CONSTRAINT-PRESERVING HYBRID FINITE ELEMENT METHODS
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ABSTRACT. Maxwell’s equations describe the evolution of electromagnetic fields, together
with constraints on the divergence of the magnetic and electric flux densities. These constraints
correspond to fundamental physical laws: the nonexistence of magnetic monopoles and the
conservation of charge, respectively. However, one or both of these constraints may be
violated when one applies a finite element method to discretize in space. This is a well-known
and longstanding problem in computational electromagnetics.

We use domain decomposition to construct a family of primal hybrid finite element
methods for Maxwell’s equations, where the Lagrange multipliers are shown to correspond
to a numerical trace of the magnetic field and a numerical flux of the electric flux density.
Expressing the charge-conservation constraint in terms of this numerical flux, we show that
both constraints are strongly preserved. As a special case, these methods include a hybridized
version of Nédélec’s method, implying that it preserves the constraints more strongly than
previously recognized. These constraint-preserving properties are illustrated using numerical
experiments in both the time domain and frequency domain. In 2-D, we also observe a
superconvergence phenomenon, where hybrid post-processing yields an improved estimate of
the magnetic field.

1. INTRODUCTION

Maxwell’s equations consist of two vector evolution equations, together with two scalar
constraint equations, div B = 0 and div D = p, where B is magnetic flux density, D is electric
flux density, and p is charge density. These constraints are automatically preserved by the
evolution, so given initial conditions satisfying the constraints, one can simply evolve forward
in time without needing to “enforce” the constraints in any way.

However, if one applies a finite element method in space, then the semidiscretized evolution
equations no longer necessarily preserve these constraints, at least not strongly. Nédélec [39]
showed that, if one uses curl-conforming edge elements for the electric field £ and divergence-
conforming face elements for B, then the semidiscretized equations preserve div B = ( strongly.
On the other hand, div D = p holds only in the Galerkin sense (i.e., when both sides are
integrated against certain continuous, piecewise-polynomial test functions). Recent constraint-
preserving methods due to Campos Pinto and Sonnendriicker [I7] and Hu et al. [29] also
preserve div B = 0 strongly but div D = p only in a weaker sense.

Christiansen and Winther [20] observe that strong preservation of both divergence con-
straints “appears to be necessary for many applications in electromagnetics,” and Houston
et al. [28] call this “one of the main difficulties in the numerical solution of Maxwell’s equations.’
For this reason, alternative approaches have been developed that enforce the constraints
strongly—for instance, using Lagrange multipliers [4], [I8]—instead of attempting to preserve
them automatically but weakly, as Nédélec’s method does. In cases where p = 0, another idea
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is to use divergence-free elements to construct nonconforming methods [9, [I1] or discontinuous
Galerkin methods [23], 28, [10].

In this paper, we attack the problem of constraint preservation from a different perspective.
We perform domain decomposition of the Lagrangian (i.e., primal) variational principle for
Maxwell’s equations, in terms of the vector potential A and scalar potential ¢, using Lagrange
multipliers H and D to enforce inter-element continuity and boundary conditions. These
Lagrange multipliers are shown to correspond to boundary traces of the magnetic field H
and electric flux density D. After using gauge symmetry to fix ¢ = 0, we show that the
evolution of (A, H ) automatically preserves the constraints div B = 0 and div D= p. Finally,
we semidiscretize this domain-decomposed variational principle, obtaining primal hybrid finite
element methods that preserve this formulation of the constraints in a strong sense. As a
special case, we give a hybridized formulation of Nédélec’s method, implying that it preserves
the constraints in a stronger sense than previously recognized.

To place this in the context of previous work, we note that the general idea of using
Lagrange multipliers to weakly enforce inter-element continuity and boundary conditions on
H (curl) spaces is not itself new. Various alternative spaces of Lagrange multipliers have been
proposed in the literature on mortar methods for Maxwell’s equations [27, [5 [42] [30] and
hybrid methods for the Stokes equations |21} 22], for example. In contrast with this previous
work, one of the key distinctions here is that we take H and D to themselves be H (curl)- and
H(div)-conforming, respectively. This makes it possible to formulate the charge-conservation
constraint for these methods in a strong sense.

The paper is organized as follows:

e In we review Maxwell’s equations, the Lagrangian variational principle, and
semidiscretization using edge elements.

e In we domain decompose the Lagrangian variational principle, relate
solutions to the classical (non-domain-decomposed) formulation of Maxwell’s equations,
and study the domain-decomposed version of the constraints and their preservation.

e In we consider primal hybrid finite element methods for semidiscretizing
the domain-decomposed evolution equations, showing that constraints are preserved
in a strong sense.

e Finally, in we conduct numerical experiments demonstrating the behavior
of the hybridized Nédélec method. In addition to the constraints being preserved to
machine precision, these results illustrate a superconvergence phenomenon in 2-D for
the post-processed magnetic field H n, similar to that observed for other hybridized
mixed methods (cf. Arnold and Brezzi [2], Brezzi et al. [12]).

2. REVIEW OF MAXWELL’S EQUATIONS

2.1. Maxwell’s equations. We begin by reviewing the classical formulation of Maxwell’s
equations, first in terms of the electric and magnetic fields and flux densities, and then in
terms of the vector and scalar potentials. We postpone the discussion of regularity until the
introduction of the weak formulation, in for the moment, everything may be
assumed to be smooth.
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2.1.1. Standard formulation. In their most familiar form, Maxwell’s equations consist of the
vector evolution equations,

(1a) B=—culE,
(1b) D+ J=curl H,
together with the scalar constraint equations,

(2a) divB =0,
(2b) divD = p.

Here, F and H denote the electric field and magnetic field, D = eFE and B = uH denote
the electric flux density and magnetic flux density, € and p are the electric permittivity and
magnetic permeability tensors, and J and p are current density and charge density, respectively.
We use the “dot” notation @ = Jd,u to denote partial differentiation with respect to time.

The evolution equations automatically preserve the constraints . Indeed, taking the
divergence of implies div B = 0, so is preserved. Similarly, taking the divergence of
implies div D +div J = 0, so is preserved if and only if J and p satisfy p+divJ =0,
which is the law of conservation of charge. We refer to as the charge-conservation
constraint, since it is equivalent to this condition.

2.1.2. Formulation in terms of potentials. Alternatively, Maxwell’s equations may be expressed
in terms of a vector field A, called the vector potential, and a scalar field ¢, called the scalar
potential. Given A and ¢, we define the electric field and magnetic flux density by

E = —(A+grady), B = curl A.
Note that and are automatically satisfied, so we may restrict our attention entirely
to the single evolution equation , which we have already seen preserves .

