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Abstract. We investigate, both analytically and numerically, dispersive fractalization
and quantization of solutions to periodic linear and nonlinear Fermi–Pasta–Ulam–Tsingou
systems. When subject to periodic boundary conditions and discontinuous initial conditions,
e.g., a step function, both the linearized and nonlinear continuum models for FPUT exhibit
fractal solution profiles at irrational times (as determined by the coefficients and the length
of the interval) and quantized profiles (piecewise constant or perturbations thereof) at
rational times. We observe a similar effect in the linearized FPUT chain at times t where
these models have validity, namely t = O(h−2), where h is proportional to the intermass
spacing or, equivalently, the reciprocal of the number of masses. For nonlinear periodic
FPUT systems, our numerical results suggest a somewhat similar behavior in the presence
of small nonlinearities, which disappears as the nonlinear force increases in magnitude.
However, these phenomena are manifested on very long time intervals, posing a severe
challenge for numerical integration as the number of masses increases. Even with the
high-order splitting methods used here, our numerical investigations are limited to nonlinear
FPUT chains with a smaller number of masses than would be needed to resolve this question
unambiguously.

Our problem turned out to have been felicitously chosen. The results were entirely different
qualitatively from what even Fermi, with his great knowledge of wave motions, had expected.
. . . To our surprise, the string started playing a game of musical chairs, only between several
low notes, and perhaps even more amazingly, after what would have been several hundred
ordinary up and down vibrations, it came back almost exactly to its original sinusoidal shape.

— Stanislaw Ulam, [57, pp. 226–7]

1. Introduction and Historical Perspective.

The early 1950s witnessed the birth of the world’s first all purpose electronic computers1,
thereby bringing hitherto infeasible numerical calculations into the realm of possibility.
With the Los Alamos MANIAC electronic computer at their disposal, Enrico Fermi, John
Pasta, and Stanislaw Ulam introduced a simple one-dimensional system, consisting of a
chain of masses connected by springs with nonlinear restoring forces, forming a simplified
model for crystals evolving towards thermal equilibrium. They called upon Mary Tsingou,
a former human computer, to write a program (a fairly complex undertaking necessitated

Date: June 30, 2021.
1The term “computer” originally refereed to a human, usually female, who performed calculations using

mechanical and, later, electro-mechanical calculating machines. One example was the first author’s mother,
Grace E. Olver, née Smith. Later, following their eventual disappearance from the workforce — some became
the first computer programmers — what were initially termed “electronic computers” became what we now
call “computers”.
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by the limited capabilities of MANIAC) to automatically perform the required numerical
calculations. What we now call the Fermi–Pasta–Ulam–Tsingou2 (FPUT) problem is rightly
celebrated as one of the very first electronic computer experiments, and certainly the first
that produced novel behavior. The surprise was that the FPUT dynamics, at least on
moderately long time intervals, did not proceed to thermalization, i.e., exhibit ergodicity, as
expected, but rather exhibited an unanticipated recurrence, in which energy from the low
frequency modes would initially spread out into some of the higher modes but, after a certain
time period, the system would almost entirely return to its initial configuration, as eloquently
described in the above quote from Ulam’s autobiography. It can be argued that the FPUT
calculation “sparked a revolution in modern science” by inaugurating the contemporary fields
of computational physics, [16], and experimental mathematics, meaning “computer-based
investigations designed to give insight into complex mathematical and physical problems
that are inaccessible, at least initially, using more traditional forms of analysis”, [43].

In an attempt to understand this intriguing and unexpected phenomenon, Zabusky and
Kruskal, [64], proposed a continuum model3 that, in its unidirectional manifestation, turned
out to be the Korteweg–deVries (KdV) equation, originally derived by Boussinesq, [9], in his
pioneering studies of surface water waves. Zabusky and Kruskal’s numerical integration of
the periodic initial-boundary value problem for the Korteweg–deVries equation, starting with
a smooth initial profile, led to their discovery of the soliton4 and the consequent creation of
an entirely new branch of mathematics — integrable nonlinear partial differential equations
— whose remarkable repercussions continue to this day, [17]. The overall impact of the FPUT
numerical experiment on modern mathematics and physics cannot be understated.

Much of the subsequent extensive research into the FPUT problem has concentrated on
understanding their original surprising observation of the non-ergodic (almost) recurrence of
the initial state; see [23] for historical remarks up to 1992. One key issue is to determine
whether thermalization or ergodicity occurs if one extends the time range to be sufficiently
long. An initial conjecture was that, while on a relatively short time scale the system returned
close to its original configuration, subsequent behavior at each such “period” would take
it farther and farther away. This was disproved in [56], where Tuck and Menzel (Tsingou)
observed “superperiods” after which the initially increasing deviations decrease to a much
smaller value. On the other hand, for sufficiently large nonlinearities, the FPUT recurrence
no longer exists, and the systems exhibits a “strong stochasticity threshold”, [29, 30]. See
[59] and [23] for reviews.

Explanations of the observed behavior have also appealed to Kolmogorov–Arnold–Moser
(KAM) theory, [44, 59], in which one views FPUT as a perturbation of either the linearized
system, or the integrable Toda lattice, [55], or an integrable Birkhoff normal form, [23, 45],
or even some nearby as yet unknown integrable system. Other research directions include
the derivation of explicit solutions; in [24], Friesecke and Wattis proved the existence of

2The system is traditionally referred to as the Fermi–Pasta–Ulam (FPU) problem, in recognition of the
authors of [22]. However, the first page of the report states “Report written by Fermi, Pasta, and Ulam.
Work done by Fermi, Pasta, Ulam, and Tsingou.” In more recent authorship conventions, she would have
been listed as a coauthor. Under her married name Mary Tsingou Menzel, she was a coauthor of an important
1972 paper [56] that describes further computational work on the system performed in 1961. See [15] for
additional historical details.

3Roughly speaking, a continuum model arises as the number of masses goes to infinity. However, the
model’s derivation and regime of validity is a little subtle; see below for details.

4Although the “solitons” they observed were in fact finite gap solutions composed of cnoidal waves, [18, 31].
True solitons only arise when the equation is posed on the entire real line.
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solitary waves solutions for a broad range of nonlinearities. This was followed by a series
of papers investigating traveling wave solutions of lattices and their approximation by
Korteweg–deVries solitons; see [42] for details. See also [1] for results on periodic solutions.
Another productive line of research has been to investigate what happens when not all the
masses and springs are identical, particularly systems with alternating masses and/or spring
stiffnesses; see, for example, [10, 25, 42].

