Triangle Counting with Cyclic Distributions

Andrew Lumsdaine*, Luke Dalessandrot, Kevin Deweese*, Jesun Firoz', Scott McMillan®
*University of Washington, tPacific Northwest National Lab, Indiana University, §CMU/Software Engineering Institute
*{al75, deweeskg} @uw.edu, T{andrew.lumsdaine, jesun.firoz} @pnnl.gov, i1dalessa@iu.edu, $smcmillan@sei.cmu.edu

Abstract—Triangles are the simplest non-trivial subgraphs and
triangle counting is used in a number of different applications.
The order in which vertices are processed in triangle counting
strongly effects the amount of work that needs to be done (and
thus the overall performance). Ordering vertices by degree has
been shown to be one particularly effective ordering approach.
However, for graphs with skewed degree distributions (such as
power-law graphs), ordering by degree effects the distribution of
work; parallelization must account for this distribution in order
to balance work among workers. In this paper we provide an in-
depth analysis of the ramifications of degree-based ordering on
parallel triangle counting. We present approach for partitioning
work in triangle counting, based on cyclic distribution and some
surprisingly simple C++ implementations. Experimental results
demonstrate the effectiveness of our approach, particularly for
power-law (and social network) graphs.

I. INTRODUCTION

At the 2017 HPEC conference, one of this paper’s authors
(AL) presented a simple C++ implementation of parallel
triangle counting to demonstrate the capabilities of the C++
standard library and its parallelization mechanisms (e.g., asyn-
chronous tasking). A challenge was issued to the community
to develop a better performing, but similarly concise, im-
plementation. The presented algorithm incorporated features
that, when combined with degree-based ordering, results in
a very fast simple implementation that is quite competitive
when compared to highly optimized shared memory imple-
mentations (notably for graphs with highly skewed degree
distributions), as will be shown in our contribution (Team
NWGraph) to an upcoming paper in IISWC [1].

With the challenge algorithm as a jumping-off point, this
paper takes a deeper look at what algorithmic and imple-
mentation details are necessary to obtain high performance
in parallel triangle counting. We focus on the following: the
triangle counting algorithm, the graph representation, ordering
the graph by degree, efficient set intersection, and effective
parallel load balancing. Although triangle counting is a fairly
well-studied algorithm, much of the development and rigor-
ous study has focused on sequential complexity. In addition,

*Partially supported by NSF SI2-SSE Award 1716828 and DOE PSAAP
II Award DE-NA0002377
Funding for this work was partially provided by the High Performance
Data Analytics (HPDA) program at Pacific Northwest National Laboratory.
This research was also supported by PNNL’s Segmented Global Address
Space (SGAS) LDRD Initiative.
§Palrtially supported by DOE PSAAP II Award DE-NA0002377
This material is based upon work funded and supported by the Department
of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a federally
funded research and development center. [DM20-0658]

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

and

corresponding representation as a sparse matrix.

achieving high levels of performance in parallel also requires
an approach to load balancing that interacts harmoniously with
all of the other aspects of the algorithm.

II. BACKGROUND
A. Triangle Counting

Given an undirected graph G = {V, E}, a triangle is a
triple of vertices v;, v;, Uk, €ach in the vertex set V' such that
the three edges {v;,v;}, {v;, v} and {vg, v;} are in the edge
set E. If we further require that ¢ < j < k, each such triple
is unique. Algorithms for triangle counting seek to find the
cardinality of the set of unique triangles.

An exhaustive (and inefficient) algorithm is simply to ex-
amine all triples of edges:

a0

for each edge {v;,v;} € E,i < j do

if 3k < st {vk,vi} € F and {vk,vj} € E then
a+—a+1

There are some important aspects of the problem structure
that can be exploited to improve computational complexity of
triangle counting; a thorough exposition of triangle counting
algorithms can be found in [2]. Despite AL’s (exaggerated)
reputation for antipathy towards graph algorithms based on
linear algebra, sparse matrix interpretations of triangle count-
ing provide valuable intuition about these exploits.

