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Abstract -- Sub-hourly Unit Commitment (UC) problems have
been suggested as a way to improve power system efficiency. Such
problems, however, are much more difficult than hourly UC
problems. This is not just because of the increased number of period
to consider, but also because of much reduced unit ramping
capabilities leading to more complicated convex hulls. As a result,
state-of-the-art and practice methods such as branch-and-cut suffer
from poor performance. In this paper, our recent Surrogate
Absolute-Value Lagrangian Relaxation (SAVLR) method, which
overcame major difficulties of standard Lagrangian Relaxation, is
enhanced by synergistically incorporating the concept of Ordinal
Optimization (0O0). By using OO, solving subproblems becomes
much faster. Testing of Midcontinent ISO (MISO)’s problem with
15 minutes as the time interval over 36 hours involving about 1,100
units and 15000 virtuals demonstrates that the new method obtains
near-optimal solutions efficiently and significantly outperforms
branch-and-cut.

Index Terms -- Sub-hourly Unit Commitment; Mixed Integer
Linear Programming; Surrogate Absolute-Value Lagrangian
Relaxation; Ordinal Optimization

I. INTRODUCTION

nit Commitment (UC) is an important problem
formulated as a Mixed Integer Linear Programming
(MILP) problem. While traditionally, UC problems are solved
with hourly time resolution, the Federal Energy Regulatory
Commission (FERC) reported in 2012 that traditional hourly
schedules are insufficient for operators to manage power
systems efficiently [1]. To provide a more reliable power
system, sub-hourly schedules are suggested by FERC. The
comparison of results based on 5, 15, 30, and 60-minute
intervals [2] shows that sub-hourly schedules lead to more
realistic estimations of total generation costs over traditional
hourly schedules. In [3, 4], 15-minute schedules under high
levels of renewable penetration produce substantial savings.
Such sub-hourly problems, however, are much more difficult
than hourly problems. This is not just because of the increased
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number of periods to consider, but also because of much
reduced unit ramping capabilities per period leading to more
complicated convex hulls as shown in Figure 9 in [5]. As a
result, state-of-the-art and practice methods such as branch-
and-cut suffer from poor performance [6].

To overcome the complexity difficulty, Lagrangian
Relaxation (LR) has been traditionally used [7]. A problem’s
complexity is significantly reduced after relaxing coupling
constraints and decomposing the relaxed problem into
subproblems. However, LR suffers from zigzagging of
multipliers thereby resulting in slow convergence. Moreover,
the method requires the knowledge of the optimal dual value
for convergence proof and for practical implementations [§].
Surrogate Lagrangian Relaxation (SLR) overcame major
difficulties of traditional LR [9]. Its convergence has recently
been accelerated by introducing linearizable absolute-value
penalty terms in the Surrogate Absolute-Value Lagrangian
Relaxation (SAVLR) method [10]. However, if solving
subproblems takes a long time, the performance of SAVLR
may not be good enough.

In this paper, large and complicated 15-minute interval UC
problems within Midcontinent ISO (MISO)’s context [6] is
considered. The problem formulation, including virtuals and
dispatchable demand, is presented in section III. Transmission
capacity constraints are modeled as soft constraints, which
allow violations with penalties.

In view of the complexity of sub-hourly UC problems as
explained above, SAVLR is enhanced by incorporating the
Ordinal Optimization (OO) concept in Section IV. The idea is
to obtain “good enough” solutions (subjecting to the surrogate
optimality condition to be explained later) for subproblems based
on simplified models to reduce computation efforts [11]. Specific
methods to reduce CPU time and enhance performance are
studied.

In section V, a MISO problem with 15 minutes as the time
interval over 36 hours involving about 1,100 units and 15000
virtuals is tested. Testing results demonstrate that the new method
obtains near-optimal solutions within a specified amount of time,
and significantly outperforms branch-and-cut.

II.LITERATURE REVIEW

In subsection II.A, the main ideas and major difficulties of
branch-and-cut (B&C) are reviewed, together with those of
traditional = Lagrangian Relaxation (LR), Augmented
Lagrangian Relaxation (ALR), and Alternate Direction Method
of Multipliers (ADMM). Our recent Surrogate Lagrangian



relaxation (SLR) and Surrogate Absolute-Value Lagrangian
Relaxation (SAVLR) are reviewed in subsection I.B. The
Ordinal Optimization (OO) concept is then presented in
subsection II.C.

