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Fig. 1. We propose a language for the automatic di�erentiation of integrals with discontinuities. Existing auto-di� frameworks require integrals to be
discretized into summations prior to di�erentiation, and therefore lose the derivative contribution from discontinuities. Our method produces a statistically
consistent derivative program by introducing integration as a language primitive, which allows us to di�erentiate discontinuities in continuous space, before
discretizing them into summations over discrete samples.

Emerging research in computer graphics, inverse problems, and machine
learning requires us to di�erentiate and optimize parametric discontinuities.
These discontinuities appear in object boundaries, occlusion, contact, and
sudden change over time. In many domains, such as rendering and physics
simulation, we di�erentiate the parameters of models that are expressed as
integrals over discontinuous functions. Ignoring the discontinuities during
di�erentiation often has a signi�cant impact on the optimization process.
Previous approaches either apply specialized hand-derived solutions, smooth
out the discontinuities, or rely on incorrect automatic di�erentiation.

We propose a systematic approach to di�erentiating integrals with dis-
continuous integrands, by developing a new di�erentiable programming
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language. We introduce integration as a language primitive and account for
the Dirac delta contribution from di�erentiating parametric discontinuities
in the integrand. We formally de�ne the language semantics and prove the
correctness and closure under the di�erentiation, allowing the generation
of gradients and higher-order derivatives. We also build a system, T��, im-
plementing these semantics. Our approach is widely applicable to a variety
of tasks, including image stylization, �tting shader parameters, trajectory
optimization, and optimizing physical designs.
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1 INTRODUCTION
Automatic di�erentiation, now indispensable for optimization and
machine learning, usually treats discontinuities (e.g., if-else branches)
by ignoring them. Doing so is usually correct almost everywhere
(in the technical sense). However, the situation is di�erent when
computing the derivative of an integral, when discontinuities of the
integrand cannot be ignored. We propose a di�erentiable program-
ming language that can soundly compute derivatives of integrals
with discontinuities, producing correct results almost everywhere.

Parametric discontinuities in graphics. Emerging research
that combines techniques in computer graphics, inverse problems,
and machine learning often requires optimizing discontinuities. We
often want to compute the derivatives of integrals of discontinuous
functions:

r
π

5

where 5 is a program that can have parametric discontinuities. Para-
metric discontinuities are branching expressions containing free pa-
rameters (e.g., C in foreach x: (( x < t ) ? 1 : 0)). The derivative
contribution of a parametric discontinuity is a Dirac delta function
and usually integrates to a non-zero value. In graphics, these para-
metric discontinuities arise in rigid-body simulations that exhibit
collision and contact phenomena; rendered shapes form silhouettes
and shadows; geometry has corners and creases. Both integration
and di�erentiation play critical roles in simulating, rendering, and
optimizing these models.

For instance, the variational principle of least action de�nes physi-
cal trajectories asminima of an action integral; whichmay be applied
to synthesizing animations and optimizing robot controllers [Sten-
gel 1994; Witkin and Kass 1988]; rendering is de�ned as a multi-
dimensional integral, and hence inverse rendering involves di�er-
entiating that integral [Li et al. 2018a]; and shape optimization uses
derivatives of integrated geometric quantities [Hafner et al. 2019].
Combining deep learning models with these problems is only possi-
ble if we can compute derivatives through the discontinuities.

Prior work has recognized that ignoring the discontinuities during
di�erentiation can have a signi�cant impact on the optimization.
Oftentimes, domain-speci�c solutions are employed to manually
derive the correct derivatives (e.g., [Dyer and McReynolds 1968; Li
et al. 2018a]). When adapting to new problems, new derivations
are required. Our goal is to instead systematize the domain-speci�c
methods, and develop the foundation of a programming language.

Using our approach and language, we study applications spanning
several �elds in graphics. We write a 2D di�erentiable renderer for
triangulating images, �t a procedural shader’s parameters to a target
image, solve frictional contact problems without smoothing, and
optimize physical designs with discontinuous properties.
Minimal example. Ignoring discontinuities during di�erentia-

tion is problematic. Consider the example from Fig. 1: d
dC

Ø 1
G=0 [G <

C], where [G < C] = 1 if G < C and 0 otherwise. This integral might
represent the expected frequency of a C-biased coin �ip coming up
heads; or the fraction of a pixel covered by a triangle with position
C ; or the fraction of a time-interval during which a motor is engaged,
when it is turned o� at time C . If we wish to optimize this C parameter,
then we need to take some such derivative.

It is common-place to �rst discretize integrals and only after that
to di�erentiate them using automatic di�erentiation. However, ex-
isting auto-di� systems de�ne 3

3C [G < C] = 0. This is unfortunately
incorrect in the presence of integration. The expected frequency of
a C-biased coin coming up heads does change with the bias C . This is
because the derivative of the step function [G < C] is a Dirac delta
X (C � G), which integrates to a non-zero value when both sides of
the branch are visited in the integration domain. In general, the
discretization of the di�erential of an integral is di�erent than the
di�erential of the discretization of an integral (Fig. 1). Ignoring the
Dirac delta often leads to suboptimal results – in this example, the
optimization will never move from the initial guess.
A systematic solution. We explore a systematic method for

optimizing parametric discontinuities, by specifying the semantics
of a new di�erentiable programming language that is provably
correct and can generate higher-order derivatives. Our key idea is to
di�erentiate then discretize in our language. By making integration
a language primitive and accounting for the Dirac deltas introduced
by di�erentiating parametric discontinuities, our language computes
the correct solution:

d
dC

π 1

G=0
[G < C] !

π 1

G=0
X (C � G) ! [0 < C < 1] .

Analytically eliminating Dirac deltas via an enclosing integral –
the second step above – is di�cult to systematically guarantee for
arbitrary expressions inside Dirac deltas. We guarantee the correct
treatment of Dirac deltas under suitable conditions. We require that
the expression constituting each of the parametric discontinuities
be represented only using di�erentiable, invertible functions (i.e.,
di�eomorphisms). We allow such functions to be explicitly de�ned
by the programmer, or automatically inferred for certain common
expression classes such as a�ne expressions.

In this paper, we prioritize the development of a clean core calcu-
lus that captures the interactions among derivatives, integrals, and
discontinuities. Our language only supports static loop variables
(it is not Turing complete). The symbolic transformation used to
eliminate the Dirac deltas are global and may lead to an asymptotic
increase in expression size, scaling with the number of disconti-
nuities. We provide a proof of correctness for the language and
show that it is closed under the derivative operation, allowing for
immediate application of the technique to higher-order derivatives.
Finally, we build a system, T��, that implements the semantics.1

In summary, our contributions are:
• We propose a systematic approach to di�erentiate integrals
with discontinuous integrands, by including integration as
a language primitive. We de�ne the formal semantics, and
prove its correctness and closure under di�erentiation.

• We implement these semantics in a di�erentiable program-
ming language,T��, which supports both forward and reverse-
mode automatic di�erentiation.

• We show novel applications spanning �elds in computer
graphics. They include a method for �tting parametric dis-
continuities in inverse shader design, and a frictional contact
solver that does not rely on smoothing energy.

1The source code of the compiler and application is available at https://github.com/
ChezJrk/Teg and https://github.com/ChezJrk/teg_applications.
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DIFFERENTIATEDISCRETIZE

(a) traditional automatic di�erentiation (Discretize-then-Di�erentiate)

DISCRETIZEDIFFERENTIATE

(b) our automatic di�erentiation (Di�erentiate-then-Discretize)

Fig. 2. 1D E������. Our language, T��, can automatically di�erentiate programs with integrals and discontinuities, represented as indicator functions
[[[ ]]]. (a) Traditional automatic di�erentiation approaches first discretize then di�erentiate because they do not have an integral primitive. This leads to
incorrect results because it ignores the contribution of the Dirac deltas introduced by di�erentiating the discontinuities. (b) In contrast, we include integral
primitive in our language and account for the contribution of the Dirac deltas. T�� first di�erentiates then discretizes. In this case, we apply the identityØ
1

x=0X (X (X ( \ � x ))) =
Ø \
y=\�1X (X (X ( y ))) = [[[\ � 1 < 0 ]]] [[[\ > 0 ]]].

To motivate our approach, we describe a few problems and how
others have solved them in the past. We only introduce necessary
background in the next section and detail additional related work
in the section that follows (Sec. 3).

2 MOTIVATION AND BACKGROUND
Wemotivate the value of optimizing parametric discontinuities with
examples. We describe them in our language, T��, and show how
the compiler produces correct code. Formal semantics and the proof
of correctness are detailed in Sec. 4.

Notation and frontend. T�� is designed to mirror mathematical
equations as closely as possible. Throughout the paper, when we
show the code in our language, we use syntax highlighting and a
di�erent font to distinguish from the mathematical formulae. For
example, a mathematical formula of an integral

Ø 1
G=0 [G < 5]G2,

where [G < 5] = 1 if G < 5 else 02, is expressed as
Ø
1

x=0[[[ x < 5]]]x2
in our language. We write this code in T��’s Python frontend library
as Teg(0, 1, IfElse(x < 5, 1, 0) ∗ x ∗ x, x).

2.1 1D Example
We now more deeply explore the 1D integral parameterized by C
from the introduction and Fig. 1:

� (C) =
π 1

G=0
[G < C], (1)

Many graphics problems are more complex manifestations of this
form, such as anti-aliasing [Mitchell and Netravali 1988], global
illumination [Kajiya 1986], integration of certain ordinary di�eren-
tial equations, or simulating physics using the variational princi-
ple [Hamilton 1834]. The indicator function appears at, for example,
object boundaries, occlusion, or sudden change of force over time.

