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Abstract— Job shops are an important production
environment for low-volume high-variety manufacturing. When
there are urgent orders, the speeds of certain machines can be
adjusted with a high energy and wear and tear cost. Scheduling
in such an environment is to achieve on-time deliveries and low
energy costs. The problem is, however, complicated because part
processing time depends on machine speeds, and machines need
to be modeled individually to capture energy costs. This paper is
to obtain near-optimal solutions efficiently. The problem is
formulated as a Mixed-Integer Linear Programming (MILP)
form to make effective use of available MILP methods. This is
done by modeling machines in groups for simplicity while
approximating energy costs, and by linking part processing
status and machine speed variables. Nevertheless, the resulting
problem is still complicated. The formulation is therefore
transformed by extending our previous tightening approach for
machines with constant speeds. The idea is that if constraints
can be transformed to directly delineate the convex hull, then the
problem can be solved by linear programming methods. To solve
the problem efficiently, our advanced decomposition and
coordination method is used. Numerical results show that near-
optimal solutions are obtained, demonstrating significant
benefits of our approach on on-time deliveries and energy costs.

Index terms—Job-shop scheduling, energy costs, mixed-integer
linear programming, formulation tightening

I. INTRODUCTION

ob shops are an important production environment for
J low-volume high-variety manufacturing. To meet on-
time deliveries, scheduling of parts is critical. In a job shop,
machines are usually categorized into different types based on
their functions, i.e., which parts/operations a machine can
process. When there are urgent orders which have tight due
dates, the speeds of certain machines can be adjusted for
different parts/operations in a discrete speed level. However,
high speeds come with high energy and wear and tear costs.
Under the environment of machine speed scaling, the
scheduling is to achieve on-time deliveries and low energy
costs. The problem is to minimize the total weighted tardiness
penalty and energy cost by assigning parts to machines and
determining the corresponding machine process speeds while
satisfying part processing time, operation precedence, and
machine capacity constraints.

Bing Yan is with the Department of Electrical and Microelectronic
Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
(e-mail: bxyeee@rit.edu).

Peter B. Luh, and Mikhail A. Bragin are with the Department of Electrical
and Computer Engineering, University of Connecticut, Storrs, CT 06269-
4157, USA (e-mail: peter.luh@uconn.edu, and mikhail.bragin@uconn.edu).

978-1-7281-6903-3/20/$31.00 ©2020 IEEE

The scheduling problem is, however, complicated because
the part processing time and machine energy costs depend on
machine speeds. In addition, when a machine is idle, it
usually consumes much less energy as compared to the
processing mode. To capture energy costs under processing
or idle modes, machines need to be modeled individually
instead of groups.

This paper is to obtain near-optimal solutions efficiently
for energy-efficient job-shop to meet product on-time delivers
and reduce energy costs. The problem is formulated as a
Mixed-Integer Linear Programming (MILP) form to make
effective use of available MILP methods in Section III. To
maintain the group concept for complexity reduction,
machines are modeled in groups for simplicity while energy
costs are approximated for each machine group instead of
each machine. Processing time constraints are established by
linking part processing status and machine speed variables.

Nevertheless, the resulting problem is still complicated
because part processing time depends on machine speeds.
The formulation is therefore transformed by extending our
previous tightening approach for machines with constant
speeds in Section IV. The idea is that if constraints can be
transformed to directly delineate the convex hull, then the
problem can be solved by linear programming without
combinatorial difficulties. In our previous work [2, 3],
several processing time related tightened constraints are
obtained. With machine and speed dependent processing
time, those constraints are modified based on machine speed
variables and used as lower or upper bounds, e.g., the earliest
possible beginning time based on the shortest processing time.

For the problem under consideration, most constraints are
associated with individual parts, and all parts are coupled by
machine capacity constraints. By exploiting the exponential
reduction of complexity, our advanced decomposition and
coordination method with accelerated convergence [4] is used
to improve computational efficiency in Section V.

