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Abstract. Maxwell’s equations describe the evolution of electromagnetic fields, together
with constraints on the divergence of the magnetic and electric flux densities. These constraints
correspond to fundamental physical laws: the nonexistence of magnetic monopoles and the
conservation of charge, respectively. However, one or both of these constraints may be
violated when one applies a finite element method to discretize in space. This is a well-known
and longstanding problem in computational electromagnetics.

We use domain decomposition to construct a family of primal hybrid finite element
methods for Maxwell’s equations, where the Lagrange multipliers are shown to correspond
to a numerical trace of the magnetic field and a numerical flux of the electric flux density.
Expressing the charge-conservation constraint in terms of this numerical flux, we show that
both constraints are strongly preserved. As a special case, these methods include a hybridized
version of Nédélec’s method, implying that it preserves the constraints more strongly than
previously recognized. These constraint-preserving properties are illustrated using numerical
experiments in both the time domain and frequency domain. In 2-D, we also observe a
superconvergence phenomenon, where hybrid post-processing yields an improved estimate of
the magnetic field.

1. Introduction

Maxwell’s equations consist of two vector evolution equations, together with two scalar
constraint equations, divB = 0 and divD = ρ, where B is magnetic flux density, D is electric
flux density, and ρ is charge density. These constraints are automatically preserved by the
evolution, so given initial conditions satisfying the constraints, one can simply evolve forward
in time without needing to “enforce” the constraints in any way.

However, if one applies a finite element method in space, then the semidiscretized evolution
equations no longer necessarily preserve these constraints, at least not strongly. Nédélec [39]
showed that, if one uses curl-conforming edge elements for the electric field E and divergence-
conforming face elements for B, then the semidiscretized equations preserve divB = 0 strongly.
On the other hand, divD = ρ holds only in the Galerkin sense (i.e., when both sides are
integrated against certain continuous, piecewise-polynomial test functions). Recent constraint-
preserving methods due to Campos Pinto and Sonnendrücker [17] and Hu et al. [29] also
preserve divB = 0 strongly but divD = ρ only in a weaker sense.

Christiansen and Winther [20] observe that strong preservation of both divergence con-
straints “appears to be necessary for many applications in electromagnetics,” and Houston
et al. [28] call this “one of the main difficulties in the numerical solution of Maxwell’s equations.”
For this reason, alternative approaches have been developed that enforce the constraints
strongly—for instance, using Lagrange multipliers [4, 18]—instead of attempting to preserve
them automatically but weakly, as Nédélec’s method does. In cases where ρ = 0, another idea
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is to use divergence-free elements to construct nonconforming methods [9, 11] or discontinuous
Galerkin methods [23, 28, 10].

In this paper, we attack the problem of constraint preservation from a different perspective.
We perform domain decomposition of the Lagrangian (i.e., primal) variational principle for
Maxwell’s equations, in terms of the vector potential A and scalar potential φ, using Lagrange

multipliers ˆ︁H and ˆ︁D to enforce inter-element continuity and boundary conditions. These
Lagrange multipliers are shown to correspond to boundary traces of the magnetic field H
and electric flux density D. After using gauge symmetry to fix φ = 0, we show that the

evolution of (A, ˆ︁H) automatically preserves the constraints divB = 0 and div ˆ︁D = ρ. Finally,
we semidiscretize this domain-decomposed variational principle, obtaining primal hybrid finite
element methods that preserve this formulation of the constraints in a strong sense. As a
special case, we give a hybridized formulation of Nédélec’s method, implying that it preserves
the constraints in a stronger sense than previously recognized.

To place this in the context of previous work, we note that the general idea of using
Lagrange multipliers to weakly enforce inter-element continuity and boundary conditions on
H(curl) spaces is not itself new. Various alternative spaces of Lagrange multipliers have been
proposed in the literature on mortar methods for Maxwell’s equations [27, 5, 42, 30] and
hybrid methods for the Stokes equations [21, 22], for example. In contrast with this previous

work, one of the key distinctions here is that we take ˆ︁H and ˆ︁D to themselves be H(curl)- and
H(div)-conforming, respectively. This makes it possible to formulate the charge-conservation
constraint for these methods in a strong sense.

The paper is organized as follows:

• In Section 2, we review Maxwell’s equations, the Lagrangian variational principle, and
semidiscretization using edge elements.

• In Section 3, we domain decompose the Lagrangian variational principle, relate
solutions to the classical (non-domain-decomposed) formulation of Maxwell’s equations,
and study the domain-decomposed version of the constraints and their preservation.

• In Section 4, we consider primal hybrid finite element methods for semidiscretizing
the domain-decomposed evolution equations, showing that constraints are preserved
in a strong sense.

• Finally, in Section 5 we conduct numerical experiments demonstrating the behavior
of the hybridized Nédélec method. In addition to the constraints being preserved to
machine precision, these results illustrate a superconvergence phenomenon in 2-D for

the post-processed magnetic field ˆ︁Hh, similar to that observed for other hybridized
mixed methods (cf. Arnold and Brezzi [2], Brezzi et al. [12]).

2. Review of Maxwell’s equations

2.1. Maxwell’s equations. We begin by reviewing the classical formulation of Maxwell’s
equations, first in terms of the electric and magnetic fields and flux densities, and then in
terms of the vector and scalar potentials. We postpone the discussion of regularity until the
introduction of the weak formulation, in Section 2.2; for the moment, everything may be
assumed to be smooth.
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2.1.1. Standard formulation. In their most familiar form, Maxwell’s equations consist of the
vector evolution equations,

Ḃ = − curlE,(1a)

Ḋ + J = curlH,(1b)

together with the scalar constraint equations,

divB = 0,(2a)

divD = ρ.(2b)

Here, E and H denote the electric field and magnetic field, D = ϵE and B = µH denote
the electric flux density and magnetic flux density, ϵ and µ are the electric permittivity and
magnetic permeability tensors, and J and ρ are current density and charge density, respectively.
We use the “dot” notation u̇ := ∂tu to denote partial differentiation with respect to time.

The evolution equations (1) automatically preserve the constraints (2). Indeed, taking the

divergence of (1a) implies div Ḃ = 0, so (2a) is preserved. Similarly, taking the divergence of

(1b) implies div Ḋ+div J = 0, so (2b) is preserved if and only if J and ρ satisfy ρ̇+div J = 0,
which is the law of conservation of charge. We refer to (2b) as the charge-conservation
constraint, since it is equivalent to this condition.

2.1.2. Formulation in terms of potentials. Alternatively, Maxwell’s equations may be expressed
in terms of a vector field A, called the vector potential, and a scalar field φ, called the scalar
potential. Given A and φ, we define the electric field and magnetic flux density by

E := −(Ȧ+ gradφ), B := curlA.

Note that (1a) and (2a) are automatically satisfied, so we may restrict our attention entirely
to the single evolution equation (1b), which we have already seen preserves (2b).

However, Maxwell’s equations do not uniquely determine the evolution of (A,φ). Observe

that if ξ is any time-dependent scalar field, then the transformation (A,φ) ↦→ (A+grad ξ, φ− ξ̇)
leaves E, B, D, H unchanged. Such transformations are called gauge transformations, and
the invariance of Maxwell’s equations under gauge transformations is called gauge symmetry.
In particular, any solution (A,φ) may be transformed into one of the form (A+ grad ξ, 0) by

taking ξ to be a solution of ξ̇ = φ. Therefore, we may restrict our attention to solutions with
φ = 0.

Remark 2.1. This procedure of restricting to particular solutions, which are related to a
general solution by some gauge transformation, is called gauge fixing. The choice φ = 0, called
temporal gauge, is the most convenient for our purposes, but there are other choices as well.
Note that there is still some remaining gauge symmetry, even after performing temporal gauge
fixing: we may transform A ↦→ A+ grad ξ for any ξ constant in time.