In sparse matrix terms, a triangle exists if there are entries
(i,7), (4,k), and (k,?) in the sparse matrix representation
of the graph. Since we have ¢ < j < k, we only need to
consider one triangle of the sparse matrix (we consider the
upper triangle as shown in Figure 1, in which case we look
for entries (4,7), (j, k), and (i, k)). That is, given a vertex ¢,
we consider all of the edges (4, j) to its neighbors with 7 < j.
For each such neighbor j, we look at all of its neighbors k as
well as the remaining neighbors of 7. If the same neighbor &
appears for both ¢ and and j, then there is a triangle {4, j, k}.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on June 30,2021 at 21:08:37 UTC from IEEE Xplore. Restrictions apply.

We thus have the following (the count is stored in «):
a0
for i =0,1...|V|—1do
for Each neighbor j of 4, j > i do
a <+ a+ |Nb(i,j7) N

Here, |Nb(i,7)|J Nb(j)| means the number of intersections
between the neighbors of ¢ (that are greater than j) and the
neighbors of j.

B. Implementation

This triangle counting algorithm can be realized in C++ as
shown in Figure 2. The details are explained in Section IV but
of note here is that the implementation is essentially a direct
transliteration of the algorithm. Moreover, the implementation
(as does the algorithm) makes no assumptions about the
specific storage format of the graph — only that neighbor lists
are stored as “forward ranges”, that all of the neighbor lists
are stored as a “random-access range”, and that within each
neighbor list, the vertex ids are stored in sorted order.

C. Shared-memory Triangle Counting Algorithms

A plethora of works have been done in the context of
triangle counting algorithms. For example, Shun et al. [3]
presented cache-oblivious shared-memory triangle counting
algorithms based on Latapy’s sequential algorithms [2]. Sub-
sequent work by Parimalarangan et al. [4] classified triangle
counting algorithms into adjacency intersection (AI)-based
and adjacency marking (AM)-based methods. They applied a
canonical representation of the vertex triple (u, v, w), based on
degree ordering, to avoid counting triangles more than once.
They enumerate possible triangle counting algorithms based
on degree ordering. Similar approaches have been taken in [5]
too. However, partitioning of work across different threads was
left to the OpenMP scheduler (dynamic scheduling) in previ-
ous works. In this paper, we show that not only preprocessing
such as vertex ordering is helpful for optimal work scheduling,
but also distributing the workload in a cyclic manner results
in the best performance of a triangle counting algorithm for
an interesting set of input graphs.

In addition to the vertex-centric approaches to triangle
counting, efficient linear algebra-based triangle counting ((L X
L). x L) have also been proposed ([6]-[9]). However, linear
algebra-based triangle counting imposes an additional memory
requirement due to the temporary storage to compute inter-
mediate sparse matrix-sparse matrix multiplication. Masking
and specialized fusion operation are required too. Furthermore,
in [8], distribution of work in terms of greedy block parti-
tioning, similar to our balanced block partitioning, has been
considered only with Cilk.

III. HIGH PERFORMANCE TRIANGLE COUNTING

While many triangle counting implementations rely on the
basic idea shown in Figure 2, high performance triangle
counting on large graphs will need additional improvements
for reasonable performance. We aim to incorporate these

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

improvements while not straying too far from the simplicity
of Figure 2.

One such improvement is to triangularize the adjacency
matrix. The information required to count all triangles is
available in either the upper or lower triangular sections of
the adjacency matrix so using the full adjacency matrix will
require more work than necessary. Instead one can preprocess
a graph to contain only successor edges, edges from vertices to
neighbor vertices with a higher index. This corresponds to the
upper triangular portion of the adjacency matrix. Alternatively
one can use predecessor edges which correspond to the lower
triangular portion of the adjacency matrix.

In order to minimize the total amount of work, it is often
important to relabel vertices according to vertex degree. This
is equivalent to permuting the rows and columns of the
matrix (aka “diagonal pivoting”). While this can reduce the
total amount of sequential work, the net effect is to group
all of the high-degree vertices together, which can interfere
with partition-based load balancing (the highest-degree nodes
end up in the same partition). However, different workload
distributions can be used to improve load balancing.