However, Maxwell’s equations do not uniquely determine the evolution of (A, ). Observe

that if £ is any time-dependent scalar field, then the transformation (A, ¢) — (A+grad¢, o—& )
leaves E/, B, D, H unchanged. Such transformations are called gauge transformations, and
the invariance of Maxwell’s equations under gauge transformations is called gauge symmetry.
In particular, any solution (A, ¢) may be transformed into one of the form (A + grad &, 0) by
taking £ to be a solution of f = . Therefore, we may restrict our attention to solutions with
p =0.
Remark 2.1. This procedure of restricting to particular solutions, which are related to a
general solution by some gauge transformation, is called gauge fizring. The choice ¢ = 0, called
temporal gauge, is the most convenient for our purposes, but there are other choices as well.
Note that there is still some remaining gauge symmetry, even after performing temporal gauge
fixing: we may transform A — A 4+ grad ¢ for any £ constant in time.

After temporal gauge fixing, we can write as either a first-order system in A, D,
A=—e1D, D+ J = curl(p~t curl 4),
or as a second-order equation in A alone,
—0y(eA) + J = curl(p~ ! curl A).

In the special case where € and p are simply positive constants with ey = 1 (as in vacuum,
with units chosen so that the speed of light is 1) and J = 0, the latter equation just becomes

A+ curleurl A = 0.
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Taking the Fourier transform with respect to time (the so-called frequency domain or time-
harmonic approach), this latter equation transforms into the eigenvalue problem for the
curl curl operator.

2.2. Weak formulation. We next discuss the weak formulation of Maxwell’s equations, first
using a Lagrangian variational principle in terms of the potentials A and ¢, and then fixing
the temporal gauge ¢ = 0 to arrive at a weak formulation in terms of A alone.

2.2.1. Function spaces and regularity. Let © C R3 be a bounded Lipschitz domain, and define
the function spaces

HY(Q) = {ue L*(Q) : gradu € LQ(Q,R?’)},
H(curl; Q) == {u € LX(Q,R3) : curlu € L2(Q,R3)},
H(div; Q) = {u € LA R3) : divu € LQ(Q)}.

We also define the following subspaces, with boundary conditions imposed:

H'(Q) = {ue H'(Q) : ulpg =0},

H(cur; Q) == {u € H(curl; Q) : u x nlsq = 0},
H(div;Q) = {u € H(div; Q) : u-nlpq = 0}.

Here, n|pn denotes the outer unit normal to 9€2, and restrictions to 9€2 are interpreted in the
trace sense.

Let A: t — A(t) be a C' curve in H(curl; Q) and ¢: t — ¢(t) be a C° curve in Hl(Q) It
follows that E is a C° curve in H(curl; ©2), that B is a C! curve in H(div; ), and that
and hold strongly in L?. We also assume that both € = ¢;;(z,t) and p = p;;(x,t) are
L, symmetric, and uniformly elliptic. In particular, this implies that D and H are both C°
curves in L?(2,R3). Henceforth, we restrict our attention to (A, ¢) such that D is in fact a
C! curve in L2(2,R?). Finally, let the current density J be a given C° curve in H(div; )
and the charge density p be a given C' curve in L?(Q), satisfying the charge conservation
condition p + divJ = 0.

2.2.2. The Lagrangian and FEuler—Lagrange equations. For (A, ) satisfying the regularity
assumptions in the previous paragraph, define the Lagrangian

Lo A ¢) = [

1 1
<E-D—B'H+A-J—gop).
Q 2

2

The Euler—Lagrange equations are

(3a) / (A (D+J)—cwld-H)=0, VA € H(cul;Q),
Q

(3b) /(grad ¢ -D+yp) =0, Vg el (Q)
Q

which are weak expressions of and , respectively.

These Euler-Lagrange equations imply that solutions have additional regularity properties.
Since curl H = D + J is C° in L?, we have that H is C° in H(curl;Q). Likewise, since
divD = pis C' in L?, we have that D is C! in H(div;Q). Hence, solutions to this weak
problem are in fact strong solutions of Maxwell’s equations.
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Remark 2.2. When € and p are constant in time, the electric and magnetic fields have precisely
the same regularity assumed by Monk [37, eqs. (7)—(8)], namely: E is C' in L?(Q,R?) and
CY in H(curl; Q), while H is C! in L?(Q,R?) and C° in H(curl; Q).

As in this formulation is symmetric with respect to gauge transformations

(A,0) — (A+ grad§ @ — €), where £ is now an arbitrary C' curve in i (©). Fixing the
temporal gauge ¢ = 0, the Lagrangian becomes

. 1 1
Q

and the Euler-Lagrange equations are just (3a). This again implies that H is CV in H (curl; Q),
SO holds strongly. By the same argument as in [Section 2.1} this automatically preserves
the charge-conservation constraint.

Remark 2.3. Preservation of the charge-conservation constraint may also be seen as a conse-
quence of the remaining gauge symmetry A — A + grad £, mentioned in where
EeH 1((2) is constant in time. This is a particular instance of Noether’s theorem, which
relates symmetries to conservation laws. See Marsden and Ratiu [34, Section 1.6] for an
account of the J = 0 case, as well as the discussion in Christiansen and Winther [20].

2.3. Galerkin semidiscretization using Nédélec elements. The use of finite elements
in computational electromagnetics is a broad topic with a long history, and we do not attempt
to give a full account here. We refer the reader to the texts by Monk [38] and Jin [31], as
well as the excellent survey article by Hiptmair [26], which relates these methods to the more
recent theory of finite element spaces of differential forms. In this section, we briefly review the
semidiscretization of Maxwell’s equations using the elements of Nédélec [39, [40], an approach
that was subsequently analyzed in a series of papers by Monk [35], 36} [37].

Galerkin semidiscretization of the variational problem restricts the trial and test
functions to some finite-dimensional subspace V;! C H (curl; ©2), resulting in a finite-dimensional
system of ODEs. That is, we seek a C'! curve Ap: t — Ap(t) € V;! such that

(4) / (A}, - (D, +J) —cwl A}, - Hy,) =0, YA}, € V!,
Q

where Ej, := — Ay, By, == curl Ay, Dy, := €E},, and Hj, := p~'By,. The discrete versions of
and ,
By =—cwlE,,  divBj, =0,

follow immediately. In fact, both hold strongly in L?, by the same argument as in
since Ej, € V)l C H(curl; Q) and By, € curl vl c H(div; ). On the other hand, we cannot
conclude that Dy, is in H(div;Q), nor that Hy is in H(curl; ), since only holds for test
functions in V;! and not all of H(curl; Q).

