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Abstract -- Sub-hourly Unit Commitment (UC) problems have 
been suggested as a way to improve power system efficiency. Such 
problems, however, are much more difficult than hourly UC 
problems. This is not just because of the increased number of period 
to consider, but also because of much reduced unit ramping 
capabilities leading to more complicated convex hulls. As a result, 
state-of-the-art and practice methods such as branch-and-cut suffer 
from poor performance. In this paper, our recent Surrogate 
Absolute-Value Lagrangian Relaxation (SAVLR) method, which 
overcame major difficulties of standard Lagrangian Relaxation, is 
enhanced by synergistically incorporating the concept of Ordinal 
Optimization (OO). By using OO, solving subproblems becomes 
much faster. Testing of Midcontinent ISO (MISO)’s problem with 
15 minutes as the time interval over 36 hours involving about 1,100 
units and 15000 virtuals demonstrates that the new method obtains 
near-optimal solutions efficiently and significantly outperforms 
branch-and-cut.  

Index Terms -- Sub-hourly Unit Commitment; Mixed Integer 
Linear Programming; Surrogate Absolute-Value Lagrangian 
Relaxation; Ordinal Optimization 

I. INTRODUCTION 
nit Commitment (UC) is an important problem 

formulated as a Mixed Integer Linear Programming 
(MILP) problem. While traditionally, UC problems are solved 
with hourly time resolution, the Federal Energy Regulatory 
Commission (FERC) reported in 2012 that traditional hourly 
schedules are insufficient for operators to manage power 
systems efficiently [1]. To provide a more reliable power 
system, sub-hourly schedules are suggested by FERC. The 
comparison of results based on 5, 15, 30, and 60-minute 
intervals [2] shows that sub-hourly schedules lead to more 
realistic estimations of total generation costs over traditional 
hourly schedules. In [3, 4], 15-minute schedules under high 
levels of renewable penetration produce substantial savings. 
Such sub-hourly problems, however, are much more difficult 
than hourly problems. This is not just because of the increased 

number of periods to consider, but also because of much 
reduced unit ramping capabilities per period leading to more 
complicated convex hulls as shown in Figure 9 in [5]. As a 
result, state-of-the-art and practice methods such as branch-
and-cut suffer from poor performance [6].  

To overcome the complexity difficulty, Lagrangian 
Relaxation (LR) has been traditionally used [7]. A problem’s 
complexity is significantly reduced after relaxing coupling 
constraints and decomposing the relaxed problem into 
subproblems. However, LR suffers from zigzagging of 
multipliers thereby resulting in slow convergence. Moreover, 
the method requires the knowledge of the optimal dual value 
for convergence proof and for practical implementations [8]. 
Surrogate Lagrangian Relaxation (SLR) overcame major 
difficulties of traditional LR [9]. Its convergence has recently 
been accelerated by introducing linearizable absolute-value 
penalty terms in the Surrogate Absolute-Value Lagrangian 
Relaxation (SAVLR) method [10]. However, if solving 
subproblems takes a long time, the performance of SAVLR 
may not be good enough.  

In this paper, large and complicated 15-minute interval UC 
problems within Midcontinent ISO (MISO)’s context [6] is 
considered. The problem formulation, including virtuals and 
dispatchable demand, is presented in section III. Transmission 
capacity constraints are modeled as soft constraints, which 
allow violations with penalties. 

In view of the complexity of sub-hourly UC problems as 
explained above, SAVLR is enhanced by incorporating the 
Ordinal Optimization (OO) concept in Section IV. The idea is 
to obtain “good enough” solutions (subjecting to the surrogate 
optimality condition to be explained later) for subproblems based 
on simplified models to reduce computation efforts [11]. Specific 
methods to reduce CPU time and enhance performance are 
studied.  

In section V, a MISO problem with 15 minutes as the time 
interval over 36 hours involving about 1,100 units and 15000 
virtuals is tested. Testing results demonstrate that the new method 
obtains near-optimal solutions within a specified amount of time, 
and significantly outperforms branch-and-cut.  

II. LITERATURE REVIEW 
In subsection II.A, the main ideas and major difficulties of 

branch-and-cut (B&C) are reviewed, together with those of 
traditional Lagrangian Relaxation (LR), Augmented 
Lagrangian Relaxation (ALR), and Alternate Direction Method 
of Multipliers (ADMM). Our recent Surrogate Lagrangian 
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relaxation (SLR) and Surrogate Absolute-Value Lagrangian 
Relaxation (SAVLR) are reviewed in subsection II.B. The 
Ordinal Optimization (OO) concept is then presented in 
subsection II.C. 