Our goal is to automatically compute the derivative d�
dC . We want

to use the derivative for optimization, machine learning, or describ-
ing physical quantities. Later we show more realistic applications,
including di�erentiable rendering and physics simulation. In this
1D case, we have a closed-form solution: d�dC = [0 < C < 1].

2This “Iversion bracket” syntax comes from APL [Iverson 1962] and was advocated by
Donald Knuth [1992].

Discretize-then-Di�erentiate produces incorrect derivatives. Solu-
tions to real-world problems often lack closed-form solutions. Com-
puting derivatives by hand takes up signi�cant time. Therefore, we
want to rely on automatic di�erentiation [Griewank and Walther
2008]. A typical compiler does not have integrals as a primitive.
Therefore, to use automatic di�erentiation, we must �rst manu-
ally discretize the integral into a program. For example, � (C) ⇡Õ#
8=0 [8/# < C] = �3 (C). However, di�erentiating the program �3

with respect to t gives the incorrect derivative of 0, contradicting
our closed-form solution [0 < C < 1]. This is because the only
dependency of the program to C is through the indicator [8/# < C].
The derivative of the indicator gives rise to a Dirac delta X , which
describes an in�nitesimal size spike at G/# = C , but has value zero
everywhere else. A delta can only be realized into a number through
integration. Since there are no integral primitives in existing auto-
matic di�erentiation tools, all of them ignore the delta. Fig. 2 shows
a visual explanation.

The issue above is not �rst observed by us, and other researchers
proposed alternative solutions. In particular, our approach is closely
related to the recent advancement of di�erentiable rendering [Li
et al. 2018a; Ramamoorthi et al. 2007]. Dyer and McReynolds [1968]
also derived the derivatives in the optimal control context. These
works recognized that we could explicitly account for the Dirac
deltas by evaluating the integrals over them. We systematize these
approaches and incorporate them into a programming language.

Our approach: Di�erentiate-then-Discretize. The key idea is to �rst
di�erentiate then discretize, all inside the language. Similar to pre-
vious di�erentiable rendering works [Li et al. 2018a; Ramamoorthi
et al. 2007], we base our compiler passes on the following properties
of indicator functions, Dirac deltas X , and integrals:

m

mC
[2 (G, C) > 0] = X (2 (G, C)) ⇤ m

mC
2 (G, C)

π 1

G=0
5 ('(G)) m'(G)

mG
=

π ' (1)

D=' (0)
5 (D)

π 1

G=0
X (G) = [0 < 0 < 1],

(2)

where D = '(G) is a variable substitution, or reparametrization.
Given an indicator [2 (G, C) > 0] under di�erentiation, we �rst turn
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(a) 2D di�erentiable rendering
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0- +

contact

(b) trajectory optimization

Fig. 3. C��� �������. Our language can be used for computing many applications where one needs to di�erentiate integrals with discontinuous integrands. In
di�erentiable rendering (a), each pixel is a 2D anti-aliasing integral. The geometry boundaries introduce discontinuities. The figure shows an example where
we fit a triangle mesh with constant color within triangles to a target image using the gradient of loss with respect to the triangle parameters. In physics
simulation (b), the variational least action principle predicts motion by minimizing an action integral of the Lagrangian energy over time. The Lagrangian
energy can contain discontinuities due to contact, sudden change of force over time, or other physical properties. We can formulate a trajectory optimization
problem by finding the path parameters of a bouncing ball by minimizing the action integral. Unlike standard approaches that integrate over ordinary
di�erential equations, we do not need to choose a step size, and the contact point between the ball and the floor can be anywhere. Sec. 6 shows more examples.

it into a delta X (2 (G, C)). We then apply reparametrizations to trans-
form the delta into the form X (G). Finally, we eliminate the delta
using the last rule above.
Therefore, for a T�� program � =

Ø
x=1
x=0 [[[ x < t]]], the compiler

di�erentiates � by applying the following transformation:

d

dt

π
1

x=0
[[[ x < t]]] ! d

dt

π
1

x=0
[[[ t � x > 0]]] !

π
1

x=0

d

dt
[[[ t � x > 0]]]

π
1

x=0
X (X (X ( t � x))) !

π
t

u=t�1
X (X (X ( u))) ! [[[ t � 1 < 0]]][[[ t > 0]]] .

The �rst step normalizes the condition into the form 0 > 0. The
second step moves the derivative operator inside the integral. We
then transform the derivative of indicator functions into a Dirac
delta. Next, we apply the reparametrization D = C � G . Finally, we
eliminate the delta, leading us to the same expression to our closed-
form solution [0 < C < 1]. Sometimes the �nal expression can be
another integral. T�� evaluates delta-free integral expressions by
discretizing them.

Not all deltasX (X (X ( c(x, t) ))) can be easily eliminated, since they must
�rst be reparametrized to the form X (X (X ( x))) so that they may then
annihilate with an integral. To reparametrize (second rule in Eq. (2)),
we need to �nd the inverse x = c

�1 (u, t) in order to substitute the
variables outside the delta. Automatically deriving such inversion is
hard. Our compiler automatically handles an important case when
c is a�ne. In 1D, it takes the form t0x + t1, where t0 and t1 can
depend on other parameters that are not x. For other conditions, we
provide a library of di�eomorphisms for users to apply, e.g., a polar-
to-Cartesian transformation. Crucially, we allow users to de�ne
custom di�eomorphisms (bijectivity can be checked with numerical
tests). Custom mappings make our language �exible, while also
providing a correctness guarantee by decoupling the derivative
transformation from the reparametrization.
In Sec. 4, we formally describe our language, compiler trans-

formation passes, and correctness theorem, dealing with multiple

conditions, integrals. We also make sure that our language is closed
under di�erentiation, that is, the di�erentiated code is still a pro-
gram expressible in our language. The closure property is crucial for
higher-order derivatives. Before that, let us introduce two graphics
applications that involve the di�erentiation of integrals.

2.2 Case Study I: 2D Di�erentiable Rendering
Rendering computes an image from a given set of geometric shapes
and their shading color. Di�erentiable rendering [Li et al. 2018a;
Loper and Black 2014], on the other hand, computes the gradient of
pixel color with respect to scene parameters for inverse rendering
or machine learning. Previous approaches either apply approxima-
tion [Loper and Black 2014], manually derive the gradient [Li et al.
2018a], or use �nite di�erences [Lawonn and Günther 2019]. Here
we show how T�� automatically di�erentiates a 2D rasterization
program, outlined in Figure 3a.

Here we study a simpli�ed rendering model, where the geometry
is represented as 2D triangles, and the color inside the triangle is
constant. We want to �t the geometry and the color to a target image
to produce a stylized image [Lawonn and Günther 2019]. For a pixel
at (G8 ,~8 ) and for a triangle with color ⇠ and vertices E1, E2, E3, the
equation representing the color at that pixel is:

�A =
π

1

t=0

π
1

s=0
⇠ ⇤ inside(G8 + B,~8 + C, E1, E2, E3), (3)

where, for convenience, we de�ne the function inside as the multi-
plication of three edge equations:
inside(G,~, E1, E2, E3)

=[[[ (v1 .y � v2 .y) ⇤ x + (v2 .x � v1 .x) ⇤ y > v1 .x ⇤ v2 .y � v2 .x ⇤ v1 .y]]]
⇤[[[ (v2 .y � v3 .y) ⇤ x + (v3 .x � v2 .x) ⇤ y > v2 .x ⇤ v3 .y � v3 .x ⇤ v2 .y]]]
⇤[[[ (v3 .y � v1 .y) ⇤ x + (v1 .x � v3 .x) ⇤ y > v3 .x ⇤ v1 .y � v1 .x ⇤ v3 .y]]]
The value at each pixel is a sum of the contribution of all of the
overlapping triangles.
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We want to compute the derivative of the pixel color integral
(Program (3)) with respect to the vertices E . Therefore, T�� needs to
handle the deltas that arise from di�erentiating the inside function.
Using the same techniques as in the previous subsection, T�� auto-
matically generates the derivative, which are three 1D integrals over
the three edges of the parameterized triangle. The main di�erence
is that we now transform multiple integrals. Consider the following
double integral with an a�ne condition:

I2 =
π

1

y=0

π
1

x=0
[[[ a ⇤ x + b ⇤ y + c > 0]]], (4)

and we want to compute the derivative mI2
mc . After transforming the

indicator into a Dirac delta during di�erentiation, our compiler auto-
matically detects the a�ne condition pattern a ⇤ x + b ⇤ y + c and ap-
plies a bijective and rotational reparametrization x

0 = a ⇤ x + b ⇤ y,
y
0 = b ⇤ x � a ⇤ y. The compiler generates similar reparametriza-

tions for higher-dimensional spaces. The resulting derivative inte-
gral is

mI2
mc

=
π

B
u

y

y0=Bly

π
B
u

x

x0=Blx

X (X (X ( x0 + c)))
a2 + b2

, (5)

where Blx, Bux, Bly, and B
u
y are new integral bounds derived from the

reparametrization, and a
2 + b

2 is the Jacobian determinant of the
transformation. From here, the compiler reparametrizes X (X (X ( x0 + c)))
into X (X (X ( x00 ))) by applying G 00 = G 0 + 2 , and eliminates the delta and
corresponding integral over G 00, leaving a 1D integral. In the triangle
case, the same pattern applies with 0,1, 2 being parameters coming
from the triangle vertices.