In the rest of this section we explore these ideas and
illustrate their benefits on some smaller test graphs from the
SuiteSparse matrix collection [10], whose sizes are shown in
Figure 4. We analyze these approaches using the number of
element comparisons in the set intersection step of triangle
counting as a proxy for total work. Full timing experiments
with large-scale graphs are given in Section Section V.

A. Degree Reordering

The goal of ordering graphs for efficient triangle counting
is closely related to determining orderings for minimizing
fill in sparse direct methods for LU factorization [11]. Pop-
ular heuristic algorithms for this include Reverse Cuthill-
McKee [12], Modified Minimum Degree [13], and Approx-
imate Minimum Degree [14]. Beyond fill minimization, or-
dering techniques have been applied to improve the perfor-
mance of some graph kernels (such as BFS, Single-source
shortest Paths (SSSP), PageRank and subgraph counting) in a
distributed setting [15]. The effects of degree-based ordering
on the performance of triangle counting have been noted by
numerous authors (e.g., [2]-[4], [16]).

Reordering vertices can affect how many vertex compar-
isons are performed when intersecting two neighbor lists. The
number of comparisons is a good proxy for the total amount
of work required, thus reducing it can have a great affect on
(sequential) total solution time. When processing successor
lists (upper triangle shape), we relabel vertices so that they are
in ascending order by degree (the highest-degree vertices go
at the end). When processing predecessor lists (lower triangle
shape), we relabel vertices so that the are in descending order
by degree (the highest-degree vertices go at the beginning).

To illustrate the effect of reordering, Figure 4 shows the
amount of work saved by degree reordering as a fraction of
the work without reordering for an assortment of several test
graphs. Note that these are results from triangle counting on

Authorized licensed use limited to: University of Washington Libraries. Downloaded on June 30,2021 at 21:08:37 UTC from IEEE Xplore. Restrictions apply.

template <typename RandomAccessRange>
size_t triangle_count (RandomAccessRange G)

{

size_t alpha = 0; // a+0
for (auto i = G.begin(); 1 != G.end(); ++1i) // for i =0,1,...V —1
for (auto j = (+i).begin(); j != (+1i).end(); ++7) // for each nei or j of 1
alpha += intersection_size(*i, G[*]j]); // a <+ a+ Nb(i,7) UNb())

return alpha;

}

Fig. 2: Triangle counting algorithm in C++.

[0)]
© 4000 o
<) © 4000
o o
e a
o =
g 2000 %
% 3 2000
=) (5]
E =
IS »
0 500K 920K 0 500K 920K
Vertices Vertices
(a) No Reordering
2 6000 °
7] 5 o 75
2 g
] 2 4000 2
7 § 2000 §
B 5 25
2 [}
| o
915K 920K 600K 920K
Vertices Vertices

(b) Reorder Ascending Degree
Fig. 3: Web-Google Spyplots and Degree Distributions: Spyplots of the web-Google graph are shown (a) before and
(b) after reordering by ascending degree along with their corresponding predecessor and successor degree distributions.
Predecessor/Successor degrees count number of entries per row of the upper/lower triangular matrix respectively. The degree
distributions of (b) are only shown for the region on interest indicated in the spyplot.

Graph VT [1B | gt
as-Skitter 1.70M | 11.1M 81.8%
com_Amazon 335K | 926K 8.09%
com_Youtube 1.13M | 2.99M 83.5%
kron_g500-lognl9 | 524K | 21.8M | 0.00% (2.75e-11)
soc-LiveJournall 4.85M | 34.5M 100%
web-Google 916K | 2.55M 75.4%
wiki-Talk 2.39M | 2.51M 89.7%

Fig. 4: Successor Degree Reorder Improvement of Upper
Triangle: The ratio of total work with degree reordering
compared to no reordering for several SuiteSparse graphs.

successor lists, and use ascending degree reordering. Several
graphs require 80%-90% of the original work, though some-
times the benefit is much greater in the case of Kronecker
graphs, and sometimes there is little benefit as with soc-
LiveJournall. In general, the more skewed the degree distri-

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

bution of a graph is (the more like a power-law graph it is),
the more benefit reordering will provide.