In an unrelated but also surprising development, in the 1990s, Konstantin Oskolkov, [41],
and, independently, Michael Berry and collaborators, [3, 4, 5], discovered the Talbot effect,
which the latter named after an 1835 optical experiment, [54], of the Victorian scientist,
inventor, and photography pioneer William Henry Fox Talbot, inventor of the photographic
negative. The Talbot effect arises in quantum mechanics through the behavior of rough
solutions to the free space linear Schrödinger equation on a circular domain, i.e., subject
to periodic boundary conditions. The evolution of a piecewise smooth but discontinuous
initial profile, e.g., a step function, produces a fractal profile at irrational times (relative to
the circumference of the circle) but “quantizes” into piecewise smooth but discontinuous
profiles at rational times. Moreover, the fundamental solution, induced by an initial delta
function, exhibits “revivals” at rational times, localizing into a finite linear combination of
delta functions. This has the astonishing consequence that, at rational times, the solution
to any periodic initial value problem is a finite linear combination of translates of the initial
data and hence its value at any point on the circle depends only upon finitely many of the
initial values! The effect underlies the experimentally observed phenomenon of quantum
revival, [5, 61, 58], in which an electron, say, that is initially concentrated at a single location
of its orbital shell is, at rational times, re-concentrated at a finite number of orbital locations.

The subsequent rediscovery of this remarkable phenomenon by the first author, in the con-
text of the periodic linearized Korteweg–deVries equation, [37, 38], showed that fractalization
and quantization phenomena appear in a wide range of linear dispersive (integro-)differential
equations, including models arising in fluid mechanics, plasma dynamics, elasticity, DNA
dynamics, and elsewhere. Such linear systems exhibit a fascinating range of as yet poorly
understood dynamical behaviors, whose qualitative features are tied to the large wave
number asymptotics of the underlying dispersion relation. These studies were then extended,
through careful numerical simulations, [12], to show that fractalization and quantization
also appear in a variety of nonlinear dispersive equations, including integrable models, such
as the nonlinear Schrödinger, Korteweg–deVries, and modified Korteweg–deVries equations,
as well as their non-integrable generalizations with higher degree nonlinearities, [7]. (It is
fascinating to speculate on possible alternate histories were Zabusky and Kruskal to have con-
ducted their original investigations with discontinuous initial data!) Some of these numerical
observations were subsequently rigorously confirmed in papers of Erdoğan and collaborators,
[13, 19, 20, 21]; see also earlier analytical work of Oskolkov, [41], and Rodnianski, [46].

Given that the Korteweg–deVries equation and its generalizations arise as continuum
models for FPUT chains, the question naturally arises as to whether dispersive fractalization
and quantization effects appear in the discrete FPUT system. Resolving this question is
the aim of this paper and its planned sequel(s). We initially focus our attention on the
much simpler linear system, which can be analytically integrated. We find that, on an
appropriately long time scale, the solutions to the periodic linear FPUT chain subject to
a step function initial displacement do exhibit a suitably interpreted discrete version of
fractalization. Although FPUT does not exhibit quantization in the sense that KdV does, we
do observe coarse-scale similarity between the FPUT and KdV profiles at quantized times,
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which could be interpreted as “approximate quantization”, in which the FPUT profile is the
superposition of a quantized profile with some sort of fractal “noise”. On the other hand, we
were as yet unable to detect any trace of revival in the discrete linear system, an observation
which remains not entirely understood. Indeed, there is a noticeable disparity between the
FPUT system and its continuum Korteweg–deVries model at such times. When the system
is subjected to a highly concentrated initial displacement — displacing a single mass in the
FPUT system or imposing a delta function in the Korteweg–deVries equation — at rational
long range times the Korteweg–deVries profiles exhibit revival by re-concentrating at a finite
number of locations, whereas the linear FPUT profile remains in a similar fractal form as its
nearby irrational times.

In the final section, we describe some numerical investigations in an initial attempt to
extend our analysis to fully nonlinear FPUT systems. We briefly survey the use of geometric
integrators that have been introduced to numerically integrate FPUT systems, including
symplectic integrators such as the Störmer/Verlet scheme and trigonometric integrators.
However, we find that these are insufficiently accurate at the high wave numbers that are
essential to our investigations, and so turn to a higher-order Hamiltonian splitting scheme to
effect the computations. In this paper, we shall exhibit some preliminary numerical data, for
a relatively small number of masses, that indicate these phenomena also appear in nonlinear
mass-spring chains when the nonlinearity is sufficiently small. However, owing to the time
scales involved and consequent large amount of computation required, we are currently
unable to treat chains with a sufficient number of masses that would allow us to definitively
address the basic question for nonlinear FPUT systems and generalizations thereof. And so
we defer the further development of more powerful analytical and numerical tools in order
to conclusively deal with this intriguing problem.

2. Fermi–Pasta–Ulam–Tsingou Chains and their Continuum Models.

The Fermi–Pasta–Ulam–Tsingou (FPUT) system consists of a one-dimensional chain of
masses that are connected by springs with nonlinear restoring forces, [22, 23, 42]. We will
only consider the case when all the masses and springs are identical. The dynamics of the
mass-spring chain follow immediately from Newton’s Laws, taking the form of a system of
second order ordinary differential equations for the mass displacements un(t) for n ∈ Z at
time t:

µ−2 d
2un
dt2

= F (un+1 − un)− F (un − un−1)

= un+1 − 2un + un−1 +N(un+1 − un)−N(un − un−1),

(2.1)

where µ is the resonant frequency of the linear spring. The forcing function has the form

F (y) = y +N(y) = V ′(y), with potential V (y) = 1
2 y

2 +W (y), (2.2)

where y indicates the elongation of an individual spring. The nonlinear intermass forcing
term is prescribed by N(y) = W ′(y). As in [62, 64], we will focus attention on the quadratic
case when

N(y) = αy2, (2.3)

although higher degree polynomials in y, particularly cubic, are also of great interest.
Another important system is the integrable Toda lattice, [55], where

V (y) = αeβ y. (2.4)
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Further examples include the Calogero–Moser integrable system and its trigonometric,
hyperbolic, and elliptic generalizations, [11, 34, 53], where

V (y) =
α

y2
or V (y) =

α

sin2 y
or V (y) =

α

sinh2 y
or V (y) = P(y), (2.5)

with P the Weierstrass elliptic function, as well as the Lennard–Jones potential, [28],

V (y) =
α

y12
− β

y6
, (2.6)

which is used to model interatomic and intermolecular dynamics.
In this note, we will concentrate on the periodic problem, viewing the system as a

circular chain consisting of M masses, which are labelled so that un1(t) = un2(t) whenever
n1 ≡ n2 modM . Alternatively, the case of an infinite chain, where the displacements of the
masses suitably decay at large distances, is important. However, since the continuum models
have smooth evolutionary behavior on the line — dispersive quantization being intimately
tied to the periodic boundary conditions — we do not anticipate any unexpected effects in
an infinite FPUT chain and so do not pursue it here. The Dirichlet problem, in which the
first and last masses are pinned down, so that u0(t) = uM (t) = 0, with n = 0, . . . ,M , is also
of interest, [62], but its analysis will be deferred to subsequent investigations.