Consequently, the charge- conservatlon constraint (| is only preserved in the following,
much weaker sense. Let VO C i' (Q) be a ﬁmte—dlmensmnal subspace such that grad V,? C Vh.
Then, for all &, € V)2, takmg A} = grad§, in and applying p + div J = 0 gives

/Q (erad & - Dy + €np) = 0.

Hence, if the initial conditions satisfy fQ(grad & - Dy +&pp) = 0, for all &, € V)0, then this is
preserved by the flow of .
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In particular, suppose now that €2 is polyhedral, and that 7 is a triangulation of Q by
3-simplices (i.e., tetrahedra) K € T,. We may take V,? to be the space of continuous degree-r
piecewise polynomials on 7j vanishing on J€2, corresponding to standard Lagrange finite
elements. For Vhl7 we may take either degree-r Nédélec| edge elements of the first kind [39]
or degree-(r — 1) INédélec edge elements of the second kind [40] with vanishing degrees of
freedom on 9. These are spaces of piecewise-polynomial vector fields in R3 with tangential
(but not necessarily normal) continuity between neighboring simplices. These choices ensure
that grad V}? C Vhl, so the weak charge-conservation argument above holds.

Note, however, that [, (grad&, - Dy + &,p) = 0 only says that div Dj, = p holds in an
“averaged” sense, since (unlike in the infinite-dimensional case) nonzero &, € V}? cannot be
taken to have arbitrarily small support. We cannot even conclude that the constraint holds
in the sense that [;,- Dy -n = [ p, since the indicator function 1x is discontinuous and
therefore not an admissible test function. (Christiansen and Winther [20] give a compactness
argument for why this weak form of the constraint “might be just as good” as the strong
form, in the limit as h — 0; see also Christiansen [19].) This motivates our proposed hybrid
approach, based on domain decomposition, for which piecewise-constants are admissible test
functions.

Remark 2.4. The method above describes the evolution of A, € Vhl. Equivalently, one may
evolve F, € Vh1 and By, € curl Vh1 C Vh2 C H(div;Q) by augmenting with By, = — curl E},.
This is the original approach described by Nédélec [39], where Vh2 is given by face elements on

T

3. DOMAIN DECOMPOSITION PRELIMINARIES

In this section, we introduce an alternative variational formulation for Maxwell’s equations,
based on domain decomposition. Specifically, we decompose the problem on €2 into a collection
of problems on K € T, weakly enforcing internal continuity and external boundary conditions
using Lagrange multipliers. This is similar in spirit to the standard approach to domain
decomposition for Poisson’s equation, cf. Brezzi and Fortin [13]. We show that the Lagrange
multipliers enforcing these conditions on A and ¢ correspond to the traces of H and D,
respectively, and we show that the latter satisfies an appropriate version of the charge-
conservation constraint.

3.1. Function spaces. We begin by introducing the following discontinuous function spaces,
which are larger than the spaces used in the previous variational formulation:
HY(Tp) = {ue L*(Q) :ulx € HY(K), for all K € Tn}
H(cur; T) = {u € L*(Q,R?) : u|g € H(cwl; K), for all K € T},
H(div; Tp) = {u € L*(R%) : u|x € H(div; K), for all K € T}.
Brezzi and Fortin [13, Proposition III.1.1] show that

HI(Q) ={ue HY(Ty) : Do KeT Jox ud-n =0, for all A € H(div;Q)}.

That is, H 1(Q) is the subspace of H'(7;,) where internal continuity and external boundary
conditions are enforced by Lagrange multipliers A\ € H(div;Q2). Likewise, [I3| Proposition
II1.1.2] shows that

H(div; Q) = {u € H(div; Tp) : > oker, Jor uh-m =0, forall \ € Hl(Q)}
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Using a similar argument, we now prove the corresponding result for the H(curl) spaces. For
smooth vector fields u, A, we have the integration by parts formula

/ (ux)\)~n:/(curlu-)\—wcurl/\).
oK K

Although the right-hand side is defined even if we only have u, A € H(curl; K), their traces
are generally only in H~/2 on K, so the integral on the left-hand side must be replaced by
a dual pairing (u, A\)gx, cf. Buffa and Ciarlet [14] [15], Buffa et al. [I6]. We abuse notation by
writing faK(u X A)-n = (u, \)gx for this dual pairing, even when it is not strictly an integral,
and likewise for the dual pairing of H(curl; Q) vector fields on 0.

Proposition 3.1. H(curl;Q) = {u e H(curl; T) : ke, Jog(wx A) -n =0, forall X €
H(curl; Q)}.

Proof. If u € H(curl; Q) C H(curl; 73), then for any A € H(curl; Q), we have

Z/ (uxA) n= Z/ (curlu - A —w - curl \)

KeTy, KeTy,

= /(Curlu-)\—u-curl)\)
Q

:/89(u><)\)~n

=0,

so the forward inclusion (C) holds. To get the reverse inclusion (D), suppose that u €
H (curl; Ty,) satisfies the condition above, and let A € C°(Q, R3). Then, integrating by parts,
we have

/Qu-curl)\‘: Z/curlu A— Z/ (ux \)

KeTy, KeTy,
= Z / curlu - A
KeTy,
1/2
< (Z HCUTIU||%2(K,R3)> Al z2r3),
KeTy

where the last line uses the triangle and Cauchy—Schwarz inequalities. It follows that curlu €
L?(Q,R?), so u € H(curl; Q). This implies that [,,(u x ) -n = doKeT, Jor(wxA)-n=0
for all A € H(curl; Q). Hence, u X n|sn = 0 in the trace sense, which completes the proof. O

Remark 3.2. A variant of this result is stated in Boffi et al. [8] Proposition 2.1.3], where A is
taken to be in H'(2,R3) rather than H(curl; ). This avoids the technicality of using the
dual pairing instead of an integral, but the version given here is more natural for the purposes

of the hybrid methods discussed in

3.2. Domain decomposition of the Lagrangian variational principle. We now in-
troduce a new Lagrangian for Maxwell’s equations, which allows the potentials to live in
the discontinuous function spaces defined in the previous section, enforcing continuity and
boundary conditions using Lagrange multipliers.
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Let A(t) € H(curl; T;) and (t) € H'(Ty), and introduce the Lagrange multipliers H (t) €
H(curl; Q) and D(t) € H(div;Q). We adopt the notation, often seen in the literature on
discontinuous Galerkin and hybrid methods, of placing hats over variables that act like weak
traces/fluxes. As before, suppose that t — A(t) is C' and that t — () is C°, such that
t+ D(t) € L*(Q,R?) is Cl Furthermore, suppose that ¢ — H(t) and ¢ — D(t) are both C°.
Define the Lagrangian