To more fully illustrate the effect of reordering on graph
structure, we show spyplots of the same graph before and
after ascending degree reordering (Figure 3(a) and Figure 3(b),
respectively. Spyplots on the left indicate the sparsity patterns,
with the reordered graph having most of its entries shifted to
the lower right. Predecessor and successor degree distributions
are shown before and after reordering. These degree plots
only show the window of interest and are scaled differently
for visual clarity. Note that the average degree is the same
regardless of which degree list we use or whether we reorder
or not. This makes sense as the information needed for triangle
counting is preserved whether or not we reorder and whether
we use successor or predecessor information. However the
several very high degree vertices in both predecessor and
successor degree distributions of the unlabeled graph can hurt

Authorized licensed use limited to: University of Washington Libraries. Downloaded on June 30,2021 at 21:08:37 UTC from IEEE Xplore. Restrictions apply.

performance and is why reordering is often useful. Reordering
in the wrong direction can be even more harmful. If we try
to use the predecessor list to count triangles after relabeling
by ascending degree as seen in Figure 3(b), the maximum
degree is every higher. There is a clear benefit from using
the successor list after reordering by ascending degree, as its
max degree is much lower compared to both the unlabeled
degree distributions and the predecessor list of the reordered
graph. If we had instead reordered by descending degree, the
predecessor distribution would have a smaller max degree and
a smoother distribution. The rest of the paper assumes the use
of successor lists unless otherwise stated.

While degree ordering has the effect of reducing the total
amount of sequential work, it also increases the difficulty of
load balancing in parallel. This is due to the very skewed
tail seen in the successor distribution of Figure 3(b) and
the very dense lower right region of the associated spyplot.
If some work threads are assigned vertices at the tail of
this distribution, they will take much longer to process their
vertices’ neighbor lists than other threads. We discuss potential
ways to avoid this below.

B. Parallelization

In this paper we consider very simple parallel extensions
of Figure 2, and we are primarily interested in how to divide
the vertex neighbor lists (matrix rows) across multiple threads.
It is well known that there are multiple ways to assign rows to
threads (or rows to processors in a distributed setting) for better
load balancing, yet we have found few results of different row
distribution strategies presented in isolation. The most natural
neighbor list distribution is a simple block partition, assigning
the first n/threads rows to the first thread and so on. This
often leads to poor load balancing, with the smaller but much
denser rows near the tip of the triangular adjacency matrix
containing a disproportionately large amount of work. The
poor load balancing of the simple block distribution across
64 threads for the web-Google graph can be seen in Figure 5.
The maximum work assigned to a thread is several orders of
magnitude larger than the minimum work done by a thread.

To avoid this, the rows could be partitioned non-uniformly
depending on their number of entries. In this balanced block
distribution, the rows owned by a thread would still be
contiguous but the number of rows per thread would vary.
The effect of this improvement on the web-Google graph
can be seen in Figure 5. This distribution is an improvement
over the simple block distribution, but an order of magnitude
load balance remains between the minimum and maximum
work threads, due to a remaining uneven distribution of high
successor degree vertices. To further improve load balance we
utilize a cyclic row distribution, where each thread t operates
on rows t, threads + t, (2 X threads) + t, and so on. This
cyclic strategy has similarities to a 2D distributed memory
implementation [17], where it can be inferred but is not shown
explicitly that cyclic load balancing improves performance.
For the web-Google graph, this leads to near optimal load
balancing as indicated by the flat line in Figure 5.

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

106 “"”——'

HrH PR A R
o0
P
L]
©
oss®
3 10° -
<
(o]
= e Block
10* esssnses® Balanced Block
+ Cyclic
[]
0 20 40 60
Thread

Fig. 5: Web-Google Workload Distributions: The amount of
work required for each of 64 threads under three different
workload distributions. The flat line for cyclic distribution
indicates near optimal workload balancing.