Following [64, 62, 47, 48], we endeavor to better understand the discrete FPUT dynamics
by passing to a continuum model. To this end, we assume the masses lie on a circle of
fixed radius, say the unit circle of circumference 2π. As the number of masses M → ∞, the
equilibrium intermass spacing h = 2π/M → 0. To maintain consistency, the time must be
correspondingly rescaled, t ↦→ ht, and so we consider the system

d2un
dt2

=
c2

h2
[︁
F (un+1 − un)− F (un − un−1)

]︁
, (2.7)

where c = µh will be the wave speed of the limiting scalar wave equation; see below.
We can view the individual displacements as the sample values of an interpolating function

u(t, x) that is 2π periodic in x, so that

un(t) = u(t, xn), where xn = nh =
2πn

M
, n ∈ Z,

are the nodes or reference positions of the masses. To produce a continuum model, we apply
Taylor’s theorem to expand

un±1(t) = u(t, xn ± h) = u± hux +
1
2 h

2uxx ± 1
6 h

3uxxx + · · · ,

where the right hand side is evaluated at (t, xn). Substituting into (2.1) and replacing
xn ↦→ x, we arrive at the dispersive partial differential equation

utt = c2
(︁
K[u ] +Q[u ]

)︁
, (2.8)

with linear component

K[u ] = uxx +
1
12h

2uxxxx +O(h4), (2.9)

while Q[u ] is obtained by similarly expanding the nonlinear terms. For example, in the
quadratic case5 (2.3),

Q[u ] = 2αhuxuxx +
1
6 αh3

(︁
uxuxxxx + 2uxxuxxx

)︁
+O(h5). (2.10)

5For unexplained reasons, Zabusky, [62], is missing the term involving uxuxxxx.
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Thus, assuming the linear wave speed c and nonlinear scale parameter α are both O(1), we
obtain, to second order in h, the bidirectional continuum model

utt = c2
(︁
uxx + 2αhuxuxx +

1
12h

2uxxxx
)︁
, (2.11)

a potential form of the integrable (nonlinear) Boussinesq equation, [17],

vtt = c2
(︁
vxx + αh(v2)xx +

1
12h

2vxxxx
)︁
, (2.12)

which can be obtained by differentiating (2.11) with respect to x and replacing ux ↦→ v. Note
that, to leading order, the continuum model (2.11) coincides with the standard linear wave
equation utt = c2uxx with wave speed c > 0. The Korteweg–deVries equation is obtained
through a standard “unidirectional factorization” of the preceding bidirectional system,
[60], i.e., assuming the waves are only propagating in one direction, say in the direction of
increasing x, producing

ut + c
(︁
ux + αhuux +

1
24h

2uxxx
)︁
= 0. (2.13)

In more detail, one begins with the d’Alembert formula, [38], that represents the solutions
to the linear wave equation utt = c2uxx as a linear combination of of left and right-moving
waves, that, respectively solve the first order “factors” ut = cux, ut = −cux. For a higher
order or nonlinear perturbation, one seeks an expansion of, say, the right moving factor in
powers of the small parameters, where the individual terms, such as those appearing in the
Korteweg–deVries equation (2.13), are uniquely determined by requiring the expansion be
consistent with the underlying bidirectional model. See [60] for details.

Remark: For the cubically forced FPUT system, the unidirectional model is the integrable
modified Korteweg–deVries equation, [48, 62], in which the nonlinear term is a multiple of
u2ux. Higher degree polynomial forcing functions produce generalized Korteweg–deVries
equations with higher degree nonlinearities, which are no longer integrable, and, in fact, can
induce blow up of solutions, [7].

To initiate our investigations, let us ignore the nonlinear contributions and concentrate
on the linear FPUT system and its continuum models. The rescaled linear system becomes
what is known as the discrete wave equation, [42]:

d2un
dt2

=
c2

h2
(︁
un+1 − 2un + un−1

)︁
. (2.14)

Note that the parameter c2/h2 can be set to unity by further rescaling time, but for
comparative purposes with both the linearized continuum models and their nonlinear
counterparts, it is important to leave it in. The discrete wave equation, to the same order in
h, has bidirectional continuum model

utt = c2
(︁
uxx +

1
12 h

2uxxxx
)︁
, (2.15)

known as the linearized “bad Boussinesq equation”, [47], owing to the fact that it is an
ill-posed partial differential equation. Indeed, its dispersion relation is found by the usual
method, [60], of substituting the exponential ansatz

u(t, x) = e i (kx−ωt), (2.16)

producing the algebraic equation

ω2 = p4(k) = c2k2
(︁
1− 1

12 h
2k2

)︁
(2.17)
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relating the temporal frequency ω to the wave number (spatial frequency) k. Because
p4(k) < 0 for k ≫ 0, the bad Boussinesq model (2.15) is not purely dispersive since the
high wave number modes induce complex conjugate purely imaginary values of ω and hence
exponentially growing modes, [14], that underly the ill-posedness of the initial value problem.
Interestingly, the corresponding linearized unidirectional Korteweg–deVries model

ut + c
(︁
ux +

1
24h

2uxxx
)︁
= 0 (2.18)

does not suffer from this instability, since its dispersion relation

ω = ck
(︁
1− 1

24 h
2k2

)︁
, (2.19)

is everywhere real, and coincides with the Taylor expansion, at k = 0, of one of the two
branches of the bidirectional dispersion relation (2.17).

Remark: It remains somewhat mysterious to the authors how an ill-posed bidirectional
wave model can have right- and left-moving unidirectional constituents that are both well-
posed. This is clearly a consequence of the use of low wave number Taylor expansions of the
dispersion relation near k = 0 in the approximation procedure, but we would argue that this
seeming paradox warrants further study.

There are three common mechanisms for overcoming the illposedness of the Boussinesq
model, leading to slightly different well-posed models that all agree to order h2. For
completeness, we present these models next, noting that the second and third regularized
models exhibit very similar behavior in the present context.