The derivative m�A
mE generated by T�� can then be composed with

derivatives generated by other automatic di�erentiation systems
such as PyTorch [Paszke et al. 2019] or TensorFlow [Abadi et al.
2015]. Given a loss function !(�A ), we can use the chain rule m!

mE =
m!
m�A

m�A
mE . T�� computes m�A

mE , while other automatic di�erentiation
systems can be used to compute m!

m�A
.

Existing di�erentiable rendering methods. Recent work has de-
veloped di�erent techniques to di�erentiate the rendering compu-
tation. The derivation above is similar to Li et al. [2018a], and is
closely related to the Reynolds transport theorem [Li 2019; Li et al.
2020b; Zhang et al. 2020, 2019]. An alternative approach is to ap-
ply reparametrizations to remove the discontinuities [Loubet et al.
2019], which turns out to be equivalent to applying divergence the-
orem on the derivative line integrals [Bangaru et al. 2020]. Other
methods approximate the Dirac deltas by using image �lters [Loper
and Black 2014], or smoothing over discontinuities [Liu et al. 2019].

T��mechanizes the Dirac delta computation as part of automatic
di�erentiation, which allows us to generalize the approach. For
example, in Sec. 6 we show results on optimizing a color model
with linear or quadratic interpolation, or even optimizing a texture
generated by Perlin noise [Perlin 1985]. We can also apply it to
problems outside of di�erentiable rendering, as we will show next.
However, our compiler currently does not support other strategies
for dealing with discontinuities, such as smoothing or transforming
boundary integrals into area integrals using divergence theorem,
nor does it currently scale to millions of objects (Sec. 7).

2.3 Case Study II: Physics-based Animation and Control
Composing derivatives and integrals to form an optimization prob-
lem is a common pattern in physics. For didactic purposes, we
discuss one of the simplest possible problems: �nding the trajec-
tory of a bouncing ball (Fig. 3). We use a piecewise linear model
of the trajectory, with parameters \1 . The variational least action
principle [Hamilton 1834] predicts motion by �nding the stationary
points the following action integral over time:

S(\b) =
π

t1

t=t0
L(q, qt, t), (6)

where q is the 2D position of the ball (parameterized by \b), qt is
its time derivative, and t is time. L is the Lagrangian of the physics
system. In this case, it is composed of the potential energy�V (whose
spatial derivative � mV

mq is the force) and the kinetic energy 1

2
mq

2

t
.

Intuitively, we �nd the path parameter \1 that minimizes a cost
function ( resulting in a stationary action.
In the case of the bouncing ball, the energy of the system is the

gravitation potential when @.~ > 0, and the contact force 52 pushes
the ball back when @.~  0:

L(q, qt, t) =
1

2
m ⇤ q2

t
� ([[[ q.y > 0]]] ⇤ m ⇤ g ⇤ q.y �

[[[ q.y  0]]] ⇤ m ⇤ fc ⇤ q.y).

For our piecewise linear model of the trajectory @, we consider a
sequence of control points, at varying points in time rather than at
regular temporal intervals. Doing so allows our trajectory model to
represent a sudden change in velocity at some arbitrary point and
time, which is necessary to exactly capture our idealized inelastic col-
lision. This direct collocation trajectory optimization approach [Har-
graves and Paris 1987] is di�erent from standard approaches that
di�erentiate forward simulators, usually called the shooting method.
The standard shooting method requires pre-determining time step
sizes for integration, leading to issues when the contact point can be
anywhere. Trajectory optimization is used for designing animation
or in robotics for planning [Betts 2009; Popović et al. 2000; Witkin
and Kass 1988]. In computer graphics, trajectory optimization with
contact is usually handled by using a smooth contact model in
the �rst place [Hunt and Crossley 1975], or incorporate inequality
constraints and then solve it by smoothing the discontinuities [Mor-
datch et al. 2012; Todorov 2011], or using sophisticated nonlinear
programming solvers [Posa et al. 2014].
In T��, we can de�ne and di�erentiate physics problems with

discontinuous energy, enabling optimization using gradients or
higher-order derivatives. Notice that the derivatives appear both
inside the integral (qt) and outside (though this can be problematic
theoretically, see Sec. 7.2). This physics formulation extends beyond
contact modeling. We can model forces that change suddenly over
time, and we can model an elastic potential energy kq

2

t
, where the

coe�cient : depends on the length of the spring. In Sec. 6, we
present additional applications in more detail.

3 RELATED WORK
We now provide more detailed references for related applications,
systems, and languages.
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Rendering and di�erentiable rendering. Rendering, physics-based
or not, involves solving anti-aliasing integrals [Mitchell and Ne-
travali 1988]. Physics-based rendering further formulates the light
transport as an integral equation [Kajiya 1986; Veach 1998]. Analyt-
ical derivatives have been derived for di�use interre�ection [Arvo
1994], shadow [Ramamoorthi et al. 2007], and spherical harmonics
lighting [Wu et al. 2020]. Recently, there are strong interests in
graphics, vision, and machine learning communities to build fully
di�erentiable renderers. Some methods ignore geometry deriva-
tives [Gkioulekas et al. 2013; Nimier-David et al. 2019], some ap-
proximate the Dirac delta contributions [de La Gorce et al. 2011;
Kato et al. 2018; Loper and Black 2014], some smooth out the discon-
tinuities [Liu et al. 2019], and some apply smooth postprocessing
using the geometry bu�er [Laine et al. 2020]. Meanwhile, other
methods derive the correct derivatives using Dirac deltas [Li et al.
2018a], reparametrization [Loubet et al. 2019], or Reynolds transport
theorem [Bangaru et al. 2020; Li 2019; Li et al. 2020b; Roger et al.
2005; Zhang et al. 2020, 2019]. Di�erentiable renderers have also
been used for inverse shader designs [Guo et al. 2020; Shi et al. 2020].
Our language lays the foundation for a programmable di�erentiable
rendering system. We have not yet included rendering-speci�c ab-
stractions and data structures, which are necessary for applying
T�� to large-scale rendering problems.

Variational physics, control, and shape modelling. Calculus of vari-
ations – the minimization of integrals over cost functionals – can
often predict motion. A prominent example is Hamilton’s least ac-
tion principle [Hamilton 1834]. In graphics, robotics, and optimal
control, this formulation has often been used for interpolating ani-
mation or planning [Barr et al. 1992; Betts 1998, 2009; Cohen 1992;
Popović and Witkin 1999; Witkin and Kass 1988]. The same prin-
ciple can be used in 2D or higher-dimensional space to �nd the
surface or volume with least cost [Moreton and Séquin 1992; Welch
and Witkin 1992], or �nding contours in images [Kass et al. 1988].
In trajectory optimization, �tting the trajectory generated by ordi-
nary di�erential equations is often called the (multiple) shooting
method [Geilinger et al. 2020; McNamara et al. 2004; Popović et al.
2000; Twigg and James 2008]. On the other hand, methods that �t
trajectory as splines are called the direct collocation method [Har-
graves and Paris 1987]. A recent line of work aims to combine neural
network controllers with simulators [de Avila Belbute-Peres et al.
2018; Holl et al. 2020; Hu et al. 2020; Um et al. 2020], or directly
model system dynamics using neural networks [Chen et al. 2018].

A common strategy to handle object contact is to introduce con-
straints and solve nonlinear programming problems [Betts 2009; Li
et al. 2020a; Mordatch et al. 2012, 2013; Posa et al. 2014]. It is also
possible to approximate contact using impulse-based physics [Hu
et al. 2020; Mirtich 1996]. We explore an alternative formulation to
this problem, by allowing certain discontinuous cost functions to
be used in optimization. The mathematics of such formulations has
been studied [Dyer and McReynolds 1968]. We further show the
connection to di�erentiable rendering.

Domain-speci�c languages for computer graphics. Several graph-
ics systems handle integration and di�erentiation: CONDOR [Kass
1992] proposed an interactive programming interface for solving
constrained dynamics with automatic di�erentiation and interval

arithmetic. Aether [Anderson et al. 2017] models Monte Carlo in-
tegration, and automatically computes the Jacobian of integral
reparametrization. Recent graphics systems often include di�er-
entiation operations [Devito et al. 2017; Hu et al. 2020; Jakob 2019;
Li et al. 2018b; Nimier-David et al. 2019]. In contrast, we study the
interaction between integration, di�erentiation, and discontinuities.