A. Branch-and-Cut and Lagrangian Relaxation

Currently, commercial Mixed Integer Linear Programming
(MILP) solvers are widely based on the B&C method. The
method applies valid cuts trying to obtain the smallest convex
set that encloses the set of feasible solutions (the convex hull).
If the convex hull is obtained, then the problem is reduced to an
LP problem, whose optimal feasible solution is located at one
of the convex hull’s vertices and can be easily obtained.
However, the convex hull may not always be obtained in a
computationally efficient way, since valid cuts are problem
dependent and facet-defining cuts are generally difficult to find.
The time-consuming branch-and-bound method and heuristics
may then be needed to obtain feasible solutions. For a large UC
problem, we have vividly witnessed the poor performance or
breakdown of branch-and-cut [13].

Lagrangian Relaxation (LR) is a traditional method to solve
MILP problems based on the concept of decomposition and
coordination. A problem’s complexity is significantly reduced
after coupling constraints are relaxed and the relaxed problem
is decomposed into subproblems. However, performance of
standard LR is limited because of its major difficulties: 1)
substantial effort to obtain a subgradient — requiring all
subproblems to be solved; 2) zigzagging of Lagrangian
multipliers because of non-differentiability of dual functions
caused by the presence of discrete decision variables in the
original formulation; 3) reliance on the knowledge of the
optimal dual value for convergence proof and for practical
implementation [7].

Augmented Lagrangian Relaxation (ALR) improves the
convergence of standard LR by introducing quadratic penalties
for constraint violations [14]. Its variation, the Alternate
Direction Method of Multipliers (ADMM), alternatively solves
two subproblems. When problems are large or complicated,
subproblems may still be difficult to solve, and the convergence
of ADMM cannot be ensured with the presence of discrete
decision variables [15]. In addition, MILP solvers cannot be
directly used to solve ALR or ADMM subproblems in view of
the presence of quadratic penalty terms.

B. Our Recent Developments: SLR and SAVLR

Surrogate Lagrangian relaxation (SLR) overcame the major
difficulties of traditional LR. It obtains surrogate subgradient
directions by solving one or a few subproblems subject to the
“surrogate optimality conditions.” Then it uses surrogate
subgradient directions to update Lagrangian multipliers,
significantly reducing computational efforts and multiplier
zigzagging. Moreover, its convergence proof is based on the
contraction mapping concept and does not require the
knowledge of the optimal dual value [9].

The convergence of SLR has recently been accelerated by
introducing linearizable absolute-value penalty terms — the
Surrogate Absolute-Value Lagrangian Relaxation (SAVLR)
method [10]. With exact linearization through extra variables
and constraints, it is demonstrated that SAVLR has

significantly better performance as compared to methods such
as LR, ADMM, SLR and B&C [10].

C. Ordinal Optimization

The idea of OO has two aspects: 1) an “order” is much easier
to determine than a “value”; 2) the problem becomes easier after
softening the optimization goal. Compared to an optimal
solution, “good enough” solutions are easier to obtain [11].
Many examples of applying OO to accelerate the computation
of the simulation processes are shown in [12].

III. PROBLEM FORMULATION

In this section, a UC problem with / conventional units, V'
virtuals, Y dispatchable demand and L transmission lines over
T 15-min time intervals (or looking-ahead 7/4 hours) is
considered. The formulation is based on those in [6], [8] and
[16-18]. Constraints considered include (1) coupling system
demand, reserve and transmission capacity constraints; (2)
conventional unit-level generation capacity, minimum up- and
down-time and ramp-rate constraints; and (3) virtual capacity
and dispatchable demand constraints. Transmission capacity
constraints are modeled as soft constraints, which allow
violations with penalties.