After temporal gauge fixing, we can write (1b) as either a first-order system in A, D,

Ȧ = −ϵ−1D, Ḋ + J = curl(µ−1 curlA),

or as a second-order equation in A alone,

−∂t(ϵȦ) + J = curl(µ−1 curlA).

In the special case where ϵ and µ are simply positive constants with ϵµ = 1 (as in vacuum,
with units chosen so that the speed of light is 1) and J = 0, the latter equation just becomes

Ä+ curl curlA = 0.
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Taking the Fourier transform with respect to time (the so-called frequency domain or time-
harmonic approach), this latter equation transforms into the eigenvalue problem for the
curl curl operator.

2.2. Weak formulation. We next discuss the weak formulation of Maxwell’s equations, first
using a Lagrangian variational principle in terms of the potentials A and φ, and then fixing
the temporal gauge φ = 0 to arrive at a weak formulation in terms of A alone.

2.2.1. Function spaces and regularity. Let Ω ⊂ R3 be a bounded Lipschitz domain, and define
the function spaces

H1(Ω) :=
{︁
u ∈ L2(Ω) : gradu ∈ L2(Ω,R3)

}︁
,

H(curl; Ω) :=
{︁
u ∈ L2(Ω,R3) : curlu ∈ L2(Ω,R3)

}︁
,

H(div; Ω) :=
{︁
u ∈ L2(Ω;R3) : div u ∈ L2(Ω)

}︁
.

We also define the following subspaces, with boundary conditions imposed:

H̊
1
(Ω) :=

{︁
u ∈ H1(Ω) : u|∂Ω = 0

}︁
,

H̊(curl; Ω) :=
{︁
u ∈ H(curl; Ω) : u× n|∂Ω = 0

}︁
,

H̊(div; Ω) :=
{︁
u ∈ H(div; Ω) : u · n|∂Ω = 0

}︁
.

Here, n|∂Ω denotes the outer unit normal to ∂Ω, and restrictions to ∂Ω are interpreted in the
trace sense.

Let A : t ↦→ A(t) be a C1 curve in H̊(curl; Ω) and φ : t ↦→ φ(t) be a C0 curve in H̊
1
(Ω). It

follows that E is a C0 curve in H̊(curl; Ω), that B is a C1 curve in H̊(div; Ω), and that (1a)
and (2a) hold strongly in L2. We also assume that both ϵ = ϵij(x, t) and µ = µij(x, t) are
L∞, symmetric, and uniformly elliptic. In particular, this implies that D and H are both C0

curves in L2(Ω,R3). Henceforth, we restrict our attention to (A,φ) such that D is in fact a
C1 curve in L2(Ω,R3). Finally, let the current density J be a given C0 curve in H(div; Ω)
and the charge density ρ be a given C1 curve in L2(Ω), satisfying the charge conservation
condition ρ̇+ div J = 0.

2.2.2. The Lagrangian and Euler–Lagrange equations. For (A,φ) satisfying the regularity
assumptions in the previous paragraph, define the Lagrangian

L(A,φ, Ȧ, φ̇) :=

∫︂

Ω

(︃
1

2
E ·D − 1

2
B ·H +A · J − φρ

)︃
.

The Euler–Lagrange equations are
∫︂

Ω

(︁
A′ · (Ḋ + J)− curlA′ ·H

)︁
= 0, ∀A′ ∈ H̊(curl; Ω),(3a)

∫︂

Ω
(gradφ′ ·D + φ′ρ) = 0, ∀φ′ ∈ H̊

1
(Ω),(3b)

which are weak expressions of (1b) and (2b), respectively.
These Euler–Lagrange equations imply that solutions have additional regularity properties.

Since curlH = Ḋ + J is C0 in L2, we have that H is C0 in H(curl; Ω). Likewise, since
divD = ρ is C1 in L2, we have that D is C1 in H(div; Ω). Hence, solutions to this weak
problem are in fact strong solutions of Maxwell’s equations.
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Remark 2.2. When ϵ and µ are constant in time, the electric and magnetic fields have precisely
the same regularity assumed by Monk [37, eqs. (7)–(8)], namely: E is C1 in L2(Ω,R3) and

C0 in H̊(curl; Ω), while H is C1 in L2(Ω,R3) and C0 in H(curl; Ω).

As in Section 2.1, this formulation is symmetric with respect to gauge transformations

(A,φ) ↦→ (A + grad ξ, φ − ξ̇), where ξ is now an arbitrary C1 curve in H̊
1
(Ω). Fixing the

temporal gauge φ = 0, the Lagrangian becomes

L(A, Ȧ) =

∫︂

Ω

(︃
1

2
E ·D − 1

2
B ·H +A · J

)︃
,

and the Euler–Lagrange equations are just (3a). This again implies that H is C0 in H(curl; Ω),
so (1b) holds strongly. By the same argument as in Section 2.1, this automatically preserves
the charge-conservation constraint.

Remark 2.3. Preservation of the charge-conservation constraint may also be seen as a conse-
quence of the remaining gauge symmetry A ↦→ A+ grad ξ, mentioned in Remark 2.1, where

ξ ∈ H̊
1
(Ω) is constant in time. This is a particular instance of Noether’s theorem, which

relates symmetries to conservation laws. See Marsden and Ratiu [34, Section 1.6] for an
account of the J = 0 case, as well as the discussion in Christiansen and Winther [20].

2.3. Galerkin semidiscretization using Nédélec elements. The use of finite elements
in computational electromagnetics is a broad topic with a long history, and we do not attempt
to give a full account here. We refer the reader to the texts by Monk [38] and Jin [31], as
well as the excellent survey article by Hiptmair [26], which relates these methods to the more
recent theory of finite element spaces of differential forms. In this section, we briefly review the
semidiscretization of Maxwell’s equations using the elements of Nédélec [39, 40], an approach
that was subsequently analyzed in a series of papers by Monk [35, 36, 37].

Galerkin semidiscretization of the variational problem (3a) restricts the trial and test

functions to some finite-dimensional subspace V 1
h ⊂ H̊(curl; Ω), resulting in a finite-dimensional

system of ODEs. That is, we seek a C1 curve Ah : t ↦→ Ah(t) ∈ V 1
h such that

(4)

∫︂

Ω

(︁
A′

h · (Ḋh + J)− curlA′
h ·Hh

)︁
= 0, ∀A′

h ∈ V 1
h ,

where Eh := −Ȧh, Bh := curlAh, Dh := ϵEh, and Hh := µ−1Bh. The discrete versions of (1a)
and (2a),

Ḃh = − curlEh, divBh = 0,

follow immediately. In fact, both hold strongly in L2, by the same argument as in Section 2.2.1,
since Eh ∈ V 1

h ⊂ H̊(curl; Ω) and Bh ∈ curlV 1
h ⊂ H̊(div; Ω). On the other hand, we cannot

conclude that Dh is in H(div; Ω), nor that Hh is in H(curl; Ω), since (4) only holds for test

functions in V 1
h and not all of H̊(curl; Ω).

Consequently, the charge-conservation constraint (2b) is only preserved in the following,

much weaker sense. Let V 0
h ⊂ H̊

1
(Ω) be a finite-dimensional subspace such that gradV 0

h ⊂ V 1
h .

Then, for all ξh ∈ V 0
h , taking A′

h = grad ξh in (4) and applying ρ̇+ div J = 0 gives
∫︂

Ω
(grad ξh · Ḋh + ξhρ̇) = 0.