Automatic di�erentiation and probabilistic programming. It is pos-
sible to automate derivative calculation by applying the chain rule to
program expressions [Griewank and Walther 2008; Wengert 1964].
Reverse-mode automatic di�erentiation [Linnainmaa 1970] derives
gradients that can be evaluated at the same time complexity as the
original program – much faster than �nite di�erences. There is a
revitalized interest in revisiting e�cient auto-di� systems in deep
learning [Abadi et al. 2015; Bradbury et al. 2018; Paszke et al. 2019;
Yu et al. 2014] and probabilistic programming [Bingham et al. 2019;
Stan Development Team 2015]. Auto-di� has also gained signi�cant
attention in programming languages, where researchers specify
system semantics and prove the correctness of their systems [El-
liott 2018; Lee et al. 2020; Mazza and Pagani 2021; Pearlmutter and
Siskind 2008; Sherman et al. 2021]. We study the particular interac-
tion among the derivative, integral, and discontinuities.3
Inala et al. [2018] relax boolean expressions into real numbers

through smoothing, and solve numerical problems by combining
gradient descent and satis�ability solvers. We instead exploit the
structure of integration.
Integration and di�erentiation are indispensable to Bayesian in-

ference and probabilistic programming [Gehr et al. 2020; Kucukel-
bir et al. 2015; Lew et al. 2019]. Many probabilistic programming
languages handle integrals, but most do not explicitly handle the
di�erentiation of discontinuities. LFPPL [Zhou et al. 2019] studies
discontinuities in the context of Hamiltonian Monte Carlo methods.
Closest to our work is Lee et al.’s stochastic variational inference
work [2018]. They observed when applying the reparametrization
trick to non-di�erentiable models, existing approaches ignore the
deltas. They design a language for stochastic variational inference.
The language focused on in�nite domain integrals with a�ne dis-
continuities. We show a more general language with correctness
proof, closure, and bounded domain, and generalize the class of dis-
continuities through di�eomorphisms. Importantly, we show wide
applicability of this class of approaches to many graphics problems.

4 SEMANTICS AND CORRECTNESS PROOF OF OUR
LANGUAGE

We have motivated and discussed our system T��. In this section,
we formally de�ne a simpli�ed core language L, and prove the
correctness of the compiler passes and closure under di�erentiation.

Our formal semantics focus on forward-mode automatic di�eren-
tiation. The derivation of reverse-mode is similar to forward-mode,
but it requires adding let bindings (intermediate variables) to the
core language. We found this to be distracting for the minimal lan-
guage for our proof. Our practical implementation supports both
forward-mode and reverse-mode. We focus on the scalar case in this
work. Arrays and tensors are unrolled into scalars in our language.
3Sherman et al. [2021] includes an integration primitive and produces a correct, but
vacuous result in the presence of discontinuities.
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4.1 Preliminaries
A context f is a partial function from variable names to values, other
variable names, or expressions. The empty context [] is unde�ned
for all names ([] (x) = ?). A context may be extended f [x 7! v],
s.t. f [x 7! v] (x) = v and f [x 7! v] (y) = f (y) when x < y. The
singleton context [x 7! v] is shorthand for an extension of the
empty context. x 2 f is true when f (x) < ? and x 8 f when
f (x) = ?.

We will use contexts passed into mathematical functions as a way
of specifying argument bindings without positions (e.g., the value of
x is 3, of y is 42, etc.). We will also use contexts by directly applying
them to expressions in order to perform variable substitution (e.g.
[x 7! y] (2 ⇤ x + z) = 2 ⇤ y + z).
We will use the notation Æx as shorthand for a �nite list of variables

x1, x2, . . .. The expression y 2 Æx means that y is a symbol occuring
in that shorthand list.

4.2 Syntax and Denotational Semantics of L
We �rst present a minimal language L that demonstrates many of
the key features of T��. We discuss later how to extend the minimal
language into our full language T��. Below is the syntax written in
Backus–Naur form:

e F c | x | e1 + e2 | e1 ⇤ e2 |
π

b

x=a
e |

⇥⇥⇥
q (Æx) > 0

⇤⇤⇤
| f(((e)))

(i.e., an expression is a constant c, or a variable x, etc.) The deno-
tational semantics describes the behavior of these syntactic forms
in terms of mathematical functions. That is, ⇢ [[e]] is a function
mapping from contexts (holding variable values) to a real number.

⇢ [[c]] = 2

⇢ [[x]] = G

⇢ [[e1 + e2]] = ⇢ [[e1]] + ⇢ [[e2]]
⇢ [[e1 ⇤ e2]] = ⇢ [[e1]] ⇤ ⇢ [[e2]]

⇢ [[
π

b

x=a
e]] =

π ⇢ [[b]]

G=⇢ [[a]]
⇢ [[e]]

⇢ [[
⇥⇥⇥
q (Æx) > 0

⇤⇤⇤
]] = [bq1 (Æx) > 0]

⇢ [[f(((e)))]] = 5 (⇢ [[e]])

In the indicator function
⇥⇥⇥
q (Æx) > 0

⇤⇤⇤
, the vector Æx are the free vari-

ables, and q are invertible functions drawn from a class of functions
that we will discuss later (§4.5). For now, simply note that bq1 is the
component of q that is branched on. We will generally suppress the
speci�cation of free variables Æx. The bounds expressions a and b are
expressions in L that do not include integrals or indicator functions,
and must be independent of variables of integration. In contrast,
arguments to invertible functions Æx inside of indicator functions
may depend on variables of integration.

The term f corresponds to a built-in function, and 5 is the math-
ematical function denoted. We require that 5 is smooth and that
the derivatives are syntactically de�ned. For example, cosine may
be de�ned as the denotation ⇢ [[cos(((e)))]] = cos(⇢ [[4]]), and the
derivatives are corecursively de�ned using sin.

4.3 Syntactic Sugar
We brie�y address convenient extensions to the minimal language
L. Via the built-in mechanism f(((·))), we add support for division,
and other common mathematical functions. More general compar-
isons

⇥⇥⇥
q (Æx) > k (Æx)

⇤⇤⇤
can be reduced to the canonical formulation⇥⇥⇥

q (Æx) �k (Æx) > 0

⇤⇤⇤
. Conjunctions of conditions can be encoded as

products of indicator functions, and disjunctions can be represented
using the inclusion-exclusion principle.
As presented, L does not have a way of binding intermediate

variables. Our prototype includes let-bindings, although certain
parts of derivation (Sec. 4.4) may require inlining these bindings—
which can lead to poor compile time in some cases.

4.4 Derivative Application
We de�ne the source-to-source derivative application in terms of
the derivative transformation⇡ [[e]]f , where the context f speci�es
a mapping from variables to be di�erentiated to their corresponding
di�erential variable names (e.g., [x 7! dx]).

Taking the derivative of indicator functions produces Dirac deltas,
a construct not accounted for in our language L. Therefore, we
extend the language to L0 as follows:

e
0 F e | e0 + e

0 | e0 ⇤ e |
π

b

x=a
e
0 | X

�
X

�
X

�
q (Æx)

���

Note that besides including the Dirac delta X
�

X
�

X
�
q (Æx)

���
, this extension

L0 ensures that the resulting expressions are linear in the delta
terms, and will also be linear in any di�erential terms.

Derivative application ⇡ [[e]]f follows two steps:

• A lifting derivative, which takes in a program in L and out-
puts a program in L0 that may include Dirac deltas.

• Delta elimination takes in a program in L0 and outputs a
program in L that is delta-free. It achieves this by having
Dirac deltas either annihilate with the appropriate integrals
or be set to zero if their contribution is of measure zero.

We now detail these steps in the derivative application.

4.4.1 Li�ing: Forward Derivative. The lifting derivative � [[·]]f :
L ! L0 maps from an expression in the (external) language L to
the derivative expression represented in the internal language L0.

� [[x]]f = dx, if x 2 f

� [[x]]f = 0, if x 8 f

� [[c]]f = 0

� [[e1 + e2]]f = � [[e1]]f + � [[e2]]f
� [[e1 ⇤ e2]]f = � [[e1]]f ⇤ e2 + e1 ⇤ � [[e2]]f

� [[
π

b

x=a
e]]f =

π
b

x=a
� [[e]]f

+ � [[1]]f ⇤ [x 7! b]4 � � [[0]]f ⇤ [x 7! a]4
� [[

⇥⇥⇥
q (Æx) > 0

⇤⇤⇤
]]f = 0 if 8y 2 Æx, y 8 f

� [[
⇥⇥⇥
q (Æx) > 0

⇤⇤⇤
]]f = X

�
X

�
X

�
q (Æx)

���
⇤ � [[q (Æx)]]f if 9y 2 Æx, s.t. ~ 2 f

� [[f(((e)))]]f = df(((e))) ⇤ � [[e]]f
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Conservative
bounds transfer

Source space (Euclidean) Map-1 (Polar) Map-2 (Translate)

Fig. 4. D���� �����������������. This flow diagram explains a crucial step in our compiler pass for handling a Dirac delta X
�

X
�

X
�
q (Æx)

���
. Our key idea is to reduce

this expression to a normal form (e.g., X (X (X ( y1 )))) through a series of reparameterizations by composing di�eomorphisms. This can be thought of as expressing
the expression in a new coordinate system where the expression is exactly coincident with an axis of integration. Here we show an example of reparametrizing
a condition representing the area of a circle X

�
X

�
X

�
x
2 + y

2 � t
���
. We can transform the coordinates from Cartesian to polar, making it an integral over the angle

and radius. Finally we can translate X
⇣

X
⇣

X
⇣
r �

p
t

⌘⌘⌘
to obtain the simplified X (X (X ( r0 ))) , which can be automatically eliminated by T��.

4.4.2 Lowering: Delta Elimination. To achieve closure back to our
original languageL, we need to eliminate Dirac deltas using a series
of rewrites.

Pass 1: Normalization. To reason about and manipulate programs
in L0, we normalize the expressions. Normalization proceeds by
exhaustively applying the rewrite rules:

e0 ⇤ (e1 + X (X (X (q ))) ⇤ e2) �! e0 ⇤ e1 + X (X (X (q ))) ⇤ (e0 ⇤ e2)π
b

x=a
(e1 + e2) �!

