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Abstract—In this paper we provide a proof of principle of
a new method for addressing the ethics of autonomous vehicles
(AVs), the Data-Theories Method, in which vehicle crash data is
combined with philosophical ethical theory to provide a guide
to action for AV algorithm design. We use this method to model
three scenarios in which an AV is exposed to risk on the road,
and determine possible actions for the AV. We then examine how
different philosophical perspectives on agent partiality, or the
degree to which one can act in one’s own self-interest, might
address each scenario. This method shows why modelling the
ethics of AVs using data is essential. First, AVs may sometimes
have options that human drivers do not, and designing AVs to
mimic the most ethical human driver would not ensure that
they do the right thing. Second, while ethical theories can often
disagree about what should be done, disagreement can be reduced
and compromises found with a more complete understanding
of the AV’s choices and their consequences. Finally, framing
problems around thought experiments may elicit preferences that
are divergent with what individuals might prefer once they are
provided with information about the real risks for a scenario.
Our method provides a principled and empirical approach to
productively address these problems and offers guidance on AV
algorithm design.
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I. INTRODUCTION

UTONOMOUS vehicles are promised to be safer, more
efficient, and more cost-effective than human-driven
vehicles [1]. The actions of AVs, like those of human drivers,
involve ethical decisions [2]. Some of these decisions will
be infrequent and momentous. E.g. the decision of who to
target in an unavoidable crash [3], [4]. Others will be more
commonplace and may not even seem to be ethical decisions.
E.g. the decision of how closely to pass pedestrians or other
vehicles [4]. Arguably, AVs must navigate both kinds of
situations at least as well as humans if they are to share our
roads. To reach this goal, they must be governed by navigation
algorithms that produce ethically appropriate behavior.
Previous empirical work on the ethics of AVs has primarily
relied on survey methods, and can be arranged into three
primary themes. First, survey methods aim to reveal the
preferences individuals have for how AVs ought to behave
under conditions of risk (i.e. when the probability of an
outcome is known) and uncertainty (i.e. when the probability
of an outcome is unknown) [5]-[7]. The second primary type
of survey concerns the degree to which consumers believe AVs
can be safe and useful [8], [9] and to what extent these prop-
erties should exceed those of human drivers [8], [10]. Third,
perspective studies have identified the degree to which moral
beliefs about AVs depend on how individuals regard them-
selves as situated, e.g. as pedestrian or passenger. [10]-[13]
Recent attempts at using empirical methods to determine
the content of ethical algorithms for AVs have elicited the
public’s preferences about who an AV should strike in a
fatal, unavoidable, crash [5], [12], [13]. This approach,
the Trolley-Preferences Method, so-called after the famous
“trolley problem” thought experiment first proposed by Foot
[14], takes the form:

1) Scenario construction: Select a scenario for AVs, using
ethical ‘trolley cases’ as inspiration. Such scenarios
usually involve a choice of two actions that any driver
could make, each of which have certain outcomes. For
example: hit car A and two people die, or swerve to hit
car B and one person dies.

2) Preference elicitation: Collect information about the
choices people would make themselves or would prefer
an AV to make.

3) Algorithm generation: Directly apply findings to gen-
erate an ethical algorithm for AVs. AVs following this
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algorithm will act as most people would act, as most
people would prefer most people to act, or as most
people would prefer AVs to act.

This approach is simple and relatively easy to use, and
has the obvious advantage of producing an algorithm that
conforms to most people’s preferences. In the seminal paper on
this approach, it is argued that social science can determine
the algorithmic structure of AVs, and that strict democracy
as a form of preference aggregation should be used to reach
agreement on what that structure ought to be [13]. This
approach, however, is limited in a number of ways. First, it is
unlikely that questions about how AVs should behave can be
answered merely by polling the public. This method assumes,
falsely, that the AV will have access to the same information as
a human driver, such as information about the characteristics
(such as race or occupation) of its occupants. At least in
the near term, this is implausible. Moreover, restrictions on
AV information may be imposed: in Germany, for example,
the Federal Ministry of Transport and Digital Infrastructure
prohibits the use of identifying information (gender, race,
economic status, etc.) by AVs [15]. Unavoidably fatal crash
scenarios are a relatively rare kind of case in which AVs put
others at risk [16], [17], whereas most accidents involve a risk
of injury to the occupants, but not an assured fatality.

