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Abstract—Graphs play a key role in data analytics. Graphs and
the software systems used to work with them are highly diverse.
Algorithms interact with hardware in different ways and which
graph solution works best on a given platform changes with the
structure of the graph. This makes it difficult to decide which
graph programming framework is the best for a given situation.
In this paper, we try to make sense of this diverse landscape. We
evaluate five different frameworks for graph analytics: SuiteS-
parse GraphBLAS, Galois, the NWGraph library, the Graph
Kernel Collection, and GraphIt. We use the GAP Benchmark
Suite to evaluate each framework. GAP consists of 30 tests:
six graph algorithms (breadth-first search, single-source shortest
path, PageRank, betweenness centrality, connected components,
and triangle counting) on five graphs. The GAP Benchmark Suite
includes high-performance reference implementations to provide
a performance baseline for comparison. Our results show the
relative strengths of each framework, but also serve as a case
study for the challenges of establishing objective measures for
comparing graph frameworks.

Index Terms—graph algorithms, benchmarking

I. INTRODUCTION

A graph represents relationships among items. Mathemati-

cally, a graph is simply a set of vertices and a set of edges

between vertices. How this mathematical definition translates

into software systems for graph problems, however, is both

diverse and complex. There are multiple ways to represent

graphs, and for a given representation, multiple abstractions

for defining graph algorithms.

In response, many software frameworks for implementing

graph algorithms have emerged. Choosing between them can

be overwhelming. Complicating matters further, the suitability

of a graph framework for a class of problems can depend

on the graph itself. A framework that performs well for a

particular type of graph may perform poorly for another type.

A number of benchmarking projects exist to help choose

between graph programming frameworks. One of the better

known benchmarks in HPC is Graph 500 [36], [37], which

generates a synthetic, scalable graph for a range of problem

sizes. Two algorithms are considered, a breadth-first search

(BFS) and multiple single-source shortest paths (SSSP). As

implied by the name, the benchmark is often used to rank the

top 500 HPC systems for performing graph computations.

A more recent benchmarking effort is the GraphChal-

lenge [41]. These are a set of problems and a repository of

large graphs to encourage “community approaches to develop

new solutions for analyzing graphs.”

Both the Graph 500 and GraphChallenge efforts have been

impactful and have helped drive the state of the art in large-

scale graph analytics. However, they only cover a small portion

of the graph analytics landscape. They do not provide suffi-

cient diversity of algorithms and graph topologies to represent

the needs of the data analytics community. While their focus

on large-scale systems is important, most graph problems are

concerned with medium-sized graphs (i.e., a few billion edges)

that fit on a single server. Also, with advances in memory

technology, it is possible and even advantageous to process

large graphs (i.e., > 100 billion edges) on a single system [22].

The LDBC Graphalytics [25] project provides a more di-

verse mix of graph algorithms and graph topologies. Graph-

alytics covers BFS, SSSP, PageRank (PR), weakly connected

components (CC), community detection using label propaga-

tion (CDLP), and local clustering coefficient (LCC) over a mix

of 39 medium-sized real and synthetic input graphs.

These benchmarking efforts, however, do not use the same

hardware for each graph programming framework. This makes

it difficult to distinguish between differences due to hard-

ware from those due to the underlying algorithms. Hence,

there is still considerable confusion about the fundamental

performance differences between graph frameworks. In this

study, we compare several frameworks for graph algorithms:

the SuiteSparse implementation [18] of the GraphBLAS spec-

ification [12], [27], the Galois framework for data parallelism

in irregular algorithms [30], the GraphIt domain-specific lan-

guage [55], a new graph library called NWGraph that builds on

the Parallel BGL [13], [23], plus hand-tuned implementations

of specific graph algorithms in the Graph Kernel Collection

(GKC) [2].

The benchmarks are run on the same system to eliminate
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hardware differences. The development team behind each

framework ran the benchmarks to ensure correct and efficient

usage. The results from each team were cross-validated by

the other teams to minimize inconsistencies in both what is

measured and how results are generated.
We used the GAP Benchmark Suite [7] in this effort. GAP

consists of five medium-sized real and synthetic graphs, each

with distinct characteristics. In addition to the benchmark

specification, high-performance reference implementations of

each graph algorithm are also provided. The 30 GAP tests

(six graph algorithms times five input graphs) provide good

coverage of the graph analytics landscape and reveal the

relative strengths of each framework.
Our main contribution is the performance data in Table IV

and Table V. Together these constitute the highest quality,

consistent performance numbers that we are aware of for

comparing graph frameworks. Such comparisons are vital to

understanding ways these frameworks need to evolve.

II. OVERVIEW OF THE GAP BENCHMARK SUITE

The GAP Benchmark Suite is designed to ease evaluating

graph processing systems. Rather than leaving each effort to

determine its own evaluation methodology and workload, a

shared standard gives the community a common goal to work

towards. The benchmark is described in a publicly-available

specification [7]. Any implementation that follows those rules

is thus easy to compare to other compliant evaluations. To

establish baseline performance, the benchmark also provides

high-performance reference implementations. Providing the

specification and reference code separately best serves users

who may only need only one of the two artifacts. For example,

a graph framework developer may want to use the specification

to ensure their results are easy to compare. Alternatively, a

computer architecture researcher can use the reference code

as a target software workload to accelerate.
The benchmark was designed in conjunction with a work-

load characterization [9] to ensure it exposes a range of com-

putational demands. The graph kernels in the benchmark were

selected based on their popularity in the research literature [6].

The benchmark does not require the use of specific algorithms

to implement these kernels, but it does state the requirements

of correct solutions to avoid ambiguity. The kernels contain an

interesting mix of traits and are sufficiently scalable to run on

large graphs. The emphasis on scalable algorithms focuses the

benchmark on the more data-intensive traits that distinguish

graph processing from other workloads.
The benchmark suite uses five input graphs selected for

topological diversity and availability (Table I). One of the

biggest takeaways from the workload analysis is that because

graph processing is data-driven, the graph topology can have

a bigger impact on the workload characteristics than the

algorithm. The input graphs are from both real-world data

(Road, Twitter, Web) and synthetic generators (Kron and

Urand). The graphs1 have been added to the widely-used

SuiteSparse Library [19].

1https://sparse.tamu.edu/GAP

We briefly describe the benchmark’s graph kernels while

highlighting some common differences, but we recommend

consulting the specification for details [7]:

• Breadth-First Search (BFS) is a fundamental traversal

order, and we track the parent vertices rather than depths.

• Single-source Shortest Paths (SSSP) finds the distances

to all reachable vertices from a starting vertex.

• PageRank (PR) computes a popularity score for all

vertices in the graph. We execute it until the scores are

sufficiently close to convergence.

• Connected Components (CC) labels all vertices by

which (weakly) connected component they are in.

• Betweenness Centrality (BC) determines a vertex’s in-

fluence on the graph by the fraction of shortest paths

that pass through it. Computing BC exactly requires an

unreasonable amount of time, so we approximate it by

considering only four root vertices per trial.

• Triangle Counting (TC) counts the number of triangles

(cliques of size three) in the graph. It counts each triangle

once regardless of the permutation of its constituent

vertex identifiers.