Balanced Block

~ 0.6 B Cyclic
3
o
L
0 04
=
©
©
o
x
5 0.2
=
| = HH Em
0.0 -
& N @ > NSNS
& & Q\§ c§ F oL &
2 &0 0 >y o &
& &3‘ > @Q A:z? s 5
S c}o& ¥ N
7/ (¢]
$ o
\é)

Fig. 6: Maximum Workload Over Threads: The benefit of
balanced block and cyclic neighbor list distributions relative
to a simple block workload distribution for several SuiteS-
parse graphs. Shorter bars indicate less work required by the
bottleneck thread.

As the thread with the most assigned work becomes the
performance bottleneck, we track the max thread work over 64
threads while triangle counting on several smaller graphs and
present the results in Figure 6. This bar plot uses the simple
block distribution as a baseline and indicates the improvement
of balanced block and cyclic methods. Note that using a cyclic
distribution is often a small fraction of the max work over
threads compared to block distributions.

IV. IMPLEMENTATIONS

In this section we present descriptions of different triangle
counting implementations based on three different C++ paral-
lelization strategies, std: :async, tbb: :parallel_for,
and std::for_each with parallel execution policies. We
apply these strategies to the outer level of parallelism, splitting
up the work of processing different neighbor lists. In all

Authorized licensed use limited to: University of Washington Libraries. Downloaded on June 30,2021 at 21:08:37 UTC from IEEE Xplore. Restrictions apply.

the implementations, we try to rely on generic, reusable
programming as much as possible, including STL algorithms
and data structures. For instance we choose to use std::vector
instead of writing our own, even if there is some performance
to be gained. There is a potential extra level of parallelism to
be gained by using parallel execution policies inside the set in-
tersections of all the implementations discussed below. While
we hope to develop a fast triangle counting implementation,
the main goal is to understand the performance differences of
different algorithmic techniques and parallelization strategies.
See Appendix Figures 12-14 for example NWGraph code.

A. Implementations based on std: :async

The first parallelization strategy we consider is to distribute
work among threads by passing lambda functions to async.
The lambda function uses the size of the graph and the
number of threads to determine the neighbor lists owned by the
current thread, based on the different neighborlist distribution
strategies discussed in Section IIl. After threads return their
triangle count, the sum is reduced with std: : future.

B. Implementations based on tbb: :parallel_reduce

Our next triangle counting implementation uses Threading
Building Blocks (TBB)’s parallel_reduce to split the
neighbor lists among threads and to accumulate the number
of triangles. This parallel reduce takes as an argument a range
of vertices for each thread to operate over. One could pass
in a simplistic block range, but again we use a cyclic range
for better load balancing. Since the TBB implementation has
less explicit thread control, we develop a novel cyclic range
adapter that TBB uses to cyclically assign work to threads.

C. Implementations based on std::for_each and C++
Parallel Execution Policies

The last implementation we consider uses the C++ built-
in std::for_each function to process the neighbor lists
of every vertex. Instead of explicitly dividing these neighbor
lists among threads, for_each takes an optional execution
policy for processing the lists in parallel. Note that using this
strategy is a more hands off approach as a programmer has no
control how for_each ultimately splits up the workload.

V. EXPERIMENTAL SETUP AND RESULTS

To see the benefits of the techniques discussed in the
previous section, we count the number of triangles in the
graphs described in the GAP benchmark suite [16] and collect
timing results. The GAP benchmark is a set of five test graphs
and six graph kernels, including triangle counting, designed to
test the performance of different graph processing frameworks.
The smaller graphs used for the work counting experiments
in Section III were chosen to have similar properties to the
GAP graphs. GAP also includes a reference implementation,
included in our performance results for comparison, which
parallelizes the processing of neighbor lists with OpenMP
and dynamic scheduling. We choose to omit the GAP-road
network as it is an outlier for this study in terms of size and

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

=2 2
£10
(0]
2
[e]
[0}
o
ks 1
2 10
]
©
(]
[0}
Q.
@ 0

10

' < O
o NSO @&@v ’\){bﬂ\ o ﬁ\é’o
o Q 3 s

) [©)
Fig. 7: Reordering on GAP Graphs. Triangle counting speedup
by reordering is shown relative to unordered on a log scale.
All graphs shown benefit except for GAP-urand.