The first way of regularizing the bad Boussinesq model is to replace it by the linearized
sixth order bidirectional Korteweg–deVries equation

utt =
(︁
c∂x +

1
24 ch

2∂3
x

)︁2
u = c2

(︁
uxx +

1
12 h

2uxxxx +
1

576 h
4uxxxxxx

)︁
, (2.20)

which agrees to order h2. It has solutions that are an exact linear combination of right- and
left-moving linear KdV solutions. Positivity of the right hand side of the corresponding
dispersion relation

ω2 = c2k2
(︁
1− 1

24 h
2k2

)︁2
= c2k2

(︁
1− 1

12 h
2k2 + 1

576 h4k4
)︁

(2.21)

implies well-posedness of this sixth order model.
Another means of regularizing the linear, and hence the nonlinear, continuum model is to

retain the order h4 terms in the preceding Taylor expansion. This produces the sixth order
linear partial differential equation

utt = c2
(︁
uxx +

1
12 h

2uxxxx +
1

360 h
4uxxxxxx

)︁
, (2.22)

with dispersion relation

ω2 = p6(k) = c2k2
(︁
1− 1

12 h
2k2 + 1

360 h4k4
)︁
. (2.23)

Since p6(k) > 0 for all k, the regularized model (2.22) is purely dispersive, and hence
well-posed, in that all Fourier modes maintain their form under translation.

An alternative regularization procedure that avoids increasing the order of the differential
equation is to replace two of the x derivatives in the fourth order term in the bad Boussinesq
equation (2.15) by t derivatives6, using the fact that, to leading order, uxx = c−2utt +O(h2),

6A similar device is used to derive the BBM or Regularized Long Wave model, [2, 60], which is a
non-integrable alternative to the Korteweg–deVries equation that nevertheless has nicer functional analytic
properties. See also [35, 36] for a variety of related higher order models for shallow water waves.
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thereby producing the continuum model

utt = c2uxx +
1
12 h

2uxxtt, (2.24)

known as the linear Boussinesq equation, [60, pp. 9, 462]. It arises as the linearization of
Boussinesq’s bidirectional model for shallow water waves, and has also been proposed as a
model for DNA dynamics, [49]. In this case, the dispersion relation is

ω2 = q(k) =
c2k2

1 + 1
12 h

2k2
≈ c2k2

(︁
1− 1

12 h
2k2 + 1

144 h4k4 + · · ·
)︁
> 0, (2.25)

and hence the equation is purely dispersive and well-posed.
Following this presentation of the continuum models, let us now derive the analogous

“dispersion relation” for the discrete linearized FPUT system (discrete wave equation) (2.14);
see also [63]. Substituting the usual exponential ansatz (2.16), evaluated at the node
x = xn = nh, into (2.14) produces

−ω2e i (kxn−ωt) =
c2

h2
(︁
e i (kxn+kh−ωt) − 2e i (kxn−ωt) + e i (kxn−kh−ωt)

)︁
= − 2c2

h2
(1− cos kh) e i (kxn−ωt).

(2.26)

We thus deduce the discrete FPUT dispersion relation

ω2 =
2c2

h2
(1− cos kh) =

4c2

h2
sin2 1

2 kh =
c2M2

π2
sin2

kπ

M
(2.27)

that determines the temporal frequencies ω in terms of the wave numbers k. Since ω(k) is real
for all k = 0, . . . ,M , the FPUT system can be regarded as dispersive, in that the different
Fourier modes propagate unchanged at different wave speeds. This implies “well-posedness”
or, more accurately, since we are dealing with a system of ordinary differential equations,
stability of the equilibrium solution. Moreover, observe that the continuum model dispersion
relations (2.17), (2.23), (2.21), and (2.25) all have the same order h4 Taylor expansion at
k = 0 as (2.27), and hence approximate it well at low or even moderately large wave numbers.
However, they exhibit rather different high wave number asymptotics, which, as noted in
[12], is the key property that governs the dispersive fractalization of rough solutions.

3. The Riemann Problem.

As in [12, 37], we are particularly interested in the Riemann problem — an initial value
problem of fundamental importance in the study of hyperbolic wave equations and shock
waves, [50]. Here, the initial displacement is a (periodically extended) step function:

u(0, x) =

⎧⎨⎩
1, 0 < x < π,

0, −π < x < 0,
1
2 , x = −π, 0, π,

(3.1)

whose values at integer multiples of π are specified in accordance with the convergence
properties of its Fourier series

u(0, x) =
1

2
+

2

π

∞∑︂
odd k=1

sin kx

k
. (3.2)
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We will also, for simplicity, impose zero initial velocity, concentrating on the pure displacement
problem:

ut(0, x) = 0, (3.3)

leaving the analysis of the effects of a nonzero initial velocity to a subsequent study. Given
a well-posed linear bidirectional continuum model equation, such as (2.20), (2.22), or
(2.24), with associated dispersion relation ω(k), the Fourier series for the solution to the
corresponding periodic initial value problem (3.1), (3.3) takes the form of a linear combination
of standing wave solutions:

u(t, x) =
1

2
+

2

π

∞∑︂
odd k=1

cosω(k) t sin kx

k
. (3.4)

By an elementary trigonometric identity, we can split the standing wave summands in (3.4)
into right- and left-moving unidirectionally propagating waves:

u(t, x) =
uR(t, x) + uL(t, x)

2
, (3.5)

where the factor of 1
2 is introduced for comparative purposes, ensuring that all three solutions

have the same initial displacement:

u(0, x) = uR(0, x) = uL(0, x).

The right-moving constituent is

uR(t, x) =
1

2
+

2

π

∞∑︂
odd k=1

sin
(︁
kx− ω(k) t

)︁
k

, (3.6)

and its left-moving counterpart is obtained by replacing t by − t. A key feature of such
series solutions that produces the dispersive fractalization and quantization effects is the
slow decay of their Fourier coefficients, which implies that they are conditionally but not
absolutely convergent.

The corresponding step function initial data for the discrete FPUT problem is obtained
by sampling (3.1) at the nodes. To make the connection, we will take the number of masses
to be even, M = 2m, and the nodes to be

x = xn = nh = πn/m, n = −m, . . . ,m,

identifying x−m = xm by periodicity. Thus, the initial data for the Riemann problem for
the FPUT system is given by

un(0) =

⎧⎨⎩
1, 0 < n < m,

0, −m < n < 0,
1
2 , n = −m, 0, m.

(3.7)

In other words, we displace each mass lying on the “right semicircle” by 1 unit, while those
on the left remain at their equilibrium position, except the two masses lying at the interface
that are displaced by only half a unit. As in (3.3), the masses are assumed to be at rest
initially:

■
un(0) = 0. (3.8)

We use the Discrete Fourier Transform to write the solution as a Fourier sum

u(t, x) ∼
m∑︂

k=1−m

ck(t)e
i kx, (3.9)



10 PETER J. OLVER AND ARI STERN

over the fundamental periodic modes, [39, Section 5.6], where the symbol ∼ will mean that
the left and right hand sides agree at the nodes, i.e., when x = xn. The Discrete Fourier
Transform applied to the sampled step function produces the interpolating discrete Fourier
sum

u(0, x) ∼ 1

2
+

1

m

m∑︂
odd k=1

cot 1
2 kh sin kx. (3.10)

In view of the dispersion relation (2.27), the resulting solution to the linearized FPUT chain
is

u(t, x) ∼ 1

2
+

1

m

m∑︂
odd k=1

cot 1
2 kh cosω(k) t sin kx

=
1

2
+

1

m

m∑︂
odd k=1

cot 1
2 kh cos

(︃
2ct

h
sin 1

2 kh

)︃
sin kx,

(3.11)

meaning that the displacement of the n-th mass is given by sampling the right hand side at
the nodes:

un(t) = u(t, xn), xn = nh =
πn

m
. (3.12)

Again, the solution (3.11) is a linear combination of standing waves, and can be decomposed
into left and right moving constituents, as in (3.5). The right-moving constituent has the
explicit form

uR(t, x) ∼ 1

2
+

1

m

m∑︂
odd k=1

cot 1
2 kh sin

(︃
kx− 2ct

h
sin 1

2 kh

)︃
. (3.13)

As above, its left-moving counterpart is obtained by replacing t by − t.