Hence, if the initial conditions satisfy
∫︁
Ω(grad ξh ·Dh + ξhρ) = 0, for all ξh ∈ V 0

h , then this is
preserved by the flow of (4).
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In particular, suppose now that Ω is polyhedral, and that Th is a triangulation of Ω by
3-simplices (i.e., tetrahedra) K ∈ Th. We may take V 0

h to be the space of continuous degree-r
piecewise polynomials on Th vanishing on ∂Ω, corresponding to standard Lagrange finite
elements. For V 1

h , we may take either degree-r Nédélec edge elements of the first kind [39]
or degree-(r − 1) Nédélec edge elements of the second kind [40] with vanishing degrees of
freedom on ∂Ω. These are spaces of piecewise-polynomial vector fields in R3 with tangential
(but not necessarily normal) continuity between neighboring simplices. These choices ensure
that gradV 0

h ⊂ V 1
h , so the weak charge-conservation argument above holds.

Note, however, that
∫︁
Ω(grad ξh · Dh + ξhρ) = 0 only says that divDh = ρ holds in an

“averaged” sense, since (unlike in the infinite-dimensional case) nonzero ξh ∈ V 0
h cannot be

taken to have arbitrarily small support. We cannot even conclude that the constraint holds
in the sense that

∫︁
∂K Dh · n =

∫︁
K ρ, since the indicator function 1K is discontinuous and

therefore not an admissible test function. (Christiansen and Winther [20] give a compactness
argument for why this weak form of the constraint “might be just as good” as the strong
form, in the limit as h → 0; see also Christiansen [19].) This motivates our proposed hybrid
approach, based on domain decomposition, for which piecewise-constants are admissible test
functions.

Remark 2.4. The method above describes the evolution of Ah ∈ V 1
h . Equivalently, one may

evolve Eh ∈ V 1
h and Bh ∈ curlV 1

h ⊂ V 2
h ⊂ H̊(div; Ω) by augmenting (4) with Ḃh = − curlEh.

This is the original approach described by Nédélec [39], where V 2
h is given by face elements on

Th.

3. Domain decomposition preliminaries

In this section, we introduce an alternative variational formulation for Maxwell’s equations,
based on domain decomposition. Specifically, we decompose the problem on Ω into a collection
of problems on K ∈ Th, weakly enforcing internal continuity and external boundary conditions
using Lagrange multipliers. This is similar in spirit to the standard approach to domain
decomposition for Poisson’s equation, cf. Brezzi and Fortin [13]. We show that the Lagrange
multipliers enforcing these conditions on A and φ correspond to the traces of H and D,
respectively, and we show that the latter satisfies an appropriate version of the charge-
conservation constraint.

3.1. Function spaces. We begin by introducing the following discontinuous function spaces,
which are larger than the spaces used in the previous variational formulation:

H1(Th) :=
{︁
u ∈ L2(Ω) : u|K ∈ H1(K), for all K ∈ Th

}︁
,

H(curl; Th) :=
{︁
u ∈ L2(Ω,R3) : u|K ∈ H(curl;K), for all K ∈ Th

}︁
,

H(div; Th) :=
{︁
u ∈ L2(Ω,R3) : u|K ∈ H(div;K), for all K ∈ Th

}︁
.

Brezzi and Fortin [13, Proposition III.1.1] show that

H̊
1
(Ω) =

{︁
u ∈ H1(Th) :

∑︁
K∈Th

∫︁
∂K uλ · n = 0, for all λ ∈ H(div; Ω)

}︁
.

That is, H̊
1
(Ω) is the subspace of H1(Th) where internal continuity and external boundary

conditions are enforced by Lagrange multipliers λ ∈ H(div; Ω). Likewise, [13, Proposition
III.1.2] shows that

H(div; Ω) =
{︁
u ∈ H(div; Th) :

∑︁
K∈Th

∫︁
∂K uλ · n = 0, for all λ ∈ H̊

1
(Ω)
}︁
.
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Using a similar argument, we now prove the corresponding result for the H(curl) spaces. For
smooth vector fields u, λ, we have the integration by parts formula

∫︂

∂K
(u× λ) · n =

∫︂

K
(curlu · λ− u · curlλ).

Although the right-hand side is defined even if we only have u, λ ∈ H(curl;K), their traces

are generally only in H−1/2 on ∂K, so the integral on the left-hand side must be replaced by
a dual pairing ⟨u, λ⟩∂K , cf. Buffa and Ciarlet [14, 15], Buffa et al. [16]. We abuse notation by
writing

∫︁
∂K(u×λ) ·n := ⟨u, λ⟩∂K for this dual pairing, even when it is not strictly an integral,

and likewise for the dual pairing of H(curl; Ω) vector fields on ∂Ω.

Proposition 3.1. H̊(curl; Ω) =
{︁
u ∈ H(curl; Th) :

∑︁
K∈Th

∫︁
∂K(u × λ) · n = 0, for all λ ∈

H(curl; Ω)
}︁
.

Proof. If u ∈ H̊(curl; Ω) ⊂ H(curl; Th), then for any λ ∈ H(curl; Ω), we have

∑︂

K∈Th

∫︂

∂K
(u× λ) · n =

∑︂

K∈Th

∫︂

K
(curlu · λ− u · curlλ)

=

∫︂

Ω
(curlu · λ− u · curlλ)

=

∫︂

∂Ω
(u× λ) · n

= 0,

so the forward inclusion (⊂) holds. To get the reverse inclusion (⊃), suppose that u ∈
H(curl; Th) satisfies the condition above, and let λ ∈ C∞

c (Ω,R3). Then, integrating by parts,
we have

⃓⃓
⃓⃓
∫︂

Ω
u · curlλ

⃓⃓
⃓⃓ =

⃓⃓
⃓⃓
⃓
∑︂

K∈Th

∫︂

K
curlu · λ−

∑︂

K∈Th

∫︂

∂K
(u× λ) · n

⃓⃓
⃓⃓
⃓

=

⃓⃓
⃓⃓
⃓
∑︂

K∈Th

∫︂

K
curlu · λ

⃓⃓
⃓⃓
⃓

≤
(︄∑︂

K∈Th

∥curlu∥2L2(K,R3)

)︄1/2

∥λ∥L2(Ω,R3),

where the last line uses the triangle and Cauchy–Schwarz inequalities. It follows that curlu ∈
L2(Ω,R3), so u ∈ H(curl; Ω). This implies that

∫︁
∂Ω(u× λ) · n =

∑︁
K∈Th

∫︁
∂K(u× λ) · n = 0

for all λ ∈ H(curl; Ω). Hence, u× n|∂Ω = 0 in the trace sense, which completes the proof. □

Remark 3.2. A variant of this result is stated in Boffi et al. [8, Proposition 2.1.3], where λ is
taken to be in H1(Ω,R3) rather than H(curl; Ω). This avoids the technicality of using the
dual pairing instead of an integral, but the version given here is more natural for the purposes
of the hybrid methods discussed in Section 4.

3.2. Domain decomposition of the Lagrangian variational principle. We now in-
troduce a new Lagrangian for Maxwell’s equations, which allows the potentials to live in
the discontinuous function spaces defined in the previous section, enforcing continuity and
boundary conditions using Lagrange multipliers.
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Let A(t) ∈ H(curl; Th) and φ(t) ∈ H1(Th), and introduce the Lagrange multipliers ˆ︁H(t) ∈
H(curl; Ω) and ˆ︁D(t) ∈ H(div; Ω). We adopt the notation, often seen in the literature on
discontinuous Galerkin and hybrid methods, of placing hats over variables that act like weak
traces/fluxes. As before, suppose that t ↦→ A(t) is C1 and that t ↦→ φ(t) is C0, such that

t ↦→ D(t) ∈ L2(Ω,R3) is C1. Furthermore, suppose that t ↦→ ˆ︁H(t) and t ↦→ ˆ︁D(t) are both C0.
Define the Lagrangian

L(A,φ, ˆ︁H, ˆ︁D, Ȧ, φ̇, ˆ︁Ḣ , ˆ︁Ḋ ) =
∑︂

K∈Th

[︄∫︂

K

(︃
1

2
E ·D − 1

2
B ·H +A · J − φρ

)︃

+

∫︂

∂K
(A× ˆ︁H + φ ˆ︁D) · n

]︄
.