The above method is implemented by using CPLEX, and
three examples are presented in Section VI. The first small
one is to illustrate the impacts of energy costs on job-shop
scheduling. The second is to demonstrate the effectiveness of
formulation tightening. The third is to show computational
efficiency of the decomposition and coordination method.
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II.LITERATURE REVIEW

Existing job-shop scheduling formulations and tightened
constraints are reviewed in Subsection A.  Solution
methodologies are reviewed in Subsection B.

A. Problem formulations and tightened constraints

In [1], an integer programming model was developed for
flexible job-shop scheduling under the framework of machine
speed scaling to minimize the sum of energy-consumption
cost and completion-time cost, where a set of binary variables
was used to indicate machine speeds. A similar model was
established for multi-objective optimization in [5]. Without
considering machine speed scaling, there are also studies
focusing on machine on-off decisions to reduce energy costs.
Based the on the modeling idea of idle time, an integer linear
programming (ILP) model with turning off/on strategy for
flexible job-shop scheduling was developed in [6]. In [7-9],
several ILP models were developed based on two modeling
ideas, namely idle time and idle energy, for energy-conscious
flexible job-shop scheduling problems. In the above,
machines were modeled individually. When the number of
machines increases, the problem is difficult to solve.

Obtaining a tight formulation is fundamentally difficult,
and it is rarely discussed in the literature. For traditional job-
shop scheduling in [10], tightened constraints were developed
by identifying a ceiling for inventory shortage, and the longest
working procedure sequence till part completion. For flow-
shop scheduling, subtour elimination constraints and lower
/upper bound mixed-integer inequalities were developed by
analyzing formulation structures in [11]. For both studies,
testing results based on randomly generated data demonstrate
computational efficiency of these tightened constraints.

In our previous work on job-shop scheduling with constant
machine speeds and without considering energy costs [2, 3],
a few processing time-related constraints were obtained for
single parts based on novel “constraint-and-vertex
conversion,” “vertex elimination” and “parameterization.”
Results show that our formulation tightening is effective in
terms of computational efficiency and solution quality.

B. Solution methodologies

While metaheuristic approaches [1, 6, 12] are attractive for
job-shop scheduling problems owing to their low
computational requirements, within these methods, solution
quality cannot be measured and there is typically no systemic
way to improve the solution.

The branch-and-cut (B&C) method for job-shop
scheduling with ILP formulations has also used [10, 11].
Within the method, after relaxing integrality requirements, the
problem is solved by using linear programming methods. If
the resulting solution is integral, then the solution is optimal
to the original problem. However, this can only be ensured
for “totally unimodular” formulations. Therefore, there is
generally a need for B&C to cut off the regions outside of the
convex hull without cutting off feasible solutions by using
cuts. If an integer optimal solution is not obtained as a result
of cutting, the method relies on branching operations and
heuristics. Moreover, the method does not exploit the “local”
problem features such as process time requirements; all
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constraints within a problem are handled as “globally.” These
constraints thus affect the entire convex hull, influence the
solution process, and lead to slow convergence.

To solve job-shop scheduling problems, Lagrangian
relaxation has been traditionally used to exploit exponential
reduction of complexity after decomposition, to obtain near-
optimal solutions with quantifiable quality in a
computationally efficient way [13-15]. In reference [13],
separability was exploited through decomposition, and then
subproblems were solved by dynamic programming and
coordinated by Lagrangian multipliers based on violation
levels of relaxed constraints. However, convergence of
Lagrangian relaxation is very slow because of such major
difficulties as high computational requirements to solve all
subproblems, and significant zigzagging of multipliers.
Within our recent surrogate Lagrangian relaxation (SLR),
these difficulties have been overcome. Within the method,
the solution of one or few subproblems is sufficient to update
multipliers [16]. Moreover, convergence has been proved
without requiring the optimal dual value.

To accelerate convergence of SLR, “absolute-value”
penalty functions were used [17]. Without considering
energy costs, the job-shop scheduling problem was efficiently
solved by the resulting Surrogate “Absolute-Value”
Lagrangian relaxation (SAVLR) method [2].

III. PROBLEM FORMULATION

Based on our previous work [2, 3], an MILP formulation
for energy-efficient job-shop scheduling is established.