While AVs may lack certain information, they may also
have faster reaction times, access to better information on
speed, distance and accelerations of all vehicles, and more
computational power to leverage all these advantages in order
to maneuver. Because individuals frame their perceptions of
AV behavior in terms of the behavior of human-driven vehicles
[18], they may miss important ways that AVs can improve
human safety and traffic efficiency. Though ethical algorithms
for AVs grounded in individual preferences are not limited
to assuming that AVs can only do what humans can do,
the Trolley-Preferences Method may build this assumption
into the survey questions by stipulating choices (step 2) that
human drivers might make. The Trolley-Preferences Method
has no mechanism for discovering new options available to
AVs. Trolley problems have a use in developing an account
of the principles we use to justify certain kinds of harms, but
they are not well-designed for developing collision algorithms
on their own [19].

Another final crucial limitation of the Trolley-Preference
Method is that public preferences do not reliably track what
we, or AVs, ought to do. For example, Awad et al. reported that
respondents expressed a strong preference for “businessmen”
over “large women,” who in turn were preferred over “crimi-
nals” in determining who should be killed in an unavoidable
crash [13]. Earlier work by Bonnefon et al., moreover, reported
that individuals preferred their car to be selfish and partial
towards them, while preferring other cars to be altruistic and
self-sacrificing—an observation that shows that preferences
sometimes cannot guide the actions of AVs at all [12].
However, much like other models of moral psychology that
aggregate individual preferences as a basis for ethical decision
making, the Trolley-Preferences method fails to provide data
that translates directly to: a) how individuals really make
moral decisions, and b) whether some behavior is ethically
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justified [20]. Preferences are important in guiding decision-
making, but they should be settled, reflective preferences that
present our best understanding of what ethics requires of us
[21], [22].

II. THE DATA-THEORIES METHOD

We present a proof of principle method for designing ethical
algorithms for AVs that avoids the limitations of the Trolley-
Preferences Method. For given scenarios, we model possible
trajectories for an AV and calculate expected injuries from
historical car accident data [23]-[26]. We use this approach
to generate a set of options and expected outcomes for
each scenario, and then we consider what different kinds of
ethical theories would say about each scenario in order to
gather evidence about the best ethical algorithm for AVs. This
method, the Data-Theories Method, takes the form:

1) Scenario pool: Select any ethical choice scenario an AV
could face.

2) Scenario analysis: Use all available relevant data, e.g.
crash data, to determine (A) the complete set of acts an
AV could perform in the scenario and (B) the probability
of various consequences of those options.

3) Ethics data: Determine which options would be obliga-
tory, permissible, prohibited, etc. according to different
kinds of ethical theories.

4) Algorithm generation: Where plausible ethical theories
agree on an option, AVs should be programmed to make
this choice. Where ethical theories disagree, use facts
about how they disagree as evidence about the best
algorithm for AVs. AVs following the best ethical algo-
rithm in this scenario will either choose an option that is
favored by at least one plausible ethical theory, or will
choose an option that is favored by the best theory of
how to compromise between different ethical theories.
We set aside a broader discussion of which selection
measure is best for an algorithm, particularly in cases
where there are deep divisions between theories.!

Our method follows steps 1) through 3), while our results
describe step 4) of the method.

A. Scenario Pool

We developed 16 scenarios as vignettes describing ethical
choices an AV has to make, and involving a variety of features
(see supplementary material). These vignettes were styled
in the manner of philosophical thought experiments like the
trolley problem and its successors, presenting a range of initial
possible options. The research team voted on their preferred
scenarios for exploration for this study. A final list of eight
was chosen, with ties broken by discussion. After determining
available data, three scenarios were chosen for their tractability
in developing our proof of principle, and all entail calculable
physical risks to those involved in the scenario and calculable
choices made by the AV. These scenarios are as follows:

I'While one reviewer has noted that our method bears a resemblance to the
Pareto principle, we aren’t committed to Pareto regarding our choices. Rather,
we claim that if all moral theories under consideration agree that option A
is what all-things-considered should be done, then choose option A. This is
much weaker; it could be true even if Pareto is false.
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1) Tailgater, in which an AV is forced to avoid an obstacle
while being tailgated by a human driver.

2) Intervention, in which an AV can intervene to save
pedestrians from an out-of-control vehicle.

3) Off-Ramp, in which an AV can leave a highway by
imposing risk on an entering vehicle, or continue to the
next exit.

Each vignette was then refined for the purposes of specifying
what the ethical conditions were for each scenario. For clarity,
the full text of each vignette is reproduced in the next section
alongside the data collected for analysis.