The Euler–Lagrange equations are then
∫︂

K

(︁
A′ · (Ḋ + J)− curlA′ ·H

)︁
+

∫︂

∂K
(A′ × ˆ︁H) · n = 0, ∀A′ ∈ H(curl;K),(5a)

∫︂

K
(gradφ′ ·D + φ′ρ)−

∫︂

∂K
φ′ ˆ︁D · n = 0, ∀φ′ ∈ H1(K),(5b)

∑︂

K∈Th

∫︂

∂K
(A× ˆ︁H ′) · n = 0, ∀ ˆ︁H ′ ∈ H(curl; Ω),(5c)

∑︂

K∈Th

∫︂

∂K
φ ˆ︁D′ · n = 0, ∀ ˆ︁D′ ∈ H(div; Ω),(5d)

where (5a) and (5b) hold for all K ∈ Th. We now relate this to the classical variational form
of Maxwell’s equations, stated in (3).

Proposition 3.3. Suppose that t ↦→ A(t) ∈ H(curl; Th) is C1 and t ↦→ φ(t) ∈ H1(Th) is C0,

such that t ↦→ D(t) ∈ L2(Ω,R3) is C1. Furthermore, suppose that t ↦→ ˆ︁H(t) ∈ H(curl; Ω) and

t ↦→ ˆ︁D(t) ∈ H(div; Ω) are both C0. Then (A,φ, ˆ︁H, ˆ︁D) is a solution to (5) if and only if (A,φ)

is a solution to (3) with ˆ︁H × n|∂K = H × n|∂K and ˆ︁D · n|∂K = D · n|∂K . In particular, if
(A,φ) is a solution to (3), then (A,φ,H,D) is a solution to (5).

Proof. Suppose (A,φ, ˆ︁H, ˆ︁D) is a solution to (5). By Proposition 3.1, (5c) implies A(t) ∈
H̊(curl; Ω), so taking A′ ∈ H̊(curl; Ω) and summing (5a) over K ∈ Th, the integrals over ∂K

cancel, yielding (3a). As previously stated, (3a) implies curlH = Ḋ + J , so substituting this
into (5a) gives
∫︂

∂K
(A′ × ˆ︁H) · n =

∫︂

K
(curlA′ ·H −A′ · curlH) =

∫︂

∂K
(A′ ×H) · n, ∀A′ ∈ H(curl;K),

so ˆ︁H × n|∂K = H × n|∂K . Similarly, (5d) implies φ(t) ∈ H̊
1
(Ω), so taking φ′ ∈ H̊

1
(Ω) and

summing (5b) over K ∈ Th yields (3b). This implies divD = ρ, and substituting into (5b)

gives ˆ︁D · n|∂K = D · n|∂K .

Conversely, suppose (A,φ) is a solution to (3). Since A(t) ∈ H̊(curl; Ω) and φ(t) ∈ H̊
1
(Ω), it

follows that (5c) and (5d) hold. Furthermore, (3) implies that Ḋ+ J = curlH and divD = ρ,

so (5a) and (5b) hold with ˆ︁H × n|∂K = H × n|∂K and ˆ︁D · n|∂K = D · n|∂K . In particular, we

could take ˆ︁H = H and ˆ︁D = D. □
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Remark 3.4. Note that, in addition to (5b) implying that divD = ρ, we also see by taking

φ′ = 1K that ˆ︁D satisfies the conservation law
∫︁
∂K
ˆ︁D · n =

∫︁
K ρ, for all K ∈ Th.

3.3. Temporal gauge fixing and the charge-conservation constraint. As in Section 2.2,

if (A,φ, ˆ︁H, ˆ︁D) is a solution to (5), then so is (A + grad ξ, φ − ξ̇, ˆ︁H, ˆ︁D) for any C1 curve

t ↦→ ξ(t) ∈ H̊
1
(Ω). Therefore, we perform temporal gauge fixing by taking φ = 0. This yields

the gauge-fixed Lagrangian

L(A, ˆ︁H, Ȧ, ˆ︁Ḣ ) =
∑︂

K∈Th

[︄∫︂

K

(︃
1

2
E ·D − 1

2
B ·H +A · J

)︃
+

∫︂

∂K
(A× ˆ︁H) · n

]︄
,

where we recall that D = ϵE = −ϵȦ and B = µH = curlA. The Euler–Lagrange equations
are simply (5a) and (5c). Of course, (5d) is satisfied trivially, since φ = 0. The next
result shows that the charge-conservation constraint (5b) is automatically preserved, for an

appropriately-defined ˆ︁D.

Proposition 3.5. Let (A, ˆ︁H) be a solution to (5a) and (5c). Suppose initial values for D, ˆ︁D
satisfy (5b), and let ˆ︁D be the solution to ˆ︁Ḋ + J = curl ˆ︁H. Then (A, 0, ˆ︁H, ˆ︁D) is a solution to
(5).

Proof. As we have already mentioned, φ = 0 trivially satisfies (5d), so it suffices to show that
(5b) holds. Let φ′ ∈ H1(K) be arbitrary. Taking A′ = gradφ′ in (5a) and integrating by
parts gives

0 =

∫︂

K
gradφ′ · (Ḋ + J) +

∫︂

∂K
(gradφ′ × ˆ︁H) · n

=

∫︂

K
(gradφ′ · Ḋ − φ′ div J) +

∫︂

∂K
φ′(J − curl ˆ︁H) · n

=

∫︂

K
(gradφ′ · Ḋ + φ′ρ̇)−

∫︂

∂K
φ′ ˆ︁Ḋ · n,

so if (5b) holds at the initial time, then it holds for all time. □

Remark 3.6. As in Remark 3.4, taking φ′ = 1K implies
∫︁
∂K
ˆ︁D · n =

∫︁
K ρ. Furthermore,

if the initial conditions also satisfy div ˆ︁D = ρ, then we have div ˆ︁D = ρ for all time, since

div ˆ︁Ḋ = div curl ˆ︁H − div J = 0 + ρ̇. Finally, if ˆ︁H = H, and if the initial conditions for ˆ︁D
equal those for D, then we recover ˆ︁D = D.

Finally, we express this variational problem in the standard notation used for mixed and
hybrid finite element methods, in terms of a pair of bilinear forms [13, Chapter II]. We will
make use of this notation throughout the subsequent sections. Defining

a : H(curl; Th)×H(curl; Th) → R, a(A,A′) :=
∑︂

K∈Th

∫︂

K
curlA′ · µ−1 curlA,

b : H(curl; Th)×H(curl; Ω) → R, b(A′, ˆ︁H) := −
∑︂

K∈Th

∫︂

∂K
(A′ × ˆ︁H) · n,

we seek t ↦→ A(t) ∈ H(curl; Th) and t ↦→ ˆ︁H(t) ∈ H(curl; Ω) such that

⟨Ḋ + J,A′⟩ = a(A,A′) + b(A′, ˆ︁H), ∀A′ ∈ H(curl; Th),(6a)

0 = b(A, ˆ︁H ′), ∀ ˆ︁H ′ ∈ H(curl; Ω),(6b)
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where ⟨·, ·⟩ is the L2(Ω,R3) inner product. Defining the map B : H(curl; Th) → H(curl; Ω)∗,
A ↦→ b(A, ·), we see that (6) is equivalent to evolving A(t) ∈ kerB by

⟨Ḋ + J,A′⟩ = a(A,A′), ∀A′ ∈ kerB,
and subsequently solving for ˆ︁H satisfying (6a). Indeed, these are equivalent since (6b) says

that A ∈ kerB, while taking A′ ∈ kerB causes the b(A′, ˆ︁H) term to vanish on the right-

hand side of (6a). Since kerB = H̊(curl; Ω) by Proposition 3.1, it follows that A solves the
non-domain-decomposed problem (3a).