A. Machine capacity constraints

Consider a job shop with / parts to be processed, indexed
by i. Part i requires J; operations indexed by j. For easy
presentation, (i, j) is used to denote operation j of part i. In
the shop, there are M types of machines (machine groups)
indexed by m. Each type of machines can adjust its speeds
for various parts/operations in a discrete speed level, and part
processing time is machine and speed dependent. The
scheduling horizon is discretized into 7 time slots indexed by
t, and it is assumed that 7 is long enough to process all parts.

To capture whether (i, /) is active on machine type m (since
the processing time is machine dependent as mentioned
earlier) at time # or not, a set of binary decision variables Jjm:
with four indices is introduced as follows:

1, operation j of part i is active on machine m at time ¢;
mk {O, otherwise.

For machine type m, the total number of active parts
cannot exceed its capacity M,, at any time slot 7, i.e.,

Y Sy <M, Vm, V. (1

V(i,j)eO,, "
In the above, O,, denotes the set of (i, /) that can be processed
by machine type m. This system-wide machine capacity
constraint couples different parts.
B. Machine speed constraints

For machine type m, the total number of speed levels is .S,
with the speed level indexed by s. The higher the speed, the
shorter the processing time of the part/operation assigned to
the machine group. To capture at which speed that (i, j) is



being processed on machine type m, a set of binary decision
variables x;»s with four indices is introduced as follows:
1, operation j of part i is assigned to machine type m

X

ijms

to process at a speed of s;
0, otherwise.

To capture whether (i, /) is assigned to machine type m, a set

of binary variables y; is defined as follows:
S,

m

Vi = 2 Xy » Vi, Vj, V. 2
’ s=1

Not that y;;» is not a decision, and it depends on Xjms. If yjjm is
1, then (7, j) is assigned to machine type m; and 0, otherwise.
For (i, j), it can only be processed on one machine at one
speed level, i.e.,
> Yiim = 1, Vi, v,
meN,

i

3)

where Nj; is the set of machine types that can process (i, j).
C. Processing time requirements

Let b;; and ¢;; denote the beginning and completion time of
(i, /). They are integer decision variables and are linked via
processing time requirements. When (i, j) is assigned to
machine type m, the reference processing time is pj». If speed
s is selected, the processing time is assumed as pjjms, where
Piims = Piym/s. Also the speed cannot be changed during the
processing of (7, j). Since the processing is assumed to be
“non-preemptive,” a contiguous time block of length pjms is
needed if (7, ) is assigned to machine type m at speed s, i.c.,

Sm . .
G =b;+ X X Xy Dyms — 1 Vi,V 4)

VmeM,; s=1

Within [bj, c¢ij], Ojm must be 1 if (i, j) is assigned to
machine type m, and 0 otherwise, i.e.,

1, if b, <t<c;,andy,, =1;
Ot = Y 5)
0, otherwise.
This logical constraint can be linearized as follows:
1<c; +T(1= X 8;,,), Vi, V), Ve, (6)
’ meN;
th)j _T(l_ z djnlt)’vj,vja Vt, (7)
meN;;
S,,, . .
Zé;jn7t = leijmspijms’ Vl,Vj,m EMU (8)
t s=
The above guarantees Oy = 1 iff by < t < ¢ with yym = 1;

and djm = 0 when ¢ < bj or t > ¢;; with y;, = 1, or any ¢ when
vim = 0. Linear constraints (6-8) are equal to logical (5).

D. Operation precedence constraints

For a particular part, it is assumed the operation sequence
is fixed. Because of operation precedence requirements,
operation (i, j+1) cannot start before (i, j) is completed, i.e.,

b =c;+1,Vi,Vj. )
The first operation cannot start until part 7 is arrived at a;,, i.e.,
b, >a,, Vi (10)