B. Scenario Data

Each of the three scenarios required different strategies to
model, using both shared and distinct data sets. Because this
is a proof of principle study, several simplifying assumptions
were made. First, historical crash data could be used to predict
injuries that would result in occupants of an AV experiencing
the same acceleration in the same direction. In reality, auton-
omy will be a feature of new cars, which are inherently safer
by design than older cars, incorporating novel safety features
to protect their occupants during a crash. Therefore, the injury
risks we predict are likely to be conservative. Second, for
simplicity, we assumed that all vehicles involved in a crash
are the same mass. If AVs tend to have a lower curb weight
than human-driven cars, risk to occupants of an AV will be
greater than we predict. If they have a higher curb weight,
then risk will be lower. We assumed that all crashes had
a coefficient of restitution of 0.5, which is reasonable, but
newer cars may incorporate more crumble zones, reducing the
resulting acceleration in a crash.

Change in velocity following impact (delta-V) for each
vehicle was calculated with a restitution model that incorpo-
rates vehicle masses and pre-impact velocities [27]. Delta-V
was used to predict injury and fatality outcomes following a
crash based on historical data as described below. As vehicle
crashes often share common data, we used historical data from
the National Automotive Sampling System (NASS) [26] and
Maximum Abbreviated Injury Score (MAIS) as a measure of
injury outcome [25]. A MAIS of 3 or above (MAIS3+) is
defined as at least a serious injury, such as an open fracture of
the humerus (M AIS = 3), or a perforated trachea (MAIS =
4). M AIS3+ is associated with (P > 0.08) of death (Table I),
which we assumed to be a significant risk of death. A MAIS
of 2 or less was considered at most a moderate injury. We did
not stratify by safety measures present in different crashes, e.g.
seatbelts, airbags. We assumed that the AV knows the number
of passengers it is carrying, and the relative speed, trajectory,
and mass of the vehicles it interacts with. Particular charac-
teristics of the passenger(s) are unknown to the AV, which is
consistent with current thinking on the limits, descriptive and
normative, of AV information. We further assumed that the
AV detects distraction through indicators in vehicle trajectory,
consistent with current innovation in vehicle navigation [28]—
[31].

The probability of injury or fatality for a given delta-V was
calculated by fitting a logistic regression model to historical
crash outcome data obtained from the NASS Crashworthiness

TABLE 1
M AIS3+ CODING SCHEME

MAIS-Code | Injury | Example | P(death)
1 Minor Superficial laceration 0
2 Moderate Fractured sternum 0.01-0.02
3 Serious Open fracture of humerus 0.08-0.1
4 Severe Perforated trachea 0.05-0.5
5 Critical Ruptured liver with tissue loss | 0.05-0.5
6 Maximum Total severance of aorta 1
9 Not Further Specified

Data System (CDS) for the years 2009-2015 [26]. Collision
data were stratified by front, rear, side-on crashes, and by the
longitudinal and latitudinal delta-V. Where applicable, prob-
ability of pedestrian fatality for a given vehicle velocity was
calculated by fitting a logistic regression model to historical
pedestrian crash data obtained from the NASS General Esti-
mates System (GES) for the years 2011-2015 [26]. For human-
driven vehicles, we selected a reaction time of 3 seconds. This
corresponds to data on human reaction times [32], and US
state recommendations for following distance [33]. AVs were
assumed to react instantaneously.
Tailgater:

Scenario (Figure 1): A Tailgater (TG) is closely
following the AV, and the AV is following the Front
Car (FC) in a two-lane two-way road. At the start
of the scenario, all cars are currently moving at the
same velocity of 90 kph, consistent with highway
speeds. The scenario starts with FC suddenly braking
to a stop. The AV is responsive enough to stop in
time to prevent a collision with FC because the AV
is following at a safe distance. However, though the
AV is responsive enough to avoid a collision with
the lead car, TG may not be responsive enough to
avoid crashing into the AV. This scenario is further
constrained in that the AV cannot swerve out of
the way (due to oncoming traffic on the left and
a barrier on the right). Intuitively, the AV appears
to have two options: it could slam on the brakes
and suffer a severe rear-end collision, or it could
intentionally ram the forward car at a relatively
low speed, reducing the speed of collision of the
TG with the AV. Given the AV’s superior ability
to measure speeds and distances, is there another
way of managing potential injuries that may not be
available to a human driver?

Crashes in Tailgating were modeled as two-car collisions,
where both cars have the same mass, braking ability, and are
travelling in the same plane, resulting in a change in veloc-
ity (Av) [27]:

v'1 =01 — (1 —e/2).(v] —v2) (1)
v’y =01 + 02 — 0] (2)
Avi =0’ —v; (3)

where v > are the pre-impact velocities of vehicles 1 and 2;

vy, are the post-impact velocities of vehicles 1 and 2; and e

is the coefficient of restitution (assumed to be 0.5).
Intervention:

Scenario (Figure 2): An AV is approaching an
intersection. The light has just turned green, and the
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TAILGATING
SCENARIO

Fig. 1. Tailgating Schematic.