Constraints
System Demand Constraints (Energy Balance). System demand
should equal total generation at each time period, i.e.,

G, =D, ,VteT, (1)

Ge = XierPix + XievXir — Diey Vit VEET.  (2)
Here, the total generation at time # is denoted by G, , and the
net system demand at time ¢ is denoted by D, . At time ¢,
generation level of unit i (i € 1) is denoted by p;, (MW),
energy produced by virtual i (i € V) x;, and energy dispatched
by demand (i €Y) y;,.
Transmission Capacity Constraints. The net flow in a
transmission line is limited by the capacities of the line for each
period:

foo =S <F, ,VteT,VIEL, (3)
feo ts, =2F VteT,VIEL, 4)

fg = Dier @i + Liev @i Xie — Xiey @iyVie — Liep Xipdie
VteT,vleT. )

For each transmission line /and time 7, F, and F, are capacity
limits of line /; f;; is the power flow, and it is obtained by
calculating the net injection from all nodes weighted by
generation shift factor a;;; and d; , is the fixed demand. These

constraints are soft and have non-negative slack variables s;,
and s, ; with the penalty coefficient C® as will be seen in (11).
System Reserve Requirements. There are minimum amount
requirements for the total regulating reserve, the total spinning
reserve and the sum of all reserves [16]:
YierTrit 2 R{,VLET, 6)
Yier"Si¢e 2 R{,VtET, ™



Y1 + TS +rsng +rsfi ) = RML Ve ET. (8)
The amounts of the regulating reserve and spinning reserve
are denoted by rr;, and rs;,, respectively; and rsn;, and

rsf;. are the amounts of online and offline supplemental
reserves. The required amounts of these reserves are denoted by
$,and RZ.

Conventional Unit Constraints. Conventional unit constraints
including max-up constraints, maximum start-up constraints,
maximum energy constraints and reserve capacity constraints
follow the modeling of (2) in [5]. Different types of start-up (hot
start-up, intermediate start-up and cold start-up) and shut-down
requirements follow the modeling of (2)-(3) in [17]; and the
state transition logic, generator capacity constraints and ramp-
up/down constraints follow the modeling of (8)-(13) in [17].
Min-up/down constraints follow the modeling of (1)-(2) in[18].
Individual Virtual and Dispatchable Demand Constraints.
Virtuals are subject to energy capacity constraints:

X <x, <X, ViEV,VteT, ©9)

where x; . is the energy provided by virtual i (i € V) at time ¢.
Similarly, dispatchable demand i (i € Y') has limits on its level
¥ ¢ for time #:

0<yp:=

Y, VieYVteT. (10)

Objective Function

For a conventional unit i at time ¢, there are no-load cost C}}",

start-up cost CE™

, energy cost C (depending on the

generation level p; ), and reserve costs C” , CLRtS, C; RSN and
C RSF For a virtual (or dispatchable demand), it has energy cost

7 (or C},). The objective is to minimize the total cost, which
cons1sts of costs from all resources plus the penalties for the
violations of transmission capacity constraints, i.e.,

(Ziel ZtET(ZseS Clsst?rtazst + Clt ult + C \

+CRRrry + CRorsy o + CR Ny + CRFrsfi )
min
5“7’ P + Yiev ZtET(CL Xie) — ZlEYZtET(Cl tVit) |
X,y
\+C? Zer Tiew (St,l + it,l) )
(11)

IV. SOLUTION METHODOLOGY

The decomposition and coordination Surrogate Absolute-
Value Lagrangian Relaxation (SAVLR) method is presented in
subsection IV.A. The synergistic combination of SAVLR,
Ordinal Optimization (OO) and Branch-and-cut (B&C) is
developed in subsection IV.B. In subsection IV.C, specific
methods to reduce CPU time and enhance performance are
discussed.

A. The Decomposition and Coordination SAVLR Method
Based on [10], system demand constraints (1) are relaxed by
using Lagrangian multiplier A¥, and reserve constraints (6), (7)
and (8) are relaxed by u}™*, /,LZSR and pu"*, respectively. The
violations of these constraints are penalized by absolute-value

k
penalty terms with the penalty coefficient 67 . Then the
objective function of the relaxed problem becomes:
ZlEI ZtET(ZSES Clssntlrt(sls t + Cl. t ul t + Cl. t
+Cl-‘t T + Ci,t TSy + Ci,t rsn;, + Ci,t rsfi_t)
+Yiev ZteT(Ci‘,/txi,t) — ey ZtET(Ci},,tyi,t)
k
(o}
+ Yrer A¥ (Dt -G ) + 7ZtET|Dt -G, |
k
K ¢
(rgnin {t Yter .“;T (R? — Yier rri,t) + 7ZtET|R{ — Yier rri,t'
ap
xX,y,r

k
c
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(12)

The number of subproblems and the number of
conventional units per subproblem are chosen by balancing
subproblems’ complexity and model loading efforts. Rather
than grouping virtuals into a single subproblem, all virtuals
are included in each subproblem to avoid the dramatic
change of results across iterations.