Gap V] |E| | Triangle | NWGraph GAP
Graphs Count Relabel(s) | Relabel(s)
web 50.6M | 965M | 84.91B 1.06 11.1
twitter | 61.6M | 734M | 34.83B 1.53 15.4
kron 134M | 2.11B | 106.9B 2.97 24.8
urand 134M | 2.15B 5378 3.79 26.5

Fig. 8: Triangle and Relabel Information for GAP Graphs

Successor Degree

5.060e7

5.0605e7

Vertex
Fig. 9: GAP-Web Partial Successor Degree Distribution. A
characteristic double spike of large degree neighbor lists is a
challenge to load balance.

5.061e7

the number of triangles. The included graphs and their sizes
are shown in Figure 8. Our testing architecture is an Intel Xeon
Gold 6130 CPU with 64 logical cores. For these experiments
we utilize all 64 cores. We compiled all implementations,
including the GAP reference, with GNU GCC 9.2.0.

Not all graphs will benefit equally from graph reordering
and the overhead of reordering might be costly compared to
the actual triangle counting. In practice one might employ
cheap heuristics to decide whether reordering overhead is
worthwhile. To demonstrate the effectiveness of reordering
on the GAP graphs, we measure triangle counting time be-
fore and after reordering and present the reordering speedup
in Figure 7. These results are based on the cyclic async
implementation. Kron sees nearly an order of magnitude
improvement in solve time while the skewed degree web

Authorized licensed use limited to: University of Washington Libraries. Downloaded on June 30,2021 at 21:08:37 UTC from IEEE Xplore. Restrictions apply.

mmm Block B async === async Parallel Intersection
mmm Balanced Block TBB TBB Parallel Intersection
mmm Cyclic mmm for_each == for_each Parallel Intersection
o —
< —]
O] —
F R I R T R S —— K T T e — i e e i ————— ——— et
o — — — —
= — e — 1 — —
T ——1— — 11— ——— —
© ——1— ——— —— —
x — 1 ——— — 1 ——
g 05 II III 0.5 = = === = = = =
o] — — — f— — — — —
o} — 1 ——— ——1 ——1—|
o — — — — — — — —
g I i S-S === =-= IE =
00 =— — | 0.0 ——1— === === ===
& <& & X & <& & &
N & N N N & @ N
¥ o a W K o oS ?

(a) Row Distribution (All Async)

(b) Parallelization Strategy

Fig. 10: GAP Comparison: The speedup (or slowdown) of several implementations is shown relative to the GAP reference
implementation on the GAP graphs. Implementations above the dotted line run faster than the GAP reference implementation. (a)
compares row distribution strategies of different async implementations. (b) compares different C++ parallelization strategies.

and twitter graphs see two orders of magnitude improvement.
Urand sees a slight slowdown due to reordering since the
random nature of the graph already had a smooth degree
distribution to begin with.

However, to provide a level playing field for the rest of the
algorithmic modifications we relabel all graphs by ascending
degree and report relabel time along with the number of
triangles in Figure 8. The relabeling time of the GAP reference
implementations typically an order of magnitude slower than
our implementation because we relabel an edge list before
compressing to compressed sparse row (CSR) format.

In order to demonstrate the effect each of the algorithmic
techniques and C++ parallelization strategies, we tested multi-
ple implementations and summarize results in Figure 10. Each
bar in this figure indicates the speedup over the GAP reference
implementation (GAP time / implementation time), with bars
above the dotted line indicating improvement over GAP.
Figure 10(a) compares the first three implementations which
are based on std::async and demonstrate the different
neighbor list distribution strategies in Section III. Figure 10(b)
compares the three outer level parallelization strategies de-
scribed in Section IV. This figure also includes results from
adding an inner level of parallelism with a parallel execution
policy inside the set intersection. Note that Figure 10(a) only
includes sequential STL intersections and Figure 10(c) only
includes cyclic distribution for async and TBB. We include
the timing numbers behind these plots in Appendix Figure 11.