AV intends to drive straight through the intersection
but detects another car approaching the intersection
from the right. The AV correctly infers that the
human-driven car (HD) will run the red light and
careen into the intersection (because the car is not
decelerating). Pedestrians (P) are crossing the cross-
walk to the left of the AV, and are in the path of the
distracted driver. The AV can brake, just avoiding
possible harm to its occupant(s), but in so doing
allows/risks (preventable) harm to the pedestrians.
Alternatively, the AV can enter the intersection and
force a collision with the distracted driver’s vehicle,
saving the pedestrians from harm, but in so doing
risking harm being done to the occupants of both
vehicles.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

INTERVENTION
SCENARIO

START OF SCENARIO

NO INTERVENTION AV INTERVENTION

Fig. 2. Intervention Schematic.

We assumed that the AV only has control over whether it
is in the path of the distracted driver. We stipulated that other
options would be expected to take extra time (e.g. letting
the AV occupants out first and then intervening to save the
pedestrian(s) on the crosswalk).

The MALIS injury coding was not compatible with the GES
data, which instead uses the KABCO Injury Classification
Scale [30] [34]. Therefore, we instead chose to only use
probability of fatality in choice A. Vehicle fatality probabilities
used the same methods previously described for Tailgating.
Data about side crashes were filtered to include only impacts
from the opposite side of the occupant.

Off-Ramp:

Scenario (Figure 3): Risk minimization is gen-
erally a good strategy in an AV but can lead to
some very frustrating outcomes. Take, for example,

a three- or two-part cloverleaf intersection at the
junction of two large highways. An AV attempting
to merge off the highway cannot do so without
performing a risky maneuver. One option is for the
AV to remain in its lane, then safely leave and re-
enter the original highway heading in the opposite

This model uses the simplified assumption that there are
two possible choices:

A: The distracted driver hits a single pedestrian. The pedes-
trian is the only one at risk of death.

B: The distracted driver hits the AV on the side. The (single)
pedestrian has no risk of death, but both the AV and the
distracted driver have some risk of death.

direction. Sometimes there are miles between high-
way exits. Should an AV extend travel time for its
passengers in order to minimize risks? Or should
the AV take risks similar to a human driver in a
similar situation? (For example, human drivers might
“cut off” other drivers, stop in the merge lane, roll
onto the road shoulder to stay on the road, etc.) Can
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OFF-RAMP
SCENARIO
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Fig. 3. Off-Ramp Schematic.

the risk of taking a longer and less efficient route

be compared to the risk of an accident caused by

“reckless” AV behavior?
We modeled a simple dog leg (i.e. a single merge u-turn
off the highway) to illustrate the problem. This scenario
used per-mile accident data from the New York Department
of Transportation 2015-2016 Average Accident Rates [35].
An aggressive driving risk modifier was estimated based on
results from Habtemichael and Santos [36]. The relative risks
of continuing x on, rerouting back to make the original exit
compared to a risky exit maneuver is represented as:

Axx + Ap(ny + 1) = Ayken,

Ay is the rate of accidents per million vehicle miles on a high-
way, A, is the rate of accidents per million entrances or exits
from the highway, n, is the number of extra (not “recklessly”
risky) merges required to get back on course plus the next safe
merge off the highway, and n, is the number of “reckless”
merges attempted (here, we set this value to 1). k. is the risk
multiplier for a risky merge, and is calculated empirically for a
given road feature. In this case, it is for an up-and-back loop to
re-enter a highway. Therefore, the extra distance x (including
merges to retrace one’s steps) an AV can go before it incurs
more risk than making the risky exit maneuver is:

x = Ap(ke — (ny + 1))/ Ax

C. Ethics Data

Ethical analysis was performed through a deliberative
process between the philosophers and empirical researchers
on the research team. This process was not designed to

elicit the preferences of the team, but rather examine each
scenario using the available philosophical literature on the
ethics of acting under conditions of risk and uncertainty. Our
method remains agnostic as to whether AV algorithms should
ultimately be “top-down” (e.g. governed by formal methods),
“bottom-up” (e.g. using machine learning to create appropriate
action), or a hybrid of the two [37], [38].

Because there are many ethical theories, and none are
uncontested, we chose one important feature of ethical analy-
sis: how ethical theories deal with partiality, or duties to
oneself as distinct from others [39]. Some ethical theories are
partial and maximizing, i.e. you must always choose the option
that maximizes your own welfare. A paradigmatic example
of the Partial Maximizing Approach would be moral egoism,
according to which an agent’s actions are right if and only
if they increase that agent’s well-being [40]. Impartial Max-
imizing Approaches, conversely, require an agent to choose
the option that maximizes total well-being. An indicative
example of the Impartial Maximizing Approach is classical
act-utilitarianism, according to which any action is right if
and only if it best promotes the aggregate well-being of the
world [41].

