear convergence in A for degree r = 1
elements and quadratic convergence for r = 2.
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Figure 2. Comparison of the three components of Dh and
ˆ︁Dh, along with the corresponding charge densities ρh and ˆ︁ρh
projected onto piecewise constants, for the 16×16 square mesh

at t = π. While Dh and ˆ︁Dh are nearly indistinguishable, ρh
appears to show spurious nonzero charges, while ˆ︁ρh remains
zero due to the conservativity of the hybrid scheme.

As such, the evolution of the charge ρ depends not only on the current J but
also on the potentials ϕ and A. Unlike in Maxwell’s equations, we cannot
determine ρ a priori ; different initial conditions for ϕ and A will lead to
different future charge distributions. Of course, we have an exception to
this if the current J is zero, in which case, in temporal gauge, this equation
reduces to ρ̇ = 0, which does not depend on A.
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We now discuss what happens in the general setting of nonzero current.
Let J be a time-varying g-valued (n − 1)-form, specifically a C0 curve in
ˆ︁V n−1. The Yang–Mills Lagrangian is

L(A, ϕ, Ȧ, ϕ̇) :=

∫︂

Ω

(︃
1

2
⟨E ∧D⟩ − 1

2
⟨B ∧H⟩ − ⟨ϕ, ρ⟩+ ⟨A ∧ J⟩

)︃
.

The Euler–Lagrange equations are∫︂

Ω

(︂⟨︂
A′ ∧ (Ḋ − [ϕ,D])

⟩︂
−
⟨︁
dAA

′ ∧H
⟩︁
+ ⟨A′ ∧ J⟩

)︂
= 0, ∀A′ ∈ V̊

1
,

∫︂

Ω

(︁⟨︁
dAϕ

′ ∧D
⟩︁
+
⟨︁
ϕ′, ρ

⟩︁)︁
= 0, ∀ϕ′ ∈ V̊

0
,

which are weak expressions of

Ḋ − [ϕ,D] = dAH − J,

dAD = ρ.

As before, we work in temporal gauge ϕ = 0. With the standard semidis-
cretization, we obtain∫︂

Ω

(︂⟨︂
A′

h ∧ Ḋh

⟩︂
−
⟨︁
dAh

A′
h ∧Hh

⟩︁
+ ⟨A′

h ∧ J⟩
)︂
= 0, ∀A′

h ∈ V̊
1
h.

Meanwhile, with the domain-decomposed hybrid semidiscretization, we obtain

∫︂

K

(︂⟨︂
A′

h ∧ Ḋh

⟩︂
−
⟨︁
dAh

A′
h ∧Hh

⟩︁
+ ⟨A′

h ∧ J⟩
)︂
+

∫︂

∂K
⟨A′

h ∧ ˆ︁Hh⟩ = 0, ∀A′
h ∈ DV 1

h ,

(24a)

∑︂

K∈Th

∫︂

∂K
⟨Ah ∧ ˆ︁H ′

h⟩ = 0, ∀ ˆ︁H ′
h ∈ ˆ︁V n−2

h ,(24b)

and we evolve ˆ︁Dh by the equation

(25) ˆ︁Ḋ h := dAh
ˆ︁Hh − J.

So far, apart from the extra term, not much has changed from our earlier
work. However, to prove the analogue of Proposition 3.6, we must do
something new. Previously, we had ρ̇ = 0. Now, we have ρ̇ = −dAJ , but, as
discussed earlier, given J , we cannot determine the evolution of ρ without
knowing how the current interacts with A via the [A ∧ J ] term of dAJ . We
only have Ah, not A, so we instead define a new quantity ˜︁ρh to match ρ at
the initial time and evolve via

(26) ˜︁ρ̇h := −dAh
J.