4. Hybrid semidiscretization

We now perform Galerkin semidiscretization of the domain-decomposed variational problem
with temporal gauge fixing, as introduced in the previous section. This results in a hybrid

method for Maxwell’s equations, where “hybrid” means that the Lagrange multipliers ˆ︁Hh and

their test functions ˆ︁H ′
h are both restricted to a subspace of H(curl; Ω). We then show that a

suitably-defined ˆ︁Dh satisfies the charge-conservation constraint in a strong sense, as opposed
to the much weaker sense in which Dh was seen to satisfy this constraint in Section 2.3.
Finally, we discuss how certain choices of elements yield a hybridized version of Nédélec’s
method, while others give nonconforming methods, and we remark on how this framework
also applies to the 2-D Maxwell equations.

4.1. Semidiscretization of the variational problem. For each K ∈ Th, let V 1
h (K) ⊂

H(curl;K) be a finite-dimensional subspace, so V 1
h :=

∏︁
K∈Th V

1
h (K) ⊂ H(curl; Th), and let

ˆ︁V 1
h ⊂ H(curl; Ω). We seek Ah : t ↦→ Ah(t) ∈ V 1

h and ˆ︁Hh : t ↦→ ˆ︁Hh(t) ∈ ˆ︁V 1
h such that

∫︂

K

(︁
A′

h · (Ḋh + J)− curlA′
h ·Hh

)︁
+

∫︂

∂K
(A′

h × ˆ︁Hh) · n = 0, ∀A′
h ∈ V 1

h (K),(7a)

∑︂

K∈Th

∫︂

∂K
(Ah × ˆ︁H ′

h) · n = 0, ∀ ˆ︁H ′
h ∈ ˆ︁V 1

h ,(7b)

where (7a) holds for all K ∈ Th. These are the semidiscretized versions of (5a) and (5c). As

before, Eh := −Ȧh, Bh := curlAh, Dh := ϵEh, and Hh := µ−1Bh.

Remark 4.1. Since (7b) only holds for test functions in ˆ︁V 1
h , but not necessarily an arbitrary

test function in H(curl; Ω), in general a solution will have Ah(t) /∈ H̊(curl; Ω). Hence, this
method is generally not curl-conforming and is distinct from the conforming methods discussed
in Section 2.3.

In terms of the bilinear forms a(·, ·) and b(·, ·), this method may be written as

⟨Ḋh + J,A′
h⟩ = a(Ah, A

′
h) + b(A′

h,
ˆ︁Hh), ∀A′

h ∈ V 1
h ,(8a)

0 = b(Ah, ˆ︁H ′
h), ∀ ˆ︁H ′

h ∈ ˆ︁V 1
h .(8b)

Defining the operator Bh : V
1
h → (ˆ︁V 1

h )
∗, Ah ↦→ b(Ah, ·)|ˆ︁V 1

h
, we see that (8) is equivalent to

evolving Ah(t) ∈ kerBh by solving the second-order system of ODEs

(9) ⟨Ḋh + J,A′
h⟩ = a(Ah, A

′
h), ∀A′

h ∈ kerBh,

and subsequently solving for ˆ︁Hh satisfying (8a). As with the infinite-dimensional problem,

this equivalence holds since (8b) implies Ah ∈ kerBh and A′
h ∈ kerBh causes the b(A′

h,
ˆ︁Hh)

term to vanish on the right-hand side of (8a).
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Since V 1
h is finite-dimensional, we may apply Banach’s closed range theorem to deduce

that ⟨Ḋh + J, ·⟩ − a(Ah, ·) ∈ (kerBh)
⊥ is in the range of B∗

h, so a solution ˆ︁Hh exists, although

generally not uniquely. A natural choice is to find the solution ˆ︁Hh minimizing ∥Hh − ˆ︁Hh∥2 +
∥Ḋh+J−curl ˆ︁Hh∥2, which in a weak sense minimizes the H(curl; Ω) distance between Hh and
ˆ︁Hh. This existence-without-uniqueness is typical of hybrid methods, and one may formally

resolve this by replacing ˆ︁V 1
h by the quotient space ˆ︁V 1

h / kerB∗
h (cf. Brezzi and Fortin [13,

IV.1.3]). In practice, the evolution on kerBh specified by (9) is the essence of the method,

and solving for ˆ︁Hh may be seen as an optional post-processing step.

4.2. Preservation of the charge-conservation constraint. In order to discuss the charge-
conservation constraint, we first suppose that V 0

h (K) ⊂ H1(K) are such that 1K ∈ V 0
h (K)

and gradV 0
h (K) ⊂ V 1

h (K) for all K ∈ Th. We consider whether the following discretization of
(5b) is preserved,

(10)

∫︂

K
(gradφ′

h ·Dh + φ′
hρ)−

∫︂

∂K
φ′
h
ˆ︁Dh · n = 0, ∀φ′

h ∈ V 0
h (K),

for ˆ︁Dh : t ↦→ ˆ︁Dh(t) ∈ H(div; Ω) suitably defined.

Theorem 4.2. Let (Ah, ˆ︁Hh) be a solution to (7). Suppose initial values for Dh, ˆ︁Dh satisfy

(10), and let ˆ︁Dh be the solution to ˆ︁Ḋ h + J = curl ˆ︁Hh. Then (10) holds for all time. In

particular,
∫︁
∂K
ˆ︁Dh · n =

∫︁
K ρ. Moreover, if div ˆ︁Dh = ρ holds at the initial time, then it holds

for all time.

Proof. The proof is essentially similar to that of Proposition 3.5. Given φ′
h ∈ V 0

h (K), taking
A′

h = gradφ′
h ∈ V 1

h (K) in (7a) and integrating by parts,

0 =

∫︂

K
gradφ′

h · (Ḋh + J) +

∫︂

∂K
(gradφ′

h × ˆ︁Hh) · n

=

∫︂

K
(gradφ′

h · Ḋh − φ′
h div J) +

∫︂

∂K
φ′
h(J − curl ˆ︁Hh) · n

=

∫︂

K
(gradφ′

h · Ḋh + φ′
hρ̇)−

∫︂

∂K
φ′
h
ˆ︁Ḋ h · n,

so if (10) holds at the initial time, then it holds for all time. The conclusion that
∫︁
∂K
ˆ︁Dh ·n =

∫︁
K ρ follows by taking φ′

h = 1K , and div ˆ︁Ḋ h = div curl ˆ︁Hh − div J = 0 + ρ̇ implies that if

div ˆ︁Dh = ρ holds at the initial time, then it holds for all time. □

Remark 4.3. Preservation of div ˆ︁Dh = ρ is immediate from ˆ︁Ḋ h + J = curl ˆ︁Hh, without
appealing to (10). However, it is only a meaningful statement about solutions to (7) when

(10) holds. By contrast, if ˆ︁Dh were instead to satisfy ˆ︁Ḋ h + J = 0, then div ˆ︁Dh = ρ would still

be preserved, but this would not say anything about the numerical solution (Ah, ˆ︁Hh).

The next result addresses the existence of initial conditions for ˆ︁Dh satisfying the hypotheses
of the previous theorem. Let V 0

h :=
∏︁

K∈Th V
0
h (K) ⊂ H1(Th).

Proposition 4.4. Suppose that the initial value of Dh satisfies
∑︂

K∈Th

∫︂

K
gradφ′

h ·Dh +

∫︂

Ω
φ′
hρ = 0, ∀φ′

h ∈ V 0
h ∩ H̊

1
(Ω).
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Then there exists an initial value for ˆ︁Dh ∈ H(div; Ω) such that (10) holds for all K ∈ Th and

div ˆ︁Dh = ρ.