Many contemporary moral theories often belong somewhere
between these two extremes, and acknowledge some Limited
Duty to Others principle [42]-[45]. A common feature among
these theories is that they recognize that we may be permitted
to act in our own self-interest, but have some limited, but no
less overriding, duty to protect or help others—even if doing
so imposes risk on ourselves.

The use of partiality as our topic of ethical analysis allowed
for a high-level analysis of the ethics of AV behavior in
each case, in a way that captures a wide range of common
ethical theories, without committing to a particular theory.
Agnosticism about which theory is ultimately correct allowed
us to map elements of convergence in moral theories.

III. RESULTS
A. Tailgater

In the simple formulation of the Tailgating case, the AV
either stops immediately (which harms the TG and AV), or else
stops more slowly (in which case harm to TG and AV
decreases with the rate at which the AV slows) and poten-
tially collides with the FC—these two options pit self-interest
against the interests of all parties to the collision. For all veloc-
ities, front-end collisions are risker than rear-end collisions.
Even a low-speed, front-end collision (with an instantaneous
change in velocity (delta-V) of 10-15 kph) may still result
in serious injury (MAIS 34) (Figure 4). Development of our
model, however, demonstrated that, in all cases, an AV can
tune a collision between front and back collisions, so that even
“selfish” AVs have a range of possible solutions for a range
of velocities.

Five cases are shown to demonstrate how an AV’s tuning
deceleration decisions can affect outcomes (Figure 5). The
scenario is initiated by the front car (in green) braking to a
stop due to some object blocking the road, forcing the AV (in
pink) and TG (in purple) to react. Injury (Table II) and fatality
(Table III) outcome probabilities were estimated for each case.
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Fig. 4. MAIS (rows A and B) and fatality (row C) outcomes per vehicle

occupant for front (left-column, negative delta-V) and rear (right-column,
positive delta-V) end collisions from historical crash data (CDS 2009-2015).
A: MAIS probabilities estimated with multinomial logistic regression using
scikit-learn. B and C: Dots represent the outcome for individual occupants
and the trendline demonstrates an increase in severity with an increasing
|Delta — V|. n(front) = 2052; n(rear) = 499.

Case A is the ideal situation, where no crash occurs. The
AV tries to give TG as much time to brake as possible, and TG
reacts in time (perhaps because the FC is large and can be seen
through the AV by the TG). In cases B and C, the AV follows
the same procedure, but TG either reacts too slowly or not at
all, resulting in crashes. If the AV assumes that TG will not
react unless “woken up” with a small impact, it could nudge
TG as in Case D. Finally, if the AV assumes that TG will not
react at all, it could slow/stop TG by coming in contact and
functioning as an “assistive brake” for both vehicles, as in
Case E. This scenario is enabled by the fact that the AV
has a super-human ability to judge the relative speed of all
vehicles around it. The resulting injury and fatality outcomes
demonstrate that the AV has the ability to avoid outcomes with
a higher chance of severe harm by choosing outcomes with a
higher chance of less severe harm.

B. Intervention

In Intervention, only two options are available to the AV:
intervene or don’t intervene. Because the collision velocity
is perpendicular to the AV’s motion, the speed at which the
AV intervenes is not a determinant of the result. Rather,
the dominant feature of this scenario is the velocity of the
human-driven vehicle, which determines the velocity of impact
for either the AV or the pedestrian.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE II
TAILGATING CASES MAIS3+ INJURY PROBABILITIES

Case Probability of a MAIS3+ Total expected

Front | AV | TG | Total | MAIS 3+
Case A 0% 0% 0% 0% 0.00
Case B 3% 10% | 4% 17% | 0.17
Case C 12% | 33% | 20% | 53% | 0.65
Case D 0% 1% 3% 4% 0.04
Case E 0% 1% 4% 5% 0.05

TABLE III
TAILGATING CASES FATALITY PROBABILITIES
Case Probability of a fatality E(fatal)
Front | AV | TG | Total |

Case A 0% 0% | 0% 0% 0.00

Case B 3% 5% | 2% 9% 0.09

Case C 6% 15% | 6% | 25% 0.27

Case D 0% 2% 1% 3% 0.03

Case E 0% 3% | 2% 4% 0.04

Results for both scenarios can be found in Figure 6. In cases
where the AV does not intervene, the probability of death
for the pedestrian increases rapidly with collision velocity.
In cases where the AV does intervene, the probability of death
for both the passenger in the AV and the human driver of
the out-of-control vehicle increases with speed. However, both
of these latter probabilities are lower than the probability of
death for the pedestrian for any given velocity. Moreover,
the likelihood of either the AV passenger or out-of-control
driver (or both) dying, taken together, is lower than the
probability of the pedestrian dying at any given velocity. The
likelihood of the AV driver dying depends on the side of the
car being hit. At velocities under 120 kph (which is quite high
for speeds observed near four-way intersections), the driver of
the AV is more likely to die than the distracted driver.