π
b

x=a
e1 +

π
b

x=a
e2,

These rewrites distribute multiplication and integration to move
Dirac deltas up through the expression until they sit directly inside
of integrals—at which point they can be fruitfully manipulated by
the subsequent passes. An implementation can be more judicious
in the use of the second rule above to reduce code-duplication.
Applying these rewrites results in a normal form:

e +
m’

i=1

(X (X (X (qi ))) ⇤ ei) +
M’

i=1

π
b1

x1=a1
· · ·

π
bni

xni
=ani

(X (X (X (qi ))) ⇤ ei), (7)

where
Õ
k

i=1ei is syntactic sugar for the expression e1 + . . . + ek

and m and M are constants because each term [[[q > 0]]] contributes
at most one discontinuity and there are �nitely many such terms in
an expression in L. Since the derivative is a linear operator, there is
at most one delta in each product.

Pass 2: Delta Reparameterization. To eliminate the deltas, we need
to �rst simplify them by jointly reparameterizing the enclosing
integrals (Fig. 4). Without loss of generality, let Æx be all of the vari-
ables of integration x1, . . . , xn and Æz are the other variables that

parameterize q . The delta reparameterization rewrite is:

π
b1

x1=a1
· · ·

π
bn

xn=an
X

�
X

�
X

�
q (Æz, Æx)

���
⇤ e

�!
π

b
0
1

y1=a01
· · ·

π
b
0
n

yn=a0n
X (X (X ( y1 ))) ⇤ Mq ⇤ f�1e ⇤ |Jq | (Æz, Æy)

where the new terms on the right (the substitution f�1 within e,
the Jacobian term |Jq |, the new bounds of integration ( Æa0, Æb0), and
the mask Mq ) are de�ned as follows.
As we discuss later (Sec. 4.5), q speci�es a map bq (Æz) : Æx ! Æy

whose �rst output component y1 is the value being passed to
the Dirac delta. As a di�eomorphism, q includes the inverse
q�1 (Æz) : Æy ! Æx. From this inverse map we can de�ne f�1 as map-
ping [xi 7! q�1

i
(Æz, Æy)] (for each i), where these latter q�1 compo-

nents are reducible to expressions in our base language L.
|Jq | (Æz, Æy) is the determinant of the Jacobian of q�1 (Æz) evaluated

at the base point Æy. This Jacobian determinant is reducible to ex-
pressions in our base language, just as q�1 is.
Finally, the bounds ( Æa0, Æb0) are derived to enclose the

image of the original domain of integration. The mask
Mq = [[[k1 > 0]]] · · · [[[kk > 0]]] is derived simultaneously to en-
sure that only points mapped from within the original domain
of integration contribute to the new reparameterized integral.
Automatic means of deriving these bounds are discussed later
(Sec. 4.5).
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Pass 3: Delta Annihilation. We now focus on simplifying a single
expression in Eq. 7: π

b1

y1=a1
. . .

π
bn

yn=an
X (X (X ( y1 ))) ⇤ e

Our aim is to match the variable of integration with the variable in
the delta or to move the delta outside of the integral. The following
rewrite rules realize this aim:π

b

y=a
X (X (X ( y))) ⇤ e �! [[[ a < y < b]]] ⇤ [y 7! 0]e

π
b

y=a
X (X (X ( x))) ⇤ e �! X (X (X ( x))) ⇤

π
b

y=a
e

The �rst rule annihilates the delta with the integral and adds the
delta contribution if the discontinuity is inside the integration do-
main. The second commutes a delta and an integral if the delta
expession is independent of the variable of integration. Each delta
either annihilates with an integral or is removed in the following
pass.

Pass 4: Measure zero destruction. All remaining deltas follow the
structure of the second term in Eq. 7:

m’
i=1

X
�

X
�

X
�
qi (Æx)

���
⇤ e

We set all of the remaining deltas to zero because they do not de-
pend on an integration variable, and thus are only non-zero over a
measure zero support.

X
�

X
�

X
�
q (Æx)

���
�! 0

4.5 Reparameterization
We relied on certain properties of the functions q (Æx) that occur
inside of step functions and Dirac deltas. These functions control
the shape of discontinuities via di�eomorphisms (i.e., change-of-
coordinates) on the domain of integration.

We rely on the following conventions while de�ning a di�eomor-
phism q (Æz, Æx). We assume that q depends on variables of integration
Æx, as well as other Æz; we write [Æa, Æb] to de�ne a multi-dimensional
interval (axis-aligned box) with the given expressions as lower and
upper bounds; and we write [[[ Æ· · · > 0]]] to indicate a product of mul-
tiple component step functions.

The following �ve components are required for such a di�eomor-
phism to be well de�ned.

(1) Mapping: a smooth function bq (Æz) : Æx ! Æy speci�ed as a collec-
tion of expressions ei in L not using integration or indicator
functions. In particular, q (Æz, Æx) = bq1 (Æz, Æx) controls where a
step function steps or a Dirac delta has a spike.

(2) Inverse: a smooth function q�1 (Æz) : Æy ! Æx that is the inverse
of q , speci�ed as expressions in L, similarly to bq .

(3) Jacobian: a smooth function |Jq | (Æz, Æy) representing the deter-
minant of the Jacobian of q�1, speci�ed as expressions in L,
similarly to bq .

(4) Bounds transfer: a function Bq (Æz) : (Æa, Æb) ! ( Æa0, Æb0) that spec-
i�es safe bounds for the reparameterized integral, i.e. 8Æx 2
[Æa, Æb] : bq (Æz, Æx) 2 [ Æa0, Æb0]. Bq is speci�ed as expressions in L,
similarly to bq .

(5) Bounds mask: a function Mq (Æa, Æb, Æz) : (Æy) ! Bool, that spec-
i�es whether the pre-image of a point Æy lies in the original
domain of integration, i.e. 8Æy 2 Bq (Æa, Æb), Mq (Æa, Æb, Æz, Æy) ()
q�1 (Æz, Æy) ✓ [Æa, Æb]. Mq is speci�ed as an expression in L, of
the form Mq = [[[k1 > 0]]] · · · [[[kk > 0]]].

While programmers may exploit the ability to specify all �ve of
these components of a di�eomorphism, given (1) and (2) the sys-
tem can automatically construct (3) the Jacobian by applying au-
tomatic di�erentiation, (4) the bounds-transfer by applying in-
terval arithmetic to bq , and (5) the bounds-mask by Mq (Æa, Æb) =⇥⇥⇥
q�1 � Æa > 0

⇤⇤⇤ hhh Æb � q�1 > 0

iii
.

The automatic derivation of Mq is well-de�ned. First, q�1 is a dif-
feomorphism since bq is a di�eomorphism. Second, because bounds
expressions Æa and Æb do not depend on the variables of integration
(Æy), o�setting by them is equivalent to o�setting by a constant value
(with respect to variation of Æy). Thus, the expressionk = q�1 � Æa is
a di�eomorphism with bk (Æy) = q�1 (Æy) � Æa andk�1 (Æx) = bq (Æx + Æa).
In general, the problem of computing the inverse of functions

is uncomputable, and the extension of a function q : R= ! R tobq : R= ! R= is underspeci�ed. However, in some cases, we can
automate even this part of the work. For instance, the case of a�ne
expressions can be treated symbolically and robustly. Appendix A
speci�es the a�ne di�eomophism.

4.6 Degeneracies
It is well known [Schwartz 1954] that the products of Dirac deltas,
indicator functions, and similar such distributions are not always
well de�ned or well-behaved. It is possible to create such ill-de�ned
expressions in our language. Here we characterize this set of ill-
de�ned expressions.

One such problematic expression is the derivative of the integral
of the product square of a parameterized indicator function:

D[[
π

1

x=0
[[[ x > t]]] ⇤ [[[ x > t]]]]] [t 7! dt]

On the one hand, if we think of [[[ x > t]]]⇤[[[ x > t]]] as equivalent to
[[[ x > t ^ x > t]]] = [[[ x > t]]], then the result of the derivative (after
delta-simpli�cation) should be 1, as in the �rst example of this paper.

However, the derivative (pass 1) givesπ
1

x=0
X (x � t) ⇤ [[[ x > t]]] ⇤ dt +

π
1

x=0
X (x � t) ⇤ [[[ x > t]]] ⇤ dt

which following delta annihilation (and some added simpli�cation)
becomes:

2 ⇤ ([[[ t > t]]] ⇤ dt ⇤ [[[ 0 < t < 1]]])
which is 0 assuming t > t is false, or 2 if t > t is taken to be true.

In general, it is not possible for a compiler to determine whether
or not such degeneracies exist, since function equivalence is un-
decidable. This situation is not that di�erent than the presence of

ACM Trans. Graph., Vol. 40, No. 4, Article 107. Publication date: August 2021.



107:10 • Sai Praveen Bangaru, Jesse Michel, Kevin Mu, Gilbert Bernstein, Tzu-Mao Li, and Jonathan Ragan-Kelley

singularities when using a conventional automatic di�erentiation
system – the automatic derivative of numerically stable code is not
necessarily numerically stable. However, we can make certain guar-
antees about the correctness of our automatic di�erentiation when
we can assume that discontinuities occur in general position with
respect to each other.
A set of smooth (= � 1)-manifolds in R= lie in general position

when the intersection of any: of thosemanifolds is an=�: manifold.
Let {q8 } be a set of di�eomorphisms on R= . We say that these {q8 }
are in general position at point G 2 R= if the following is true:
let {q 9 } ✓ {q8 } be the set of maps s.t. bq 9 1 (G) = 0; then the vectors
{rG bq 9 1} are linearly independent. We say that a set of maps {q8 }
are in general position if they are in general position at every point
G 2 R= . Finally, we say that a program e inL is in general position
if the set of di�eomorphisms occuring in any integrand of e are
in general position for almost-all values (in the sense of Lebesgue
measure) of the free variables Æz of e.