VI. EXPERIMENTAL ANALYSIS AND DISCUSSION

Figure 10(a) indicates that cyclic distributions often lead to
improved triangle solve time compared to block distributions
due to better load balancing. GAP-urand is an outlier as it has
a more balanced degree distribution to begin with so simple

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

block partitioning has decent load balance. While it might
be possible, knowing the cyclic stride in advance, to create
an artificial graph which causes poor load balancing for a
cyclic distribution, such graphs are unlikely to occur naturally.
A cyclic distribution will almost never lead to poor load
balancing and will often significantly improve performance,
assuming the number of compute resources is not significantly
larger than the number of high degree vertices.

Figure 10(b) suggests that cyclic implementations based
on std::async and tbb::parallel_reduce are quite competitive,
with async slightly outperforming on GAP-web. The imple-
mentation based on for_each performs worse, significantly
worse in the case of GAP-web. We avoid speculating on
how for_each assigns neighbor lists to threads “behind the
curtain”. Performance is typically better than for the block
and balanced block async implementations shown in Fig-
ure 10(a), so it is doing something reasonable. As the parallel
for_each implementation is perhaps the most ideal in terms
of relying on STL features, we would like to better understand
what is required to make its performance more comparable to
the other parallelization strategies.

The cyclic distribution strategy closely matches the results
of the GAP reference implementation on three of the graphs
but not GAP-web where the cyclic distribution seems to
outperform GAP’s block distribution. This led us to further
investigate the successor degree distribution of GAP-web after
reordering and we found two interesting spikes near the tail
end of the distribution shown in Figure 9

None of the outer parallelization strategies benefit from
parallel set intersections as evidenced by the dashed bars
in Figure 10(b). Perhaps with good load balancing of all 64
threads, we should not expect much benefit of using a parallel
execution policy inside the set intersection.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on June 30,2021 at 21:08:37 UTC from IEEE Xplore. Restrictions apply.

[1]

[2]

[3]

[4]

[5]

[7]

[8]

REFERENCES

A. Azad et al., Evaluation of graph analytic frameworks using the GAP
benchmark suite, (to appear in) Proc. IEEE Int. Symp. on Workload
Characterization, 2020.

M. Latapy Main-memory triangle computations for very large (sparse
(power-law)) graphs, Theoretical Computer Science 407.1-3 (2008),
pp. 458-473.

J. Shun and K. Tangwongsan, Multicore triangle computations without
tuning, in Proc. IEEE Int. Conf. on Data Engineering, Seoul, KOR,
2015, pp. 149-160.

S. Parimalarangan, G. M. Slota, and K. Madduri, Fast parallel graph
triad census and triangle counting on shared-memory platforms, in
Proc. IEEE Int. Parallel and Distributed Processing Symp. Workshops,
Lake Buena Vista, FL, USA, 2017, pp. 1500-1509.

A. S. Tom, N. Sundaram, N. K. Ahmed, S. Smith, S. Eyerman, M.
Kodiyath, I. Hur, F. Petrini, and G. Karypis, Exploring optimizations
on shared-memory platforms for parallel triangle counting algorithms,
in Proc. IEEE High Performance Extreme Computing Conf., Waltham,
MA, USA, 2017, pp. 1-7.

J. Kepner and J. Gilbert, Graph algorithms in the language of linear
algebra, SIAM, 2011.

M. M. Wolf, M. Deveci, J. W. Berry, S. D. Hammond, and S.
Rajamanickam, Fast linear algebra-based triangle counting with Kokkos
kernels, in Proc. IEEE High Performance Extreme Computing Conf.,
Waltham, MA, USA, 2017, pp. 1-7.

A. Yagar, S. Rajamanickam, M. Wolf, J. Berry, and U. V. Catalyiirek,
Fast triangle counting using Cilk, in Proc. IEEE High Performance
Extreme Computing Conf., Waltham, MA, USA, 2018, pp. 1-7.

VII. APPENDIX

(9]

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

A. Azad, A. Bulug, and J. Gilbert, Parallel triangle counting and
enumeration using matrix algebra, in Proc. IEEE Int. Parallel and Dis-
tributed Processing Symp. Workshop, Hyderabad, IND, 2015, pp. 804—
811.

