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Abstract– Job shops are an important production 

environment for low-volume high-variety manufacturing. When 

there are urgent orders, the speeds of certain machines can be 

adjusted with a high energy and wear and tear cost. Scheduling 

in such an environment is to achieve on-time deliveries and low 

energy costs. The problem is, however, complicated because part 

processing time depends on machine speeds, and machines need 

to be modeled individually to capture energy costs. This paper is 

to obtain near-optimal solutions efficiently. The problem is 

formulated as a Mixed-Integer Linear Programming (MILP) 

form to make effective use of available MILP methods. This is 

done by modeling machines in groups for simplicity while 

approximating energy costs, and by linking part processing 

status and machine speed variables. Nevertheless, the resulting 

problem is still complicated. The formulation is therefore 

transformed by extending our previous tightening approach for 

machines with constant speeds.  The idea is that if constraints 

can be transformed to directly delineate the convex hull, then the 

problem can be solved by linear programming methods. To solve 

the problem efficiently, our advanced decomposition and 

coordination method is used. Numerical results show that near-

optimal solutions are obtained, demonstrating significant 

benefits of our approach on on-time deliveries and energy costs.  

 
Index terms–Job-shop scheduling, energy costs, mixed-integer 

linear programming, formulation tightening 

I. INTRODUCTION 

ob shops are an important production environment  for 

low-volume high-variety manufacturing.  To meet on-

time deliveries, scheduling of parts is critical.  In a job shop, 

machines are usually categorized into different types based on 

their functions, i.e., which parts/operations a machine can 

process.  When there are urgent orders which have tight due 

dates, the speeds of certain machines can be adjusted for 

different parts/operations in a discrete speed level.  However, 

high speeds come with high energy and wear and tear costs.  

Under the environment of machine speed scaling, the 

scheduling is to achieve on-time deliveries and low energy 

costs.  The problem is to minimize the total weighted tardiness 

penalty and energy cost by assigning parts to machines and 

determining the corresponding machine process speeds while 

satisfying part processing time, operation precedence, and 

machine capacity constraints.   
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The scheduling problem is, however, complicated because 

the part processing time and machine energy costs depend on 

machine speeds.  In addition, when a machine is idle, it 

usually consumes much less energy as compared to the 

processing mode.  To capture energy costs under processing 

or idle modes, machines need to be modeled individually 

instead of groups.   

This paper is to obtain near-optimal solutions efficiently 

for energy-efficient job-shop to meet product on-time delivers 

and reduce energy costs.  The problem is formulated as a 

Mixed-Integer Linear Programming (MILP) form to make 

effective use of available MILP methods in Section III.  To 

maintain the group concept for complexity reduction, 

machines are modeled in groups for simplicity while energy 

costs are approximated for each machine group instead of 

each machine.  Processing time constraints are established by 

linking part processing status and machine speed variables. 

Nevertheless, the resulting problem is still complicated 

because part processing time depends on machine speeds.  

The formulation is therefore transformed by extending our 

previous tightening approach for machines with constant 

speeds in Section IV.  The idea is that if constraints can be 

transformed to directly delineate the convex hull, then the 

problem can be solved by linear programming without 

combinatorial difficulties.  In our previous work [2, 3], 

several processing time related tightened constraints are 

obtained.  With machine and speed dependent processing 

time, those constraints are modified based on machine speed 

variables and used as lower or upper bounds, e.g., the earliest 

possible beginning time based on the shortest processing time.   

For the problem under consideration, most constraints are 

associated with individual parts, and all parts are coupled by 

machine capacity constraints.  By exploiting the exponential 

reduction of complexity, our advanced decomposition and 

coordination method with accelerated convergence [4] is used 

to improve computational efficiency in Section V.   

The above method is implemented by using CPLEX, and 

three examples are presented in Section VI.  The first small 

one is to illustrate the impacts of energy costs on job-shop 

scheduling.  The second is to demonstrate the effectiveness of 

formulation tightening.  The third is to show computational 

efficiency of the decomposition and coordination method. 
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II. LITERATURE REVIEW 

Existing job-shop scheduling formulations and tightened 

constraints are reviewed in Subsection A.  Solution 

methodologies are reviewed in Subsection B.   