~ o~ . ~ A 1 1

+/ (Ax H+pD)-n|.
oK
The Euler-Lagrange equations are then

(5a) /(A'.(D+J)—curlA'-H)+/ (A x H) -n=0, VA" € H(curl; K),
K

0K
(5b) / (gradgo"D+<p’p)—/ ¢'D-n=0, Vo' € HYK),
K oK
(5¢) Z / (Ax H) n=0, VH' € H(curl; ),
KeTy oK
(5d) > / eD'-n=0, VD e H(div;Q),
KeTy, 8K

where and hold for all K € 7;,. We now relate this to the classical variational form
of Maxwell’s equations, stated in .

Proposition 3.3. Suppose that t — A(t) € H(curl; Tp) is C* and t — p(t) € HY(T) is C°,
such that t — D(t) € L*(Q,R3) is C1. Furthermore, suppose that t — ff(t) € H(curl; Q) and
t — D(t) € H(div;Q) are both C°. Then (A, , H,D) is a solution to if and only if (A, )
15 a solution to with H x nlpx = H X n|gx and D. nlpx = D -nlpx. In particular, if
(A, ) is a solution to [3), then (A, ¢, H, D) is a solution to ().

Proof. Suppose (4, o, H, ﬁ) is a solution to (). By |Proposition 3.1} implies A(t) €

H(curl; Q), so takmg A’ € H(curl; Q) and summing over K € Ty, the integrals over 0K
cancel, yielding (3al . As previously stated, . 1mphes curl H = D + J, so substituting this
into gives

/ (A'x H)-n /(curlA’ H—- A -curlH) = / (A" x H) -n, VA" € H(curl; K),
K K oK

so H x n|px = H x nlyg. Similarly, implies p(t) € Iill(Q), so taking ¢’ € Hl(Q) and
summing over K € Ty, yields . This implies div D = p, and substituting into (5b)
gives D- nlpx = D -nlsk.

Conversely, suppose (A, ¢) is a solution to (3)). Since A(t) € Iof(curl Q) and ¢(t) € it (Q), it
follows that (| and ( . ) hold. Furthermore 1mphes that D +.J = curl H and divD = Jo
SO and ( . ) hold with H x nlpx = H X n|gx and D- nlpx = D -n|pk. In particular, we
could take H = H and D = D. O
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Remark 3.4. Note that, in addition to 1mply1ng that div D = p, we also see by taking
¢ = 1k that D satisfies the conservation law Jox D.n= S5 p, for all K € Tp,.

3.3. Temporal gauge fixing and the charge-conservation constralnt Asin
if (A, cp,H D) is a solution to (), then so is (A + grad§, ¢ — , H D) for any C! curve

t—E&(t) e i' (Q). Therefore, we perform temporal gauge fixing by taking ¢ = 0. This yields
the gauge-fixed Lagrangian

LA B A ) = S [/}((;E.D—;B.H+A-J>+/E)K(A><ff).n

KeTy

)

where we recall that D = ¢E = —eA and B = uH = curl A. The Euler-Lagrange equations
are simply and . Of course, (bd)) is satisfied trivially, since ¢ = 0. The next
result shows that the charge-conservation constraint (5b)) is automatically preserved, for an

appropriately-defined D.

Proposition 3.5. Let (A,ﬁ) be a solutim} to and . Suppose initial values for D, D
satisfy , and let D be the solution to D + J = curl H. Then (4,0, fAI, ﬁ) 18 a solution to
(©)-

Proof. As we have already mentioned, ¢ = 0 trivially satisfies , so it suffices to show that
holds. Let ¢’ € H'(K) be arbitrary. Taking A’ = grad¢’ in and integrating by
parts gives

0:/ gradcp’-(D+J)+/ (grad¢’ x H) -n
K oK
:/(gradgo"D—goldivJ)+/ ¢'(J —curlH) -n
K oK

= / (grad ¢’ - D + ¢'p) —/ ¢'Dn,
K oK
so if holds at the initial time, then it holds for all time. ]
Remark 3.6. As in taking ¢’ = 1k implies faKﬁ ‘n = [, p. Furthermore,
if the initial conditions also satisfy divD = p, then we have divD = p for all time, since
divD = diveuwrl H — div.J = 0 + p. Finally, if H = H, and if the initial conditions for D
equal those for D, then we recover D=D.

Finally, we express this variational problem in the standard notation used for mixed and
hybrid finite element methods, in terms of a pair of bilinear forms [I3, Chapter II]. We will
make use of this notation throughout the subsequent sections. Defining

a: H(curl; Tp,) x H(curl; Tp) — R, a(A,A): Z / curl A" - =1 curl A,
KeTy
b: H(curl; 7) x H(curl; Q) — R, b(A' H) Z /
KeTh
we seek ¢ — A(t) € H(curl; T;) and ¢ — H(t) € H(curl; Q) such that
(62) (D+J,A") =a(A, A) +b(A H), VA €H(cul;Ty),

(6h) 0=b(A,H), VH' € H(curl; Q),



10 YAKOV BERCHENKO-KOGAN AND ARI STERN

where (-,-) is the L?(£2,R?) inner product. Defining the map B: H(curl; 7,) — H(curl; )*,
A b(A,-), we see that () is equivalent to evolving A(t) € ker B by

(D+J,A4 =a(A, A, VA" € ker B,

and subsequently solving for H satisfying . Indeed, these are equivalent since says
that A € ker B, while taking A’ € ker B causes the b(A’, H) term to vanish on the right-
hand side of ([6a)). Since ker B = H(curl; Q) by [Proposition 3.1} it follows that A solves the
non-domain-decomposed problem .

4. HYBRID SEMIDISCRETIZATION

We now perform Galerkin semidiscretization of the domain-decomposed variational problem
with temporal gauge fixing, as introduced in the previous section. This results in aklybrid
method for Maxwell’s equations, where “hybrid” means that the Lagrange multipliers Hj, and
their test functions Hj are both restricted to a subspace of H(curl;{2). We then show that a
suitably-defined ﬁh satisfies the charge-conservation constraint in a strong sense, as opposed
to the much weaker sense in which Dj was seen to satisfy this constraint in
Finally, we discuss how certain choices of elements yield a hybridized version of Nédélec’s
method, while others give nonconforming methods, and we remark on how this framework
also applies to the 2-D Maxwell equations.