Proof. The first part of the argument is similar to the one we used for the existence of ˆ︁Hh.
Define the bilinear form

βh : V
0
h ×H(div; Ω) → R, βh(φ

′
h,
ˆ︁Dh) :=

∑︂

K∈Th

∫︂

∂K
φ′
h
ˆ︁Dh · n,

and consider the map V 0
h → H(div; Ω)∗ defined by φ′

h ↦→ βh(φ
′
h, ·). By [13, Proposition

III.1.1], we have βh(φ
′
h, ·) = 0 if and only if φ′

h ∈ H̊
1
(Ω), so V 0

h ∩ H̊
1
(Ω) is precisely

the kernel of this map. Now, the hypothesis of this proposition says that the functional

φ′
h ↦→∑︁

K∈Th
∫︁
K gradφ′

h ·Dh +
∫︁
Ω φ′

hρ annihilates the kernel V 0
h ∩ H̊

1
(Ω), so by the closed

range theorem, it is in the range of the adjoint ˆ︁Dh ↦→ βh(·, ˆ︁Dh). Hence, there exists an initial

value for ˆ︁Dh satisfying (10) for all K ∈ Th.
Next, suppose ˆ︁Dh satisfies (10) but not necessarily div ˆ︁Dh = ρ. Then, on each K ∈ Th,

replace ˆ︁Dh by ˆ︁Dh + gradu, where u is the solution to −∆u = div ˆ︁Dh − ρ with Neumann
boundary conditions gradu · n = 0 on ∂K and

∫︁
K u = 0. This solution exists, since taking

φ′
h = 1K in (10) implies the compatibility condition

∫︁
K(div ˆ︁Dh − ρ) =

∫︁
∂K
ˆ︁Dh · n−

∫︁
K ρ = 0.

Replacing ˆ︁Dh by ˆ︁Dh + gradu leaves the normal traces of ˆ︁Dh unchanged, since gradu · n = 0,
so the result is still in H(div; Ω) and satisfies (10), as desired. □

Remark 4.5. The computation of ˆ︁Dh, like that of ˆ︁Hh, can be seen as an optional post-
processing step after computing the solution Ah to (9). The key point of Theorem 4.2 is that
the evolution of Ah is conservative, in the sense that it is consistent with a charge-conserving

numerical flux ˆ︁Dh, whether or not one chooses to actually compute ˆ︁Dh.

4.3. Hybridization of Nédélec’s method. As in Section 2.3, let Ω be polyhedral and Th
be a simplicial triangulation. Let V 0

h (K) be the space of degree-r polynomials on K and
V 1
h (K) be either degree-r Nédélec edge elements of the first kind or degree-(r−1) Nédélec edge

elements of the second kind on K. Then V 0
h ⊂ H1(Th) and V 1

h ⊂ H(curl; Th) correspond to
discontinuous Lagrange and Nédélec elements, respectively. Note that discontinuous Nédélec
elements of the second kind are just discontinuous piecewise polynomial vector fields.

Now, taking ˆ︁V 1
h = H(curl; Ω), it follows that kerBh = V 1

h ∩ kerB ⊂ H̊(curl; Ω), which
corresponds precisely to curl-conforming Nédélec elements with tangential inter-element
continuity and boundary conditions. It follows that (9) agrees precisely with Nédélec’s method

(4). In fact, it is not necessary to take ˆ︁V 1
h infinite-dimensional: it suffices to take a large

enough finite-dimensional subspace (e.g., Nédélec elements of sufficiently high degree) such
that (7b) imposes all the inter-element continuity and boundary conditions on degrees of

freedom of V 1
h . (Having

ˆ︁V 1
h infinite-dimensional is not a problem if one is only interested in

Ah, but a finite-dimensional subspace is required if one wishes to compute ˆ︁Hh.) From these
observations, we obtain the following corollary of Theorem 4.2 and Proposition 4.4

Corollary 4.6. Given V 0
h and V 1

h as above, there exists ˆ︁V 1
h such that solutions Ah to Nédélec’s

method (4) are equivalent to solutions (Ah, ˆ︁Hh) to the hybrid method (7). Consequently, given

a solution to Nédélec’s method, there exists ˆ︁Dh satisfying ˆ︁Ḋ h + J = curl ˆ︁Hh, which preserves

the charge-conservation constraints (10) and div ˆ︁Dh = ρ.
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Remark 4.7. In contrast, if ˆ︁V 1
h is not sufficiently large, we will have kerBh ̸⊂ kerB = H̊(curl; Ω),

so (9) is a nonconforming finite element method for Maxwell’s equations.

4.4. Remarks on the two-dimensional case. This framework may also be adapted to
two-dimensional electromagnetics with minor modifications, where the two-dimensional cross
product is (u1, u2)× (v1, v2) := u1v2 − u2v1.

For the non-domain-decomposed problem on Ω ⊂ R2, the potential A ∈ H̊(curl; Ω) remains
a vector field, although curlA ∈ L2(Ω) becomes a scalar field. Consequently, E and D remain
vector fields (and ϵ remains a tensor), while B and H become scalar fields (and µ becomes
scalar). The two-dimensional version of the weak problem (3a) is nearly identical, except
the dot product curlA′ ·H is replaced by the ordinary product (curlA′)H. For the Galerkin
semidiscretization discussed in Section 2.3, one simply replaces the Nédélec edge elements of
the first and second kind with Raviart–Thomas (RT) [41] and Brezzi–Douglas–Marini (BDM)
[12] edge elements, respectively. These two-dimensional H(curl) elements are just the RT
and BDM H(div) elements rotated by 90 degrees, so that tangential traces of the former
correspond to normal traces of the latter.

For domain decomposition, Proposition 3.1 is easily modified to show that

H̊(curl; Ω) =
{︁
u ∈ H(curl; Th) :

∑︂

K∈Th

∫︂

∂K
uλ× n = 0, for all λ ∈ H1(Ω)

}︁
.

Alternatively, this can be seen to follow from the corresponding result for H̊(div; Ω), where the
vector fields are rotated by 90 degrees. Hence, the domain decomposed variational problem in

temporal gauge is to find t ↦→ A(t) ∈ H(curl; Th) and t ↦→ ˆ︁H(t) ∈ H1(Ω) such that

∫︂

K

(︁
A′ · (Ḋ + J)− (curlA′)H

)︁
+

∫︂

∂K
A′ ˆ︁H × n = 0, ∀A′ ∈ H(curl;K),

∑︂

K∈Th

∫︂

∂K
A ˆ︁H ′ × n = 0, ∀ ˆ︁H ′ ∈ H1(Ω),

for all K ∈ Th. Hybrid methods may then be obtained by restricting this variational problem

to subspaces V 1
h =

∏︁
K∈Th V

1
h (K) ⊂ H(curl; Th) and ˆ︁V 0

h ⊂ H1(Ω). As in Section 4.2, one

obtains ˆ︁Dh(t) ∈ H(div; Ω) by solving ˆ︁Ḋ h + J = curl ˆ︁Hh (where the curl of a scalar field

is its gradient rotated by 90 degrees, i.e., v · curl ˆ︁Hh := v × grad ˆ︁Hh for v ∈ R2), and the
charge-conserving properties follow in the same manner.