A. Branch-and-Cut and Lagrangian Relaxation  
Currently, commercial Mixed Integer Linear Programming 

(MILP) solvers are widely based on the B&C method. The 
method applies valid cuts trying to obtain the smallest convex 
set that encloses the set of feasible solutions (the convex hull). 
If the convex hull is obtained, then the problem is reduced to an 
LP problem, whose optimal feasible solution is located at one 
of the convex hull’s vertices and can be easily obtained. 
However, the convex hull may not always be obtained in a 
computationally efficient way, since valid cuts are problem 
dependent and facet-defining cuts are generally difficult to find. 
The time-consuming branch-and-bound method and heuristics 
may then be needed to obtain feasible solutions. For a large UC 
problem, we have vividly witnessed the poor performance or 
breakdown of branch-and-cut [13]. 

Lagrangian Relaxation (LR) is a traditional method to solve 
MILP problems based on the concept of decomposition and 
coordination. A problem’s complexity is significantly reduced 
after coupling constraints are relaxed and the relaxed problem 
is decomposed into subproblems. However, performance of 
standard LR is limited because of its major difficulties: 1) 
substantial effort to obtain a subgradient – requiring all 
subproblems to be solved; 2) zigzagging of Lagrangian 
multipliers because of non-differentiability of dual functions 
caused by the presence of discrete decision variables in the 
original formulation; 3) reliance on the knowledge of the 
optimal dual value for convergence proof and for practical 
implementation [7].  

Augmented Lagrangian Relaxation (ALR) improves the 
convergence of standard LR by introducing quadratic penalties 
for constraint violations [14]. Its variation, the Alternate 
Direction Method of Multipliers (ADMM), alternatively solves 
two subproblems. When problems are large or complicated, 
subproblems may still be difficult to solve, and the convergence 
of ADMM cannot be ensured with the presence of discrete 
decision variables [15]. In addition, MILP solvers cannot be 
directly used to solve ALR or ADMM subproblems in view of 
the presence of quadratic penalty terms. 

B. Our Recent Developments: SLR and SAVLR 
Surrogate Lagrangian relaxation (SLR) overcame the major 

difficulties of traditional LR. It obtains surrogate subgradient 
directions by solving one or a few subproblems subject to the 
“surrogate optimality conditions.” Then it uses surrogate 
subgradient directions to update Lagrangian multipliers, 
significantly reducing computational efforts and multiplier 
zigzagging. Moreover, its convergence proof is based on the 
contraction mapping concept and does not require the 
knowledge of the optimal dual value [9].  

The convergence of SLR has recently been accelerated by 
introducing linearizable absolute-value penalty terms – the 
Surrogate Absolute-Value Lagrangian Relaxation (SAVLR) 
method [10]. With exact linearization through extra variables 
and constraints, it is demonstrated that SAVLR has 

significantly better performance as compared to methods such 
as LR, ADMM, SLR and B&C [10].  

C. Ordinal Optimization 
The idea of OO has two aspects: 1) an “order” is much easier 

to determine than a “value”; 2) the problem becomes easier after 
softening the optimization goal. Compared to an optimal 
solution, “good enough” solutions are easier to obtain [11]. 
Many examples of applying OO to accelerate the computation 
of the simulation processes are shown in [12].  

III. PROBLEM FORMULATION  
In this section, a UC problem with I conventional units, V 

virtuals, Y dispatchable demand and L transmission lines over 
T 15-min time intervals (or looking-ahead T/4 hours) is 
considered. The formulation is based on those in [6], [8] and 
[16-18]. Constraints considered include (1) coupling system 
demand, reserve and transmission capacity constraints; (2) 
conventional unit-level generation capacity, minimum up- and 
down-time and ramp-rate constraints; and (3) virtual capacity 
and dispatchable demand constraints. Transmission capacity 
constraints are modeled as soft constraints, which allow 
violations with penalties.  
 