4.1. Semidiscretization of the variational problem. For each K € T, let V}}(K) C
H(curl; K) be a finite-dimensional subspace, so V;! =[] KeT;, VH(K) C H(curl; Tp), and let

Vh C H(curl;2). We seek Ap,: t — Ap(t) € VI and Hy: t— Hp(t) € Vh such that

(7a) /(A;L-(Dh—i—J)—curlA’h-Hh) / (AL x Hy)-n=0, VA, € VI(K),
K

(7h) Z/ (Anx L) -n=0, VA, e},

KeTy,
where ) holds for all K € T,. These are the semidiscretized versions of (| and . As
before, Eh — Ay, By, = curl Ay, Dy, = €E}, and Hj, = u LBy,

Remark 4.1. Since only holds for test functions in Vh, but not necessarily an arbitrary

test function in H (curl; ), in general a solution will have Ay (t) ¢ H(curl; Q). Hence, this
method is generally not curl-conforming and is distinct from the conforming methods discussed
in [Section 2.3

In terms of the bilinear forms a(-,-) and b(-,-), this method may be written as

(8a) (Dp, + J, 45) = a(Ap, Ay) + b(A, Hy), VA, € Vi,
(8h) 0 = b(Ap, H}), VH] € Vil

Defining the operator By, : Vh1 — (17,11)*, Ap = b(An,)lp1s
h

evolving Ay (t) € ker By, by solving the second-order system of ODEs

(9) (Dy + J,A}) = a(Ap, A}), YA, € ker By,

we see that is equivalent to

and subsequently solving for H n satisfying . As with the infinite-dimensional problem,
this equivalence holds since implies Aj, € ker By, and A}, € ker By, causes the b(A}, Hp)
term to vanish on the right-hand side of .
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Since Vh1 is finite-dimensional, we may apply Banach’s closed range theorem to deduce
that (D + J,-) — a(Ap, ) € (ker By)* is in the range of B, so a solution H), exists, although
generally not uniquely. A natural choice is to find the solution Hj, minimizing ||Hj, — Hp||? +
| Dy, + J — curl Hy |2, which in a weak sense minimizes the H(curl; ) distance between Hj, and
H r. This existence-without-uniqueness is typical of hybrid methods, and one may formally
resolve this by replacing 17,3 by the quotient space Vhl / ker By (cf. Brezzi and Fortin [13]
IV.1.3]). In practice, the evolution on ker B} specified by @ is the essence of the method,
and solving for H r may be seen as an optional post-processing step.

4.2. Preservation of the charge-conservation constraint. In order to discuss the charge-
conservation constraint, we first suppose that V?(K) C H!(K) are such that 15 € VP(K)
and grad V2(K) C V(K) for all K € T;. We consider whether the following discretization of

is preserved,
(10) /K(gradsoﬁz - Dy, + ¢p) — /aK PhDp-m=0, Y, € V)(K),
for Dy: t — lA)h(t) € H(div; Q) suitably defined.

Theorem 4.2. Let (Ap, ﬁh) be a solution to . Suppose initial values for Dy, ﬁh satisfy

, and let ﬁh be the solution to ﬁh + J = curl .FAIh. Then holds for all time. In

particular, faK Dy -n= fK p. Moreover, if div Dy, = p holds at the initial time, then it holds
for all time.

Proof. The proof is essentially similar to that of [Proposition 3.5l Given ¢}, € V}?(K ), taking
A = grad ) € VI(K) in and integrating by parts,

0:/ grad@%-(Dh—i-J)—l-/ (gradcpﬁlxﬁh)-n
K oK

:/(gradap%-Dh—cp;ldivJ)+/ @%(J—Curlflh)-n
K oK
=/(gradw2‘bh+¢2b)—/ ¢r Dy - n,

K 0K

so if holds at the initial time, then it holds for all time. The conclusion that | 9K ﬁh ‘n =
i} K pAfollows by taking ¢} = 1k, and div ﬁh = div curl fIh —divJ = 0+ p implies that if
div Dy, = p holds at the initial time, then it holds for all time. O
Remark 4.3. Preservation of div ﬁh = p is immediate from ﬁh + J = curl ﬁh, without
appealing to . However, it is only a meaningful statement about solutions to (7)) when
holds. By contrast, if lA)h were instead to satisfy ﬁh + J =0, then div lA)h = p would still

be preserved, but this would not say anything about the numerical solution (Ap, H R)-

The next result addresses the existence of initial conditions for ﬁh satisfying the hypotheses
of the previous theorem. Let V)0 := ke, VUK) C HY(Ty).

Proposition 4.4. Suppose that the initial value of Dy, satisfies

> /KgradsDZ'DhﬂL/(Z%p:O, Vi € VN H ().
KeTy,
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Then there exists an initial value for Dy, € H(div; Q) such that (10) holds for all K € T; and
div Dh =p.

Proof. The first part of the argument is similar to the one we used for the existence of H -
Define the bilinear form

Bu: VO X H(div; ) 5 R, Buloh, D)= 3 / Dy n

and consider the map V) — H(div;Q)* defined by ¢} — Br(¢}, ). By [13, Proposition
III.1.1], we have fB4(¢},-) = 0 if and only if ¢} € ﬁIl(Q), so V2N Hl(Q) is precisely
the kernel of this map. Now, the hypothesis of this proposition says that the functional
@h = Yer, i grad e, - Dy + [q ¢),p annihilates the kernel VN IEII(Q), so by the closed
range theorem, it is in the range of the adjoint ﬁh — B+, ﬁh) Hence, there exists an initial
value for Dh satlsfymg ) for all KeTy,.