For the finite element spaces, one may take V 0
h to be discontinuous degree-r Lagrange

elements and V 1
h to be discontinuous degree-r RT edge elements or discontinuous degree-(r−1)

BDM edge elements. (Note that discontinuous BDM elements are just discontinuous piecewise

polynomial vector fields.) In this case, it is much easier to see which ˆ︁V 0
h ⊂ H1(Ω) yield

conforming methods, since each edge degree of freedom is either shared by exactly two triangles
or lies on the boundary. Both the degree-r RT and degree-(r − 1) BDM elements have r
degrees of freedom per edge, which match up precisely with those for degree-(r + 1) Lagrange

elements. Hence, taking ˆ︁V 0
h corresponding to degree-(r + 1) or higher Lagrange elements

yields a conforming method. On the other hand, a straightforward counting argument shows
that degree-r Lagrange elements have fewer than r ×#edges degrees of freedom on element
boundaries (unless Th consists of a single triangle). Since it is impossible to enforce all of the
inter-element and boundary conditions in this case, the resulting method is nonconforming.
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5. Numerical examples

This section gives numerical illustrations for the simple test problem

(11) Ä+ curl curlA = 0,

which corresponds to the case where ϵ and µ are positive constants with ϵµ = 1 and J = 0,
as discussed at the end of Section 2.1. As before, A is taken to have vanishing tangential
component on the boundary. Preservation of the charge-conservation constraint is equivalent
to the condition div Ä = 0.

In the frequency domain, denoting angular frequency by ω, time differentiation becomes
multiplication by iω, so (11) becomes the eigenvalue problem

(12) curl curlA = ω2A.

In this setting, preservation of the charge-conservation constraint becomes ω2 divA = 0, i.e.,
eigenfunctions with nonzero eigenvalue are divergence-free.

The examples below demonstrate the constraint-preserving properties of the curl-conforming
hybridized Nédélec method from Section 4.3, both in the time domain and in the frequency

domain. For the 2-D frequency domain problem, we also observe superconvergence of ˆ︁Hh → H.
All finite element computations were performed using FEniCS [33, 1]. For the post-processing

step of computing ˆ︁Hh, whose solution is not unique, we find the solution ˆ︁Hh minimizing

∥Hh − ˆ︁Hh∥2 + ∥Ḋh + J − curl ˆ︁Hh∥2, as previously discussed in Section 4.1.

5.1. Time domain. Before turning our attention to the test problem (11), we first describe
a discrete time-stepping scheme for the general case of Maxwell’s equations. After semidis-
cretizing using the hybridized Nédélec method of Section 4.3, we discretize in time using the
following explicit “leapfrog” scheme:

• An+1/2 = An − 1
2∆tϵ−1Dn.

• Dn+1 = Dn +∆tḊn+1/2, where Ḋn+1/2 ∈ kerBh is the solution to

⟨Ḋn+1/2 + Jn+1/2, A
′
h⟩ = a(An+1/2, A

′
h), ∀A′

h ∈ kerBh.

• ˆ︁Dn+1 = ˆ︁Dn +∆t(curl ˆ︁Hn+1/2 − Jn+1/2), where ˆ︁Hn+1/2 is the solution to

⟨Ḋn+1/2 + Jn+1/2, A
′
h⟩ = a(An+1/2, A

′
h) + b(A′

h,
ˆ︁Hn+1/2), ∀A′

h ∈ V 1
h ,

minimizing ∥Hn+1/2 − ˆ︁Hn+1/2∥2 + ∥Ḋn+1/2 + Jn+1/2 − curl ˆ︁Hn+1/2∥2, with Hn+1/2 :=

µ−1 curlAn+1/2.

• An+1 = An+1/2 − 1
2∆tϵ−1Dn+1.

Here, An denotes the approximation to Ah(tn), where tn is the nth time step and ∆t is
the time step size; similar notation is used for the other variables. This is essentially the
Störmer/Verlet method for the semidiscretized system of ODEs (9), augmented by a hybrid

post-processing step for ˆ︁Hh and ˆ︁Dh. Except for the hybrid post-processing step, which is
novel, such leapfrog schemes are widely used for both finite element and finite difference
time domain methods in computational electromagnetics (see Yee [43] and Monk [35, Section
5]). The Störmer/Verlet method also has particularly desirable properties when applied to
Lagrangian and Hamiltonian dynamics (cf. Hairer et al. [24, 25]).

Figure 1 shows the results of applying this method to the test problem (11) on the 2-D
square Ω = (0, π)2 and 3-D cube Ω = (0, π)3, taking ϵ = µ = 1. For both the 2-D and 3-D
problems, we simulate over t ∈ [0, 2π] for 1024 time steps of size ∆t = π/512.



CONSTRAINT-PRESERVING HYBRID METHODS 15

0 π/2 π 3π/2 2π

t

0.0

0.1

0.2

0.3

0.4

0.5
H

(d
iv

;T
h
)

se
m

in
or

m

Dh

D̂h

0 π/2 π 3π/2 2π

t

0

1

2

3

4

5

6

7

H
(d

iv
;T
h
)

se
m

in
or

m

Dh

D̂h

Figure 1. Charge conservation error, as measured by theH(div; Th) seminorm

of Dh and ˆ︁Dh, over time, on the 2-D square Ω = (0, π)2 (left) and 3-D cube

Ω = (0, π)3 (right). Although Dh drifts away from the constraint, ˆ︁Dh preserves
the constraint.

For the 2-D problem, the initial conditions are taken to be D0 = ˆ︁D0 = 0 and

A0(x, y) =
(︁
y(π − y), x(π − x)

)︁
.

A uniform triangular mesh is taken on a 16× 16 grid, with 2 · 162 = 512 cells. The space V 1
h

consists of discontinuous piecewise linear vector fields, while ˆ︁V 0
h consists of cubic Lagrange

elements, so that kerBh ⊂ V 1
h are linear BDM edge elements, as described in Section 4.4 with

r = 2.
For the 3-D problem, the initial conditions are taken to be D0 = ˆ︁D0 = 0 and

A0(x, y, z) =
(︁
y(π − y)z(π − z), z(π − z)x(π − x), x(π − x)y(π − y)

)︁
.

A uniform tetrahedral mesh is taken on an 8× 8× 8 grid, with 6 · 83 = 3072 cells. The space

V 1
h consists of discontinuous piecewise linear vector fields, while ˆ︁V 1

h consists of cubic Nédélec
edge elements of the second kind, so that kerBh ⊂ V 1

h are linear Nédélec edge elements of the
second kind, as described in Section 4.3 with r = 2.

Although the exact solution satisfies divD = 0, the numerical solution Dh drifts away from
this constraint, as measured by the H(div; Th) seminorm,

|Dh|H(div;Th) :=

√︄∑︂

K∈Th

∥divDh∥2L2(K)
.

However, div ˆ︁Dh = 0 holds to machine precision, as explained by Theorem 4.2. Looking at Dh

alone, one might think that this method fails to preserve the charge-conservation constraint
strongly. In fact, we have illustrated that it actually does preserve this constraint, when

expressed in terms of the numerical flux ˆ︁Dh rather than Dh.

Remark 5.1. The constraint behavior of Dh and ˆ︁Dh, observed in Figure 1, is due to the
finite element semidiscretization, not the time discretization. Indeed, the charge-conservation
constraint is linear, so if it holds for the semidiscretized system of ODEs, then any Runge–Kutta
or partitioned Runge–Kutta method preserves it (Hairer et al. [25, Theorem IV.1.2]).
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Figure 2. Dh and divDh (top row), compared to ˆ︁Dh and div ˆ︁Dh (bottom row),

approximating the Maxwell eigenmode with ω2 = 2. While Dh and ˆ︁Dh are
nearly indistinguishable (left column), Dh fails to be strongly divergence-free,

while ˆ︁Dh is divergence-free (right column).

5.2. Frequency domain. We next apply the hybrid approach to the frequency domain,
again assuming that ϵ and µ are positive constants with ϵµ = 1 and J = 0. This is done by
first approximating the Maxwell eigenvalue problem (12) on kerBh and then applying hybrid
post-processing, as follows:

• Find eigenpairs (ω2
h, Ah) ∈ R+ × kerBh satisfying

a(Ah, A
′
h) = ω2

h⟨Ah, A
′
h⟩, ∀A′

h ∈ kerBh,

and let Hh := µ−1 curlAh and Dh := ϵ(−iωhAh).