Constraints 
System Demand Constraints (Energy Balance). System demand 
should equal total generation at each time period, i.e.,  

𝐺𝑡 = 𝐷𝑡 , ∀𝑡 ∈ 𝑇,                             (1)                                   

𝐺𝑡 = ∑ 𝑝𝑖,𝑡𝑖∈𝐼 + ∑ 𝑥𝑖,𝑡𝑖∈𝑉 − ∑ 𝑦𝑖,𝑡𝑖∈𝑌 , ∀𝑡 ∈ 𝑇.      (2) 
Here, the total generation at time t is denoted by 𝐺𝑡 , and the 

net system demand at time t is denoted by 𝐷𝑡 . At time t, 
generation level of unit 𝑖 (𝑖 ∈ 𝐼)  is denoted by 𝑝𝑖,𝑡  (MW), 
energy produced by virtual 𝑖 (𝑖 ∈ 𝑉) 𝑥𝑖,𝑡 and energy dispatched 
by demand  (𝑖 ∈ 𝑌) 𝑦𝑖,𝑡. 
Transmission Capacity Constraints. The net flow in a 
transmission line is limited by the capacities of the line for each 
period: 

𝑓𝑡,𝑙 − 𝑠𝑡,𝑙 ≤ 𝐹𝑙 , ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿,                (3)  

𝑓𝑡,𝑙 + 𝑠𝑡,𝑙 ≥ 𝐹𝑙 , ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿,                (4) 

𝑓𝑡,𝑙 = ∑ 𝛼𝑖,𝑙𝑝𝑖,𝑡𝑖∈𝐼 +∑ 𝛼𝑖,𝑙𝑥𝑖,𝑡𝑖∈𝑉 − ∑ 𝛼𝑖,𝑙𝑦𝑖,𝑡𝑖∈𝑌 − ∑ 𝛼𝑖,𝑙𝑑𝑖,𝑡𝑖∈𝐷      

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝑇.               (5) 

For each transmission line l and time t,  𝐹𝑙  and 𝐹𝑙  are capacity 
limits of line l; 𝑓𝑡,𝑙  is the power flow, and it is obtained by 
calculating the net injection from all nodes weighted by 
generation shift factor 𝛼𝑖,𝑙; and 𝑑𝑖,𝑡 is the fixed demand. These 
constraints are soft and have non-negative slack variables 𝑠𝑡,𝑙 
and 𝑠𝑡,𝑙 with the penalty coefficient 𝐶𝑃  as will be seen in (11). 
System Reserve Requirements. There are minimum amount 
requirements for the total regulating reserve, the total spinning 
reserve and the sum of all reserves [16]: 

∑ 𝑟𝑟𝑖,𝑡𝑖∈𝐼 ≥ 𝑅𝑡
𝑟 , ∀𝑡 ∈ 𝑇,                                   (6) 

∑ 𝑟𝑠𝑖,𝑡𝑖∈𝐼 ≥ 𝑅𝑡
𝑠 , ∀𝑡 ∈ 𝑇,                                   (7) 
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∑ (𝑟𝑟𝑖,𝑡𝑖∈𝐼 + 𝑟𝑠𝑖,𝑡 + 𝑟𝑠𝑛𝑖,𝑡 + 𝑟𝑠𝑓𝑖,𝑡 ) ≥ 𝑅𝑡
𝑎𝑙𝑙 , ∀𝑡 ∈ 𝑇.         (8) 

The amounts of the regulating reserve and spinning reserve 
are denoted by 𝑟𝑟𝑖,𝑡  and 𝑟𝑠𝑖,𝑡 , respectively; and 𝑟𝑠𝑛𝑖,𝑡  and 
𝑟𝑠𝑓𝑖,𝑡  are the amounts of online and offline supplemental 
reserves. The required amounts of these reserves are denoted by 
𝑅𝑡
𝑟 , 𝑅𝑡𝑠, and 𝑅𝑡𝑎𝑙𝑙 . 

Conventional Unit Constraints. Conventional unit constraints 
including max-up constraints, maximum start-up constraints, 
maximum energy constraints and reserve capacity constraints 
follow the modeling of (2) in [5]. Different types of start-up (hot 
start-up, intermediate start-up and cold start-up) and shut-down 
requirements follow the modeling of (2)-(3) in [17]; and the 
state transition logic, generator capacity constraints and ramp-
up/down constraints follow the modeling of (8)-(13) in [17]. 
Min-up/down constraints follow the modeling of (1)-(2) in [18].  
Individual Virtual and Dispatchable Demand Constraints. 
Virtuals are subject to energy capacity constraints:  

𝑋𝑖,𝑡 ≤ 𝑥𝑖,𝑡 ≤ 𝑋𝑖,𝑡 , ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇,                (9) 

where 𝑥𝑖,𝑡 is the energy provided by virtual 𝑖 (𝑖 ∈ 𝑉) at time t. 
Similarly, dispatchable demand 𝑖 (𝑖 ∈ 𝑌) has limits on its level 
𝑦𝑖,𝑡 for time t: 

0 ≤ 𝑦𝑖,𝑡 ≤ 𝑌𝑖,𝑡 , ∀𝑖 ∈ 𝑌, ∀𝑡 ∈ 𝑇.                (10) 