A. Problem formulations and tightened constraints 

In [1], an integer programming model was developed for 

flexible job-shop scheduling under the framework of machine 

speed scaling to minimize the sum of energy-consumption 

cost and completion-time cost, where a set of binary variables 

was used to indicate machine speeds.  A similar model was 

established for multi-objective optimization in [5].  Without 

considering machine speed scaling, there are also studies 

focusing on machine on-off decisions to reduce energy costs.  

Based the on the modeling idea of idle time, an integer linear 

programming (ILP) model with turning off/on strategy for 

flexible job-shop scheduling was developed in [6].  In [7-9], 

several ILP models were developed based on two modeling 

ideas, namely idle time and idle energy, for energy-conscious 

flexible job-shop scheduling problems.  In the above, 

machines were modeled individually.  When the number of 

machines increases, the problem is difficult to solve.   

Obtaining a tight formulation is fundamentally difficult, 

and it is rarely discussed in the literature.  For traditional job-

shop scheduling in [10], tightened constraints were developed 

by identifying a ceiling for inventory shortage, and the longest 

working procedure sequence till part completion.  For flow-

shop scheduling, subtour elimination constraints and lower 

/upper bound mixed-integer inequalities were developed by 

analyzing formulation structures in [11].  For both studies, 

testing results based on randomly generated data demonstrate 

computational efficiency of these tightened constraints.   

In our previous work on job-shop scheduling with constant 

machine speeds and without considering energy costs [2, 3], 

a few processing time-related constraints were obtained for 

single parts based on novel “constraint-and-vertex 

conversion,” “vertex elimination” and “parameterization.”  

Results show that our formulation tightening is effective in 

terms of computational efficiency and solution quality.   

B. Solution methodologies 

While metaheuristic approaches [1, 6, 12] are attractive for 

job-shop scheduling problems owing to their low 

computational requirements, within these methods, solution 

quality cannot be measured and there is typically no systemic 

way to improve the solution.   

The branch-and-cut (B&C) method for job-shop 

scheduling with ILP formulations has also used [10, 11].  

Within the method, after relaxing integrality requirements, the 

problem is solved by using linear programming methods.  If 

the resulting solution is integral, then the solution is optimal 

to the original problem.  However, this can only be ensured 

for “totally unimodular” formulations.  Therefore, there is 

generally a need for B&C to cut off the regions outside of the 

convex hull without cutting off feasible solutions by using 

cuts.  If an integer optimal solution is not obtained as a result 

of cutting, the method relies on branching operations and 

heuristics.  Moreover, the method does not exploit the “local” 

problem features such as process time requirements; all 

constraints within a problem are handled as “globally.”  These 

constraints thus affect the entire convex hull, influence the 

solution process, and lead to slow convergence.   

To solve job-shop scheduling problems, Lagrangian 

relaxation has been traditionally used to exploit exponential 

reduction of complexity after decomposition, to obtain near-

optimal solutions with quantifiable quality in a 

computationally efficient way [13-15].  In reference [13], 

separability was exploited through decomposition, and then 

subproblems were solved by dynamic programming and 

coordinated by Lagrangian multipliers based on violation 

levels of relaxed constraints.  However, convergence of 

Lagrangian relaxation is very slow because of such major 

difficulties as high computational requirements to solve all 

subproblems, and significant zigzagging of multipliers.  

Within our recent surrogate Lagrangian relaxation (SLR), 

these difficulties have been overcome.  Within the method, 

the solution of one or few subproblems is sufficient to update 

multipliers [16].  Moreover, convergence has been proved 

without requiring the optimal dual value.   

To accelerate convergence of SLR, “absolute-value” 

penalty functions were used [17].  Without considering 

energy costs, the job-shop scheduling problem was efficiently 

solved by the resulting Surrogate “Absolute-Value” 

Lagrangian relaxation (SAVLR) method [2].   

III. PROBLEM FORMULATION 

Based on our previous work [2, 3], an MILP formulation 

for energy-efficient job-shop scheduling is established.   