E. Energy cost

With speed s, the energy cost of a machine in type m is
defined as E,s ($/day). For (7, /) on machine m, if s > s’, then
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Eons X pijms > Ems X pijms.  In other words, a higher machine
speed can reduce the processing time, but increase the energy
cost. In addition, it is assumed that each machine is
completely turned off after all parts that are assigned to it are
completed. During the idle time, machines in type m are on a
stand-by mode with an energy cost of E5%, ($/day). To
capture the idle time, machine workload and completion time
of the last part that is assigned to individual machines is
needed. However, since the machine group concept is used
here instead of individual machines for complexity reduction,
it is difficult to get the workload and the completion time of
the last part on each machine. For simplicity, the average
workload of the machine group, and the completion time of
the last part assigned to the group is considered for every
machine within the same group as approximation.
Average machine workload in type m is obtained as,

Wp=_ X X8, /M,,Im. (11)
V(i,))e0, t

The completion time of the last part that is assigned to
machine type m is derived as follows,

Cp 2 ¢ =T =y, ), Vm, V(i j) € O, (12)

F. Objective function

The objective function is to minimize the total tardiness
penalty and energy cost as presented below:
13)

2

+> o, (max(cJ’ —-d,, 0)).
In the above, wiis a tardiness penalty weight for part i ($/day)
and d; denotes its due date. The tardiness function is
converted to a piecewise-linear function and linearized by
special ordered set techniques [18]. After this conversion, the
above objective function is purely linear. For compactness of
notation, function max is kept here and later in the paper.

The energy-efficient job-shop scheduling problem with
Eq. (1-4) and (6)-(13) established above is an MILP problem.

J. S,
Z Z Z Ems ]:;jmsxijmx + EritBme (cm - Wm)

i j=ls=1

IV. FORMULATION TIGHTENING

The general idea of our formulation tightening approach is
introduced in Subsection A. Tightened constraints obtained
for parts with constant processing time in our previous work
[2, 3] are extended for parts with machine and speed
dependent processing time in Subsection B.

A. Formulation tightening

With system-level machine capacity constraints relaxed,
the single-part formulation is tightened by using our
systematic approach [2, 3]. Given part parameters (e.g.,
processing time p) in numerical values, tightened constraints
are established through four steps.

In the first step, integrality requirements on integer
variables are relaxed. For the linear relaxation problem,
vertices of the convex hull are generated from constraints via
algebraic manipulation of part parameters with well
established algorithms [19]. The second step is to obtain the
vertices of the convex hull of the original problem by simply
eliminating factional vertices with proved tightness in [3].
These vertices are then converted back to tight constraints



with numerical coefficients in the third step as a reverse
process of the first step. For these constraints, coefficients
depend on part parameters, as well as the numbers of tight
constraints and variables. For general use purposes, the
numerical coefficients of tight constraints are characterized
by analyzing constraint structures and relationships between
coefficients and part parameters in the last step.
B. Tightened constraints

In [2, 3], several sets of processing time-related tightened
constraints were obtained for individual parts by using the
systematic approach described in Subsection A. They are
extended to the problem under consideration as follows.
a) Part status related requirements

The small scheduling problem used in [2, 3] has one part
and one operation with p =3 and 7= 8 (processing time is not
machine or speed dependent). Decision variables include part
status &, beginning time b, and completion time ¢. By using
the systematic tightening approach, a set of processing time-
related tightened constraints are obtained as follows,

6,+0,+0,=10,+6,+9,=10,+9, =1. (14a-c)

Required by processing time constraints, three
consecutive d must be 1 among time slots 1 - 8. Thus one &
from the 1, 4" and 7™ time slots must be 1 as shown in Eq.
(14a). Similarly, one ¢ from time slots 2, 5 and 7 must be 1
as shown in Eq. (14b), and one & from time slots 3 and 6 must
be 1 as shown in Eq. (14¢). This set of tightened constraints
can be generalized for all operations with different processing

time as follows,
t={ K/p [ pr+t<K

0., =Ltell, pl. (15)
7=0

For energy-efficient job-shop scheduling under
consideration, processing time is machine/speed dependent.