The reference code included with the benchmark serves not

only as a baseline, but also an educational tool. Internally, the

code implements many leading algorithms. We recommend

consulting the appendix of the specification for details [7].

The goal of the benchmark suite is to help the community

develop new innovations. To ensure the innovations are practi-

cal and not overly specialized, the benchmark rules discourage

optimizations that are infeasible in a general-purpose graph

framework or that presuppose something about the structure

of the answer. For example, all algorithm implementations of a

framework must operate on the same graph format unless they

include the time to convert the general-purpose graph format

to the specific format used. The most common issue is when

an optimization is only beneficial in some cases or requires

an input-sensitive parameter. Practical implementations must

determine which of these optimizations to use via run-time

heuristics.

To capture the possibilities of both practical and specialized

optimizations, we perform the benchmarks in this study under

two different sets of requirements. The Baseline Performance
data set (Section IV-A) captures the spirit of the GAP Bench-

mark Suite and disallows optimizations that overly specialize

for the graph or kernel. The results from the Baseline give

a sense of how frameworks will perform in practice. The

Optimized Performance data set (Section IV-B) removes those

restrictions, and gives a view into the peak performance of a

framework.

III. GRAPH ANALYTICS FRAMEWORKS

In this work, we compare the frameworks listed in Table II.

They were created by a variety of different institutions for

different purposes, and range from direct implementations

of algorithms, to libraries to build algorithms, to compiled

domain-specific languages. By evaluating this collection of
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Name Description # Vertices (M) # Edges (M) Directed Degree Degree Distribution Approx. Diameter References
Road Roads of USA 23.9 57.7 Y 2.4 bounded 6,304 [20]
Twitter Twitter Follow Links 61.6 1,468.4 Y 23.8 power 14 [31]
Web Web Crawl of .sk Domain 50.6 1,930.3 Y 38.1 power 135 [10]
Kron Kronecker Synthetic Graph 134.2 2,111.6 N 15.7 power 6 [33], [37]
Urand Uniform Random Graph 134.2 2,147.5 N 16.0 normal 7 [21]

TABLE I
GRAPHS USED FOR EVALUATION

Framework GAP GKC Galois NWGraph SuiteSparse GraphIt

Type
direct

implementations
direct

implementations

generic high-level

library

header-only

library

high-level

library

domain-specific

language compiler

Internal Graph

Data Structure
Provides

outgoing &

incoming edges

outgoing &

(opt.) incoming

edges

outgoing and/or

incoming edges

adjacency list as

range of ranges

outgoing & incoming

edges w/ (opt.)

hypersparsity

outgoing & incoming

edges w/ (opt.)

blocking
Programming

Abstraction
vertex-centric arbitrary vertex, edge, or

chunked-edges centric

range-centric w/

tuple edge properties

sparse

linear algebra
vertex or

edge centric

Execution
Synchronization

level-
synchronous

algorithm-specific,

level-synchronous

level-synchronous or

asynchronous

algorithm-specific,

level-synchronous
level-

synchronous
level-

synchronous
Dependences C++11, OpenMP C++11, OpenMP C++17, boost, libllvm C++17, libtbb C11, OpenMP C++11, OpenMP, cilk

Intended Users
researchers,

benchmarkers

application

developers
graph domain

experts

practicing

C++ programmers

graph/matrix

domain experts
graph domain

experts
TABLE II

MAIN ATTRIBUTES OF FRAMEWORKS CONSIDERED

frameworks on a common benchmark, we can assess the im-

pact of design decisions on performance and programmability

(e.g., whether the programming abstraction provided by a

framework eases or complicates the implementation of some

graph algorithms).

The benchmark only specifies the graph problems, so each

framework is free to choose which algorithms it implements

(Table III). Each framework’s choice of algorithm is guided by

many factors, including its intended audience, the framework’s

flexibility, and the developer’s awareness of new algorithms.

Additionally, some frameworks exploit implementation opti-

mizations such as Galois’ occasional use of asynchronous

scheduling and GKC’s use of SIMD instructions.

For some graph problems, such as BFS and BC, there

are well-established algorithms such as Direction-Optimizing

BFS [8] and Brandes [11]. For other problems such as

SSSP, the established delta-stepping algorithm [35], has been

recently improved with bucket fusion [54]. CC shows the

greatest algorithmic diversity, ranging from the classic label-

propagation approach, to revised versions [32], [53] of the

prior standard Shiloach-Vishkin [42] algorithm, and the new

Afforest algorithm [45]. For PR, all of the implementations

repeatedly perform a sparse matrix vector multiply (SpMV),

but they differ in whether the updated values are available

immediately (Gauss-Seidel) [4] or after an iteration (Jacobi).

For TC, most of the implementations reduce the search space

by only counting one permutation of each triangle, and they

use heuristics to consider whether to relabel/reorder the graph

to further accelerate the search.

A. LAGraph/GraphBLAS

SuiteSparse:GraphBLAS [18] is an implementation of the

GraphBLAS C API [12] that describes a set of sparse matrix

operations over semirings. In a semiring, the multiplication

C = A ∗ B of two matrices A and B is redefined. In the

conventional semiring, cij =
∑

k aik × bkj . In a different

semiring, the multiplicative operator (×) can become any bi-

nary operator, and the reduction via the additive operator (
∑

)

becomes any monoid (associative and commutative operator

with an identity element). The data types of the three matrices

can change as well. For example, in the Boolean semiring, the

three matrices are all Boolean, and cij = ∨kaik ∧ bkj . In the

min-plus tropical semiring, cij = mink aik + bkj .

Sparse linear algebra over a semiring is a powerful frame-

work for expressing a wide range of graph algorithms, in-

cluding those in the GAP benchmark. The sparse matrix

becomes the adjacency matrix of the graph. For example, a

single “push” step of a breadth-first-search can be written as

the matrix-vector multiply q’<!pi>=q’*A, followed by the

assignment pi<q>=q, where q is a vector of nodes in the

current level, A is the adjacency matrix of the graph, and

pi is a vector containing the parent of the node in the BFS

tree. The operation C<M>=... is a masked assignment, where

C(i,j) can be modified only if the mask M(i,j) allows

it. Many graph algorithms include a conditional if statement

in their innermost loops, and the masked assignment captures

this behavior in a single bulk expression over the entire result.