A. Machine capacity constraints   

Consider a job shop with I parts to be processed, indexed 

by i.  Part i requires Ji operations indexed by j.  For easy 

presentation, (i, j) is used to denote operation j of part i.  In 

the shop, there are M types of machines (machine groups) 

indexed by m.  Each type of machines can adjust its speeds 

for various parts/operations in a discrete speed level, and part 

processing time is machine and speed dependent.  The 

scheduling horizon is discretized into T time slots indexed by 

t, and it is assumed that T is long enough to process all parts.   

To capture whether (i, j) is active on machine type m (since 

the processing time is machine dependent as mentioned 

earlier) at time t or not, a set of binary decision variables ijmt 

with four indices is introduced as follows:  

1, operation  of part  is active on machine  at time ;

0, otherwise.
ijmk

j i m t



 


 

For machine type m, the total number of active parts 

cannot exceed its capacity Mm at any time slot t, i.e.,  

( , )

, , .
m

ijmt m
i j O

M m t
 

               (1) 

In the above, Om denotes the set of (i, j) that can be processed 

by machine type m.  This system-wide machine capacity 

constraint couples different parts.   

B. Machine speed constraints   

For machine type m, the total number of speed levels is Sm 

with the speed level indexed by s.  The higher the speed, the 

shorter the processing time of the part/operation assigned to 

the machine group.  To capture at which speed that (i, j) is 
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being processed on machine type m, a set of binary decision 

variables xijms with four indices is introduced as follows:  

peration  of part  is assig

r

ned to machine type 

 to process at a 

s

1, o

;

0, othe wi

d

e

spee  of 

.

ijmsx

j i m

s




 



 

To capture whether (i, j) is assigned to machine type m, a set 

of binary variables yijm is defined as follows:   

1

, , , .
mS

ijm ijms
s

y x i j m


                (2) 

Not that yijm is not a decision, and it depends on xijms.  If yijm is 

1, then (i, j) is assigned to machine type m; and 0, otherwise.  

For (i, j), it can only be processed on one machine at one 

speed level, i.e.,  

1, , ,
ij

ijm
m N

y i j


                 (3) 

where Nij is the set of machine types that can process (i, j).  

C. Processing time requirements  

Let bij and cij denote the beginning and completion time of 

(i, j).  They are integer decision variables and are linked via 

processing time requirements.  When (i, j) is assigned to 

machine type m, the reference processing time is pijm.  If speed 

s is selected, the processing time is assumed as pijms, where 

pijms = pijm/s.  Also the speed cannot be changed during the 

processing of (i, j).  Since the processing is assumed to be 

“non-preemptive,” a contiguous time block of length pijms is 

needed if (i, j) is assigned to machine type m at speed s, i.e.,   

1

1, , .
m

ij

S

ij ij ijms ijms
m M s

c b x p i j
  

             (4) 

Within [bij, cij], ijmt must be 1 if (i, j) is assigned to 

machine type m, and 0 otherwise, i.e.,    

1, if  , and =1;

0, otherwise.

ij ij ijm

ijmt

b t c y


 
 


       (5) 

This logical constraint can be linearized as follows:  

(1 ), , , ;
ij

ij ijmt
m N

t c T i j t


               (6) 

(1 ), , , ;
ij

ij ijmt
m N

t b T i j t


               (7) 

1

, , , .
mS

ijmt ijms ijms ij
t s

x p i j m M


            (8) 

The above guarantees ijmt = 1 iff bij ≤ t ≤ cij with yijm = 1; 

and ijtm = 0 when t < bij or t > cij with yijm = 1, or any t when 

yijm = 0.  Linear constraints (6-8) are equal to logical (5).   

D. Operation precedence constraints 

For a particular part, it is assumed the operation sequence 

is fixed.  Because of operation precedence requirements, 

operation (i, j+1) cannot start before (i, j) is completed, i.e., 

, 1 1, , .i j ijb c i j                   (9) 

The first operation cannot start until part i is arrived at ai1, i.e., 

1 1, .i ib a i                    (10) 

E. Energy cost 

With speed s, the energy cost of a machine in type m is 

defined as Ems ($/day).  For (i, j) on machine m, if s > s’, then 

Ems  pijms > Ems’  pijms’.  In other words, a higher machine 

speed can reduce the processing time, but increase the energy 

cost.  In addition, it is assumed that each machine is 

completely turned off after all parts that are assigned to it are 

completed.  During the idle time, machines in type m are on a 

stand-by mode with an energy cost of EStBy
m ($/day).  To 

capture the idle time, machine workload and completion time 

of the last part that is assigned to individual machines is 

needed.  However, since the machine group concept is used 

here instead of individual machines for complexity reduction, 

it is difficult to get the workload and the completion time of 

the last part on each machine.  For simplicity, the average 

workload of the machine group, and the completion time of 

the last part assigned to the group is considered for every 

machine within the same group as approximation.   