Objective Function 
 For a conventional unit i at time t, there are no-load cost 𝐶𝑖,𝑡𝑁𝐿, 
start-up cost 𝐶𝑖,𝑠,𝑡𝑆𝑡𝑎𝑟𝑡 , energy cost 𝐶𝑖,𝑡𝐸  (depending on the 
generation level 𝑝𝑖,𝑡 ), and reserve costs 𝐶𝑖,𝑡𝑅𝑅 , 𝐶𝑖,𝑡𝑅𝑆 , 𝐶𝑖,𝑡𝑅𝑆𝑁  and 
𝐶𝑖,𝑡
𝑅𝑆𝐹. For a virtual (or dispatchable demand), it has energy cost 
𝐶𝑖,𝑡
𝑉  (or 𝐶𝑖,𝑡𝑌 ). The objective is to minimize the total cost, which 

consists of costs from all resources plus the penalties for the 
violations of transmission capacity constraints, i.e.,  

min
𝛿,𝑢,𝑝
𝑥,𝑦,𝑟

{
 
 

 
 
∑ ∑ (∑ 𝐶𝑖,𝑠,𝑡

𝑆𝑡𝑎𝑟𝑡𝛿𝑖,𝑠,𝑡𝑠∈𝑆 + 𝐶𝑖,𝑡
𝑁𝐿𝑢𝑖,𝑡 + 𝐶𝑖,𝑡

𝐸
𝑡∈𝑇𝑖∈𝐼

+𝐶𝑖,𝑡
𝑅𝑅𝑟𝑟𝑖,𝑡 + 𝐶𝑖,𝑡

𝑅𝑆𝑟𝑠𝑖,𝑡 + 𝐶𝑖,𝑡
𝑅𝑆𝑁𝑟𝑠𝑛𝑖,𝑡 + 𝐶𝑖,𝑡

𝑅𝑆𝐹𝑟𝑠𝑓𝑖,𝑡 )

+∑ ∑ (𝐶𝑖,𝑡
𝑉 𝑥𝑖,𝑡)𝑡∈𝑇𝑖∈𝑉 − ∑ ∑ (𝐶𝑖,𝑡

𝑌 𝑦𝑖,𝑡)𝑡∈𝑇𝑖∈𝑌

+𝐶𝑃 ∑ ∑ (𝑠𝑡,𝑙 + 𝑠𝑡,𝑙)𝑙∈𝐿𝑡∈𝑇 }
 
 

 
 

. 

(11)  

IV. SOLUTION METHODOLOGY  
The decomposition and coordination Surrogate Absolute-

Value Lagrangian Relaxation (SAVLR) method is presented in 
subsection IV.A. The synergistic combination of SAVLR, 
Ordinal Optimization (OO) and Branch-and-cut (B&C) is 
developed in subsection IV.B. In subsection IV.C, specific 
methods to reduce CPU time and enhance performance are 
discussed. 

A. The Decomposition and Coordination SAVLR Method  
Based on [10], system demand constraints (1) are relaxed by 

using Lagrangian multiplier 𝜆𝑡𝑘, and reserve constraints (6), (7) 
and (8) are relaxed by 𝜇𝑡

𝑟𝑟,𝑘 , 𝜇𝑡
𝑟𝑠,𝑘and 𝜇𝑡

𝑟,𝑘 , respectively. The 
violations of these constraints are penalized by absolute-value 

penalty terms with the penalty coefficient  𝑐
𝑘

2
. Then the 

objective function of the relaxed problem becomes: 

min
𝛿,𝑢,𝑝
𝑥,𝑦,𝑟

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
∑ ∑ (∑ 𝐶𝑖,𝑠,𝑡

𝑆𝑡𝑎𝑟𝑡𝛿𝑖,𝑠,𝑡𝑠∈𝑆 + 𝐶𝑖,𝑡
𝑁𝐿𝑢𝑖,𝑡 + 𝐶𝑖,𝑡

𝐸
𝑡∈𝑇𝑖∈𝐼

+𝐶𝑖,𝑡
𝑅𝑅𝑟𝑟𝑖,𝑡 + 𝐶𝑖,𝑡

𝑅𝑆𝑟𝑠𝑖,𝑡 + 𝐶𝑖,𝑡
𝑅𝑆𝑁𝑟𝑠𝑛𝑖,𝑡 + 𝐶𝑖,𝑡

𝑅𝑆𝐹𝑟𝑠𝑓𝑖,𝑡 )