Remark: Note that if we omit the constant term, the bidirectional solutions constructed
in (3.4), (3.11) also satisfy Dirichlet boundary conditions, with a half-size signum function
as initial condition: u(t, x) = 1

2 sgnx for −π < x < π. Thus, all our subsequent remarks on

their behavior also apply to this Dirichlet initial-boundary value problem. On the other hand,
their unidirectional constituents do not individually satisfy Dirichlet boundary conditions.

As shown in [37, 41], the canonical linearized Korteweg–deVries equation

uτ + uξξξ = 0 (3.14)

with step function initial data and periodic boundary conditions on −π ≤ ξ ≤ π exhibits
dispersive fractalization and quantization in the following sense. At irrational times τ > 0,
meaning τ/π ̸∈ Q, the solution profile u(τ, ξ) is a continuous but non-differentiable fractal.
On the other hand, at rational times, τ/π ∈ Q, the solution is discontinuous, but piecewise
constant! Indeed, if τ = 2πp/q where p, q ∈ Z have no common factors, then the solution
is constant on the intervals 2πj/q < ξ < 2π(j + 1)/q for j ∈ Z. Thus, the larger the
denominator q, the shorter the intervals of constancy. (It is possible that the solution
achieves the same constant value on one or more adjacent intervals, and so an interval of
constancy may be larger than specified above. See [40] for a number-theoretic investigation
into when this occurs.) A rigorous proof of the fractal nature of the solution at irrational
times, including the estimate that its fractal dimension d is bounded by 3

2 ≤ d ≤ 7
4 , can be

found in [19].
Indeed, the results of [19] imply that a linear evolutionary integro-differential equation

with dispersion relation that is (in an appropriate sense) asymptotic to a power of k at large
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wave numbers, ω(k) ∼ kα as k → ∞, for 1 ̸= α > 0, exhibits fractalization at almost all
times, provided the initial data is of bounded variation, but not too smooth, meaning it does
not lie in any Sobolev space Hβ for β > 1

2 , i.e., its Fourier coefficients cn decay sufficiently

slowly so that the series
∑︁

(1 + n2)β | cn |2 diverges. Moreover, if the asymptotic exponent

α is integral, 2 ≤ α ∈ Z, numerical experiments, [12], indicate that the solution profiles
quantize at other times, in the sense that they take a different form from the “generic” fractal
profiles: piecewise smooth with either jumps or cusps, possibly with some much smaller
fractal modulation superimposed. However, being so far based on numerical calculations, it
is not yet known if the observed small scale fractals on the quantized profiles are genuine or
just a manifestation of numerical error. See the recent preprint [8] for further interesting
developments.

Warning : The fractal dimension of the graph of a function can be misleading. For example,
the graph of the sinusoidal function f(x) = sin(1/x) has fractal dimension 2 even though it
is perfectly smooth, even analytic, except at the singularity at x = 0. For this reason, the
results in [19], while striking, are, on a deeper level, unsatisfying. It would be preferable to
know, or at least have estimates on, the Hausdorff dimension of (sections of) such solution
profiles; however this seems to be beyond current analytic capabilities.

Turning our attention to the linearized Korteweg–deVries model (2.18), the leading first
order term cux represents linear transport moving at speed −c, and only affects each solution
profile by an overall translation. We can map (2.18) to the preceding canonical form (3.14)
by a Galilean shift to a moving coordinate frame, coupled with a rescaling of the time
variable:

ξ = x− ct, τ = 1
24 ch

2 t. (3.15)

Due to the temporal scaling, the dispersive quantization pattern occurring in the solution to
the canonical KdV equation (3.14) at a rational time τ = 2πp/q will now appear (suitably
translated) at a much later time, namely t = 48πp/(ch2q). Since the normalized model
(3.14) exhibits quantization at every rational time, the same is true (modulo the scaling factor
used to distinguish rational from irrational) of the FPUT model version (2.18). However, in
the latter model, at a rational time t = O(1), the denominator q will be very large, of order
O(h−2), hence the intervals of constancy are extremely small, O(h2), and thus undetectable
at the physical level, which has spatial scale ∆x = O(h). At such scales, both physical and
graphical, it will be practically impossible to distinguish such profiles from fractals.

Now let us compare the solution to the periodic Riemann initial value problem for the
discrete linear Fermi–Pasta–Ulam–Tsingou system (2.14) with those of the three well-posed
linear model equations: the bidirectional Korteweg–deVries model (2.20), the sixth order
model (2.22), and the regularized Boussinesq model (2.24). For our numerical comparisons,
we sum the same modes in the discrete and continuous Fourier series, truncating at k = m,
and plot the resulting profile; in other words, we are performing exact (well, modulo floating
point round off) computations on the truncated (discrete) Fourier series and not a numerical
approximation. The initial data is a (periodically extended) step function. In the continuum
models, one can work with either the continuous Fourier series representation of the initial
data (3.2), or the corresponding discrete Fourier sum (3.10). However, in the given situations,
we observe no appreciable differences between the associated solution profiles, and hence
will use the discrete version in all figures representing solutions to the Riemann initial value
problem. We fix the wave speed c = 1, and, for most of our numerical investigations, work
with m = 512, so there are M = 1024 masses and h = π/m ≈ .006136. Solutions for other
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Figure 1. Bi- and uni-directional solution profiles at t = 1
5 π.
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Figure 2. Bi- and uni-directional FPUT solution profiles at short times.

numbers of masses have been calculated, and the overall conclusions are similar, although
the fewer their number, the less pronounced some effects tend to be.

The first observation is that, on the time scale and resolution under consideration, there is
almost no noticeable difference between the sixth order and regularized Boussinesq models,
and so we choose only to display the results for the latter. We will plot both the bidirectional
solution u(t, x), as given in (3.4), (3.11) and its unidirectional right-moving constituent
(3.6), (3.13). We consider the effects at times that are selected from three regimes: what
we will call short times, where t = O(1), medium times, where t = O(h−1), and long times,
where t = O(h−2).