Average machine workload in type m is obtained as,  

( , )

/ , .
m

m ijmt m
i j O t

W M m
 

              (11) 

The completion time of the last part that is assigned to 

machine type m is derived as follows,  

(1 ), , ( , )m ij ijm mc c T y m i j O               (12) 

F. Objective function 

The objective function is to minimize the total tardiness 

penalty and energy cost as presented below: 

1 1

( )
i mJ S

StBy
ms ijms ijms m m m m

m i j s

E P x E M c W
 

 
     

 

 max( ,0) .
ii J i

i

c d               (13) 

In the above, i
 is a tardiness penalty weight for part i ($/day) 

and di denotes its due date.  The tardiness function is 

converted to a piecewise-linear function and linearized by 

special ordered set techniques [18].  After this conversion, the 

above objective function is purely linear.  For compactness of 

notation, function max is kept here and later in the paper.   

The energy-efficient job-shop scheduling problem with 

Eq. (1-4) and (6)-(13) established above is an MILP problem.   

IV. FORMULATION TIGHTENING 

The general idea of our formulation tightening approach is 

introduced in Subsection A.  Tightened constraints obtained 

for parts with constant processing time in our previous work 

[2, 3] are extended for parts with machine and speed 

dependent processing time in Subsection B. 

A. Formulation tightening 

With system-level machine capacity constraints relaxed, 

the single-part formulation is tightened by using our 

systematic approach [2, 3].  Given part parameters (e.g., 

processing time p) in numerical values, tightened constraints 

are established through four steps.   

In the first step, integrality requirements on integer 

variables are relaxed.  For the linear relaxation problem, 

vertices of the convex hull are generated from constraints via 

algebraic manipulation of part parameters with well 

established algorithms [19].  The second step is to obtain the 

vertices of the convex hull of the original problem by simply 

eliminating factional vertices with proved tightness in [3].  

These vertices are then converted back to tight constraints 
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with numerical coefficients in the third step as a reverse 

process of the first step.  For these constraints, coefficients 

depend on part parameters, as well as the numbers of tight 

constraints and variables.  For general use purposes, the 

numerical coefficients of tight constraints are characterized 

by analyzing constraint structures and relationships between 

coefficients and part parameters in the last step.   

B. Tightened constraints 

In [2, 3], several sets of processing time-related tightened 

constraints were obtained for individual parts by using the 

systematic approach described in Subsection A.  They are 

extended to the problem under consideration as follows.  

a) Part status related requirements  

The small scheduling problem used in [2, 3] has one part 

and one operation with p = 3 and T = 8 (processing time is not 

machine or speed dependent).  Decision variables include part 

status t, beginning time b, and completion time c.  By using 

the systematic tightening approach, a set of processing time-

related tightened constraints are obtained as follows,   

1 4 7 2 5 8 3 6
1, 1, 1.                      (14a-c) 

Required by processing time constraints, three 

consecutive  must be 1 among time slots 1 - 8.  Thus one  

from the 1st, 4th, and 7th time slots must be 1 as shown in Eq. 

(14a).  Similarly, one  from time slots 2, 5 and 7 must be 1 

as shown in Eq. (14b), and one  from time slots 3 and 6 must 

be 1 as shown in Eq. (14c).  This set of tightened constraints 

can be generalized for all operations with different processing 

time as follows,  
/ :

0

1, [1, ].
K p p t K

t p
t p

 





    




              (15) 

For energy-efficient job-shop scheduling under 

consideration, processing time is machine/speed dependent.  