It may seem that the Partial and Impartial Maximizing
approaches are in complete opposition here about what should
be done. Because intervening increases the risk to the AV’s
occupants, it is not required and may even be forbidden
according to the Partial Maximizing Approach. Intervening
decreases the risk to the pedestrian(s) more than it increases
risk to the vehicle occupants, and thus is always obligatory
according to the Impartial Maximizing Approach.

Yet our results suggest that the risk to the AV occupants
is low so long as the approaching car is moving slowly
(up to 60 kph). In contrast, a typical Trolley-Preferences
methods case would stipulate that one must choose between a
guaranteed driver’s death or a guaranteed pedestrian’s death.
At approximately 20 kph, the risk to pedestrians rises quickly.
The differences in risk between these intervals suggests that
intervening may not be required by the Impartial Maximizing
Approach unless the distracted driver is moving faster than
20 kph. Further, above some speed a Limited Duty to Others
principle may say that there is some threshold at which point
intervening is not required. Perhaps at 60 kph the risk to the
AV’s occupants becomes too great, or the expected total gain
in well-being is not worth the risk to the AV’s occupants.

Finally, if we loosen the assumption that HD will always
hit P in the absence of intervention, the risk of death to P may
substantially decrease, as the curve in Figure 6 would represent
only the conditional probability of death if a collision occurs.
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Fig. 5.

Tailgating Cases. The position of each vehicle is shown by time and black dots indicate a collision between vehicles. Case A: The AV brakes as

late as possible to allow the longest window for TG react. TG takes 2 seconds to react. Case B: The AV follows the same procedure as Case A. TG takes
3 seconds to react. Case C: The AV follows the same procedure as Case A/B. TG does not react at all. Case D: The AV starts a slower brake sooner to “wake
up” TG, who reacts on contact. Case E: TG does not react at all, and the AV acts as a brake assist to slow/stop TG.

In this case, the minimum speed that obligates a response from
the AV may converge with the maximum speed at which an
individual is not obligated to accept a risk of serious injury.
This may lead to a convergence between Limited Duty to
Others principles and Partial Maximizing Approaches, though
showing this would require further investigation.

C. Off-Ramp

The extra distance (including merges to retrace one’s steps)
that an AV can go before it does something as risky as the
risky exit maneuver is:

x = Aplke — (ny + 1))/ Ax

Our extracted data (Table IV) provided indicative values.
For a simple dog-leg, n, = 1. For these values, x = 1.2 km
[min 0.267km, max 1.92km], which corresponds to the addi-
tional distance on the highway to achieve parity with the
risk imposed, to all parties, by a risky merge. Our analysis
indicates that choosing a risky merge will almost always
do more to minimize risk than continuing to drive on the
highway in order to loop back around. Driving more than two
extra kilometers would almost certainly be more risky than an
aggressive merge. The merge was always safer, x < 0, when
ke =ny + 1.

Crashes at merges tended to result in lower fatality rates
than crashes on highways: 0.19% of urban non-intersection
highway accidents result in fatalities, compared to 0.08% of
urban highway off-ramp accidents. To compare the severity of

TABLE IV
VARIABLES IN OFF-RAMP
Variable | Range | Chosen values
Ay 2.0-3.0 2.0
An 0.1-0.6 0.5
Ny 1-inf 1

these types of crashes, we used the mean cost of accidents
for merges against highway driving, $31,000 and $38,200 per
crash respectively [35]. When allowing for the severity of
crashes x = 0.976km [0.208, 1.55]. That is, the expected
additional distance to achieve parity in risk was reduced by
approximately 20% when controlling for the relative cost of
the crashes.

Off-Ramp at first appears to be counter-intuitive on the
Impartial Maximizing Approach. Arguably, many would
think that if merging to get off of the highway would require
a risky maneuver, then perhaps the Impartial Maximizing
Approach would have the AV take its occupants on a long
detour in order to merge safely and reduce overall risk. It’s
not obvious that the Partial Maximizing Approach would
disagree. So long as the detour would reduce risk to the
AV’s occupants enough to outweigh the inconvenience of a
longer travel time, then it would also have the AV take the
longer route. But Off-Ramp initially looks like a scenario in
which risk-adverse AVs may make choices that their human
occupants would be unhappy with.