+∑ ∑ (𝐶𝑖,𝑡
𝑉 𝑥𝑖,𝑡)𝑡∈𝑇𝑖∈𝑉 − ∑ ∑ (𝐶𝑖,𝑡

𝑌 𝑦𝑖,𝑡)𝑡∈𝑇𝑖∈𝑌

+∑ 𝜆𝑡
𝑘  (𝐷𝑡 − 𝐺𝑡 )𝑡∈𝑇 +

𝑐𝑘

2
∑ |𝐷𝑡 − 𝐺𝑡 |𝑡∈𝑇

+∑ 𝜇𝑡
𝑟𝑟,𝑘 (𝑅𝑡

𝑟 − ∑ 𝑟𝑟𝑖,𝑡𝑖∈𝐼 )𝑡∈𝑇 +
𝑐𝑘

2
∑ |𝑅𝑡

𝑟 −∑ 𝑟𝑟𝑖,𝑡𝑖∈𝐼 |𝑡∈𝑇

+∑ 𝜇𝑡
𝑟𝑠,𝑘  (𝑅𝑡

𝑠 − ∑ 𝑟𝑠𝑖,𝑡𝑖∈𝐼 )𝑡∈𝑇 +
𝑐𝑘

2
∑ |𝑅𝑡

𝑠 − ∑ 𝑟𝑠𝑖,𝑡𝑖∈𝐼 |𝑡∈𝑇

+∑ 𝜇𝑡
𝑟,𝑘 [𝑅𝑡

𝑎𝑙𝑙 − ∑ (𝑟𝑟𝑖,𝑡 + 𝑟𝑠𝑖,𝑡 + 𝑟𝑠𝑛𝑖,𝑡 + 𝑟𝑠𝑓𝑖,𝑡 )𝑖∈𝐼 ]𝑡∈𝑇

+
𝑐𝑘

2
∑ |𝑅𝑡

𝑎𝑙𝑙 − ∑ (𝑟𝑟𝑖,𝑡𝑖∈𝐼 + 𝑟𝑠𝑖,𝑡 + 𝑟𝑠𝑛𝑖,𝑡 + 𝑟𝑠𝑓𝑖,𝑡 )|𝑡∈𝑇

+𝐶𝑃 ∑ ∑ (𝑠𝑡,𝑙 + 𝑠𝑡,𝑙)𝑙∈𝐿𝑡∈𝑇 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

.  

(12) 

The number of subproblems and the number of 
conventional units per subproblem are chosen by balancing 
subproblems’ complexity and model loading efforts. Rather 
than grouping virtuals into a single subproblem, all virtuals 
are included in each subproblem to avoid the dramatic 
change of results across iterations.  

Subproblem 𝑗  is formed by taking out all variables 
belonging to units and virtuals of the subproblem while 
keeping variables associated with other units and virtuals at 
their latest available values:  

min
𝛿,𝑢,𝑝
𝑥,𝑦,𝑟
∈𝑗

{
 
 
 
 
 
 

 
 
 
 
 
 
∑ ∑ (∑ 𝐶𝑖,𝑠,𝑡

𝑆𝑡𝑎𝑟𝑡𝛿𝑖,𝑠,𝑡𝑠∈𝑆 + 𝐶𝑖,𝑡
𝑁𝐿𝑢𝑖,𝑡 + 𝐶𝑖,𝑡

𝐸
𝑡∈𝑇𝑖∈𝐼𝑗

+𝐶𝑖,𝑡
𝑅𝑅𝑟𝑟𝑖,𝑡 + 𝐶𝑖,𝑡

𝑅𝑆𝑟𝑠𝑖,𝑡 + 𝐶𝑖,𝑡
𝑅𝑆𝑁𝑟𝑠𝑛𝑖,𝑡 + 𝐶𝑖,𝑡

𝑅𝑆𝐹𝑟𝑠𝑓𝑖,𝑡 )