4.7 Guarantee
T������ 1. The derivative of the evaluation and the evaluation of

the derivative agree

(⇡W⇢ [[4]])f = ⇢ [[⇡ [[4]]W]]f
almost everywhere assuming that � [[4]]W is in general position.

A proof sketch is included in Appendix B.

5 IMPLEMENTATION
In this section, we brie�y describe the implementation and relevant
additions to the core semantics presented in Sec. 4.

Language features. For clarity of exposition, our semantics are
limited to a minimal set of key primitives. On the other hand, our
implementation supports a wider range of common features.

We support let bindings to allow for function abstraction and to
avoid unnecessary code replication. Our implementation also allows
for the creation and projection of tuples, which can be used for static,
�xed-size arrays. Since we do not currently implement integer types,
these arrays cannot be dynamically indexed. Returned results are
outputted as Python lists allowing for manipulating outputs.
Additionally, we implement reverse-mode di�erentiation using

a standard source-to-source approach. All compiler passes such as
those that manipulate Dirac deltas are shared with the forward
derivatives as described in detail in the semantics (Sec. 4.4).

Although the implementation lacks looping facilities, it is easy to
meta-program T�� in Python to, for example, compute the integral
for all of the pixels in an image.

Execution targets. We embed T�� in Python. The Python code
can then be lowered to an intermediate representation (IR), where
integrals (Teg) are discretized to for loops with quadrature. The IR is
further converted to a C header �le that can be inserted into larger
projects, or imported as a Python module. T�� expressions can be
evaluated in either NumPy or compiled to CUDA device code.

Numerical validation. We implement a test suite of 95 integral
expressions to test both execution targets against �nite di�erences.
See the supplementary code for the test cases.

(a) constant color (b) linear color (c) quadratic color

Fig. 5. C���� ������������� ������. We explore three di�erent color inter-
polation methods for triangulating images: (a) assigning a constant color to
a triangle. (b) Linearly interpolating the color from vertices. (c)�adratically
interpolating the color from vertices and edges. In all three se�ings, each
triangle is defined with its own colors, and di�erent triangles do not share
color – this creates sharp edges.
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Fig. 6. I���� �������������. Given a target image (first column), we opti-
mize the position and color of triangles to fit a stylized version of the image
(second column) with di�erent color interpolation schemes (Fig. 5). We ini-
tialize the triangles as a grid mesh and set all color to black. We compare to
an optimization that ignores the Dirac delta terms of the derivatives (third
column) – this is equivalent to using a traditional automatic di�erentiation
system to produce the derivatives. In the constant color case, ignoring the
delta term makes the position derivative always zero, so no triangles are
moved. Even in the smooth case, ignoring the delta terms lead to artifacts,
such as oversmoothing in the linear case and deviation from sharp corners
in the quadratic case.

6 APPLICATIONS
We apply T�� to applications spanning several domains in computer
graphics and showcase the bene�ts of automatically accounting for
parametric discontinuities during optimization.
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Fig. 7. We compare the loss convergence in the image triangulation task in
Fig. 6 between our approach (orange) and an approach that ignore the Dirac
delta terms in the derivatives (blue). (a) shows the linear color interpolation
case in the second row of Fig. 6, while (b) shows the quadratic color inter-
polation case in the third row of Fig. 6. Since ignoring the delta derivative
leads to a biased estimator, it converges to a worse solution.

6.1 Image triangulation
Given an image, we want to generate a stylized version composed
of a triangulated pattern [Lawonn and Günther 2019; Yun 2013]. We
can formulate the problem similarly to the 2D di�erentiable render-
ing example in Sec. 2.2. Eq. 3 from Sec. 2.2 lays out the rendering
model for the constant color image triangulation problem. Here,
we further extend the example to have more elaborated shading
models. Fig. 5 demonstrates the three di�erent shading methods
with increasing parameter complexity:

(1) Constant. A triangle is assigned a single color independent of
the position (G,~) (Eq. 3).

(2) Linear. We de�ne three colors Ci, one for each vertex on the
triangle. We then use barycentric interpolation to compute
the value at a given continuous (G,~) point. In T��, this can
be expressed as

lin_color = (w1C1 + w2C2 + w3C3) .

where the interpolation weights w are

w1 = ((x � v2 .x) ⇤ (y � v3 .y) � (x � v3 .x) ⇤ (y � v2 .y)) / norm
norm = (v1 .x � v2 .x) ⇤ (v1 .y � v2 .y) � (v1 .x � v3 .x) ⇤ (v1 .y � v2 .y).

w2 and w3 are de�ned similarly.
(3) Quadratic. We can further use six colors per triangle, one for

each vertex (⇠1,⇠2,⇠3) and edge (⇠1,2,⇠2,3,⇠3,1):

quad_color =F 0
1 ⇤⇠1 +F 0

2⇠2 +F 0
3⇠3 +F 0

1,2⇠1,2 +F 0
2,3⇠2,3 +F 0

3,1⇠3,1,

where the interpolation weights F 0 are de�ned using the
linear interpolation weightsF :

F 0
1 = F1 ⇤ (2 ⇤F1 � 1),F 0

2 = F2 ⇤ (2 ⇤F2 � 1),F 0
3 = F3 ⇤ (2 ⇤F3 � 1)

F 0
1,2 = 4 ⇤F1 ⇤F2,F

0
2,3 = 4 ⇤F2 ⇤F3,F

0
3,1 = 4 ⇤F3 ⇤F1 .

The colors ⇠ are de�ned per-triangle and are not shared. This is
crucial for representing sharp edges. Unlike the constant color case,
the weights in linear and quadratic interpolation depend on the
positions of the triangle’s vertices. This leads to non-zero gradients
even if we ignore the contribution from the Dirac deltas. However,
ignoring the deltas generally produces worse results.

(a)
Perlin noise

(b)
bilinear

interpolation

(c)
thresholded

(d)
scaled and
translated

(e)
hyperbolic
coordinates

Fig. 8. D�������������� ����������� P����� ����� ��������. Instead of
reparameterizing the higher-order polynomials formed by the Perlin noise,
we solve a di�erent problem by evaluating the Perlin noise at a discrete
grid (a) and reconstruct it using bilinear interpolation (b). We then apply
thresholding on the bilinear interpolation (c). The bilinear interpolation
still leads to deltas with non-a�ine arguments. To eliminate the deltas, we
apply a di�eomorphism between Cartesian coordinates and hyperbolic
coordinates (d). This transforms the deltas into simpler a�ine conditions (e).

initialization guide image ours ignore delta
(a) colorized Perlin shader

initialization guide image ours ignore delta
(b) two-tone Perlin shader

Fig. 9. G����� P����� ��������. We optimize for the parameters of two
shaders based on Perlin noise. The shader in (a) uses the Perlin noise value
to decide between using a flat gray color and a low-resolution color map.
We keep the decision threshold value fixed and optimize for the color map
as well as the noise vectors of the Perlin grid. Ignoring the delta contribution
leads to an unchanged noise pa�ern, while our approach produces a noise
pa�ern that adhere to the logo structure. The shader in (b) uses two colors
instead of a color map. We optimize for the grid vectors, the two colors,
and the decision threshold value. Without the delta contribution, only the
threshold value and colors have non-zero derivatives, which is insu�icient
to create a structural pa�ern.

Results. Fig. 6 shows some optimization results with a !2 loss
using Adam [Kingma and Ba 2015], using derivatives automati-
cally generated by T��. We compare against the gradients obtained
when ignoring discontinuities, i.e., the incorrect discretize-then-
di�erentiate approach from Sec. 2.1. We run 150 iterations for both
approaches over all images. Fig. 7 shows the convergence plots for
both approaches. We compiled to CUDA kernels and run on an
RTX 2080 Ti. For the constant fragment case, each full iteration
took 0.11s to complete. The more complex linear and quadratic frag-
ment programs took 1.01s and 2.05s per iteration respectively. All
reported timings are for a 1200⇥800 image with approximately 2000
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triangles. The constant and quadratic fragment programs had peak
memory usage statistics of 177 and 180.8 megabytes respectively.

6.2 Guided Perlin textures
We �t the parameters of a discontinuous procedural shader to a tar-
get image. A common pattern in procedural shaders is to threshold
Perlin noise [1985] – the noise function is compared to a threshold
to decide which color to use for producing textures with segmented
regions. The thresholding produces complex discontinuities that
require special treatment.
The noise function produced from Perlin noise is at least a 4th-

degree polynomial in two variables. Eliminating the resulting delta
expression thus requires �nding a di�eomorphism from this space
to space where the delta expression is a�ne. Solving the polynomial
system in a numerically robust way is challenging. Fortunately,
there is an easier formulation that avoids this problem (Fig. 8).
We evaluate the Perlin noise function at discrete positions on a

grid. We compute the value at continuous points through bilinear
interpolation of the four closest grid points:

noise =
�
N0,0 ⇤ (1 � x) + N1,0 ⇤ (x)

�
⇤ (1 � y)+�

N0,1 ⇤ (1 � x) + N1,1 ⇤ (x)
�
⇤ (y),

where Ni,j are values computed by the noise function. Importantly,
the continuous noise function is piecewise bilinear, which is neither
linear nor a�ne.