Next, suppose Dh satlsﬁes ) but not necessarily div Dh = p. Then, on each K € Ty,
replace Dh by Dh + grad u, Where u is the solution to —Au = div Dh — p with Neumann
boundary conditions grad« - n = 0 on K and f i w = 0. This solution exists, since taking
¢, =1k in implies the compatibility condition [y (div Dy, —p) = Jox Dp-n— Jxp=0.
Replacing Bh by ﬁh + grad u leaves the normal traces of ﬁh unchanged, since grad v - n = 0,
so the result is still in H(div; Q) and satisfies (L0]), as desired. O

Remark 4.5. The computation of lA)h, like that of PAIh, can be seen as an optional post-
processing step after computing the solution Ay to @D The key point of [Theorem 4.2 M is that
the evolution of Ay, is conservative, in the sense that it is consistent with a charge-conserving
numerical flux Dh, whether or not one chooses to actually compute Dh

4.3. Hybridization of Nédélec’s method. As in let Q be polyhedral and 7},
be a simplicial triangulation. Let V}? (K) be the space of degree-r polynomials on K and
V,L(K) be either degree-r Nédélec edge elements of the first kind or degree-(r — 1) Nédélec edge
elements of the second kind on K. Then V;? C H(T,) and V}! € H(curl; 7;) correspond to
discontinuous Lagrange and Nédélec elements, respectively. Note that discontinuous Nédélec
elements of the second kind are just discontinuous piecewise polynomial vector fields.

Now, taking YA/hl = H(curl; ), it follows that ker B, = V! Nker B C Iof(curl; Q), which
corresponds precisely to curl-conforming Nédélec elements with tangential inter-element
continuity and boundary conditions. It follows that @D agrees precisely with Nédélec’s method
. In fact, it is not necessary to take YA/hl infinite-dimensional: it suffices to take a large
enough finite-dimensional subspace (e.g., Nédélec elements of sufficiently high degree) such
that (| imposes all the inter-element continuity and boundary conditions on degrees of
freedom of Vh. (Having Vh infinite-dimensional is not a problem if one is only interested in

Ay, but a finite-dimensional subspace is required if one wishes to compute H n.) From these
observations, we obtain the following corollary of [Theorem 4.2| and [Proposition 4.4]

Corollary 4.6. Given V}? and Vh1 as above, there exists ‘7h1 such that solutions Ay, to Nédélec’s
method are equivalent to solutions (Ap, Hy) to the hybrid method . Consequently, given

a solution to Nédélec’s method, there exists ﬁh satisfying ﬁh + J = curl f-\Ih, which preserves
the charge-conservation constraints and div Dy, = p.
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Remark 4.7. In contrast, if YA/hl is not sufficiently large, we will have ker B, ¢ ker B = H (curl; Q),
SO @ is a nonconforming finite element method for Maxwell’s equations.

4.4. Remarks on the two-dimensional case. This framework may also be adapted to
two-dimensional electromagnetics with minor modifications, where the two-dimensional cross
product is (u1,uz) X (v1,v2) == ugve — ugvy.

For the non-domain-decomposed problem on € C R?, the potential A € H (curl; Q) remains
a vector field, although curl A € L?() becomes a scalar field. Consequently, £ and D remain
vector fields (and e remains a tensor), while B and H become scalar fields (and p becomes
scalar). The two-dimensional version of the weak problem is nearly identical, except
the dot product curl A’ - H is replaced by the ordinary product (curl A’)H. For the Galerkin
semidiscretization discussed in one simply replaces the Nédélec edge elements of
the first and second kind with Raviart-Thomas (RT) [41] and Brezzi-Douglas-Marini (BDM)
[12] edge elements, respectively. These two-dimensional H (curl) elements are just the RT
and BDM H(div) elements rotated by 90 degrees, so that tangential traces of the former
correspond to normal traces of the latter.

For domain decomposition, [Proposition 3.1]is easily modified to show that

H(curl; ) = {u € H(curl; Ty) : Z / uA xn =0, for all)\EHl(Q)}.
KeTh

Alternatively, this can be seen to follow from the corresponding result for H (div; ), where the
vector fields are rotated by 90 degrees. Hence, the domain decomposed variational problem in
temporal gauge is to find t — A(t) € H(curl;7;,) and t + H(t) € H'(£2) such that

/ (A,(D“‘J)_(CUI'IAI)H)“I’/ A/ﬁxn:(L VAIEH(CUI'LK),
K 0K
> AH' xn=0, VH e H'(Q),
KeT,, oK

for all K € T,. Hybrid methods may then be obtained by restricting this variational problem
to subspaces V}! = [ker, VHK) c H(curl'ﬁl) and V! ¢ H'(Q). Asin one
obtains Dy(t) € H(div;Q) by solving D), + J = curl Hj, (where the curl of a scalar field
is its gradient rotated by 90 degrees, i.e., v - curl Hh = v x grad Hh for v € R?), and the
charge-conserving properties follow in the same manner.

For the finite element spaces, one may take V}? to be discontinuous degree-r Lagrange
elements and Vh1 to be discontinuous degree-r RT edge elements or discontinuous degree-(r —1)
BDM edge elements. (Note that discontinuous BDM elements are just discontinuous piecewise
polynomial vector fields.) In this case, it is much easier to see which 17,? C HY() yield
conforming methods, since each edge degree of freedom is either shared by exactly two triangles
or lies on the boundary. Both the degree-r RT and degree-(r — 1) BDM elements have r
degrees of freedom per edge which match up precisely with those for degree-(r + 1) Lagrange
elements. Hence, taking Vh corresponding to degree-(r + 1) or higher Lagrange elements
yields a conforming method. On the other hand, a straightforward counting argument shows
that degree-r Lagrange elements have fewer than r x #edges degrees of freedom on element
boundaries (unless 7, consists of a single triangle). Since it is impossible to enforce all of the
inter-element and boundary conditions in this case, the resulting method is nonconforming.



14 YAKOV BERCHENKO-KOGAN AND ARI STERN

5. NUMERICAL EXAMPLES

This section gives numerical illustrations for the simple test problem
(11) A+ curlcurl A = 0,

which corresponds to the case where € and p are positive constants with ex =1 and J =0,
as discussed at the end of As before, A is taken to have vanishing tangential
component on the boundary. Preservation of the charge-conservation constraint is equivalent
to the condition div A = 0.

In the frequency domain, denoting angular frequency by w, time differentiation becomes
multiplication by iw, so becomes the eigenvalue problem

(12) curl curl A = W?A.

In this setting, preservation of the charge-conservation constraint becomes w?div A = 0, i.e.,
eigenfunctions with nonzero eigenvalue are divergence-free.