The above tightened constraint can be extended as follows,
= K/p,, kp,+t<K

mt+pr S 'xmx + pms (1 _'xm: )’t € [1’ pmx ]’Vm’ VS' (163)
=0

= K/p,, [p,r+<K

o 2x,,te[lp,],Vm,Vs.

mt+pr

(16b)

=0

When x,,s = 1, machine type m is scheduled to process the part
with speed s, so that the summation of the selected & should
be 1 as explained early. When x,,; = 0, machine type m is not
scheduled to process the part with speed s (the part could be
assigned to machine type m with other speed levels, or
assigned to other machine types), so that the summation of the
selected O should be less than the processing time.
b) Beginning time related tightened constraints

By analyzing the same problem mentioned in
Subsubsection a, one beginning time related tightened
constraint is obtained as follows,

b=T-p+1-2(6,+6,)- (6,40, +0,)-0(5, + 5, +,). 17)
Since the processing time is p and the part must be completed
within the scheduling horizon, the largest beginning time is 7-
p + 1 with &, &; and & as 1 as implied in Eq. (17). When the
starting of nonzero S moves earlier, b gets smaller. The earlier
the o, the larger the impacts on b.

The above tightened constraint can be generalized for all
operations with different processing time as follows,
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(18)

For energy-efficient job-shop scheduling, the above
tightened constraint can be extended as follows,

| T/p,s, | =p, 5, ~Lnp,, s, +7<T
b2T-Yp,s X, t1-2 X n( > Oy ) (19)

m n=0 =0

n=|T/p| r=p-lnp+r<T
b=T—p+l—'S n( ¥ 5Hp,,).
=0

n=0

Since when the largest speed is considered, the processing
time is the smallest. With the shortest possible processing
time, the beginning time obtained from the right hand side is
the smallest.

The above tightened constraints (16) and (19) directly
constrain variables 6 and b, and tighten the formulation

V.SOLUTION METHODOLOGY

This section is to solve the problem by using our recent
Surrogate Absolute-Value Lagrangian Relaxation [4].

A. Surrogate Lagrangian Relaxation (SLR) [17]

After system-wide machine capacity constraints (1) that
couple individual parts are relaxed by using Lagrangian
multipliers 4, the relaxed problem can be written as:

i

mln{Z CiProE + CSIB,VE + zq_[’enalfy +3 /11‘1;( 3 61_]_’” _Mm j}
i t,m v(i,j)eO,

J S,
where C/"* =Y > E, P, X

ms ™ ijms " ijms
m j=ls=1

CStByE = z E,itBy Mm (Cm _ Wm)

Cipgna/ty =w, (max(cj’ —di,O)). (20)

: SBYE .
In the above, for easy presentation, ¢, C>** and ¢/

are defined to represent the total energy cost to process part 7,
the total energy cost for machine stand-by, and tardiness
penalty cost of part i, respectively.

The relaxed problem is additive and it thus can be
decomposed into individual part subproblems as:

: ProE StByE Penalty k
ming C; ™" + C™" +C; LD IV SR
i i),

51.(2-4,6-12,16,19). 21
Subproblems are much easier to solve as compared to the
original problem. Parts are coordinated by updating
multipliers based on stepsizes and violations of machine
capacity constraints as:

At =[ A +5"2Y] 22)

where & are latest available values of decision variables Gyms;
stepsizes s* are set as in [17]; and surrogate subgradient
directions is used after one or few subproblems are solved at
a time and defined as:

&@0H= % 9o, —M,
(i,/)€0,

i.j)e

(23)

B. Surrogate  Absolute-Value Relaxation

(SAVLR) [4]

To speed up convergence of SLR, violations of relaxed
constraints (1) are penalized through “absolute-value” penalty
terms with positive penalty coefficients v*. The resulting

“absolute-value” subproblem then becomes:

Lagrangian



qPrr)E + O 4 Cv’Penu[zy +Y ﬂ“zi Y 5’ .
(g0,
minl s SNCE)
N +-—_-max Z 51’: jmt + Z é‘i'ml - Mm ’ 0
2 Wivj)eO, e vi(igeo,

Subproblems are linearized exactly and subproblem i can
be written in an MILP form after introducing integer decision
variables g as:

{

5.6.(2-4,6-12,16,19),

ﬂk

tm

C[P)'{)E L CSBE | C[Pena[ty vy

)y
Y(i'j)€0, i '#i

Subproblems (25)-(26) are MILP problems and are solved
very efficiently by using B&C since their complexity is
significantly reduced after decomposition.
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The above approach is implemented by using IBM ILOG
CPLEX Optimization Studio V 12.8.0.0 [20] on a PC with
2.40GHz Intel Xeon(R) E-2286M CPU and 32G RAM. Three
examples are presented.