To use thresholded noise to produce a two-color shader, we arrive
at the following expression that selects color C+ if the noise is above
the threshold ) , and C� otherwise:

shader = C� + [[[ noise > T]]] ⇤ (C+ � C�).

The condition [[[ noise > T]]] is in the general form : (G~)G~ +
: (G)G + : (~)~ + : (1) that traces an o�-axis rectangular hyperbola in
G and ~. This is not the common a�ne pattern, so we reparametrize
the delta expression through two di�eomorphisms:
(i) scale and translate to move the rectangular hyperbola to the
center, (G,~) 7! (G 0,~0) (Fig. 8(d)):

x
0 !

p
k(xy)x + k

(y)
p
k(xy)

, y
0 !

p
k(xy)y + k

(x)
p
k(xy)

x !
 
x
0 � k

(y)
p
k(xy)

!
/
p
k(xy) , y !

 
y
0 � k

(x)
p
k(xy)

!
/
p
k(xy) ,

(ii) convert from Cartesian to hyperbolic coordinates (G 0,~0) 7!
(D, E) (Fig. 8(e)):

u ! ±
p
x0y0, v !

r
x0

y0

x
0 ! uv, y

0 ! u

v
.

Note that there are two possible values for u. This is because the
delta expression in this new space takes the form X

�
X

�
X

�
u
2 � c

���
, which

is equivalent to 1

2
c
�1

⇣
X

�
X

�
X

�
u � p

c
���
+ X

�
X

�
X

�
u + p

c
��� ⌘
. Therefore, there

are two hyperbolic spaces, which correspond to each of the two
delta expressions in the new space, as shown by Fig. 8(c).

Fig. 10. M�������. We use our language to search for hole-in-one trajectories
in a minigolf game. Given an initial guess of the trajectory (the orange path),
we optimize for path parameters that minimize the action integral over a
Lagrangian with friction and contact forces. The walls and the windmill
blades are potential contact points where the velocity of the ball is discon-
tinuous. We solve the path using a second-order trust-region based Newton
method. The two paths are found using slightly varying setups: one with
k = 0.4 hi�ing no walls and one with k = 0.2 hi�ing the bo�om-le� wall.

(a) ours (b) without delta

Fig. 11. D����� ��������. We solve a similar problem to Fig. 10 with two
golf balls on a flat surface that can collide with each other. We compare to
a solution that ignores the discontinuity derivatives. Our solution obeys the
law of reflection. Ignoring the delta contribution from the discontinuities
lead to non-physical behaviors that violate Newton’s first law.

Results. Fig. 9 shows the optimization results with an !2 loss using
Adam [Kingma and Ba 2015], using the shader discussed here with
a modi�ed version of a spatially varying color map C+(x, y) instead
of the uniform color C+. We compare against the gradients obtained
when ignoring the derivative contribution of discontinuities. The
noise structure cannot be optimized when the deltas contributions
are ignored. We run the optimization for 300 iterations for both
approaches. On an RTX 2080 Ti, each iteration took 0.033s and used
135 megabytes of memory for 400 ⇥ 400 noise and guide images,
and a 40 ⇥ 40 Perlin vector grid.

6.3 Trajectory optimization with contact
Consider a minigolf task (Fig. 10 and 11), where we want to hit a
hole-in-one from a starting position, while hitting a pre-speci�ed
sequence of walls along the way. We want to �nd a path q(t) for
the ball satisfying its equations of motion and additional boundary
conditions, including: q(t0) is at its start location and q(t1) is at
the hole, for start and end times t0 and t1. However, this problem
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is complicated because of discontinuities in the velocity trajectories
at points of contact, and contact times that are not known a priori.
Using the methodology introduced in Sec. 2.3, we can optimize

the trajectory in T��, without resorting to complicated machinery
such as function smoothing or non-linear programming. We use a
Lagrangian energy with a frictional term [Bateman 1931]:

L =
✓
1

2
mq

2

t
� V(q)

◆
exp( k

m
t),

where m is the mass of the ball, qt is the time derivative of the
position q, and k is the frictional coe�cient. The position, q(t), is
parametrized as a linear spline. The potential energy, V, contains the
gravitational force m ⇤ g ⇤ q.y. Following Sec. 2.3, we can incorporate
elastic contact via a high potential within the barriers m ⇤ C ⇤ Hc (q),
where Hc is a function that is positive only inside the barrier, such
that the contact force is only applied when the object interpenetrates
a wall (⇠ is set to a large number). We can also have walls that move
with time – the windmill in Fig. 10 is one such example, the blade of
the windmill is blocking the golf ball only at a certain timeframes.
Our solution paths thus correspond to �nding stationary points of
the action S =

Ø
L. We initialize the optimizer with a non-physical

path that contacts the input wall sequence, so that the system �nds
a physical path with the desired contact behavior.

Due to the size of the scenes and to avoid numerical instability, we
parameterize q(t) via a set of generalized coordinates that implicitly
constrain the path to contact our given input walls. Note that this
choice of coordinates only simpli�es the optimization; our problem
is still the same – we want to solve for where and when the contact
points are, wherein velocities are discontinuous.

We set up two scenes for experimentation: in one scene we have
a hill and a windmill, and in the other scene we make two golf
balls collide with each other but ask both of them to reach the goal.
For the windmill scene we set the friction coe�cient to k = 0.2
and 0.4 for two di�erent runs, and for the double minigolf scene
we set k = 0.2. Fig. 10 and 11 show the results. We use a second-
order trust-region based Newton method implemented in scipy for
optimization. We perform a coarse-to-�ne optimization strategy by
startingwith a low-resolution trajectory, then gradually re�ning it to
higher resolutions. The �nal resolution is around 10 control vertices
between each collision. The method converges quickly with the
tolerance of 10�8 to 10�12. In our setting, the collision events need
to be known a priori, but the collision position can be anywhere.
We also compare to an optimization that ignore the derivatives
coming from the discontinuities in Fig. 11. It clearly converges to a
non-physical result, showing the importance of incorporating the
Dirac delta terms. The optimization uses a single thread, takes (on
average) 1.17s per iteration and uses 779.7 megabytes of memory
on an Intel Core i9-9900K.

6.4 Optimizing a discontinuous bungee
Now we discuss optimization of a physical design in the presence
of discontinuities. Suppose we want to design a spring system for
bungee jump (Fig. 12). The motion of a spring is traditionally mod-
eled using Hooke’s law< •G =<6�:G , where< is mass, 6 is gravity,
and : is the spring constant, which models the sti�ness of the spring.
The term :G assumes that the material does not deform or lock and

m

m
m

Fig. 12. O��������� � ������������� ������.
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(a) Stress-strain curves
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4.22

(b) Loss convergence

Fig. 13. B����� �������: We show the the stress-strain curves and loss for
optimizations using finite di�erences, ignoring discontinuities, and using
T��. The discontinuous stress-strain curve leads to Dirac delta during dif-
ferentiation. This makes it di�icult to tune finite di�erence step sizes and
ignoring the deltas lead to suboptimal results. Our final loss is 18 times
lower than ignoring deltas.

is not part of a composite. For example, metal may bend, fracture,
or exhibit structural transitions under extreme heat or cold [Hi-
bbeler 2000; Lin et al. 2017; Tabin et al. 2016]. Composite materials
such as rebar concrete (steel-reinforced concrete) exhibit non-linear
stress-strain curves corresponding to the transitions between ma-
terials [Hibbeler 2000]. Woven materials such as yarn may lock
producing discontinuities in strain. In these cases, the :G term is
replaced by a stress function B (G) that is discontinuous, making
the system analytically intractable. A natural way to estimate the
solution is by using numerical methods.
We study an idealized series of bungee cords that deform. After

deformation, a string prevents further extension of the spring. We
jointly minimize the time and acceleration of a person connected
to this bungee-string system. We optimize the spring constants
:1,:2 and the lengths of the strings ;1, ;2 (Fig. 12). We add the hard
constraint that the person does not hit the ground to prevent death.

Derivation. With two bungees-string links, the stress function is:

B (G) =

8>>>>><
>>>>>:

:1G1 + :2G2 if G1  ;1, G2  ;2
U:1;1 + :2 (G � ;1) if G1 > ;1, G2 < ;2
U:2;2 + :1 (G � ;2) if G1 < ;1, G2 > ;2
6 if G1 � ;1, G2 � ;2
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Table 1. Parameter and loss values for the initialization (Init), finite di�er-
ences (Finite Di�), not accounting for the Dirac deltas (No Deltas), and
accounting for the Dirac deltas (With Deltas).