+∑ ∑ (𝐶𝑖,𝑡
𝑉 𝑥𝑖,𝑡)𝑡∈𝑇𝑖∈𝑉 − ∑ ∑ (𝐶𝑖,𝑡

𝑌 𝑦𝑖,𝑡)𝑡∈𝑇𝑖∈𝑌

+∑ 𝜆𝑡
𝑘  (𝐷̃𝑡 )𝑡∈𝑇 +

𝑐𝑘

2
∑ |𝐷̃𝑡 |𝑡∈𝑇

+∑ 𝜇𝑡
𝑟𝑟,𝑘 (𝑅̃𝑡

𝑟)𝑡∈𝑇 +
𝑐𝑘

2
∑ |𝑅̃𝑡

𝑟|𝑡∈𝑇

+∑ 𝜇𝑡
𝑟𝑠,𝑘  (𝑅̃𝑡

𝑠)𝑡∈𝑇 +
𝑐𝑘

2
∑ |𝑅̃𝑡

𝑠|𝑡∈𝑇

+∑ 𝜇𝑡
𝑟,𝑘 (𝑅̃𝑡

𝑎𝑙𝑙)𝑡∈𝑇 +
𝑐𝑘

2
∑ |𝑅̃𝑡

𝑎𝑙𝑙|𝑡∈𝑇

+𝐶𝑃 ∑ ∑ (𝑠𝑡,𝑙 + 𝑠𝑡,𝑙)𝑡∈𝑇𝑙∈𝐿 }
 
 
 
 
 
 

 
 
 
 
 
 

,(13)    

s.t. all individual unit-level constraints. In the above,  

     𝐺̃𝑡 = 𝐷𝑡 − (∑ 𝑝𝑖,𝑡𝑖∈𝐼𝑗
+∑ 𝑝𝑖,𝑡

𝑘−1
𝑖∉𝐼𝑗

+∑ 𝑥𝑖,𝑡𝑖∈𝑉 −

 ∑ 𝑦𝑖,𝑡𝑖∈𝑌 ), ∀𝑡 ∈ 𝑇,                                          (14) 
𝑅̃𝑡
𝑟 = 𝑅𝑡

𝑟 −∑ 𝑟𝑟𝑖,𝑡𝑖∈𝐼𝑗
− ∑ 𝑟𝑟𝑖,𝑡

𝑘−1
𝑖∉𝐼𝑗

, ∀𝑡 ∈ 𝑇,   (15) 

𝑅̃𝑡
𝑠 = 𝑅𝑡

𝑠 −∑ 𝑟𝑠𝑖,𝑡𝑖∈𝐼𝑗
− ∑ 𝑟𝑠𝑖,𝑡

𝑘−1
𝑖∉𝐼𝑗

, ∀𝑡 ∈ 𝑇,     (16) 

𝑅̃𝑡
𝑎𝑙𝑙 = 𝑅𝑡

𝑎𝑙𝑙 − ∑ (𝑟𝑟𝑖,𝑡 + 𝑟𝑠𝑖,𝑡 + 𝑟𝑠𝑛𝑖,𝑡 + 𝑟𝑠𝑓𝑖,𝑡 )𝑖∈𝐼𝑗
−

∑ (𝑟𝑟𝑖,𝑡
𝑘−1 + 𝑟𝑠𝑖,𝑡

𝑘−1 + 𝑟𝑠𝑛𝑖,𝑡
𝑘−1 + 𝑟𝑠𝑓𝑖,𝑡

𝑘−1)
𝑖∉𝐼𝑗

, ∀𝑡 ∈ 𝑇,  (17) 

𝑓𝑡,𝑙 − 𝑠𝑡,𝑙 ≤ 𝐹𝑙 , ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿,               (18) 

𝑓𝑡,𝑙 + 𝑠𝑡,𝑙 ≥ 𝐹𝑙 , ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿,               (19) 
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𝑓𝑡,𝑙 = ∑ 𝑝𝑖,𝑡𝛼𝑖,𝑙𝑖∈𝐼𝑗
+ ∑ 𝑝𝑖,𝑡

𝑘−1𝛼𝑖,𝑙𝑖∉𝐼𝑗
+ ∑ 𝑥𝑖,𝑡𝛼𝑖,𝑙𝑖∈𝑉 −

∑ 𝑦𝑖,𝑡𝛼𝑖,𝑙𝑖∈𝑌 − 𝐹𝐷 , ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿.            (20) 

Subproblem j can be linearized by introducing continuous 
decision variables 𝑞𝑡𝐷 , 𝑞𝑡𝑟𝑟 , 𝑞𝑡𝑟𝑠  and 𝑞𝑡𝑅  and the following 
constraints: 