Example 1: A small problem

This small example is to illustrate the impacts of energy
costs on job-shop scheduling. Consider a job shop with two
machines. The first cannot change speeds, and the energy cost
is $0.5/day when processing and $0.12/day when stand-by.
The second has two speeds with the energy cost of $0.55/day
and $1.5/day, and the energy cost is $0.14/day when stand-by.
There are four parts: the first two have two operations, and the
other two have one. Processing time, due dates and tardiness
weights of the four parts are presented in Table I below. The
time horizon is 10 days so that all parts can be processed.

(25)

min
¢;,0;,2

2

v(i.j)e0,

s+ Yy 8, —-M, <gq, . (26)

i i
/ Vji(i,j)e0, v

k
\4
51'/'1 + 7/%[ qtm}’

NUMERICAL RESULTS

TABLE I EX1: PART PROCESSING TIME, DUE DATES AND TARDINESS

WEIGHTS

Partl Part2 Part3 | Part4
01 02 | Ol 02 01 01
Pjms | Machinel | Speedl / 4 2 / 4 5
(day)| Machine2 | Speedl 3 / / 2 4 5
Speed2 | 2 / / 1 2 3
d:(day) 5 4 10 8
;($/day) 10 10 1 10

The problem is first solved with fixed machine speeds, i.e.,
machine 2 only has speed 1, and energy costs are not
considered. The optimized schedule is shown in Fig. 1 below.

RN P [ [ ]

Machine 1 time
phaasae A e b

Machine 2 time

Figure. 1. EX1: Schedule with fixed machine speeds

For part 1, operation 1 can only be processed on machine
2, and operation 2 can only be processed on machine 1. Part
2 is opposite. Parts 3 and 4 can be processed on machines 1
and 2 respectively. To guarantee that all the parts are
processed within the scheduling horizon, part 3 is processed
on machine 1 before operation 2 of part 1 since part 1 is still
on machine 2 at day 3. The total tardiness cost is $80.

Considering different speed levels of machine 2 and
energy costs, the optimized schedule is shown in Fig. 2 below.
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poispior /e | | | |
Machine 1 time
RN A R I
Machine 2 time

Figure. 2. EX1: Schedule with different machine speeds and energy cost

As compared with Fig. 1, operation 1 of part 1 and part 4
are processed on machine 2 under the fast speed to reduce
tardiness. Operation 2 of part 2 is processed under the low
speed since the due day can still be met with a lower energy
cost. The process sequence of part 3 and operation 2 of part
1 is swapped to reduce tardiness since operation 1 of part 1 is
finished by the end of day 2. For this case, the total tardiness
cost is $10, while the energy cost is $5.05. It can be seen that
flexible machine speeds can improve on-time deliveries.
When energy costs are not considered in the objective, the
total tardiness cost is still $10, while the energy cost is $7.
This demonstrates that under the same delivery requirements,
energy costs can be reduced by changing machine speeds.

If the due date of part 3 is 7 instead of 10, the optimized
schedule without considering energy costs is shown in Fig.3.

Nz
Machine 1 time
ofeyeole, [ Je T T ] | |
Machine 2 time

Figure.3. EX1: Schedule with different machine speeds and new due dates

As compared with Fig. 2, Operation 2 of part 2 and part 3
are processed on machine 2 under the fast speed to improve
on-time deliveries. Considering energy costs, the optimized
schedule is the same as Fig. 3. The reason is that the energy
cost cannot be reduced under the same delivery dates since
on-time deliveries have more priority. It implies that when
due dates are tight, flexible machine speeds can still improve
on-time deliveries, but the energy cost cannot be much
reduced. Ifthe energy priority is increased, a schedule with a
lower energy cost can be obtained by postponing deliveries.