GraphBLAS does not include any graph algorithms directly;

these are in algorithms that use GraphBLAS. For the GAP

benchmark, we developed six algorithms in the LAGraph

library [34]:

• BFS: The expression q’<!pi>=q’*A (written in a

C API) forms the essential kernel of the direction-

optimizing BFS, using the any-secondi semiring, where

A has arbitrary type and q is int64. Assuming A and

A’ are in compressed sparse row (CSR) format, this is a

push BFS step, while q<!pi>=A’*q is a pull step using

same semiring. The z=any(x,y) function serves as the

monoid for the semiring and is defined as x or y at the

discretion of the operator itself. This allows the monoid to
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Task GAP GKC Galois NWGraph SuiteSparse GraphIt

BFS Direction-optimizing Direction-optimizing3 Direction-optimizing4 Direction-optimizing Direction-optimizing Direction-optimizing

SSSP Delta-stepping1 Delta-stepping3 Delta-stepping4 Delta-stepping Delta-stepping Delta-stepping1

CC Afforest Shiloach-Vishkin Hybrid Afforest4 Afforest FastSV Label Propagation

PR Jacobi SpMV Gauss-Seidel SpMV3 Gauss-Seidel SpMV Gauss-Seidel SpMV Jacobi SpMV Jacobi SpMV

BC Brandes Brandes Brandes4 Brandes Brandes Brandes

TC Order invariant2 Lee & Low2,3 Order invariant2 Order invariant2 Order invariant2 Order invariant2

TABLE III
ALGORITHMS USED BY EACH FRAMEWORK WITH FOLLOWING ADDITIONS: 1 - BUCKET FUSION, 2 - HEURISTIC-CONTROLLED GRAPH RELABELLING,

3 - SIMD, 4 - AN ADDITIONAL ASYNCHRONOUS VARIANT

terminate as soon as any parent is found for a node in the

next level. The multiplicative operator secondi(aik, bkj)
returns the row index of the second operand, which is the

parent node id.

• SSSP: The SSSP implementation uses the delta-stepping

algorithm [35], [44] and relies on the min-plus-int32

tropical semiring.

• BC: LAGraph includes Brandes’ algorithm for computing

betweenness centrality [11], which uses the plus-first-float

semiring in GraphBLAS.

• TC: The LAGraph triangle counting method can be writ-

ten in pseudo MATLAB notation as L=tril(A,-1);
U=triu(A,1); C<L>=L*U’;, based on the formu-

lation in [49] using the plus-pair-int64 semiring. It is

preceded by an optional permutation of A, decided by

a heuristic.

• CC: LAGraph includes an implementation of the FastSV

connected components algorithm [53], which uses the

min-second-uint32 semiring.

• PR: PR can be written quite easily in terms of con-

ventional linear algebra (plus-times-float). However, LA-

Graph uses the plus-second-float semiring so that only

the structure and not the values of the adjacency matrix

are accessed.

B. Galois

Galois [22], [38] is a C++-based general-purpose program-

ming library and runtime for graph processing that permits

optimizations to be specified in the program at compile- or

run-time, giving the application programmer a large design

space of implementations to explore. Galois supports a rich

data-centric programming model called the operator formu-
lation [40] that enables efficient, scalable graph analytics

algorithms to be implemented without having to worry about

concurrency bugs such as race conditions and deadlocks.

In typical graph analytics applications, each node has one or

more labels (e.g., distance from the source node in the single-

source shortest path), which are updated during algorithm

execution until a global quiescence condition is reached. The

labels are updated by repeatedly applying a computation rule,

known as an operator, to active nodes in the graph. Each

algorithm has its own set of operators. For example, SSSP

problems are solved by applying the well-known relaxation
operator to active vertices. When an operator is applied to an

active vertex, this activity may read and update an arbitrary

portion of the graph around the active vertex, known as the

neighborhood of that activity.

Most graph analytics systems support only vertex programs

in which operator neighborhoods are limited to the immedi-

ate neighbors of the active vertex. In contrast, the operator

formulation does not restrict the neighborhoods of operators.

Galois permits more efficient algorithms to be implemented

such as the Afforest algorithm [45] for the CC problem. It

also supports more complex algorithms that modify or mutate

the graph like Delaunay mesh refinement [29] and METIS

graph partitioning [26]. Due to its general non-vertex pro-

gramming model, Galois has been used to build frameworks

for more complex graph computations such as graph pattern

mining [14].

Galois provides highly scalable concurrent data structures

such as worklists to implement work-efficient data-driven
algorithms [40] that dynamically track active nodes or the

frontier. For data-driven algorithms (e.g., BFS, SSSP, BC, CC),

Galois uses a sparse worklist (as large diameter graphs tend to

have sparse frontiers), unlike most other frameworks (which

use a dense bitvector). Galois uses a dense worklist to store the

frontier only for topology-driven algorithms [40] (e.g., PR).

The concurrent sparse worklists also enable Galois to sup-

port asynchronous [22], [38] data-driven algorithms, which in

contrast to bulk-synchronous algorithms do not have a notion

of rounds. They maintain a single sparse worklist, pushing and

popping active vertices from this worklist until it is empty.

These algorithms have better work-efficiency and make fewer

memory accesses, especially for BFS, SSSP, and BC on large

diameter graphs which may need thousands of rounds in bulk-

synchronous execution.

Another key factor impacting performance is memory allo-

cation. Galois explicitly uses huge pages of size 2 MB and

does not rely on the operating system to use Transparent
Huge Pages (THP). Huge pages can significantly reduce the

cost of memory accesses over small pages even when THP

is enabled [22], but we did not use it for this study. Galois

provides non-uniform memory access (NUMA) blocked al-

location (blocks the pages and distributes the blocks among

NUMA nodes), which has been shown [22] to perform better

for topology-driven algorithms over the NUMA local or inter-

leaved policies provided by Linux utilities such as numactl.
The Galois runtime system also optimizes program execution

to exploit NUMA locality. For example, it performs NUMA-

aware dynamic load balancing to ensure that computational

load is spread evenly among the cores of a shared-memory
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system.

Galois supports CPU and GPU [39] computation as well

as distributed-memory CPU [15], [16] and GPU clusters [47].

The Galois source code [1] includes the Lonestar [29] suite

of graph algorithm implementations.

C. NWGraph Library

The NWGraph library aims to fill the role of a reusable

library of generic graph algorithms for C++, similar to the

algorithms available in the standard template library. The

library draws on the lessons learned from the Boost Graph

Library (BGL) [43] and other libraries (PBGL [23], Galois,

Gunrock [48], GraphX [50], et al.), the evolution of the C++

language, and the evolution of C++ practice over the last 20

years.

The underlying principle for NWGraph is that it is a generic
library. That is, its algorithms are not written to use any

particular graph data structures, but rather are written in terms

of properties of types (aka concepts, finally to be available as a

language feature in the upcoming C++20 standard). Following

generic programming principles, the NWGraph concepts are
minimal, enabling algorithms to be composed with arbitrary
types. Users can therefore use NWGraph algorithms with the

data types around which they have already structured their

applications (which data structures are almost never graphs per

se). Pragmatically, the algorithms in NWGraph are function

templates written using modern C++ idioms, making them

accessible to programmers already familiar with core language

features and libraries and allowing them to leverage the full

power of C++ and of other libraries, frameworks, and tools.

The fundamental interface abstraction to NWGraph algo-

rithms is a “range of ranges” (expressed either as an it-

erator range or as C++20 ranges). The algorithms in turn

are expressed using C++ standard library algorithms (trans-

form(), reduce(), etc.). Again following modern C++ practice,

parallelization of NWGraph algorithms is effected through

mechanisms in the C++ standard. Since NWGraph algorithms

in turn are based on C++ standard library algorithms, a

modicum of shared-memory parallelization is immediately

available through the standard library algorithms (specified

with parallel execution policies). This parallelization approach

will continue to be developed in future language standards

and will be extended to encompass support for accelerators

and FPGAs (e.g., Thrust, oneAPI, SYCL) and, accordingly,

NWGraph will be able to take advantage of those advances.