−𝑞𝑡
𝐷 ≤ 𝐷̃𝑡 ≤ 𝑞𝑡

𝐷, ∀𝑡 ∈ 𝑇,                   (21) 
−𝑞𝑡

𝑟𝑟 ≤ 𝑅̃𝑡
𝑟 ≤ 𝑞𝑡

𝑟𝑟 , ∀𝑡 ∈ 𝑇,                   (22) 
−𝑞𝑡

𝑟𝑠 ≤ 𝑅̃𝑡
𝑠 ≤ 𝑞𝑡

𝑟𝑠, ∀𝑡 ∈ 𝑇,                   (23) 
−𝑞𝑡

𝑅 ≤ 𝑅̃𝑡
𝑎𝑙𝑙 ≤ 𝑞𝑡

𝑅 , ∀𝑡 ∈ 𝑇.                   (24) 
 The problem formulation can then be put into the following 
MILP form: 

min
𝛿,𝑢,𝑝
𝑥,𝑦,𝑟
∈𝑗

{
 
 
 
 
 

 
 
 
 
 
∑ ∑ (∑ 𝐶𝑖,𝑠,𝑡

𝑆𝑡𝑎𝑟𝑡𝛿𝑖,𝑠,𝑡   𝑠∈𝑆 + 𝐶𝑖,𝑡
𝑁𝐿𝑢𝑖,𝑡 + 𝐶𝑖,𝑡

𝐸
𝑡∈𝑇𝑖∈𝐼𝑗

+𝐶𝑖,𝑡
𝑅𝑅𝑟𝑟𝑖,𝑡 + 𝐶𝑖,𝑡

𝑅𝑆𝑟𝑠𝑖,𝑡 + 𝐶𝑖,𝑡
𝑅𝑆𝑁𝑟𝑠𝑛𝑖,𝑡 + 𝐶𝑖,𝑡

𝑅𝑆𝐹𝑟𝑠𝑓𝑖,𝑡 )

+∑ ∑ (𝐶𝑖,𝑡
𝑉 𝑥𝑖,𝑡)𝑡∈𝑇𝑖∈𝑉 − ∑ ∑ (𝐶𝑖,𝑡

𝑌 𝑦𝑖,𝑡)𝑡∈𝑇𝑖∈𝑌

+∑ 𝜆𝑡
𝑘  (𝐷̃𝑡 )𝑡∈𝑇 +∑ 𝜇𝑡

𝑟𝑟,𝑘  (𝑅̃𝑡
𝑟)𝑡∈𝑇

+∑ 𝜇𝑡
𝑟𝑠,𝑘 (𝑅̃𝑡

𝑠)𝑡∈𝑇 + ∑ 𝜇𝑡
𝑟,𝑘 (𝑅̃𝑡

𝑎𝑙𝑙)𝑡∈𝑇

+
𝑐𝑘

2
∑ (𝑞𝑡

𝐷 + 𝑞𝑡
𝑟𝑟 + 𝑞𝑡

𝑟𝑠 + 𝑞𝑡
𝑎𝑙𝑙)𝑡∈𝑇

+𝐶𝑃 ∑ ∑ (𝑠𝑡,𝑙 + 𝑠𝑡,𝑙)𝑡∈𝑇𝑙∈𝐿 }
 
 
 
 
 

 
 
 
 
 

, 

(25)  

s.t. (14) - (24) and all individual unit/virtual constraints.  

The above subproblems are iteratively solved subject to the 
surrogate optimality condition ((14) and (15) of [10]). After 
each subproblem is solved, multipliers are updated based on 
(17)-(19) and penalty coefficient is updated based on (20) and 
(21) of [10].  

B. Synergistic Combination of SAVLR+OO+B&C 
As an iterative method, SAVLR requires solving 

subproblems multiple times. Subproblems are generally solved 
by using B&C subject to the surrogate optimality condition. 
Solving a subproblem by using B&C requires solving the 
corresponding LP relaxation subproblem and adding valid cuts 
before searching for a feasible solution. This process can be 
very time-consuming for complicated sub-hourly subproblems. 
Moreover, although each subproblem is smaller in size and 
complexity as compared to the original problem, the overall 
computational effort may be significant. Therefore, it is 
important to solve subproblem in a very efficient way.  

To speed up the subproblem solving process, the OO concept 
is synergistically incorporated within the SAVLR framework. 
The solution of a subproblem only requires to be “good 
enough”. A “good enough” solution here is simply a solution 
satisfying the surrogate optimality condition. Before applying 
B&C, “good enough” solutions are searched by adjusting or 
repairing possible solution candidates. For the first iteration, 
candidates are LP solutions with appropriate rounding as 
needed; and for subsequent iterations, candidates are solutions 
from previous iterations. Such a process is generally much 
faster than solving a subproblem by B&C. If a “good enough” 
solution can be obtained, then B&C is skipped, and we move 
on to solve the next subproblem. Otherwise, B&C is used to 
solve the subproblem. 