The above tightened constraint can be extended as follows,  
/ :

,
0

(1 ), [1, ], , .
ms msK p p t K

m t p ms ms ms ms
x p x t p m s

 





    




      (16a) 

/ :

,
0

, [1, ], , .
ms msK p p t K

m t p ms ms
x t p m s

 





    




          (16b) 

When xms = 1, machine type m is scheduled to process the part 

with speed s, so that the summation of the selected  should 

be 1 as explained early.  When xms = 0, machine type m is not 

scheduled to process the part with speed s (the part could be 

assigned to machine type m with other speed levels, or 

assigned to other machine types), so that the summation of the 

selected  should be less than the processing time.   

b) Beginning time related tightened constraints  

By analyzing the same problem mentioned in 

Subsubsection a, one beginning time related tightened 

constraint is obtained as follows, 

1 2 3 4 5 6 7 8
1 2( ) ( ) 0( ).b T p                       (17) 

Since the processing time is p and the part must be completed 

within the scheduling horizon, the largest beginning time is T- 

p + 1 with 6, 7 and 8 as 1 as implied in Eq. (17).  When the 

starting of nonzero  moves earlier, b gets smaller.  The earlier 

the , the larger the impacts on b.   

The above tightened constraint can be generalized for all 

operations with different processing time as follows,  

 
/ 1:

0 0

1 .
n T p p np T

T np
n

b T p n
 





      

 
 

              (18) 

For energy-efficient job-shop scheduling, the above 

tightened constraint can be extended as follows,  
, , ,

,

/ 1:

, ,
0 0

1 .
m S m S m Sm m m

m m m Sm

n T p p np T

m S m S T np
m m n

b T p x n
 





      

 
 

        
 

   (19) 

Since when the largest speed is considered, the processing 

time is the smallest.  With the shortest possible processing 

time, the beginning time obtained from the right hand side is 

the smallest.  

The above tightened constraints (16) and (19) directly 

constrain variables  and b, and tighten the formulation   

V. SOLUTION METHODOLOGY 

This section is to solve the problem by using our recent 

Surrogate Absolute-Value Lagrangian Relaxation [4].    

A. Surrogate Lagrangian Relaxation (SLR) [17]   

After system-wide machine capacity constraints (1) that 

couple individual parts are relaxed by using Lagrangian 

multipliers λ, the relaxed problem can be written as:  

 , ,

min
m

ProE StByE Penalty k
i i tm ijmt m

i i t m i j O

C C C M 
 

   
        

   
 

where 
1 1

i mJ S
ProE
i ms ijms ijms

m j s

C E P x
 

     

( )StByE StBy
m m m m

m

C E M C W   

 max( ,0) .
i

Penalty
i i J iC c d         (20) 

In the above, for easy presentation, ProE
iC , 

StByEC  and Penalty
iC

are defined to represent the total energy cost to process part i, 

the total energy cost for machine stand-by, and tardiness 

penalty cost of part i, respectively.   

The relaxed problem is additive and it thus can be 

decomposed into individual part subproblems as:  

 , : ,

min
m

ProE StByE Penalty k
i i tm ijmt

t m j i j O

C C C  
 

 
     

 
 

. .(2 4,6 12,16,19).s t                  (21) 

Subproblems are much easier to solve as compared to the 

original problem.  Parts are coordinated by updating 

multipliers based on stepsizes and violations of machine 

capacity constraints as:  
1 ( ) ,k k k k

tm tm
s g  


                    (22) 

where k are latest available values of decision variables ijmt; 

stepsizes sk are set as in [17]; and surrogate subgradient 

directions is used after one or few subproblems are solved at 

a time and defined as:  

 ,

( ) .
m

k k

ijmt m
i j O

g M 
 

               (23) 

B. Surrogate Absolute-Value Lagrangian Relaxation 

(SAVLR) [4] 

To speed up convergence of SLR, violations of relaxed 

constraints (1) are penalized through “absolute-value” penalty 

terms with positive penalty coefficients vk.  The resulting 

“absolute-value” subproblem then becomes:  
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 

 

, : ,

, ,

'
', : ' :( , )

min .
max ,0

2

m

m m

ProE StByE Penalty k

i i tm ijmt
t m j i j O

k
c z k

i jmt ijmt m
i j O i i j i j O

C C C

v
M



 