Ideally, NWGraph prefers execution policies as the more

“hands off” approach to parallelization (used in CC and

BC implementations), but other approaches were explored as

well. For best parallel performance it is necessary in some

cases to manage parallelism directly through std::async (still

a C++ standard feature) (used in TC implementation) or via

Threading Building Blocks (TBB) primitives (used in BFS,

SSSP, and PR implementations). These implementation details

are not visible at the level of the library interface and the need

for non-standard (and non-execution-policy) approaches is ex-

pected to dissipate over time. (Indeed, our experience with this

benchmarking effort will aid future NWGraph development as

the team continues to participate in the C++ standards com-

mittee.) Other non-standard atomic features were also required

for competitive shared-memory performance, including atomic

references, atomic bitmaps, and atomic operators for floats.

D. GraphIt

GraphIt [54], [55] is a domain-specific language (DSL)

that achieves consistent high-performance across different

algorithms, graphs, and architectures while offering an easy-

to-use high-level programming model. GraphIt achieves this

by decoupling the algorithm specification from optimization

strategies for graph applications. Many graph applications

require different optimization techniques. Therefore, users

normally have to try out a large set of such techniques

to achieve performance. Separating the high-level algorithms

from performance optimizations solves this problem.

Users specify graph algorithms using the algorithmic lan-

guage involving just high-level operations on sets of vertices

and edges. They use the separate scheduling language to

compose different optimizations. The algorithmic language

exposes different high-level optimization opportunities such

as parallelization and edge traversal direction.

The scheduling language supports a large space of optimiza-

tion techniques such as edge traversal direction, data layout,

parallelization, cache efficiency, NUMA, and kernel fusion

optimizations. GraphIt uses scoped labels to target specific

operations to optimize. Moreover, it uses an abstract graph
iteration space model to represent, compose, and ensure the

correctness of edge traversal optimizations. The DSL guaran-

tees correctness by imposing restrictions on the GraphIt lan-

guage and automatically inserting atomic operations through

dependency analysis. To make it more user-friendly, GraphIt

also has a built-in autotuner based on Opentuner [3] that

explores the optimization space and finds high-performance

schedules quickly using methods such as AUC bandit and

greedy mutation.

GraphIt also achieves portability across CPUs, GPUs,

and domain-specific accelerators. GraphIt introduces a new

intermediate representation, GraphIR, to provide a com-

mon interface across different hardware backends. This

new IR lets the compiler separate hardware-independent

and hardware-dependent optimizations and achieve consistent

high-performance across CPUs and GPUs.

E. Graph Kernel Collection (GKC)

GKC is a collection of commonly used graph kernels that

are designed as a black-box library. These graph kernels are

designed by applying traditional high performance comput-

ing techniques used in linear algebraic libraries to graph

workloads. GKC embodies the hardware-software co-design

philosophy by taking into account algorithmic properties and

hardware features. This is implemented by identifying core

primitives used in graph algorithms and designing high per-

formance implementations of these primitives that leverage

hardware features, such as instruction set capabilities and
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aspects of the memory hierarchy of a given platform. Below

we detail some techniques used in GKC.

1) Reducing false sharing: For implementations other than

TC, each thread allocates its own memory buffer. The local

buffer stores intermediate outputs (e.g., the next frontier for

breath-first traversal-based algorithms). This buffer is explic-

itly flushed back to the global buffer accessed by all threads to

form the global frontier for the next iteration of the algorithm.

The local buffer reduces false sharing because threads can still

read information stored in the global buffer while updating

values maintained in separate local buffers.

2) Hardware-aware implementations: Implementations of

the algorithms are tuned to the specific architecture on which

the benchmarks were run. Local buffers are sized according to

either the L1 or L2 cache sizes to ensure that they remain in

the appropriate cache level. SIMD instructions are used to load

and store data to and from local buffers. Computations, where

appropriate, also use SIMD. Notably, higher performance was

attained with AVX-256 over AVX-512 on the test platform.

We intend to examine this in greater detail in the future.

3) Use of inline assembly: We observed that the Intel® C++

compiler (icpc 19.1) occasionally replaces code with calls to

libraries (e.g., CLib). These libraries are efficient but include

additional code for general cases. As such, GKC contains

specialized kernels to handle specific tasks such as flushing

local buffers of specific sizes using techniques introduced

by Veras et al. [46]. C/C++ macros provide an intrinsics-

like interface and expand to one or more inline assembly

instructions surrounded by the volatile keyword. This

ensures that the desired sequence and selection of instructions

are untouched by the compiler.

IV. EVALUATION METHODOLOGY

A. Baseline Performance

This data set is intended to be a uniform comparison of

each framework. In a sense, it represents the performance

that a typical end-user would achieve after installing the

framework and running GAP using default parameters. Each

framework used the same number of processors (32 physical

cores) and NUMA policy (interleave=all). Frameworks with

existing internal auto-tuners and heuristics were allowed to use

them, but hand-tuning algorithms based on the graph topology

was not allowed for this data set. The only exception is the

delta parameter for SSSP. GAP allows customization of this

parameter based on the graph topology because it can lead to

orders of magnitude difference in performance otherwise.

Graph transposition was not included in the timing data

because the GAP reference implementations store both forms

of the graph. However, the cost of restructuring, relabeling, or

other graph transforms was included in the timing data.

B. Optimized Performance

This data set represents the best performance that each

framework can currently achieve for each GAP test. Teams

were free to optimize thread count, thread placement and

affinity, NUMA policy, etc. They could even tune for graph

characteristics. They were not required to include the time for

such tuning efforts in the timing data, but optimization details

and settings must be reported.

C. Benchmarking System

All performance measurements were collected on Intel®

Xeon®-based servers hosted in the Intel® DevCloud2. Each

server contains two Intel® Xeon® Platinum 8153 processors,

each with 16 physical cores (32 logical cores) running at 2.0

GHz. Each processor has 22 MB L3 cache. The total system

memory of each server is 384 GB DDR4 running at 2.6 GHz.

V. BENCHMARK RESULTS

With six algorithms, five graphs, and two ways of running

the benchmarks, the quantity of data is daunting. We present

our results in Table IV and Table V3. Table IV shows the best

time (in seconds) for each algorithm/graph pair. The color

coding of the cells indicate which framework achieved the

best result for each GAP test. In Table V, results for all

algorithms, graphs, and frameworks are presented as the ratio

of the time for the GAP reference implementation to the time

for a particular case (speedup). A value of 100% indicates that

a particular case matched the time for GAP, a value of 50%

indicates a case took twice as long as GAP, 200% indicates

half as long, and so forth. Color coding as a heat map visually

conveys trends: green indicates results faster than GAP while

red indicates results slower than GAP.

Before discussing the results for each of the graph kernels,

we start with some high level comments. Three of the frame-

works (GAP, GKC, and NWGraph) directly code the graph

kernels case-by-case in low-level programming languages (C

or C++ with parallel programming models such as TBB,

OpenMP). Galois, GraphIt, and GraphBLAS, however, are

high-level abstractions specialized for expressing graph algo-

rithms. There are overheads associated with these additional

layers of abstraction which may cause performance challenges

for the GAP kernels with low runtimes (BFS, SSSP and CC).