Our results demonstrate both an interesting example of
why AVs might wish to be risk-taking in the short term to
trade off risks in the long term, and a potential problem
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Fig. 6. Pedestrian and vehicle fatality probabilities as a function of velocity
of impact. Deaths suffered in No Intervention (black line) are suffered by
the pedestrian. In AV Intervention (solid red line), deaths are suffered by
vehicle occupants, which are also individually shown for the AV (dashed red
line) and distracted vehicle (dashed blue line). Pedestrian data curve uses the
multivariate meta-regression model from [46].

familiar to recent social science work on autonomous vehicles
that considers framing effects around risk. That is, despite
intuitions to the contrary, an AV designed to reduce risk
for all parties (in accordance with the Impartial Maximizing
Approach) would not be expected to take long detours. Given
our assumptions, a detour longer than 1.2 km, or 0.976 km
if we account for severity of crashes, would be riskier than
an aggressive merge, and so morally unwarranted. While this
analysis does not reveal a new option, it does show that
the scenario is not one in which ethical theories will widely
diverge in principle about what should be done. It shows,
however, that the action on which ethical theories converge
may not be readily discernible by the Trolley-Preferences
Method, as it is not implausible that individuals responding
to a similar case in a Trolley-Preferences survey would view
an aggressive merge as riskier than a short detour.

IV. DISCUSSION

From these cases, we could envisage a series of different
algorithms which vary based on their partiality. These algo-
rithms would take approaches to these cases as follows:

1. Impartial maximizing In Tailgater, ranks [A,D,E,B,C]; in
Intervention, opts to intervene in all cases; in Off Ramp,
always takes the turn;

2. Limited duty to others In Tailgater, ranks [A,D,E,B,C];
in Intervention, may intervene in low speed cases
(< 20mph) but not others; in Off Ramp, always takes
the ramp;

3. Partial maximizing In Tailgater, ranks [A,D,E,B,C]; in
Intervention, will never intervene; in Off Ramp, always
takes the ramp.

Sometimes, the Data-Theories Method picks out features
of the world on which moral theories can agree. In the
case of Tailgater, there is little to no disagreement between
theories. At other times, the method can provide us with
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additional options but not necessarily a definitive single choice,
as with Off-Ramp. Finally, sometimes we will retain diver-
gent views, as in Intersection. This last case demonstrates
that Data-Theories cannot function directly as an algorithm
design method, because the scenario pool must be selected by
humans, and difficult choices between moral theories require
advances not just in human choice but probably in ethical
theory as well.

Our method offers a proof of principle about how philoso-
phers and empirical researchers might collaborate to develop a
robust empirical account of ethical algorithms in autonomous
vehicles. This method demonstrates how ethical theory might
be leveraged to examine empirical data, and provide an
account of why AVs ought to make certain decisions in
emergent, or, in the case of Off-Ramp, prosaic scenarios. This
provides an account of ethical AVs that is arguably defensible
from the perspective of a variety of stakeholders, and provides
a normative basis for responding to certain facts about the
road.

This method is not confined to fully autonomous, or “level
57 AVs. While some of these cases, such as Intervention,
may require full or near-full autonomy to enact, level 2 AVs
that only perform limited autonomous functions may plausibly
be programmed to act in the way we suggest in Tailgater.
The requirements for that scenario are fairly straightforward,
and require only that the vehicle can recognize cars both
in front and behind it, and control its acceleration. This is
within the realm of possibility for modern vehicles that have
a combination of assisted emergency braking using a rear
camera and existing adaptive cruise control methods.

Likewise, it is plausible that near-future autonomous vehi-
cles will be capable of lane-switching and entering and
exiting highways. These data, and the method in general,
do not require that AVs are fully autonomous, though they
are useful in those cases as well. With limited adjustments,
this method would be useful for developing and implementing
existing or emerging technologies into the next generation of
vehicles.

Furthermore, our method has clear advantages over previous
attempts to empirically determine desirable or ethically justi-
fied qualities of AVs. Our method does not rely on spurious
connections between individual preferences and ethical prin-
ciples. Moreover, our method is able to take existing data and,
with relatively few assumptions, infer plausible capacities that
AVs may have in the future. It ensures that ethical algorithms
for AVs are directly informed by what an AV can actually do.