 

  

    

    
 
  
     

  

     (24) 

Subproblems are linearized exactly and subproblem i can 

be written in an MILP form after introducing integer decision 

variables qtm as:  

 , , , , ,

min ,
2i i m

k
ProE StByE Penalty k
i i tm ijt tm

c z t m i j O t m

v
C C C q


 

 

  
      

  
    (25) 

 
'

', : ' :( , )

. .(2 4,6 12,16,19), .
m m

k

i jmt ijmt m tm
i j O i i j i j O

s t M q 
    

       (26) 

Subproblems (25)-(26) are MILP problems and are solved 

very efficiently by using B&C since their complexity is 

significantly reduced after decomposition.   

VI. NUMERICAL RESULTS 

The above approach is implemented by using IBM ILOG 

CPLEX Optimization Studio V 12.8.0.0 [20] on a PC with 

2.40GHz Intel Xeon(R) E-2286M CPU and 32G RAM.  Three 

examples are presented.   

Example 1: A small problem   

This small example is to illustrate the impacts of energy 

costs on job-shop scheduling.  Consider a job shop with two 

machines.  The first cannot change speeds, and the energy cost 

is $0.5/day when processing and $0.12/day when stand-by.  

The second has two speeds with the energy cost of $0.55/day 

and $1.5/day, and the energy cost is $0.14/day when stand-by.  

There are four parts: the first two have two operations, and the 

other two have one.  Processing time, due dates and tardiness 

weights of the four parts are presented in Table I below.  The 

time horizon is 10 days so that all parts can be processed.   
 

TABLE I EX1: PART PROCESSING TIME, DUE DATES AND TARDINESS 

WEIGHTS 

 Part1 Part2 Part3 Part4 

O1 O2 O1 O2 O1 O1 

Pijms  

(day) 

Machine1 Speed1 / 4 2 / 4 5 

Machine2 Speed1 3 / / 2 4 5 

Speed2 2 / / 1 2 3 

di (day) 5 4 10 8 

I ($/day) 10 10 1 10 
 

The problem is first solved with fixed machine speeds, i.e., 

machine 2 only has speed 1, and energy costs are not 

considered.  The optimized schedule is shown in Fig. 1 below.    
 

 
Figure. 1. EX1: Schedule with fixed machine speeds  

 

For part 1, operation 1 can only be processed on machine 

2, and operation 2 can only be processed on machine 1.  Part 

2 is opposite.  Parts 3 and 4 can be processed on machines 1 

and 2 respectively.  To guarantee that all the parts are 

processed within the scheduling horizon, part 3 is processed 

on machine 1 before operation 2 of part 1 since part 1 is still 

on machine 2 at day 3.  The total tardiness cost is $80.   

Considering different speed levels of machine 2 and 

energy costs, the optimized schedule is shown in Fig. 2 below.   

 
Figure. 2. EX1: Schedule with different machine speeds and energy cost 

 

As compared with Fig. 1, operation 1 of part 1 and part 4 

are processed on machine 2 under the fast speed to reduce 

tardiness.  Operation 2 of part 2 is processed under the low 

speed since the due day can still be met with a lower energy 

cost.  The process sequence of part 3 and operation 2 of part 

1 is swapped to reduce tardiness since operation 1 of part 1 is 

finished by the end of day 2.  For this case, the total tardiness 

cost is $10, while the energy cost is $5.05.  It can be seen that 

flexible machine speeds can improve on-time deliveries.  

When energy costs are not considered in the objective, the 

total tardiness cost is still $10, while the energy cost is $7.  

This demonstrates that under the same delivery requirements, 

energy costs can be reduced by changing machine speeds. 

If the due date of part 3 is 7 instead of 10, the optimized 

schedule without considering energy costs is shown in Fig.3. 
 