Furthermore, all frameworks sort the adjacency list of each

vertex based on the destinations and remove duplicate edges.

General frameworks for graph algorithms must handle prob-

lems well beyond those addressed by GAP. GraphBLAS,

for example, is designed to handle graphs with up to 260

nodes [28] with up to 260 entries, so it uses 64-bit integer

indices throughout. The other frameworks use 32-bit indices

throughout by default (which can be easily changed), and that

size easily accommodates the graphs evaluated. Thus, they can

be tuned to this limited size of problem sets. They can all use

32-bit integers, while GraphBLAS must use 64-bit integers.

When considering such shortcomings in high-level frame-

works, however, it is important to consider their advantages.

With GraphBLAS, for example, algorithms can be developed

quickly [17], often with good performance using productivity

languages such as MATLAB or Python. GraphIt separates the

2https://devcloud.intel.com
3The complete timing data is available at https://tinyurl.com/

eval-graph-frameworks
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Baseline (seconds) Optimized (seconds)
Real Graphs Synthetic Graphs Real Graphs Synthetic Graphs

Kernel Web Twitter Road Kron Urand Web Twitter Road Kron Urand
BFS 0.329 0.248 0.130 0.365 0.570 0.300 0.214 0.109 0.308 0.486

SSSP 0.900 2.217 0.269 4.566 6.438 0.603 2.174 0.272 3.810 5.199

CC 0.219 0.246 0.060 0.691 0.670 0.167 0.209 0.045 0.479 0.606

PR 2.554 10.268 0.338 11.050 12.143 2.737 5.405 0.267 6.960 9.499

BC 3.178 8.237 2.431 13.300 16.389 2.978 5.215 1.876 11.240 14.040

TC 9.358 62.356 0.028 207.627 24.716 8.650 42.486 0.021 160.593 15.985

Fastest GAP Reference SuiteSparse Galois GraphIt GKC NWGraph

TABLE IV
FASTEST TIMES FOR BASELINE AND OPTIMIZED DATA SETS. COLOR INDICATES WHICH FRAMEWORK ACHIEVED THE FASTEST RESULT FOR EACH CASE.

Baseline (speedup over GAP reference) Optimized (speedup over GAP reference)
Real Graphs Synthetic Graphs Real Graphs Synthetic Graphs

Web Twitter Road Kron Urand Web Twitter Road Kron Urand

SuiteSparse 
GraphBLAS

BFS 39.98% 60.50% 13.74% 58.14% 51.09% 36.38% 54.04% 8.02% 53.71% 46.48%
SSSP 8.50% 32.23% 0.35% 32.10% 40.51% 5.84% 31.18% 0.43% 23.95% 32.56%
CC 12.66% 18.87% 7.40% 20.13% 43.45% 11.08% 15.65% 6.30% 15.96% 33.05%
PR 92.86% 87.92% 137.50% 91.04% 91.45% 85.02% 91.21% 173.42% 96.53% 97.81%
BC 54.00% 70.93% 3.96% 80.38% 92.40% 42.69% 69.64% 3.46% 85.74% 84.95%
TC 48.76% 31.92% 12.86% 34.01% 61.51% 55.53% 34.49% 12.47% 37.46% 61.04%

Galois

BFS 54.18% 44.77% 351.04% 57.14% 8.93% 58.55% 41.88% 220.92% 62.16% 77.85%
SSSP 46.13% 55.94% 54.40% 41.76% 49.47% 26.62% 45.11% 67.37% 58.06% 53.53%
CC 64.43% 114.02% 84.11% 85.22% 66.06% 113.94% 75.16% 90.16% 85.53% 49.16%
PR 157.54% 84.36% 331.66% 106.15% 117.35% 154.67% 108.96% 456.72% 110.63% 125.71%
BC 102.90% 68.88% 54.66% 71.36% 30.88% 105.52% 73.18% 43.83% 72.87% 75.12%
TC 113.14% 108.29% 111.57% 98.02% 81.26% 235.19% 140.02% 130.04% 106.39% 90.62%

GraphIt

BFS 64.24% 86.40% 37.14% 84.29% 88.59% 54.11% 83.92% 74.34% 88.59% 95.14%
SSSP 106.50% 110.96% 94.74% 112.40% 107.56% 86.17% 104.35% 93.88% 96.13% 106.48%
CC 19.60% 8.86% 0.17% 7.06% 16.92% 16.10% 19.55% 0.45% 16.45% 27.85%
PR 194.40% 109.23% 307.38% 102.72% 101.64% 149.14% 196.47% 350.03% 211.61% 186.20%
BC 73.23% 100.23% 45.98% 224.15% 272.49% 75.85% 189.21% 34.67% 223.41% 251.01%
TC 99.30% 108.45% 67.67% 113.89% 101.73% 98.72% 107.06% 98.41% 106.97% 104.38%

Graph 
Kernel 

Collection 
(GKC)

BFS 68.68% 67.33% 157.85% 61.20% 67.47% 74.44% 60.29% 83.29% 56.75% 64.35%
SSSP 113.22% 89.68% 18.38% 86.72% 119.25% 115.98% 98.23% 18.53% 77.29% 118.17%
CC 31.87% 26.53% 14.29% 32.95% 295.12% 27.69% 19.76% 10.82% 23.46% 214.27%
PR 191.32% 105.56% 358.54% 136.28% 142.03% 125.03% 104.14% 324.19% 137.15% 150.24%
BC 106.98% 100.30% 101.55% 101.60% 102.33% 106.23% 97.49% 77.15% 101.34% 102.76%
TC 107.36% 157.92% 149.43% 197.51% 123.19% 106.98% 160.46% 176.41% 187.20% 113.98%

NWGraph

BFS 23.78% 65.85% 53.02% 65.34% 42.54% 26.59% 66.57% 33.97% 67.28% 48.74%
SSSP 47.62% 85.35% 4.61% 114.69% 54.25% 46.33% 109.46% 6.58% 102.53% 55.39%
CC 59.89% 69.09% 62.36% 61.50% 99.63% 49.60% 64.33% 60.34% 57.21% 87.41%
PR 230.67% 110.38% 373.94% 108.16% 120.65% 175.33% 119.14% 499.59% 112.20% 124.68%
BC 139.07% 135.88% 41.49% 163.21% 92.44% 117.33% 139.02% 38.15% 151.84% 90.77%
TC 249.06% 132.30% 60.61% 108.27% 124.01% 228.14% 129.97% 51.35% 109.45% 112.77%

TABLE V
SPEEDUPS OVER THE GAP REFERENCE IMPLEMENTATION FOR THE BASELINE AND OPTIMIZED DATA SETS. PERCENTAGES REPRESENT THE RATIO OF

THE TIME RELATIVE TO THE GAP REFERENCE FOR A PARTICULAR TEST. THE COLOR-CODED HEAT MAP INDICATES WHERE PERFORMANCE IS LOWER

THAN (RED), EQUAL TO (WHITE), OR HIGHER THAN (GREEN) THE GAP REFERENCE.
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algorithm expression from the schedule which makes it much

easier to adapt to features of different platforms.