The examples below demonstrate the constraint-preserving properties of the curl-conforming
hybridized Nédélec method from both in the time domain and in the frequency
domain. For the 2-D frequency domain problem, we also observe superconvergence of H n— H.
All finite element computations were performed using FEniCS [33] [I]. For the post-processing
step of computing ﬁh, whose solution is not unique, we find the solution ]?Ih minimizing
|Hy — Hp||? + || Dy + J — curl Hy||2, as previously discussed in

5.1. Time domain. Before turning our attention to the test problem , we first describe
a discrete time-stepping scheme for the general case of Maxwell’s equations. After semidis-
cretizing using the hybridized Nédélec method of we discretize in time using the
following explicit “leapfrog” scheme:

L] An+1/2 = An — %Atﬁ_an.

e Dy =Dy + AtDn+1/2, where Dn+1/2 € ker By, is the solution to

<Dn+1/2 + Jny1/2s A} = a(Api1/2, A}, VA € ker By,
. ZA)nH =D, + At(curl fInH/Q — Jny1/2), where ﬁn+1/2 is the solution to
<Dn+1/2 + Jn+1/27 A?z> = a’(An—l—l/QvA/h) + b(A;w ﬁn—l—l/Z)a VAZ € Vh17

minimizing ||Hy,11/2 — Hy1/201% + [ Dns1y2 + Jns12 — carl Hy g gol|?, with Hy, g g9 =
p~ ! curl Angi1)2-
[ ] An+1 = An+1/2 - %AtGianJ’_l.
Here, A,, denotes the approximation to Ap(t,), where ¢, is the nth time step and At is
the time step size; similar notation is used for the other variables. This is essentially the
Stormer/Verlet method for the semidiscretized system of ODEs @, augmented by a hybrid
post-processing step for H n and lA)h. Except for the hybrid post-processing step, which is
novel, such leapfrog schemes are widely used for both finite element and finite difference
time domain methods in computational electromagnetics (see Yee [43] and Monk [35, Section
5]). The Stérmer/Verlet method also has particularly desirable properties when applied to
Lagrangian and Hamiltonian dynamics (cf. Hairer et al. [24] 25]).
Figure 1| shows the results of applying this method to the test problem on the 2-D

square Q = (0,7)2 and 3-D cube Q = (0,7)3, taking ¢ = u = 1. For both the 2-D and 3-D
problems, we simulate over t € [0, 27| for 1024 time steps of size At = w/512.
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FIGURE 1. Charge conservation error, as measured by the H(div; 7;) seminorm
of D;, and Dy, over time, on the 2-D square Q = (0,7)? (left) and 3-D cube
Q = (0,7)? (right). Although D), drifts away from the constraint, Dy, preserves
the constraint.

For the 2-D problem, the initial conditions are taken to be Dy = lA?o =0 and
Ao(.’L‘, y) = (y(ﬂ— - y),l’(ﬂ - I’))

A uniform triangular mesh is taken on a 16 x 16 grid, with 2 - 16> = 512 cells. The space Vh1
consists of discontinuous piecewise linear vector fields, while V,? consists of cubic Lagrange
elements, so that ker By, C Vh1 are linear BDM edge elements, as described in [Section 4.4 with
r=2.

For the 3-D problem, the initial conditions are taken to be Dy = Dy = 0 and

Ao(@,y,2) = (y(m —y)z(r — 2), 2(7 — 2)a(r — z), 2(7 — 2)y(T - y)).
A uniform tetrahedral mesh is taken on an 8 x 8 x 8 grid, with 6 - 8% = 3072 cells. The space
Vh1 consists of discontinuous piecewise linear vector fields, while Vh1 consists of cubic Nédélec

edge elements of the second kind, so that ker B;, C Vh1 are linear Nédélec edge elements of the

second kind, as described in with r = 2.

Although the exact solution satisfies div D = 0, the numerical solution Dy, drifts away from
this constraint, as measured by the H(div;7y) seminorm,

| Dnl b divims) = Z ”diVDh”2L2(K)-
KeTy

However, div ﬁh = 0 holds to machine precision, as explained by [Theorem 4.2| Looking at Dy,
alone, one might think that this method fails to preserve the charge-conservation constraint

strongly. In fact, we have illustrated that it actually does preserve this constraint, when
expressed in terms of the numerical flux Dj, rather than Dj,.

Remark 5.1. The constraint behavior of D;, and ﬁh, observed in is due to the
finite element semidiscretization, not the time discretization. Indeed, the charge-conservation
constraint is linear, so if it holds for the semidiscretized system of ODEs, then any Runge-Kutta
or partitioned Runge-Kutta method preserves it (Hairer et al. [25, Theorem IV.1.2]).
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FIGURE 2. Dy, and div Dy, (top row), compared to Dy, and div D, (bottom row),
approximating the Maxwell eigenmode with w? = 2. While D), and ﬁh are
nearly indistinguishable (left column), Dy, fails to be strongly divergence-free,
while Dy, is divergence-free (right column).

5.2. Frequency domain. We next apply the hybrid approach to the frequency domain,
again assuming that € and p are positive constants with ey = 1 and J = 0. This is done by
first approximating the Maxwell eigenvalue problem on ker BB, and then applying hybrid
post-processing, as follows:

e Find eigenpairs (w,zl, Ap) € RT x ker By, satisfying
a(Ah, A;L) = w,%(Ah, Alh)v VAIh € ker Bh,
and let Hy, == p~ ! curl Ay and Dy, == e(—iwp Ap).
e Find Hj, minimizing ||H}, — Hp||? + ||iwp Dy, — curl Hy||? such that
a(An, A}) + b(Ah, Hy) = wif(An, 4), VA, € VA,
and let ZA?h = —iw,:]‘ curl ﬁh.
Note that this last step is equivalent to iwhﬁh = curl H h, SO H n can be seen as minimizing
|H ), — Hp || + wil| D, — Dy
We consider the 2-D square 2 = (0, 7)2, where the exact eigenvalues are sums of squares
(w? =1,1,2,4,4,...). For simplicity, we look at the approximation of the following analytical
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solution with simple eigenvalue w? = 2, assuming € = p = 1:

2
Az, y) = \7{(— cos zsiny, sinx cosy),

2v/2
H(z,y) = [coswcosy,

0
D(z,y) = i(cosa:sin Yy, —sinzx cosy).
T

We take a uniform triangle mesh on an N x N grid, which has 2N? cells. As described in
we take V! to consist of discontinuous piecewise degree-(r — 1) vector fields and

V2 to consist of degree-(r + 1) Lagrange elements, so that ker B, C V! are degree-(r — 1)