 
Figure.3. EX1: Schedule with different machine speeds and new due dates 

 

As compared with Fig. 2, Operation 2 of part 2 and part 3 

are processed on machine 2 under the fast speed to improve 

on-time deliveries.  Considering energy costs, the optimized 

schedule is the same as Fig. 3.  The reason is that the energy 

cost cannot be reduced under the same delivery dates since 

on-time deliveries have more priority.  It implies that when 

due dates are tight, flexible machine speeds can still improve 

on-time deliveries, but the energy cost cannot be much 

reduced.  If the energy priority is increased, a schedule with a 

lower energy cost can be obtained by postponing deliveries.    

All the above problems can be solved by using CPLEX in 

less than 1 second with a MIP gap of 0 %.   

Example 2: Medium-sized problem   

This example is to demonstrate effectiveness of 

formulation tightening.  The instance is created based on the 

first 50 parts and all machines in [13].  According to which 

parts/operations that machines can process, machines are 

categorized into 19 types, and each type has 1 to 6 machines.  

The number of time slots under consideration is 200 so that 

all the parts can be processed.  Machines are assumed always 

available for simplicity, and each machine has three speed 

levels.  There are three values for tardiness weights, $1, $10, 

and $100, and they are randomly assigned to parts with 

percentage of 50%, 40% and 10%, respectively.  Before and 

after adding tightened constraints, the overall job-shop 

scheduling problems are solved by using B&C, and results are 

shown in Table II below.  Stopping criteria are 1200 second 

(s) CPU time or 1% MIP gap (as the gap may not be reduced 

in a continuous way, the final gap might be less than 1%). 

According to Table II, the CPU time is much reduced by 

adding tightened constraints Eqs. (16) and (19), while the 
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solution quality is still high.  With the original formulation, a 

feasible solution with a total tardiness cost of $35,655 and an 

energy cost of $1,803 is obtained in 789s.  After tightening, a 

feasible solution with a little lower total tardiness cost and a 

higher energy cost is obtained in 72s, demonstrating the 

effectiveness of formulation tightening.   
 

TABLE II EX2: COMPARISON OF FORMULATIONS 

Formulation Tardiness ($) Energy ($) MIP gap (%) CPU (s) 

(a): Original 35,655 1,803 1 789 

(b): (a) + (16a, b) 35,715 1,855 0.85 114 

(c): (b) + (19) 35,612 1,890 0.83 72 
 

Example 3: Large-sized problem   

This example is to demonstrate computational efficiency 

of SAVLR + B&C.  The problem is taken from [13] with 127 

parts, and 19 machines with five speed levels.  The number of 

time slots under consideration is 300.  Other settings are the 

same as in Example 2. With and without tightening, the 

problem is first solved by using B&C, and no solution is found 

after one hour.  Then the problem is solved by using SAVLR 

+ B&C, where the stopping criterion is 0 for constraint 

violations.  For subproblems, the stopping time and gap is 60s 

and 0.5%.  Testing results are shown in Fig. 4 as follows. 
 

 
Figure. 4. EX3: Results of SAVLR+B&C 

 

With the original formulation, SAVLR + B&C obtains a 

feasible solution of $20,724 (the total tardiness penalty and 

energy cost) with a duality gap of 0.6 %, and the solving time 

(exclude model/data loading and data outputting time from 

CPU time) is 1884 s.  After tightening, a feasible solution of 

$20,614 with a duality gap of 0.8 % is obtained and the 

solving time is 1188 s.  Results demonstrate computational 

efficiency of SAVLR + B&C since B&C cannot even find a 

feasible solution in one hour, as well as significant benefits of 

tightening on computational efficiency and solution quality.  

VII. CONCLUSION 

This paper is to obtain near-optimal solutions efficiently 

for energy-efficient job-shop scheduling to achieve on-time 

deliveries and low energy costs.  The problem is formulated 

in an MILP form to make effective use of available MILP 

methods.  This is done by modeling machines in groups for 

simplicity while approximating energy costs, and by linking 

part processing status and machine speed variables.  The 

formulation is then transformed for better computational 

efficiency by extending our previous tightening approach for 

machines with constant speeds.  To solve the problem more 

efficiently, our advanced decomposition and coordination 

method is used. Numerical results show near-optimal 

solutions are obtained, demonstrating significant benefits of 

our approach on on-time deliveries and energy costs.  For 

future work, approximation of energy costs will be improved, 

and comparison with existing models and methods will be 

performed for validation purposes.   
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