First, on short time scales, the solutions to all four models exhibit little appreciable
difference. For example, consider the profiles at t = 1

5 π graphed in Figure 1 — the top
row being the full bidirectional solution and the bottom row its right-moving unidirectional
constituent. Since all profiles remain rather similar at short times, in Figure 2 we just graph
the FPUT solution profiles. What we observe is that, on the short time scale, the solution is
an oscillatory perturbation of the traveling wave solution to the corresponding limiting bi-
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Figure 3. Bi- and uni-directional FPUT solution profiles at medium times.

and uni-directional wave equations7

utt = uxx, ut + ux = 0. (3.16)

In particular, at t = 1
2 π, the right- and left-moving waves have cancelled each other out,

leaving only a constant solution profile for the traveling wave solution, with a superimposed
fractal residue in the FPUT system and its continuum models, all three of which take on a
comparable form.

At medium times, of order O(h−1), the fractal nature of the oscillations superimposed
upon the traveling wave solution profile has become more pronounced. Again, both the
FPUT system and its continuum models exhibit similar behavior; Figure 3 graphs the
former at some representative medium times. When we decrease the number of masses, the
unidirectional profiles look fairly similar modulo translation due to a change in the average
wave speed. The bidirectional profiles look different, because translating the unidirectional
profiles leads to different interference patterns. The overall amplitude of the superimposed
fractal oscillations remains similar, but their frequencies are related to the number of masses;
in other words, when more masses are present, more high frequency modes are excited.

Once we transition to the long time scale, of order O(h−2), significant differences arise in
the observed behaviors. First let us consider the solution profiles at the irrational (meaning
that h2 t/π ̸∈ Q) times t = 1/h2 ≈ 26561 and t = 400000, plotted in Figures 4 and 5. All
three profiles are of a similar fractal form, albeit with differences in their small scale features.
The unidirectional constituents are more uniformly fractal, while the bidirectional solutions
exhibit some semi-coherent regions, perhaps indicating some remnant of the intervals of
constancy of a nearby rational profile.

However, at long rational times, the solution profiles differ dramatically, as illustrated
in Figures 6 and 7 for two representative such times. The linearized KdV solution has
quantized into a piecewise constant profile, whereas the FPUT system and the Boussinesq
models retain a common fractal form. On the other hand, the latter profiles exhibit an
observable adherence to the underlying piecewise constant KdV solution, albeit with a
superimposed fractal modulation. As before, as one increases the number of masses, the
relative amplitudes of the fractal parts remain similar, but the magnitude of the frequencies

7Recall that we have set c = 1.
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Figure 4. Bi- and uni-directional solution profiles at t = 1/h2 ≈ 26,561.
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Figure 5. Bi- and uni-directional solution profiles at t = 400,000.

represented in the fractal oscillations increases. Recall that the initial data is the discrete
Fourier representation (3.10) of the step function. Interestingly, if we use the continuous
version (3.2) instead, which only differs in its higher frequency modes, the graphs do not
appreciably change, and so are not displayed. The only noticeable difference is that, in
the latter situation, the piecewise constant KdV profile exhibits a more pronounced Gibbs
phenomenon at the discontinuities.

Now, one might argue that the differences between the quantized KdV profiles and the
fractal FPUT ones is due to discrepancies in their dispersion relations at the high frequency
modes. So let us try eliminating the higher frequency terms by truncating the Fourier sum
in order to bring the solutions closer in spirit. It is surprising that one must eliminate a
large majority of the high frequency modes before their respective truncated solution profiles
begin to align at the rational quantized times; on the other hand, at the irrational fractalized
times they are quite similar no matter how one truncates.

Keeping in mind that we are working with m = 512 total modes, the first plots in Figure 8
are at the same quantized time illustrated in Figure 6, and show the results of summing
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Figure 6. Bi- and uni-directional solution profiles at t = 24π/(5h2) ≈ 400,527.
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Figure 7. Bi- and uni-directional solution profiles at t = 24π/h2.

the first 1/8, 1/16, and 1/32 of the terms in the discrete Fourier summation (i.e., 64, 32,
and 16 terms). The top row shows the resulting truncated profiles for the unidirectional
FPUT solution (3.13), while the bottom row shows the corresponding truncated KdV profile
(3.6). Somewhat surprisingly, even retaining 1/8 of the modes leads to significant differences;
these differences persist (albeit more subtly) at the 1/16 scale, and only at the very coarse
1/32 scale do they look very close. On the other hand, in Figure 9, which illustrates the
same results at the irrational time that were shown in Figure 5, all three pairs of truncated
profiles exhibit very similar features, while, as expected, the overall local fractal nature of
the profile is curtailed as the number of terms decreases.

Of course, the FPUT mass-spring chain is not a continuum, and so the values of the
trigonometric solution (3.11) — or its unidirectional counterpart (3.13) — only have physical
meaning at the mass nodes. For the above cases of M = 1024 masses, the differences are
imperceptible. To better illustrate, in Figure 10 we plot solution profiles for M = 64 masses,
at selected times, comparing the discrete mass displacement profiles, the corresponding
continuum FPUT bidirectional solution (3.11), and the continuum bidirectional solution
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Figure 8. Truncated unidirectional solution profiles at t = 24π/(5h2) ≈ 400,527.
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Figure 9. Truncated unidirectional solution profiles at t = 400,000.

(3.4) with KdV dispersion (2.19). Observe that the effects are quite similar to what was
presented above, but less pronounced owing to the relatively small number of masses.

Finally, let us investigate whether the Talbot revival phenomenon mentioned in the
introduction appears in the FPUT system. Somewhat surprisingly, given the noticeable
effects of dispersive quantization at long rational times, numerical experiments have failed
to reveal any observable trace of revival.

To model the delta function initial displacement, we displace the center mass by a unit8.
(This is equivalent to equipartitioning the initial energy into all the Fourier modes.) Figure 11

8Since we are dealing with a linear system, the magnitude of the displacement of the single mass does not,
modulo rescaling, affect the response.
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Figure 10. Bidirectional solution profiles for the discrete and continuum
FPUT system and the KdV model with m = 32.

plots the resulting solutions, in the case of M = 64 masses, whose initial data is the (Fourier
series for) the delta function, at the indicated long rational times. These, as always, are
obtained by explicitly summing over the first m = 32 modes. Keep in mind that the Fourier
series of the delta function and resulting fundamental solution to the continuum model is
highly oscillatory, and only converges weakly to the distributional revival profile, consisting
of a finite linear combination of delta functions, at rational times. The first column plots
the solutions to the bidirectional KdV model; the discrete oscillatory peaks indicate the
appearance of a revival. The second column plots the corresponding FPUT solution; here,
there is no appreciable sign of concentration of the solution profiles and hence no apparent
revival. Similar behaviors have been observed at other (long) times, with differing number of
masses. The KdV profiles are fractal at irrational times and concentrated in accordance with
a revival at rational times, whereas the FPUT profiles are more or less uniformly oscillatory
at all times. Thus, the Korteweg–deVries equation appears to do a poor job modeling the
behavior of the FPUT system at these particular times.