T. Davis and Y. Hu, The University of Florida sparse matrix collection,
ACM Transactions on Mathematical Software 38.1 (2011), pp. 1-25.
A. George and J. W. Liu, Computer solution of large sparse positive
definite, Pretince Hall, 1981.

E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric
matrices, in Proc. of ACM National Conf., New York, NY, USA, 1969,
pp. 157-172.

J. W. H. Liu, Modification of the minimum-degree algorithm by multiple
elimination, ACM Transactions on Mathematical Software 11.2 (1985),
pp. 141-153.

P. R. Amestoy, T. A. Davis, and 1. S. Duff, An approximate minimum de-
gree ordering algorithm, SIAM J. on Matrix Analysis and Applications
17.4 (1996), pp. 886-905.

G. M. Slota, S. Rajamanickam, and K. Madduri, Order or shuffle:
Empirically evaluating vertex order impact on parallel graph compu-
tations, in Proc. IEEE Int. Parallel and Distributed Processing Symp.
Workshops, Lake Buena Vista, FL, USA, 2017, pp. 588-597.

S. Beamer, K. Asanovi¢, and D. Patterson, The GAP benchmark suite,
2015, arXiv:1508.03619.

A. S. Tom and G. Karypis, A 2D parallel triangle counting algorithm
for distributed-memory architectures, in Proc. ACM Int. Conf. Parallel
Processing, Kyoto, JPN, 2019, pp. 1-10.

GAP GAP Reference NWGraph
Graphs Block Balanced Block Cyclic

Sequential Intersection | Sequential Intersection Sequential Intersection Parallel Intersection

async async async | TBB | for_each | async | TBB | for_each

web 7.71 54.3 27.7 5.72 6.13 15.7 6.11 6.39 14.0
twitter 45.4 1400 151 43.5 432 54.8 443 43.5 53.0
kron 277 7750 509 290 285 301 291 287 314
urand 15.0 19.6 16.1 15.1 14.6 20.8 14.2 14.4 20.2

Fig. 11: Triangle Counting Timing in (s) for All Implementations Shown in Figure 10.

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: University of Washington Libraries. Downloaded on June 30,2021 at 21:08:37 UTC from IEEE Xplore. Restrictions apply.

template <class Op>
size_t async_helper (size_t threads, Op&s& op)
{
vector<future<size_t>> futures (threads);
for (size_t tid = 0; tid < threads; ++tid)
futures([tid] = async(launch::async, op, tid);

size_ t t = 0;

for (autoss f
t += f.get();

return t;

futures)

}

template <typename RandomAccessRange>
size_t triangle_count (RandomAccessRange G)
{
return async_helper (threads, [&] (size_t tid) {
size_t alpha = 0;
for (auto i G.begin(); 1 != G.end(); ++1i)
for (auto j = (x1i).begin(); J !'= (xi).end(); ++7)
alpha += intersection_size(*xi, GI[*]jl);
return alpha;
}) i

Fig. 12: Parallel Triangle Counting with std: :async.

template <typename RandomAccessRange>
size_t triangle_count (RandomAccessRange G, size_t stride)
{
return nwgraph::parallel_for (nwgraph::cyclic(G, stride), [&] (auto&s& 1) |
size_t alpha = 0;
for (auto j = (+i).begin(); J != (+i).end(); ++3)
alpha += intersection_size(xi, G[*]j]);
return alpha;
}, plus{}, 0.0);

Fig. 13: Parallel Triangle Counting with TBB.

template <typename RandomAccessRange>
size_t triangle_count (RandomAccessRange G)
{
atomic<size t> t = 0;
for_each (execution::par, G.begin(), G.end(), [&] (auto&s 1)
{
size_t alpha = 0;
for (auto j (#1) .begin(); 3 != (*i).end(); ++73)
alpha += intersection_size(*xi, G[*]j]);
t += alpha;
}) i
return t;

Fig. 14: Parallel Triangle Counting with std: : for_each.

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: University of Washington Libraries. Downloaded on June 30,2021 at 21:08:37 UTC from IEEE Xplore. Restrictions apply.