It is interesting to consider the changes made for the

different frameworks when moving from the Baseline to the

Optimized cases. Some of the frameworks made only minimal

changes in moving between the two. The improvements in

performance in NWGraph and GKC for the Optimized cases

are almost entirely from taking advantage of hyperthreading

and using all 64 logical cores. The general improvements in the

hyperthreaded performance suggest that hardware resources

remain underutilized, and techniques introduced by the other

frameworks could be leveraged for better performance. The

NWGraph developers consider the low requirement for pa-

rameter tuning to be a feature of their library as users are not

required to tune for optimal performance. Instead, this burden

falls to the implementors of STL and TBB.

GraphIt also benefited from the use of hyperthreading, but

in addition, it used schedules/optimizations specialized for the

size and structure of the graphs for the Optimized case. This

was not allowed for the Baseline data set. These optimizations

resulted in general improvements for PR, BFS, TC, and BC

even though some of the schedules remained the same.

Galois stood out by making extensive changes between the

Baseline and Optimized cases. For BFS, SSSP, and BC, the

relative performance of different algorithm implementations

can vary significantly for high diameter and low diameter

graphs. Hence, in the Optimized case, the Galois team chose

one algorithm for Road because it is known to have a high

diameter (Table I), and another algorithm for the other inputs

because they are known to have low diameters. It is not

trivial to estimate the diameter of a graph. They used a

vertex sampling scheme (similar to that in GAP for TC) to

determine whether a graph has power-law degree distribution

(Web, Twitter, Kron) or uniform-degree distribution (Road,

Urand). In the Baseline case, they assumed the graph had a

low diameter if it has power-law degree distribution and a

high diameter otherwise4, and then automatically picked the

algorithm based on the assumed diameter.

A. Breadth First Search (BFS)

GraphBLAS - The BFS relies on three internal data

structures in GraphBLAS, which are opaque to the LAGraph

library: a bitmap, a sparse list (CSR), and a full matrix. The

vector q is converted to bitmap for the “pull” step, and con-

verted to a sparse list for the “push” step. This conversion time

is included in the total run time. The parent pi is held as a full

vector, while the adjacency matrix A and its transpose are held

in CSR format. The BFS achieves competitive performance,

except for Road. The same algorithm is used for all graphs.

Road has high diameter, so many iterations in LAGraph are

needed, with smaller and lighter-weight calls to GraphBLAS

kernels. GraphBLAS does include a non-blocking mode that

could in theory allow for kernels to be fused, but this is not

4Real-world graphs that do not have power-law degree distribution typically
have a high diameter because they are planar graphs, but the synthetic Urand
graph is not planar and has a low diameter without having power-law degrees.

fully implemented yet. A truly asynchronous BFS that can

work on multiple levels at a time is likely beyond the scope

of GraphBLAS+LAGraph.

Galois - For power-law graphs, both Galois and GAP use

the same bulk-synchronous direction-optimizing algorithm. As

the runtime is very small, the overheads of a generic library

such as Galois are significant. For Urand, the Optimized case

in Galois uses the same bulk-synchronous algorithm but the

Baseline case uses asynchronous execution, which increases

redundant work significantly because Urand is a low diameter

graph. In contrast, asynchronous execution for Road increases

parallelism with a small increase in redundant work, so Galois

is 3.6× and 2.2× faster than GAP for Road in the Baseline

and Optimized cases, respectively.

GraphIt - GAP has better performance on Road because of

a more efficient way of creating a new frontier/vertexset than

GraphIt. For social networks (e.g., Twitter), the difference can

also be attributed to different frontier creation mechanisms and

a more efficient way of counting the number of active vertices

in GAP. For the Optimized case, GraphIt is faster than GAP

on Road by 40% because it does not use direction optimiza-

tion (always push). This eliminates the runtime overhead of

checking the number of active vertices.

GKC - Because Road is a small, large-diameter graph,

the BFS algorithm will be particularly sensitive to overheads

associated with higher level abstractions. Hence, a hand-

optimized approach as used with GKC has an advantage as

shown by the high performance with BFS for Road.

NWGraph - The BFS algorithm used with NWGraph is a

straightforward, initial implementation with a simple direction

optimized search and no fine tuning of the switching criteria.

Performance is sensitive to the heuristic that controls the

switch between the pull and push portions of the algorithm.

Overheads due to NWGraph’s reliance on STL vectors over

more lightweight vectors was particularly noticeable for Road.

B. Single Source Shortest Paths (SSSP)

GraphBLAS - SSSP uses a delta-stepping method, and has

similar characteristics to that seen with BFS, except that it is

slower because it cannot yet exploit the bitmap data structure.

The bitmap data structure has not yet been fully incorporated

into GraphBLAS so it is currently available only in the BFS.

Galois - Galois uses a delta-stepping algorithm with a

bulk-synchronous variant for power-law graphs and an asyn-

chronous variant for the uniform graphs in the Baseline

case. Although GAP uses a bulk-synchronous delta-stepping

algorithm for all graphs, GAP is faster than Galois due to the

bucket fusion optimization. Asynchronous execution in Galois

for Road reduces this performance gap. For the Optimized

case, the bulk-synchronous variant with Urand ran better and

reduced the performance gap relative to GAP.

GraphIt - GraphIt is comparable to GAP on all the graphs

because GAP incorporated GraphIt’s bucket fusion optimiza-

tion, which significantly reduces synchronization [54]. GAP is

slightly faster by further reducing overhead in the optimization

implementation. Note that GraphIt was more than 7× faster
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on Road before the bucket fusion optimization was integrated

into the current GAP benchmark. Relative performance for the

Baseline and Optimized cases were the same.

C. Connected Components (CC)

GraphBLAS - The CC algorithm in LAGraph+GraphBLAS

is based on a high-performance algorithm [52] but the imple-

mentation in GraphBLAS has some issues that need to be

resolved. One issue is that the matrix assignment with the

MIN operator as the accumulator does not take the minimum

of multiple entries assigned into the same location; the Graph-

BLAS C API specifies that the result of this kind of assignment

is undefined. As a result, the CC method in LAGraph uses its

own implementation of this kernel.

Galois - Galois and GAP both use the same Afforest

algorithm. For the Baseline case, GAP is faster than Galois

except for Twitter. For the Optimized case and Web, the edge

blocking variant of the Afforest algorithm used in Galois

performs much better due to better load balancing.

GraphIt - GraphIt is slower than GAP for CC due to dif-

ferences in the algorithms they used. GAP uses the sampling-

based Afforest algorithm which runs in O(V ) where V is the

number of vertices. GraphIt does not yet support sampling

algorithms and uses a label-propagation approach which runs

in O(ED) where D is the diameter of the graph and E is the

number of edges. For the Optimized data set, GraphIt used

label propagation with a short-circuiting approach on Road as

the vertex chains tended to go longer on high-diameter graphs.

This resulted in a 3x speedup but it was still slower than GAP.

The GraphIt CC implementation also used cache optimizations

similar to PR for speedups on the social network graphs.