4. Numerical Investigation of Nonlinear FPUT Chains.

For the linear problems featured in the previous sections, Fourier series techniques make it
possible to compute exact solutions (up to floating point error) for extremely long times at
rather low computational expense—essentially the cost of a Fast Fourier Transform (FFT).
However, once nonlinearity is introduced, the resulting systems of differential equations can
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Figure 11. Revival and lack thereof.

usually only be solved approximately, by using a numerical integrator with sufficiently small
time step size. Since the FPUT system is Hamiltonian, it is natural to consider the class of
symplectic integrators, which have excellent long-time numerical properties for Hamiltonian
systems, including near-conservation of energy and slow growth of global error, [26].

There has been substantial investigation of the application of symplectic integrators (and
other geometric numerical integrators) to the variant of the FPUT problem appearing in
[25], with alternating stiff linear and soft nonlinear springs. Much of this work has focused
on methods, such as trigonometric and modified trigonometric integrators, which can take
large time steps in order to simulate the slow-scale nonlinear dynamics without needing to
resolve the fast-scale linear oscillations. See [26, Chapter XIII] for a survey and [51, 32] for
more recent work on modified trigonometric integrators, including the IMEX method.

However, the phenomenon of dispersive quantization is quite delicate and requires the
accurate resolution of high wave number oscillations, [12]. To illustrate the challenge this
poses, we begin by considering the application of two widely-used symplectic integrators, the
explicit Störmer/Verlet method and implicit midpoint method, to the harmonic oscillator
■■
y = −ω2y, ω ≥ 0. Let yj ≈ y(j∆t) denote the approximation produced by the method at
the jth time step, where ∆t is the time step size. The Störmer/Verlet method gives

yj+1 − 2yj + yj−1 = −(ω∆t)2yj , (4.1)

and substituting the exponential ansatz yj = e i ˜︁ωj∆t yields, by a similar calculation to
(2.26)–(2.27),

sin2 1
2˜︁ω∆t =

(︁
1
2ω∆t

)︁2
=⇒ ˜︁ω =

2

∆t
arcsin 1

2 ω∆t = ω
(︂
1+ 1

24(ω∆t)2+O
(︁
(ω∆t)4

)︁)︂
. (4.2)

Hence, the Störmer/Verlet method produces harmonic oscillations with modified frequency˜︁ω. Note that |12ω∆t| ≤ 1 is necessary for ˜︁ω to be defined, and this is precisely the linear
stability condition for Störmer/Verlet. Similarly, the midpoint method gives,

yj+1 − 2yj + yj−1 = −
(︁

1
2 ω∆t

)︁2
(yj+1 + 2yj + yj−1), (4.3)

and substituting the exponential ansatz yields

tan2 1
2˜︁ω∆t = (12 ω∆t)2 =⇒ ˜︁ω =

2

∆t
arctan 1

2 ω∆t = ω
(︂
1− 1

12(ω∆t)2+O
(︁
(ω∆t)4

)︁)︂
. (4.4)
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Figure 12. Numerical approximation of the bidirectional KdV solution
profile with m = 512 at t = 24π/(5h2), showing the effect of time step size
∆t for the Störmer/Verlet method (top) and midpoint method (bottom).
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Figure 13. Numerical approximation of the bidirectional KdV solution
profile with m = 32 at t = 24π/h2, showing the effect of time step size ∆t
for the Störmer/Verlet method (top) and midpoint method (bottom).

In contrast to Störmer/Verlet, this modified frequency is defined without restrictions on
ω∆t, which reflects the unconditional linear stability of the midpoint method.

Figure 12 illustrates the effect of replacing ω by the modified frequencies ˜︁ω in the dispersion
relation for the bidirectional KdV model with m = 512 and t = 24π/(5h2), showing that
quantization does not become visible unless ∆t is very small, much smaller than needed
for numerical stability. At ∆t = 10−4, the solution profile is qualitatively indistinguishable
from the fractal profiles of the FPUT and Boussinesq models in Figure 6. The first hints
of quantization are visible at ∆t = 10−5, and only by ∆t = 10−6 does the solution appear
to have converged sufficiently to the true, quantized KdV profile. Since t ≈ 4 · 105 such
a simulation would require on the order of 1011 time steps to observe quantization, even
before the effects of nonlinearity are taken into account. Figure 13 repeats this experiment
for a shorter chain with m = 32 and t = 24π/h2 ≈ 8 · 103 (compare Figure 10), where
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∆t = 10−2 ∆t = 10−3 ∆t = 10−4

α = 0.005
Störmer/Verlet 4.347e-03 4.332e-05 4.331e-07

Split-Step Fourier 1.423e-06 1.421e-08 1.474e-10

α = 0.05
Störmer/Verlet 4.348e-03 4.333e-05 4.332e-07

Split-Step Fourier 1.429e-05 1.427e-07 1.427e-09

α = 0.5
Störmer/Verlet 4.544e-03 4.529e-05 4.529e-07

Split-Step Fourier 1.895e-04 1.891e-06 1.891e-08

Table 1. Numerical error of Strang splitting methods at t = 1 for the FPUT
model with m = 32 and quadratic nonlinearity N(y) = αy2.

quantization occurs earlier and the time step size restriction is less severe, requiring on the
order of 107 steps.

To overcome the computational obstacle of small step size, we turn to higher-order
Hamiltonian splitting methods, cf. [26, 33], which converge more quickly as ∆t → 0 while
still preserving symplectic structure. Write the FPUT system (2.7) in the first-order form

■
un = vn,

■
vn =

c2

h2
[︁
F (un+1 − un)− F (un − un−1)

]︁
,

(4.5)

where F (y) = y + N(y). There are two natural ways to split this into two Hamiltonian
systems, each of which can be integrated exactly. The first is

■
un = vn,

■
un = 0,

■
vn = 0,

■
vn =

c2

h2
[︁
F (un+1 − un)− F (un − un−1)

]︁
,

(4.6)

where each of these can be integrated exactly since v is constant in the first system and u is
constant in the second. The second splitting is

■
un = vn,

■
un = 0,

■
vn =

c2

h2
(un+1 − 2un + un−1),

■
vn =

c2

h2
[︁
N(un+1 − un)−N(un − un−1)

]︁
,

(4.7)

where the first system is simply linear FPUT, which can be integrated exactly using the
Fourier series techniques applied previously. Splitting methods approximate the time-∆t
flow of the full system by alternating between the flows of the two subsystems, which we
denote by φA

ai∆t and φB
bi∆t, where

∑︁
i ai =

∑︁
i bi = 1.