C. Specific Methods to Enhance Performance  
Initialize multipliers. The quality of initial multipliers affects 
the performance of SAVLR. In hourly UC, multipliers of the 
corresponding LP problem are good initial multipliers. 
However, likely caused by the large number of generation 
resources, the 15-minute interval LP problem itself requires a 
long time to solve, and it is not worthy to initialize multipliers 
by solving 15-minute interval LP problem directly. Inspired by 
OO, precise multipliers are not strictly required. Considering 
the similarity of four 15-min intervals within the same hour, 
multipliers of the hourly LP problem are extended to all four 
15-min intervals as initial multipliers.  
Build generic models. Within SAVLR, a subproblem is solved 
multiple times in an iterative manner. A subproblem model, 
whose parameters are associated with other subproblems’ latest 
solutions, needs to be loaded every time before solving the 
subproblem. Building a new model for a subproblem in each 
iteration, however, takes a substantial amount of time. To 
address this issue, a generic model is constructed for each 
subproblem just once; and for each iteration, each subproblem’s 
model parameters are updated according to the latest available 
subproblem solutions.  
Use aggregated values. As shown in (14)-(17) and (20), 
system-wide constraints require variables from all generation 
resources. Because of the large number of generation resources, 
processing all variables takes a substantial amount of time. To 
save time, the values from other subproblems are aggregated, 
and these aggregated values are iteratively updated. For 
example, the aggregated generation level is initialized and 
updated as below: 

∑ 𝑝𝑖,𝑡𝑖∉𝐼𝑗
= 𝑃𝑗,𝑡 , ∀𝑡 ∈ 𝑇, 𝑗 = 1,               (26) 

𝑃𝑗+1,𝑡 = 𝑃𝑗,𝑡 +∑ 𝑝𝑖,𝑡𝑖∈𝐼𝑗
−∑ 𝑝𝑖,𝑡

𝑘−1
𝑖∈𝐼𝑗+1

, ∀𝑡 ∈ 𝑇, 𝑘 ∈ 𝑁+.  (27) 

V. NUMERICAL TESTING  
The above SAVLR+OO+B&C approach has been 

implemented by using Python 2.7 and Gurobi 7.5.0, and tested 
on MISO’s server with Intel® Core (TM) i7-7600U CPU @ 
2.80 GHz RAM 16 GB. A MISO’s UC problem, which contains 
1,105 conventional units, 15,843 virtuals, 75 dispatchable 
demand and 227 transmission lines with 36 hours looking ahead 
(144 time intervals), is tested to demonstrate the performance 
and computational efficiency of the new method.  

As shown in the last row of Table I, a near-optimal solution 
with a duality gap of 0.77% is obtained after 3237s, where the 
best known lower bound ($9,337,931) obtained in advance is 
used to calculate the gap. The total solving time is 1484s, and 
the rest are model loading and miscellaneous times. Also for 
this particular testing, “good enough” solutions for 
subproblems are always obtained before applying B&C.  

Results obtained by using B&C and SAVLR+B&C are 
shown in the first two rows of Table I as well as in Figure 1 for 
comparison purposes. Standard B&C cannot obtain a 
reasonable solution before 3,300s, and it obtains a feasible 
solution with a MIP gap of 0.9% after 5000s. For 
SAVLR+B&C, a solution with a duality gap of 0.88% is 
obtained after roughly 3500s. Our new approach thus 
significantly outperforms B&C and SAVLR+B&C.  
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TABLE I 

PERFORMANCE OF SAVLR+OO+B&C, PURE B&C, AND SAVLR+B&C. 

Method 
Solving 

Time 
(s) 

Total 
Time 

(s) 

Feasible 
Cost ($) 

Lower 
Bound 

($) 

Gap 
(%) 

B&C 5211 5443 9,422,880 
9,337,931 

0.90 
SAVLR+B&C 3537 5623 9,421,401 0.88 

SAVLR+OO+B&C 1484 3237 9,410,518 0.77 
 

  
Fig. 1. Performance of SAVLR+OO+B&C, Pure B&C and SAVLR+B&C. 

The average solving time for a subproblem in our method is 
53s, which is much less than that in SAVLR+B&C of 162s. The 
difference is attributed to the fact that within our method, 
subproblem solutions satisfying the surrogate optimality 
condition are obtained in a much faster way as compared with 
that for SAVLR+B&C.  

VI. CONCLUSION 
This paper illustrates how sub-hourly UC problems are 

solved through the novel combination of SAVLR, OO and 
B&C. Testing results show that the new method has high 
computational efficiency. More importantly, the approach 
opens a new way to address other MILP problems in power 
systems and beyond. 
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