V. LIMITATIONS

The limitations with this method are first in data collection,
and second in the use of moral theory. Some of our data,
for example, requires assumptions to utilize. Intervention
presumes that the pedestrian will be struck by the distracted
driver. In reality, the pedestrian could notice the oncoming car
and dive out of the way, or the distracted driver could swerve
at the last moment. Variations on this scenario could include
the presence of a large number of people in the intersection,
increasing the probability that not only one person would be
struck, but multiple people. In Intervention, moreover, there
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may be small adjustments an AV could make to its trajectory
to further minimize risk to the driver (for example, accelerating
fast enough so that HD collides with an unoccupied section of
AV). Reanalysis of Intervention incorporating a probabilistic
model of pedestrian death may also change our conclusions
about what the AV ought to do at different velocities. This
uncertainty is important to consider but is impossible to
characterize a priori with existing data, and so remains for
future work. Likewise, Data-Theories might be expanded by
incorporating new and better models.

A general philosophical limitation of our method is that it
doesn’t attempt to resolve conflicts between comprehensive
ethical theories. Where ethical theories disagree about what
an AV should do, our method explains why they diverge,
but does not determine which option available to the AV is
ethically justified. In these cases, our step (4) would need
to be revised to generate a procedure for choosing between
options when moral theories diverge. Here we run up against
the limits of established ethical and metaethical theory. Several
strategies for resolving disagreements and uncertainty about
ethical theories have been proposed, and this is an active
area of research [47]-[49]. A conflict resolution strategy will
likely be required to design ethical algorithms for AVs. That
the Trolley-Preferences Method doesn’t need one in virtue
of relying on aggregate, unreflective preferences is no real
advantage—indeed it is a sign that it is unhelpfully off-track.

Our cases, moreover, do not obviate the need for careful
analysis of AV algorithms even in cases where there is initial
agreement. Consider, for example, a “hard case” version of
Tailgater, where we relax the assumption of a single lane road.
If the AV could swerve out of the way of FC, we might ask
whether it is obligated to issue a “wake up call” first, given
that the AV might avoid FC but TG could fail to do so. And
we might ask whether, if the AV has the option to swerve
out of the way, it nevertheless ought to act as an emergency
brake given the low risks entailed. Here, Partial Maximizing
Approaches diverge from Impartial Maximizing Approaches,
and plausibly also from Limited Duty to Others principles.

This divergence might also arise if, for example, FC is a
much lighter vehicle, such as a bicycle. In this case, the risk
to the AV of a lethal front-end collision is very close to zero,
but the risk of a lethal rear-end collision with FC (in this
case, being run over by the AV) is very high. Even if the
AV were able to swerve, it might be impermissible to do so,
as it would result in FC’s death by being run over by TG.
As such, a wake-up call or emergency brake maneuver might
be not only permissible, but obligatory under a Limited Duty
to Others or Impartial Maximizing Approach, even though it
places the occupant of the AV in (a small amount of) harm’s
way.

Other hard cases may rely on empirical difference where
the normative details need to be either interrogated, or at
least clarified. Consider Intervention, but now imagine that
the intervening AV is in a parallel lane to the other vehicle.
The AV could change lanes to collide with the other vehicle,
potentially in a manner similar to “wake up call” in Tailgater.
This hybrid case may or may not generate new moral concerns,
but if it does then the Data-Theories Method could be used to
identify any relevant differences.

Certain vehicles, moreover, may have important duties
that regular commuters do not. In the case of Intervention,
for example, emergency vehicles (particularly those that are
state-owned) may have the obligation to place their passengers
in harm’s way. We already expect fire fighters, for example,
to accept risks on behalf of public safety. We could plausibly
require fire fighters in autonomous fire trucks to accept new
risks.

Finally, some problems may be highly contextual and we
may currently lack the data required for appropriate analysis.
In Off-Ramp, for example, our results are limited by the
quality of information about the additional risk that arises from
a particular road feature. We could envisage a comprehensive
set of these coefficients that are mapped geospatially for AVs
to determine, for a particular set of maneuvers, what the
additional risk compared to distance is. But this would rely
on considerable additional empirical research on increased
risk from road maneuvers in particular contexts. With more
accurate data, our proposed method could perform better; our
goal here is to propose an analysis framework.

VI. CONCLUSION

The Data-Theories Method can help identify new options for
AVs (as it does in Tailgating) and can provide new information
to use in evaluating an AV’s options (as it does in all three
scenarios). The Data-Theories Method is also more likely
than the Trolley-Preferences Method to produce an ethical
algorithm for AVs that actually has them act ethically as
opposed to one that has them act in a way that’s merely
perceived by the public to be ethical.

In this paper we’ve presented a new method for finding
ethical algorithms for AVs. We’ve applied it to three different
scenarios in order to show how it works, what its advantages
and disadvantages are, and how it might be extended. This
method is also generalizable. It could be applied to many risky
driving scenarios to determine how AVs should behave and to
ensure that future motorists feel comfortable sharing the road
with AVs. Future studies involving this method should use
data on specific AVs and the masses (and crash-worthiness)
of other cars on the road today.
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