One of the simplest splitting methods is φB
∆t/2 ◦ φ

A
∆t ◦ φB

∆t/2, called Strang splitting, [52].

For the splitting (4.6), this results in a first-order formulation of the Störmer/Verlet method,
sometimes called velocity Verlet. Alternatively, for the splitting (4.7), where the linear flow
φA
∆t is computed using Fourier series techniques, the Strang splitting gives the so-called

split-step Fourier method. Whenever the composition of flows is symmetric, the resulting
method has even order, and in particular, the Strang splitting is order-2.

For the linear FPUT system, the split-step Fourier method gives the exact solution in a
single step. However, once nonlinearity is introduced, we find that the split-step Fourier
method has only modest benefits over Störmer/Verlet, which are outweighed in practice by
the additional cost of performing an FFT and inverse FFT at every step. Table 1 illustrates
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Figure 14. Bidirectional solution profiles for the discrete FPUT system
with m = 32 and quadratic nonlinearity N(y) = αy2.

this for the quadratic nonlinearity N = αy2, showing that the error in Störmer/Verlet is
O
(︁
(∆t)2

)︁
uniformly as α → 0, while the split-step Fourier method is O

(︁
α(∆t)2

)︁
. Therefore,

we focus our attention on methods based on the splitting (4.6), whose steps are less expensive
to compute since they do not require transforming to Fourier space and back.

Runge–Kutta–Nyström (RKN) methods are designed specifically for splittings of the form
(4.6), i.e., for second-order Newtonian systems written in first-order form using a velocity
variable. Of these, we chose the optimal 14-stage order-6 RKN method of Blanes and Moan,
[6], which has the symmetric form

φA
a1∆t ◦ φB

b1∆t ◦ · · · ◦ φA
a7∆t ◦ φB

b7∆t ◦ φA
a8∆t ◦ φB

b7∆t ◦ φA
a7∆t ◦ · · · ◦ φB

b1∆t ◦ φA
a1∆t, (4.8)

where the coefficients ai, bi are

a1 = 0.0378593198406116, b1 = 0.09171915262446165,

a2 = 0.102635633102435, b2 = 0.183983170005006,

a3 = −0.0258678882665587, b3 = −0.05653436583288827,

a4 = 0.314241403071447, b4 = 0.004914688774712854,

a5 = −0.130144459517415, b5 = 0.143761127168358,

a6 = 0.106417700369543, b6 = 0.328567693746804,

a7 = −0.00879424312851058, b7 =
1
2 − (b1 + · · ·+ b6),

a8 = 1− 2(a1 + · · ·+ a7).

(4.9)

Blanes and Moan calculated these coefficients to minimize the constant in the order-6 error
estimate. Although a step of this method is 14 times as expensive as a step of Störmer/Verlet,
it requires vastly fewer steps owing to its faster convergence. For the linear FPUT problem
with m = 32 and t = 24π/h2, we observe that the Störmer/Verlet method gives an error on
the order of 10−3 for 108 steps and 10−5 for 109 steps; by contrast, the RKN method gives
an error on the order of 10−3 for only 105 steps and 10−9 for 106 steps.
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Figure 14 shows discrete solution profiles at t = 7500 and t = 24π/h2 ≈ 7822 for the
FPUT model with m = 32 and quadratic nonlinearity N(y) = αy2, computed using the
Blanes–Moan RKN method with 106 time steps. For α = 0.005, the solutions are nearly
identical to the linear discrete FPUT profiles observed in Figure 10. As the strength of
the nonlinearity increases, we observe noticeably different profiles at α = 0.05 and 0.5.
However, unlike with the KdV model, we still do not observe any dispersive quantization,
and there does not appear to be any qualitative difference between the profiles at t = 7500
and t = 24π/h2, just as with the linear FPUT model.

In summary, owing to lack of sufficient computational power to increase the number of
masses — which simultaneously requires extending the time interval of interest — we are
as yet unable to definitely say to what extent dispersive fractalization and quantization
appears in nonlinear periodic FPUT chains. Nevertheless, we feel reasonably confident in
stating that there is a noticeable effect, that is certainly worthy of further investigation.
Our claim is bolstered by the appearance of these phenomena in a range of nonlinear
model partial differential equations, [12] with rigorous estimates of the fractal dimension of
the profiles at irrational times provided in [13, 19], most relevantly the Korteweg–deVries
equation which arises as a continuum model for the quadratic FPUT system and the modified
Korteweg-deVries equation, which arises for the cubic version.

5. Discussion.

In conclusion, we have shown that the solution to the periodic linear Fermi–Pasta–Ulam–
Tsingou chain, with a step function as initial displacement and zero initial velocity, exhibits
a fractal-like solution profile at large times, namely t = O(h−2) = O(M2), where M is
the number of masses, and h their spacing around the unit circle. Of course, being purely
discrete, the solution cannot be genuinely fractal, even when extended into a continuous
trigonometric interpolating function, because it only involves a sum over a finite number
of Fourier modes. Moreover, it does not become fractal in the final h → 0 limit since the
limiting equation is merely the very basic linear second order wave equation (3.16), whose
solution is a combination of traveling waves, and hence piecewise constant at all times.
Indeed, as h → 0, all of the observed behavior on medium and long time scales moves off
to infinity, and the solution converges (weakly) to the corresponding solution to the simple
limiting wave equation, with all times now being classified as “short”. On the other hand, all
of the regularized bidirectional continuum models have genuinely fractal solutions at a dense
set of times, which closely follow the FPUT solution at the given resolution. In contrast, the
bi- and uni-directional Korteweg–deVries models mimic the FPUT and Boussinesq solutions
at irrational times, but exhibit a very different dispersive quantization profile at rational
times. Be that as it may, the latter solutions retain an observable trace of the overall
quantized character within their fractal profiles. Finally, the lack of any noticeable form of
revival in the FPUT system is, in light of the previous results, not well understood. For
this initial value problem, where the energy is uniformly distributed over all wave numbers
due to a concentrated initial displacement of a single mass, there is a noticeable disparity
between the Korteweg–deVries profiles and those of the FPUT system at such times.

The next stage of this project will be to investigate which of these properties, if any, carry
over to the other nonlinear FPUT systems and other nonlinear lattices of interest. Keeping
in mind the numerical observations of dispersive quantization in the Korteweg–deVries
equation and its generalizations, [12], we expect that this will indeed be the case. Numerical
schemes that retain accuracy over long times, while allowing for efficient computation of
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longer chains, will be essential to this endeavor. This may require the construction of novel
numerical methods, e.g., exponential-type Fourier integrators in the spirit of [27], in addition
to the splitting methods considered above.
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