• Find ˆ︁Hh minimizing ∥Hh − ˆ︁Hh∥2 + ∥iωhDh − curl ˆ︁Hh∥2 such that

a(Ah, A
′
h) + b(A′

h,
ˆ︁Hh) = ω2

h⟨Ah, A
′
h⟩, ∀A′

h ∈ V 1
h ,

and let ˆ︁Dh := −iω−1
h curl ˆ︁Hh.

Note that this last step is equivalent to iωh
ˆ︁Dh = curl ˆ︁Hh, so ˆ︁Hh can be seen as minimizing

∥Hh − ˆ︁Hh∥2 + ω2
h∥Dh − ˆ︁Dh∥2.

We consider the 2-D square Ω = (0, π)2, where the exact eigenvalues are sums of squares
(ω2 = 1, 1, 2, 4, 4, . . .). For simplicity, we look at the approximation of the following analytical
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solution with simple eigenvalue ω2 = 2, assuming ϵ = µ = 1:

A(x, y) =

√
2

π
(− cosx sin y, sinx cos y),

H(x, y) =
2
√
2

π
cosx cos y,

D(x, y) =
2i

π
(cosx sin y,− sinx cos y).

We take a uniform triangle mesh on an N ×N grid, which has 2N2 cells. As described in
Section 4.4, we take V 1

h to consist of discontinuous piecewise degree-(r − 1) vector fields and
ˆ︁V 0
h to consist of degree-(r + 1) Lagrange elements, so that kerBh ⊂ V 1

h are degree-(r − 1)
BDM edge elements.

Figure 2 shows Dh and ˆ︁Dh, along with divDh and div ˆ︁Dh, for the case N = 16, r = 2. Here,
by divDh ∈ L2(Th), we mean the element-wise divergence (divDh)|K := div(Dh|K) for each
K ∈ Th, since Dh is in H(div; Th) but not in H(div; Ω). Although the vector fields Dh and
ˆ︁Dh appear very similar, they behave very differently with respect to the charge-conservation

constraint: divDh ≠ 0, while div ˆ︁Dh = 0 to machine precision. Note that these are purely
imaginary when Ah is real, so the imaginary parts are plotted.

Table 1 illustrates the convergence behavior of Hh, ˆ︁Hh, Dh, and ˆ︁Dh as the mesh parameter
h → 0, for elements of various degrees. Since Ah is simply obtained by using degree-
(r − 1) BDM edge elements for the Maxwell eigenvalue problem, previous analyses of this
problem (e.g., [32, 26, 6, 7, 3] and references therein) show that ∥Ah − A∥ = O(hr) and
∥curlAh − curlA∥ = O(hr−1), which imply the observed rates ∥Dh − D∥ = O(hr) and

∥Hh −H∥ = O(hr−1). Interestingly, for ˆ︁Hh obtained by hybrid post-processing, we observe

the superconvergent rates ∥ ˆ︁Hh −H∥ = O(hr) for r = 2 and O(hr+1) for r > 2. For ˆ︁Dh, we

observe errors comparable to those for Dh and the same convergence rate, ∥ ˆ︁Dh −D∥ = O(hr).
We note that the observed rates of superconvergence, including the reduced rate in the

lowest-degree case, are the same as those obtained for scalar elliptic problems by Brezzi,
Douglas, and Marini [12] in the original paper on the hybridized BDM method. On the other
hand, preliminary numerical experiments in 3-D do not show superconvergence. This leads us
to believe that this phenomenon arises in 2-D due to the fact that BDM H(curl) elements are
simply rotated H(div) elements, for which the results of [12] apply, whereas there is no such
identification of Nédélec edge and face elements in 3-D.

6. Conclusion

We have constructed a family of primal hybrid finite element methods for Maxwell’s
equations, where the Lagrange multipliers enforcing inter-element continuity and boundary

conditions correspond to a numerical trace ˆ︁Hh of the magnetic field and a numerical flux ˆ︁Dh

of the electric flux density. These methods strongly preserve the constraints divBh = 0 and

div ˆ︁Dh = ρ, the latter of which corresponds to conservation of charge. As a special case, these
methods include hybridized versions of standard methods using curl-conforming edge elements,
which had previously been thought only to be charge-conserving in a much weaker sense. We
emphasize that these conservative properties hold even if the methods are not implemented in

a hybrid fashion: if desired, ˆ︁Hh and ˆ︁Dh may be recovered by an optional post-processing step.
There are several natural directions for future work. First, the numerical experiments in

Section 5 focused on hybridized curl-conforming methods, due to the fact that their stability
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r
mesh ∥Hh −H∥ ∥ ˆ︁Hh −H∥ ∥Dh −D∥ ∥ ˆ︁Dh −D∥
N error rate error rate error rate error rate

2

2 7.591e-01 — 3.648e-01 — 4.324e-01 — 4.644e-01 —
4 3.778e-01 1.007 1.070e-01 1.770 1.182e-01 1.872 1.342e-01 1.791
8 1.862e-01 1.021 2.753e-02 1.958 3.009e-02 1.974 3.512e-02 1.934
16 9.271e-02 1.006 6.926e-03 1.991 7.558e-03 1.993 8.906e-03 1.979
32 4.630e-02 1.002 1.734e-03 1.998 1.892e-03 1.998 2.236e-03 1.994

3

2 2.090e-01 — 3.500e-02 — 7.521e-02 — 8.055e-02 —
4 5.517e-02 1.922 2.750e-03 3.670 9.817e-03 2.938 9.960e-03 3.016
8 1.400e-02 1.978 1.827e-04 3.912 1.225e-03 3.002 1.220e-03 3.029
16 3.515e-03 1.994 1.159e-05 3.978 1.526e-04 3.005 1.512e-04 3.013
32 8.796e-04 1.999 7.270e-07 3.995 1.903e-05 3.003 1.882e-05 3.006

4

2 4.614e-02 — 4.327e-03 — 1.281e-02 — 1.316e-02 —
4 6.121e-03 2.914 1.250e-04 5.114 7.958e-04 4.008 8.629e-04 3.931
8 7.769e-04 2.978 3.759e-06 5.055 4.913e-05 4.018 5.500e-05 3.972
16 9.749e-05 2.994 1.155e-07 5.024 3.048e-06 4.011 3.454e-06 3.993
32 1.220e-05 2.999 3.582e-09 5.011 1.898e-07 4.006 2.160e-07 3.999

5

2 8.100e-03 — 4.419e-04 — 1.737e-03 — 1.761e-03 —
4 5.354e-04 3.919 6.307e-06 6.131 5.553e-05 4.968 5.321e-05 5.048
8 3.394e-05 3.980 9.434e-08 6.063 1.743e-06 4.993 1.642e-06 5.018
16 2.129e-06 3.995 1.447e-09 6.027 5.449e-08 5.000 5.105e-08 5.007
32 1.332e-07 3.999 2.404e-11 5.911 1.702e-09 5.000 1.592e-09 5.003

Table 1. Convergence of the hybridized method for the ω2 = 2 eigenmode of
Ω = (0, π)2, using a uniform triangle mesh on an N ×N grid and degree-(r−1)

BDM edge elements. The post-processed solution ˆ︁Hh exhibits superconvergence

relative to Hh, while the errors and convergence rates of ˆ︁Dh are comparable
to those of Dh.

and error analysis is already well established. However, as mentioned in Remark 4.1 and
Remark 4.7, this framework also includes constraint-preserving nonconforming methods, which
would be interesting to investigate. Second, we do not yet have a complete explanation of

the hybrid superconvergence phenomenon for ˆ︁Hh → H in 2-D; this is the subject of ongoing
work. Third, the techniques developed here might be applied to study constraint preservation
in other families of hybrid methods, particularly hybridizable discontinuous Galerkin (HDG)
methods. Finally, we have restricted our attention to problems where the current J is given,
but it would be interesting to investigate the extension to problems in conducting materials,
where J depends on the electric field.
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