GKC - CC performance is dependent on the algorithm. The

observation by Sutton et al. [45] that the Afforest algorithm

is less effective on the Urand graph is replicated here. How-

ever, the performance gap between Afforest and the hybrid

algorithm used with GKC is significantly smaller (at most

7x speedup on Road) than the performance reported in the

original paper (up to 100x speedup on Road). The narrowing

of the performance gap is most likely due to the use of SIMD

instructions and local intermediate buffers for GKC.

D. PageRank (PR)

GraphBLAS - GraphBLAS does well fairly well for PR,

taking about as much time as the GAP benchmark. This is

expected, since it is using the same basic algorithm. The main

constraint that PR in LAGraph faces in the future is that an

asynchronous Gauss-Siedel method is likely beyond the scope

of the GraphBLAS API. There is no mechanism in the C API

Specification for partially computing a vector x in x = A ∗ x,

in asynchronous parallelism with other threads.

Galois - Galois is faster than GAP because its Gauss-

Seidel-style algorithm converges faster and performs fewer

operations than the Jacobi algorithm. The benefits increase

with the diameter of the graph, so Galois is 3.6× faster than

GAP for Road. For the Optimized case, Galois uses NUMA

blocked allocation for the graph topology and vertex labels.

When combined with the Gauss-Seidel algorithm, this resulted

in a 4.7× speedup relative to GAP for Road.

GraphIt - GraphIt is comparable to GAP on Kron, Urand,

and Twitter, and faster on Web and Road due to better scaling

for the same amount of work. For the Optimized cases, GraphIt

is faster than GAP due to cache optimization from tiling the

graph [51]. Web had good locality and did not benefit as much

from cache optimization. In general, the preprocessing time to

construct cache efficient subgraphs from CSR format is small

compared to the performance gains, so it is amortized within

2 - 5 iterations. This is helpful for algorithms like PR that

require around 20 iterations to converge.

NWGraph - NWGraph used the Gauss-Seidel algorithm

and saw performance in line with that observed for the other

frameworks using that algorithm.

E. Betweenness Centrality (BC)

GraphBLAS - BC is competitive versus the GAP bench-

mark, except for Road, where it shares the same limitations

as BFS and SSSP. Most of the operations are matrix-matrix,

where one matrix is dense and 4-by-n. LAGraph implements

the batch Brandes algorithm, in a mere 97 lines of very

readable code (47 in the MATLAB interface, including error

checks on the inputs). It cannot yet use the newly-developed

bitmap structure internal to GraphBLAS, as this is only

partially developed.

Galois - For power-law graphs, both Galois and GAP use

the bulk-synchronous Brandes algorithm, but GAP is faster

because it saves the list of successors for each vertex using

a bitmap. Because of this optimization, GAP is faster than

Galois for uniform graphs, even though Galois uses the asyn-

chronous Brandes algorithm. Asynchronous execution hurts

performance for Urand in the Baseline case because Urand

is a low diameter graph. For the Optimized case, results on

Urand are better because the bulk-synchronous algorithm is

used.

GraphIt - Unlike GAP’s implementation, GraphIt trans-

poses the graph for the backward pass gaining speed for larger

graphs but running slower for the smaller graphs. GraphIt uses

a bitvector to represent the frontier, which is advantageous

when there are many active elements in the frontier. For the

Optimized case, the GraphIt algorithm reduces overhead by

not using a bitvector for the frontier on Road, resulting in a

modest speedup.

NWGraph - The BC kernel did not use direction optimized

breadth-first search. Performance, however, is still competitive,

with the exception of Road. Results on Road are often worse

for NWGraph. As Road is a smaller graph, overheads due

to NWGraph’s reliance on STL vectors are more significant

compared to frameworks that use more lightweight vectors.

F. Triangle Counting (TC)

GraphBLAS - TC is very simple in LA-

Graph+GraphBLAS: except for the optional presort, it

is a single masked matrix-matrix multiply, followed by a

reduction to a single scalar. To accomplish this, the entire
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matrix is first formed, then summed to a single scalar and

discarded. It would be much faster to skip construction of the

matrix and simply sum up its entries as they are computed. If

this kernel were fused (which could be done in non-blocking

mode), this would improve TC performance by a factor of

two or more. Also yet to be implemented is a fast SIMD set

intersection method for the dot product-based matrix-matrix

multiply.

Galois - Galois uses the same TC algorithm as GAP.

For Web, which has power-law degrees, Galois performance

benefits from better work stealing and load balancing. For

Urand, which has uniform degrees, Galois is slower due to

the overheads of work stealing when the load is already well

balanced. For the Optimized case, we excluded the time to

preprocess and relabel the graph so Galois is much faster than

GAP.

GraphIt - GraphIt is slightly faster than GAP on Kron and

Twitter. The GraphIt algorithm is observed to have less branch

misprediction [24], which is important for the larger graphs.

For the Optimized data set, GraphIt was originally slower than

GAP on Road because it used a set intersection method that

was inefficient for smaller graphs. Changing back to the naive

intersection method used in GAP improved performance.

GKC - GKC sorts vertices depending on degree skewness,

then uses SIMD instructions depending on average degree

and available hardware features. It performs set intersections

with vectors that were previously visited, thereby increasing

data reuse in caches. The combination of algorithm-enabled

cache reuse, heuristic-driven relabeling, and appropriate use

of hardware capability such as SIMD set intersection results

in GKC outperforming GAP for both cases on all graphs.

NWGraph - The TC numbers were quite competitive,

especially for Web, whose skewed degree distribution makes

load balancing difficult. NWGraph’s cyclic distribution of rows

across threads led to near optimal load balancing. TC also

benefits from sorting and relabeling the edge list (which is

included in the timing results) before compressing to a sparse

adjacency format (which is not timed per benchmark timing

rules). This is a much more efficient strategy than sorting and

relabeling on the compressed graph.

VI. DISCUSSION

This paper was born from frustration. We tried repeatedly to

produce high quality, reproducible performance numbers for

key graph algorithm frameworks. There were so many ways

to use each framework that we could never be sure we were

using any given system to its full advantage. The result was

little hard data to gauge relative performance.

The solution was to bring the groups behind each of the

frameworks together to run their software with a common

benchmark on the same hardware. We negotiated rules for two

cases. The Baseline case tried to replicate the performance

an unsophisticated user might see (the “out of the box”

experience). The Optimized case urged each group to carry

out optimizations for each algorithm to understand the best

performance available from their framework.

The heat maps shown in Table V suggest that no framework

is best for all graphs or algorithms. This is apparent in

that none of the rows or columns are fully green, and is

well supported by anecdotal evidence from graph algorithm

researchers; no single graph framework can equally handle

the full diversity of graph problems.

Road in particular was difficult for many of the frameworks

because of its small size and high diameter. Many graph

algorithms are iterative with synchronization required at each

iteration. With the small size of Road, there was little useful

work to amortize synchronization overhead. For the Optimized
data set, the GAP reference implementations often did better

on Road with fewer cores precisely because it would reduce

the synchronization burden. Finally, timings for algorithms on

Road were more unstable compared to other cases. This was

most likely due the short runtimes making the results more

sensitive to sequential startup overheads.