Our results will then show that, averaged over each element, ˆ︁ρh := d ˆ︁Dh +
[Ah∧Dh] agrees with ˜︁ρh. If we have reason to believe that [A∧J ] = [Ah∧J ],
then ˜︁ρh = ρ, and we recover our earlier results of ˆ︁ρh agreeing with ρ, but,
unfortunately, we do not expect this to generally be the case. There are two
special cases where [A ∧ J ] = [Ah ∧ J ] holds. The first is when J is zero,
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which we have addressed in the bulk of this paper. The second is when g is
Abelian, in which case A is simply a tuple of vector potentials independently
evolving by Maxwell’s equations, so we can use our stronger results in [4].

Nonetheless, we proceed to prove the analogue of Proposition 3.6.

Proposition 5.1. Let (Ah, ˆ︁Hh) be a solution to (24). Let ˜︁ρh be defined by

(26), and, given an initial value for ˆ︁Dh, evolve ˆ︁D by (25). Then, assuming

(27)

∫︂

K

(︁⟨︁
dAh

ϕ′
h ∧Dh

⟩︁
+ ⟨ϕ′

h, ˜︁ρh⟩
)︁
−

∫︂

∂K

⟨︂
ϕ′
h,

ˆ︁Dh

⟩︂
= 0, ∀ϕ′

h ∈ DV 0
h .

holds at the initial time, it holds for all time.

Proof. As in the proof of Proposition 3.6, we plug in dAh
ϕ′
h for A′

h into (24a).
We obtain, for all ϕ′

h ∈ DV 0
h ,

(28)∫︂

K

(︂⟨︂
dAh

ϕ′
h ∧ Ḋh

⟩︂
−
⟨︁
dAh

dAh
ϕ′
h ∧Hh

⟩︁
+
⟨︁
dAh

ϕ′
h ∧ J

⟩︁)︂
+

∫︂

∂K

⟨︂
dAh

ϕ′
h ∧ ˆ︁Hh

⟩︂
= 0.

Using the computations in the proof of Proposition 3.6, we can reduce this
equation to

∫︂

K

(︃
d

dt

⟨︁
dAh

ϕ′
h ∧Dh

⟩︁
− 0 +

⟨︁
dAh

ϕ′
h ∧ J

⟩︁)︃
−
∫︂

∂K

⟨︂
ϕ′
h, dAh

ˆ︁Hh

⟩︂
= 0.

Dealing with the new current term, we integrate by parts to obtain
∫︂

K

⟨︁
dAh

ϕ′
h ∧ J

⟩︁
= −

∫︂

K

⟨︁
ϕ′
h, dAh

J
⟩︁
+

∫︂

∂K

⟨︁
ϕ′
h, J

⟩︁
.

We thus obtain∫︂

K

(︃
d

dt

⟨︁
dAh

ϕ′
h ∧Dh

⟩︁
−
⟨︁
ϕ′
h, dAh

J
⟩︁)︃

−
∫︂

∂K

⟨︂
ϕ′
h, dAh

ˆ︁Hh − J
⟩︂
= 0.

Substituting using equations (26) and (25), we obtain
∫︂

K

(︃
d

dt

⟨︁
dAh

ϕ′
h ∧Dh

⟩︁
+
⟨︂
ϕ′
h, ˜︁ρ̇h

⟩︂)︃
−
∫︂

∂K

⟨︂
ϕ′
h,

ˆ︁Ḋ h
⟩︂
= 0,

which is the time derivative of (27). □

Then, as in Section 3.5, we can plug in piecewise constant ϕ′
h into (27) to

obtain ∫︂

K

⟨︂
ϕ′
h, d

ˆ︁Dh + [Ah ∧Dh]
⟩︂
=

∫︂

K
⟨ϕ′

h, ˜︁ρh⟩.

That is, ∫︂

K

⟨︁
ϕ′
h, ˆ︁ρh

⟩︁
=

∫︂

K
⟨ϕ′

h, ˜︁ρh⟩,

or, more simply, ∫︂

K
ˆ︁ρh =

∫︂

K
˜︁ρh.
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In other words, with this semidiscretization, when averaged over each element,

the charge as estimated by d ˆ︁Dh+[Ah∧Dh] automatically matches the charge
as estimated by integrating −dAh

J with respect to time.
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