All the above problems can be solved by using CPLEX in
less than 1 second with a MIP gap of 0 %.

Example 2: Medium-sized problem

This example is to demonstrate effectiveness of
formulation tightening. The instance is created based on the
first 50 parts and all machines in [13]. According to which
parts/operations that machines can process, machines are
categorized into 19 types, and each type has 1 to 6 machines.
The number of time slots under consideration is 200 so that
all the parts can be processed. Machines are assumed always
available for simplicity, and each machine has three speed
levels. There are three values for tardiness weights, $1, $10,
and $100, and they are randomly assigned to parts with
percentage of 50%, 40% and 10%, respectively. Before and
after adding tightened constraints, the overall job-shop
scheduling problems are solved by using B&C, and results are
shown in Table II below. Stopping criteria are 1200 second
(s) CPU time or 1% MIP gap (as the gap may not be reduced
in a continuous way, the final gap might be less than 1%).

According to Table II, the CPU time is much reduced by
adding tightened constraints Eqs. (16) and (19), while the



solution quality is still high. With the original formulation, a
feasible solution with a total tardiness cost of $35,655 and an
energy cost of $1,803 is obtained in 789s. After tightening, a
feasible solution with a little lower total tardiness cost and a
higher energy cost is obtained in 72s, demonstrating the
effectiveness of formulation tightening.

TABLE I1 EX2: COMPARISON OF FORMULATIONS

Formulation | Tardiness ($) | Energy ($) | MIP gap (%) | CPU (s)
(a): Original 35,655 1,803 1 789
(b): (a) + (16a, b) 35,715 1,855 0.85 114
(c): (b) +(19) 35,612 1,890 0.83 72

Example 3: Large-sized problem

This example is to demonstrate computational efficiency
of SAVLR + B&C. The problem is taken from [13] with 127
parts, and 19 machines with five speed levels. The number of
time slots under consideration is 300. Other settings are the
same as in Example 2. With and without tightening, the
problem is first solved by using B&C, and no solution is found
after one hour. Then the problem is solved by using SAVLR
+ B&C, where the stopping criterion is 0 for constraint
violations. For subproblems, the stopping time and gap is 60s
and 0.5%. Testing results are shown in Fig. 4 as follows.

e SAVLR +B&C
(w/tightening)
(Feasible Cost)

SAVLR +B&C
(w/tightening)

(Lower Bound)

—%—— SAVLR +B&C

P (wo/tightening)
, (Feasible cost)

P SAVLR +B&C

(wo/tightening)

(Lower Bound)

20900

0700

Total gost
.3

400 1600
Solving Time (sec)
Figure. 4. EX3: Results of SAVLR+B&C

With the original formulation, SAVLR + B&C obtains a
feasible solution of $20,724 (the total tardiness penalty and
energy cost) with a duality gap of 0.6 %, and the solving time
(exclude model/data loading and data outputting time from
CPU time) is 1884 s. After tightening, a feasible solution of
$20,614 with a duality gap of 0.8 % is obtained and the
solving time is 1188 s. Results demonstrate computational
efficiency of SAVLR + B&C since B&C cannot even find a
feasible solution in one hour, as well as significant benefits of
tightening on computational efficiency and solution quality.

VII. CONCLUSION

This paper is to obtain near-optimal solutions efficiently
for energy-efficient job-shop scheduling to achieve on-time
deliveries and low energy costs. The problem is formulated
in an MILP form to make effective use of available MILP
methods. This is done by modeling machines in groups for
simplicity while approximating energy costs, and by linking
part processing status and machine speed variables. The
formulation is then transformed for better computational
efficiency by extending our previous tightening approach for
machines with constant speeds. To solve the problem more
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efficiently, our advanced decomposition and coordination
method is used. Numerical results show near-optimal
solutions are obtained, demonstrating significant benefits of
our approach on on-time deliveries and energy costs. For
future work, approximation of energy costs will be improved,
and comparison with existing models and methods will be
performed for validation purposes.
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