Three frameworks stood out in their performance on Road:

Galois for BFS, GraphIt for SSSP, and GKC for TC.

• Galois makes heavy use of asynchronous execution.

This helps algorithms converge sooner because they can

update information faster without waiting at the bulk

synchronous (frontier-based) iteration boundaries. This

effect would be particularly notable for large diameter

graphs such as Road. Galois preforms better for PR due to

the Gauss-Seidel approach with in-place updates, which

is more efficient due to a reduced number of operations.

• GraphIt used a new bucket fusion optimization for SSSP

with delta stepping. It is based on the bucketing-based

priority queue. The gist of the optimization is if a thread

sees that the next bucket has the same priority as the

current bucket, it can process the next bucket without

synchronizing with other threads. This way, GraphIt is

able to reduce the number of rounds/synchronizations by

a factor of ten while maintaining a strict priority order.

It sets a threshold on the next bucket size to avoid load

imbalance [54]. The bucket fusion optimization has been

incorporated into the GAP reference implementation.

• GKC heuristically applies SIMD kernels and graph rela-

beling, based on hardware capability (e.g., SIMD length

and ops per second), graph skewness, and size. In Road,

this is relevant because the overheads of sorting and using

SIMD are avoided due to the heuristics. Further, Road

benefits from GKC’s algorithm because of its small size,

resulting in higher cache-reuse.

This study revealed several potential improvements to the

GAP Benchmark Suite.

• We identified and fixed a bug in the implementation of

BC’s path counting algorithm.

• The GAP reference implementations try to establish a

reasonable performance target for graph frameworks.

However, the reference PR implementation is no longer

performance competitive with leading frameworks. It can

be accelerated with blocking, but the resulting code might

be too platform-specific [5]. Alternatively, switching to
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a Gauss-Seidel approach for PR is far more practical,

and the results of this study demonstrate the performance

advantages of that approach.

• We found considerable ambiguity in the procedures to

validate results and validation is important to assure that

all frameworks are converging on consistently meaningful

results. We recommend more formally specified verifica-

tion and validation procedures for GAP. This needs to

include both correctness and timing guidelines.

We see two productive avenues for future work. First, the

most difficult part of this project was to work out procedures

required to generate consistent results. Those same procedures

can be used with other graph frameworks, allowing us to

expand these data sets. Second, we did not analyze the

complexity of the algorithms from one framework to the next.

This is the ever-challenging “programmability problem” all too

often overlooked due to the ambiguities inherent in measuring

programmability. This is still, however, a critical issue to

explore as we work to improve the quality of frameworks used

to create graph algorithms.
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McMillan, José Moreira, and Carl Yang. LAGraph: A community effort
to collect graph algorithms built on top of the GraphBLAS. In GrAPL
at IPDPS, pages 276–284. IEEE, 2019.

[35] U. Meyer and P. Sanders. Δ-stepping: a parallelizable shortest path
algorithm. Journal of Algorithms, 49(1):114 – 152, 2003. 1998 European
Symposium on Algorithms.

[36] Richard C. Murphy, Jonathan Berry, William McLendon, Bruce Hen-
drickson, Douglas Gregor, and Andrew Lumsdaine. DFS: A simple
to write yet difficult to execute benchmark. In IEEE International
Symposium on Workload Characterizations (IISWC). IEEE, 2006.

[37] Richard C. Murphy, Kyle B. Wheeler, Brian W Barrett, and James A.
Ang. Introducing the Graph 500. In Cray User’s Group. CUG, 2010.

[38] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight
infrastructure for graph analytics. In SOSP, pages 456–471. ACM, 2013.

[39] Sreepathi Pai and Keshav Pingali. A compiler for throughput optimiza-
tion of graph algorithms on GPUs. SIGPLAN Not., 51(10):1–19, October
2016.

[40] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher,
M. Amber Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew
Lenharth, Roman Manevich, Mario Méndez-Lojo, Dimitrios Prountzos,
and Xin Sui. The TAO of parallelism in algorithms. In PLDI, pages
12–25, 2011.

[41] Siddharth Samsi et al. GraphChallenge.org: Raising the bar on graph
analytic performance. In HPEC. IEEE, 2018.

[42] Yossi Shiloach and Uzi Vishkin. An O(logn) parallel connectivity
algorithm. Journal of Algorithms, 3(1):57 – 67, 1982.

[43] Jeremy Siek, Andrew Lumsdaine, and Lie-Quan Lee. The boost graph
library: user guide and reference manual. Addison-Wesley, 2002.

[44] U. Sridhar, M. Blanco, R. Mayuranath, D. G. Spampinato, T. M. Low,
and S. McMillan. Delta-stepping SSSP: From vertices and edges to
GraphBLAS implementations. In GrAPL at IPDPS, pages 241–250,
2019.

[45] Michael Sutton, Tal Ben-Nun, and Amnon Barak. Optimizing parallel
graph connectivity computation via subgraph sampling. In IPDPS, pages
12–21. IEEE, 2018.

[46] Richard Veras, Thom Popovici, Tze-Meng Low, and Franz Franchetti.
Compilers, hands-off my hands-on optimizations. In Workshop on Pro-
gramming Models for SIMD/Vector Programming (WPMVP) at PPoPP,
2016.

[47] Jatala Vishwesh, Dathathri Roshan, Gill Gurbinder, Hoang Loc, Nandi-
vada V. Krishna, and Pingali Keshav. A study of graph analytics for
massive datasets on distributed GPUs. In IPDPS, 2020.

[48] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy
Riffel, and John D. Owens. Gunrock: A high-performance graph
processing library on the GPU. In PPoPP, 2016.

[49] M. M. Wolf, M. Deveci, J. W. Berry, S. D. Hammond, and S. Raja-
manickam. Fast linear algebra-based triangle counting with KokkosKer-
nels. In 2017 IEEE High Performance Extreme Computing Conference
(HPEC), pages 1–7, 2017.

[50] Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion Stoica.
GraphX: A resilient distributed graph system on Spark. In Graph Data-
management Experiences & Systems (GRADES) at SIGMOD, 2013.

[51] Y. Zhang, V. Kiriansky, C. Mendis, S. Amarasinghe, and M. Zaharia.
Making caches work for graph analytics. In Big Data, pages 293–302,
2017.

[52] Yongzhe Zhang, Ariful Azad, and Zhenjiang Hu. FastSV: A Distributed-
Memory Connected Component Algorithm with Fast Convergence, pages
46–57.

[53] Yongzhe Zhang, Ariful Azad, and Zhenjiang Hu. Fastsv: a distributed-
memory connected component algorithm with fast convergence. In PP,
pages 46–57. SIAM, 2020.

[54] Yunming Zhang, Ajay Brahmakshatriya, Xinyi Chen, Laxman Dhulipala,
Shoaib Kamil, Saman Amarasinghe, and Julian Shun. Optimizing
ordered graph algorithms with GraphIt. In CGO, page 158–170. ACM,
2020.

[55] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil,
Julian Shun, and Saman Amarasinghe. GraphIt: A high-performance
graph DSL. PACMPL/OOPSLA, 2:121:1–121:30, October 2018.

227