BDM edge elements

shows Dj, and ZA?h, along with div Dy, and div lA?h, for the case N = 16, r = 2. Here,
by div D, € L?(T;,), we mean the element-wise divergence (div Dy )| := div(Dy|x) for each
K € Ty, since Dy, is in H(div; Ty) but not in H(div;2). Although the vector fields Dy, and
ﬁh appear very similar, they behave very differently with respect to the charge-conservation
constraint: div Dy, # 0, while div lA?h = (0 to machine precision. Note that these are purely
imaginary when Aj, is real, so the imaginary parts are plotted

illustrates the convergence behavior of Hyp, Hh, Dy, and Dh as the mesh parameter
h — 0, for elements of various degrees. Since A is simply obtained by using degree-
(r — 1) BDM edge elements for the Maxwell eigenvalue problem, previous analyses of this
problem (e.g., [32), 26] 6 [7, 3] and references therein) show that |4, — A|| = O(h") and
lcurl Ay, — curl A|| = O(h™1), which imply the observed rates ||D, — D|| = O(h") and
|Hy, — H|| = O(h™~1). Interestingly, for H n obtained by hybrid post-processing, we observe
the superconvergent rates ||[Hj, — H| = O(h") for r = 2 and O(h™!) for r > 2. For Dj,, we
observe errors comparable to those for Dy, and the same convergence rate, | Dy — D|| = O(h").

We note that the observed rates of superconvergence, including the reduced rate in the
lowest-degree case, are the same as those obtained for scalar elliptic problems by Brezzi,
Douglas, and Marini [12] in the original paper on the hybridized BDM method. On the other
hand, preliminary numerical experiments in 3-D do not show superconvergence. This leads us
to believe that this phenomenon arises in 2-D due to the fact that BDM H (curl) elements are
simply rotated H(div) elements, for which the results of [I2] apply, whereas there is no such
identification of Nédélec edge and face elements in 3-D.

6. CONCLUSION

We have constructed a family of primal hybrid finite element methods for Maxwell’s
equations, where the Lagrange multipliers enforcing inter-element continuity and boundary
conditions correspond to a numerical trace i n, of the magnetic field and a numerical flux Dh
of the electric flux density. These methods strongly preserve the constraints div By, = 0 and
div ﬁh = p, the latter of which corresponds to conservation of charge. As a special case, these
methods include hybridized versions of standard methods using curl-conforming edge elements,
which had previously been thought only to be charge-conserving in a much weaker sense. We
emphasize that these conservative properties hold even if the methods are not implemented in
a hybrid fashion: if desired, H n and Dh may be recovered by an optional post-processing step.

There are several natural directions for future work. First, the numerical experiments in
focused on hybridized curl-conforming methods, due to the fact that their stability



18 YAKOV BERCHENKO-KOGAN AND ARI STERN

L lmesh | || Hy— H| |Hy— H]| 1Dy — DJ| 1Dy — D||
N error rate error rate error rate error rate
2 7.591e-01 — 3.648e-01 — 4.324e-01 — 4.644e-01 —
4 3.778e-01 | 1.007 | 1.070e-01 | 1.770 | 1.182e-01 | 1.872 | 1.342¢-01 | 1.791

2 8 1.862e-01 | 1.021 | 2.753e-02 | 1.958 | 3.009¢-02 | 1.974 | 3.512e-02 | 1.934

16 | 9.271e-02 | 1.006 | 6.926e-03 | 1.991 | 7.558e-03 | 1.993 | 8.906e-03 | 1.979
32 | 4.630e-02 | 1.002 | 1.734e-03 | 1.998 | 1.892e-03 | 1.998 | 2.236e-03 | 1.994
2 2.090e-01 | — | 3.500e-02 | — |7.521e-02 | — |8.055e-02| —

4 5.517e-02 | 1.922 | 2.750e-03 | 3.670 | 9.817e-03 | 2.938 | 9.960e-03 | 3.016
3 8 1.400e-02 | 1.978 | 1.827e-04 | 3.912 | 1.225¢-03 | 3.002 | 1.220e-03 | 3.029
16 | 3.515e-03 | 1.994 | 1.159e-05 | 3.978 | 1.526e-04 | 3.005 | 1.512¢-04 | 3.013
32 | 8.796e-04 | 1.999 | 7.270e-07 | 3.995 | 1.903e-05 | 3.003 | 1.882¢-05 | 3.006
2 4.614e-02 | — | 4.327e-03 | — |1.281e-02| — |1.316e-02| —

4 16.121e-03 | 2.914 | 1.250e-04 | 5.114 | 7.958e-04 | 4.008 | 8.629e-04 | 3.931
41 8 7.769e-04 | 2.978 | 3.759e-06 | 5.055 | 4.913e-05 | 4.018 | 5.500e-05 | 3.972
16 | 9.749e-05 | 2.994 | 1.155e-07 | 5.024 | 3.048e-06 | 4.011 | 3.454e-06 | 3.993
32 | 1.220e-05 | 2.999 | 3.582e-09 | 5.011 | 1.898e-07 | 4.006 | 2.160e-07 | 3.999
2 8.100e-03 | — | 4.419e-04| — |1.737e-03| — |1.761e-03| —

4 9.354e-04 | 3.919 | 6.307e-06 | 6.131 | 5.553e-05 | 4.968 | 5.321e-05 | 5.048
5 8 ] 3.394e-05 | 3.980 | 9.434e-08 | 6.063 | 1.743e-06 | 4.993 | 1.642¢-06 | 5.018
16 | 2.129e-06 | 3.995 | 1.447e-09 | 6.027 | 5.449¢-08 | 5.000 | 5.105e-08 | 5.007
32 | 1.332e-07 | 3.999 | 2.404e-11 | 5.911 | 1.702e-09 | 5.000 | 1.592e-09 | 5.003

TABLE 1. Convergence of the hybridized method for the w? = 2 eigenmode of
Q) = (0,7)?, using a uniform triangle mesh on an N x N grid and degree-(r — 1)
BDM edge elements. The post-processed solution H r, exhibits superconvergence
relative to Hy, while the errors and convergence rates of ﬁh are comparable
to those of Dy,.

and error analysis is already well established. However, as mentioned in and
this framework also includes constraint-preserving nonconforming methods, which
would be interesting to investigate. Second, we do not yet have a complete explanation of
the hybrid superconvergence phenomenon for Hy, — H in 2-D; this is the subject of ongoing
work. Third, the techniques developed here might be applied to study constraint preservation
in other families of hybrid methods, particularly hybridizable discontinuous Galerkin (HDG)
methods. Finally, we have restricted our attention to problems where the current J is given,
but it would be interesting to investigate the extension to problems in conducting materials,
where J depends on the electric field.
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