Subproblem j is formed by taking out all variables
belonging to units and virtuals of the subproblem while
keeping variables associated with other units and virtuals at
their latest available values:

ZIE, Yter Cses ClS;ltlrt(sl,S,t + Ci,NtLui,t + Ci)::t
+CRRrr + CRrsy o + CRNrsny + CRFrsfi )
+ Yiev ZtET(Ci‘,/txi,t) — Yier Zeer(Cleyie)

+ Seer 2 (B ) + 5 SeerDi |

+eerui (RY) + iZteTWl

+ eer iy 4 (Rt) += ZtET|Rt|

+ eer ™ (RE) += ZteT'Rt “

+C Yier Deer (St,l + §t,z)

s.t. all individual unit-level constraints. In the above,

- (Zie,j Dit + Zie,j Pl + Yiev X —

min
su,p
xyr

(13)

G, =D,

YievYie) VL ET, (14)
=R{—X. The— Zi@ 7 vt e T, (15)
J
=R{ =X, TSie— Ly, rs{f;l,w ET, (16)
J J
R = Ralt — Z,GI (rrye +rspe +rsng +r8fi) —

leu riTt rsiTt Frsnft +rsfETY Ve e T, (17)
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fea + St

(18)

>F ,VteT,VIEL, (19)
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fo = Zie,j P + Ziezj P + Diev X ey —
Zieyyi'tai'l - FD ,Vt E T, Vl E L (20)

Subproblem j can be linearized by introducing continuous
decision variables qP , qI", qI° and qf and the following
constraints:

—qP? <D, <qP,VtET, (21)
—qI" <Rl <q["VteT, (22)
—qI* <R} <qlS,VtEeT, (23)
—qR <R < qf,vteT. (24)

The problem formulation can then be put into the following
MILP form:

Zie,j Yeer(Bses Gt 8pse + Cltuge + CLy

+CRRrry + CROrsy o + CRNrsny + CRFrsfi )

+Yiev ZtET(Ci],/txi,t) — DYiey ZtET(Ci},,tyi,t)

grlluig +Der At (Et ~) + Yter #:r'k (ﬁfr)

xyr |+ Seer ui™" (RE) + Xter ur” (RE")
+§Zm(f#’ +ai" + a7 +qi")

€j
+C” Yier Teer (Et,l + Er,z)

~~

(25)
s.t. (14) - (24) and all individual unit/virtual constraints.

The above subproblems are iteratively solved subject to the
surrogate optimality condition ((14) and (15) of [10]). After
each subproblem is solved, multipliers are updated based on
(17)-(19) and penalty coefficient is updated based on (20) and
(21) of [10].

B. Synergistic Combination of SAVLR+O0O+B&C

As an iterative method, SAVLR requires solving
subproblems multiple times. Subproblems are generally solved
by using B&C subject to the surrogate optimality condition.
Solving a subproblem by using B&C requires solving the
corresponding LP relaxation subproblem and adding valid cuts
before searching for a feasible solution. This process can be
very time-consuming for complicated sub-hourly subproblems.
Moreover, although each subproblem is smaller in size and
complexity as compared to the original problem, the overall
computational effort may be significant. Therefore, it is
important to solve subproblem in a very efficient way.

To speed up the subproblem solving process, the OO concept
is synergistically incorporated within the SAVLR framework.
The solution of a subproblem only requires to be “good
enough”. A “good enough” solution here is simply a solution
satisfying the surrogate optimality condition. Before applying
B&C, “good enough” solutions are searched by adjusting or
repairing possible solution candidates. For the first iteration,
candidates are LP solutions with appropriate rounding as
needed; and for subsequent iterations, candidates are solutions
from previous iterations. Such a process is generally much
faster than solving a subproblem by B&C. If a “good enough”
solution can be obtained, then B&C is skipped, and we move
on to solve the next subproblem. Otherwise, B&C is used to
solve the subproblem.

C. Specific Methods to Enhance Performance

Initialize multipliers. The quality of initial multipliers affects
the performance of SAVLR. In hourly UC, multipliers of the
corresponding LP problem are good initial multipliers.
However, likely caused by the large number of generation
resources, the 15-minute interval LP problem itself requires a
long time to solve, and it is not worthy to initialize multipliers
by solving 15-minute interval LP problem directly. Inspired by
0O, precise multipliers are not strictly required. Considering
the similarity of four 15-min intervals within the same hour,
multipliers of the hourly LP problem are extended to all four
15-min intervals as initial multipliers.

Build generic models. Within SAVLR, a subproblem is solved
multiple times in an iterative manner. A subproblem model,
whose parameters are associated with other subproblems’ latest
solutions, needs to be loaded every time before solving the
subproblem. Building a new model for a subproblem in each
iteration, however, takes a substantial amount of time. To
address this issue, a generic model is constructed for each
subproblem just once; and for each iteration, each subproblem’s
model parameters are updated according to the latest available
subproblem solutions.

Use aggregated values. As shown in (14)-(17) and (20),
system-wide constraints require variables from all generation
resources. Because of the large number of generation resources,
processing all variables takes a substantial amount of time. To
save time, the values from other subproblems are aggregated,
and these aggregated values are iteratively updated. For
example, the aggregated generation level is initialized and
updated as below:

Zigr Pie =B VEET,j =1, (26)

Piiye =P + Zielj Pi¢ — ZiteH piit VtET,kEN*. (27)

V.NUMERICAL TESTING

The above SAVLR+OO+B&C approach has been
implemented by using Python 2.7 and Gurobi 7.5.0, and tested
on MISO’s server with Intel® Core (TM) i7-7600U CPU @
2.80 GHzRAM 16 GB. A MISO’s UC problem, which contains
1,105 conventional units, 15,843 virtuals, 75 dispatchable
demand and 227 transmission lines with 36 hours looking ahead
(144 time intervals), is tested to demonstrate the performance
and computational efficiency of the new method.

As shown in the last row of Table I, a near-optimal solution
with a duality gap of 0.77% is obtained after 3237s, where the
best known lower bound ($9,337,931) obtained in advance is
used to calculate the gap. The total solving time is 1484s, and
the rest are model loading and miscellaneous times. Also for
this particular testing, “good enough” solutions for
subproblems are always obtained before applying B&C.

Results obtained by using B&C and SAVLR+B&C are
shown in the first two rows of Table I as well as in Figure | for
comparison purposes. Standard B&C cannot obtain a
reasonable solution before 3,300s, and it obtains a feasible
solution with a MIP gap of 0.9% after 5000s. For
SAVLR+B&C, a solution with a duality gap of 0.88% is
obtained after roughly 3500s. Our new approach thus
significantly outperforms B&C and SAVLR+B&C.



TABLE I
PERFORMANCE OF SAVLR+O0O+B&C, PURE B&C, AND SAVLR+B&C.
Solving | Total . Lower
Method Time Time léeoasstﬂ()ﬂls Bound gjl))
0
(s) (s) $)
B&C 5211 5443 | 9,422,880 0.90
SAVLR+B&C 3537 5623 | 9,421,401 | 9,337,931 | 0.88
SAVLR+O0O+B&C 1484 3237 | 9,410,518 0.77
9900000 + —O— SAVLR+00
—O— SAVLR+B&C
9800000 4 —O= Pure B&C
Best Known Lower Bound
9700000 4
g 9600000 -
9500000 +
9400000 Go0—0—0—o
lDbO 20‘00 30'00 40‘00 5060

Time(s)

Fig. 1. Performance of SAVLR+OO+B&C, Pure B&C and SAVLR+B&C.

The average solving time for a subproblem in our method is
53s, which is much less than that in SAVLR+B&C of 162s. The
difference is attributed to the fact that within our method,
subproblem solutions satisfying the surrogate optimality
condition are obtained in a much faster way as compared with
that for SAVLR+B&C.

VI. CONCLUSION

This paper illustrates how sub-hourly UC problems are
solved through the novel combination of SAVLR, OO and
B&C. Testing results show that the new method has high
computational efficiency. More importantly, the approach
opens a new way to address other MILP problems in power
systems and beyond.
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