Init Finite Di� No Deltas With Deltas
:1 1.00 1.15 2.72 2.58
:2 10.0 10.01 7.53 8.92
;1 2.00 2.05 3.91 3.88
;2 10.00 10.01 9.99 10.02

Loss 417.49 402.72 101.53 5.50

where U is the plastic deformation factor of the bungees, and G1
and G2 are the individual displacements of two springs that sum up
to the total displacement G : G = G1 + G2. Also :1G1 = :2G2, since
the springs are massless and the force at the bottom of the �rst
spring must balance the force at the top of the second spring. The
corresponding second-order autonomous di�erential equation:

< •G =<6 � B (G)
cannot be solved by analytical means due to the discontinuities. If
we let E = dG

dC then since •G = dE
dC = E dE

dG , we have:

<EdE = (<6 � B (G))dG
Dividing by<, integrating both sides of the equation assuming the
system is initially at rest, and solving for E gives:

v(x) =
✓
2 ⇤

π
x

z=l
g � s(z)

m

◆
�1/2,

where l is lowest acceptable height in the trajectory (right above
the ground). Assuming the system is initially at position 0, we solve
for time by substituting E = dG

dC and integrating after isolating dC
to one side of the equation. Thus, we �nd the time it takes for the
person to fall is:

t =
π

u

x=l

✓
2 ⇤

π
x

z=0
g � s(z)

m

◆
�1/2,

where u is the initial height above the ground. We bound the total
displacement by constraining the velocity to be 0 at ; which is just
above the ground. The �nal constrained optimization problem is:

min
:1,:2,;1,;2

t + a(l)2 such that v(l) = 0,

where a(x) is the acceleration at position x. In words, the goal is
to minimize the time to fall plus the squared acceleration given
that the �nal velocity just above the ground is 0. We use the trust
region constrained algorithm with BFGS approximated Hessian
implemented in scipy to optimize :1,:2, ;1, and ;2.

Experiment. We now detail the experimental results for optimiz-
ing the parameters of the bungee-string system. The system starts 5
meters above the ground and we initialize it with arbitrarily chosen
parameters. These parameters do not satisfy the constraint that
v(l) = 0. We set the deformation factor U = 0.2 and let the bungee
bottom out just above the ground at 10�5.

We compare to derivatives computed by �nite di�erence or auto-
matic di�erentiation that ignore the Dirac deltas. Fig. 13a depicts
the di�erent stress curves for each of these parameter assignments.
Fig. 13b shows the loss during optimization. Before iteration 50,

the ignore delta solution is infeasible, whereas ours is feasible by
iteration 15. Table 1 includes the �nal parameter assignments and
their corresponding loss. The computation took 0.048s per iteration
and used 145 megabytes of memory on an i9-9900K.

7 LIMITATIONS AND FUTURE WORK
We have shown that our approach to handling parametric disconti-
nuities is applicable to problems in graphics and physical simulation.
We now detail the limitations on the expressivity and implementa-
tion of our approach and how they may be addressed in the future.

7.1 Non-Smooth Builtins and Changes of Coordinates
In practice, we use many functions that are not de�ned everywhere
(division, trigonometric functions) and violate our theoretical as-
sumptions of smoothness; such functions with singularities and
asymptotes may also be numerically unstable near such non-smooth
regions. This is often acceptable for applications, but often leads to
di�cult kinds of numerical debugging. Such challenges are familiar
for graphics programmers, but the reparameterization machinery
we present here can make such problems even harder to debug. It
would be helpful to �gure out better software engineering tools
for analyzing automatically di�erentiated code, especially in the
presence of additional code transformations.

7.2 First-Class Derivatives: Inside of Integrals
Our guarantee of correctness does not consider integrals of deriva-
tives. In particular, applying our di�erentiation to some expression
(without the context of integration) will eliminate Dirac deltas aris-
ing from discontinuities even if we later place the resulting di�er-
entiated expression inside of an integral. However, keeping Dirac
deltas around instead would allow users to form expressions that
are non-linear in those delta functions (e.g., products of deltas).
Still, there are problems that our system does not support, yet

a particular treatment of the Dirac deltas in question leads to a
desirable result. For example, the action integral

Ø
!(C, G, GC ) where

GC is the time derivative of position, contains the kinetic energy
1
2<G2C . This is not a problem for any physical trajectory, since all
such trajectories are C0 continuous (otherwise objects would in-
stantaneously teleport). However, in the case of our examples, GC is
not C0 continuous, and so G2C is not properly in general position.

Nonetheless, our method appears to work suitably for the physics
problems we investigated. Further investigation into the underlying
mathematics of distributions, and the corresponding automatic dif-
ferentiation compilers, is warranted to help ensure reliably correct
behavior for products of distributions.

7.3 Tensors Manipulation
The proposed semantics and implementation lacks the facility for
tensor manipulations such as indexing, block computations, etc.
Instead, data is implicitly unrolled and processed as scalar values.
Implementation of these additional constructs is important for ap-
plying our language to problems in domains including deep learning.
Furthermore, there are important considerations with respect to the
interactions between tensor operations and other language interac-
tions, speci�cally, derivatives of integrals with discontinuities.
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7.4 Performance
For an expression 4 of size = with<-many deltas, our automatic
di�erentiation can end up duplicating most of 4 as many as< times.
Furthermore, we can only perform the code transformations (e.g.,
normalization and reparameterization) that constitute our di�er-
entiation as whole-program transformations. For instance, deep-
learning frameworks such as TensorFlow or PyTorch expose com-
posable layers using the chain rule as their modularity principle. It
is unclear if and how the derivatives of integrals we consider in this
paper can be made fully modular and composable in a similar way.
However, the methods considered in this paper can be used to write
di�erentiable layers so long as the integrals in question are wholly
contained within a single layer.

7.5 Approximations other than Integral Discretization
Many other approximate operations other than integral discretiza-
tion are not commutative with di�erentiation. For example, approx-
imating a function using a piecewise constant function makes the
derivative of the approximation ill-behaved. Extending our idea to
general function approximation is an interesting direction for future
work.

8 CONCLUSIONS
We explore a systematic way to solve graphics and physical simula-
tion problems that involve di�erentiation, integration, and paramet-
ric discontinuities. We formalize the semantics of a new program-
ming language and implement these semantics in T��. In the same
way that automatic di�erentiation frameworks, such as TensorFlow
and PyTorch, made implementation of machine learning algorithms
accessible, we believe our di�erentiable programming language
makes a signi�cant �rst step towards making the implementation
of di�erentiable graphics systems accessible.

ACKNOWLEDGMENTS
We thank Fredo Durand for the discussions of the idea in the early
stage and proofreading, Ante Qu for tips on handling friction, Paul
Zhang for his discussions on image triangulation and di�eomor-
phisms, Joshua Fishman and Tao Du for their advice on physical sim-
ulation methods, Samuel Tenka for his insightful discussions of dis-
tribution theory, and Luke Anderson for his detailed proof-reading.
This researchwas funded under DARPA agreement HR00112090017.

REFERENCES
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Je�rey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geo�rey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, PeteWarden,MartinWattenberg,Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems.

Luke Anderson, Tzu-Mao Li, Jaakko Lehtinen, and Frédo Durand. 2017. Aether: An
embedded domain speci�c sampling language for Monte Carlo rendering. ACM
Trans. Graph. (Proc. SIGGRAPH) 36, 4 (2017), 1–16.

James Arvo. 1994. The Irradiance Jacobian for Partially Occluded Polyhedral Sources.
In SIGGRAPH. 343–350.

Sai Praveen Bangaru, Tzu-Mao Li, and Frédo Durand. 2020. Unbiased warped-area
sampling for di�erentiable rendering. ACM Trans. Graph. (Proc. SIGGRAPH Asia)
39, 6 (2020), 1–18.

Alan H Barr, Bena Currin, Steven Gabriel, and John F Hughes. 1992. Smooth interpola-
tion of orientations with angular velocity constraints using quaternions. Comput.
Graph. (Proc. SIGGRAPH) 26, 2 (1992), 313–320.

Harry Bateman. 1931. On dissipative systems and related variational principles. Physical
Review 38, 4 (1931), 815.

John T Betts. 1998. Survey of numerical methods for trajectory optimization. Journal
of guidance, control, and dynamics 21, 2 (1998), 193–207.

John T. Betts. 2009. Practical Methods for Optimal Control and Estimation Using Nonlinear
Programming (2nd ed.). Cambridge University Press, USA.

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan,
Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman.
2019. Pyro: Deep Universal Probabilistic Programming. J. Mach. Learn. Res. 20, 1
(2019), 973–978.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dou-
gal Maclaurin, and Skye Wanderman-Milne. 2018. JAX: composable transformations
of Python+NumPy programs. http://github.com/google/jax

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. 2018.
Neural Ordinary Di�erential Equations. InAdvances in Neural Information Processing
Systems, Vol. 31. 6571–6583.

Michael F Cohen. 1992. Interactive spacetime control for animation. Comput. Graph.
(Proc. SIGGRAPH) (1992), 293–302.

J.F. Colombeau. 1984. New Generalized Functions and Multiplication of Distributions.
North-Holland.

Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J. Zico
Kolter. 2018. End-to-End Di�erentiable Physics for Learning and Control. In Ad-
vances in Neural Information Processing Systems, Vol. 31. 7178–7189.

Martin de La Gorce, David J Fleet, and Nikos Paragios. 2011. Model-based 3D hand
pose estimation from monocular video. IEEE Trans. Pattern Anal. Mach. Intell. 33, 9
(2011), 1793–1805.

Zachary Devito, Michael Mara, Michael Zollhöfer, Gilbert Bernstein, Jonathan Ragan-
Kelley, Christian Theobalt, Pat Hanrahan, Matthew Fisher, and Matthias Niessner.
2017. Opt: A Domain Speci�c Language for Non-Linear Least Squares Optimization
in Graphics and Imaging. ACM Trans. Graph. 36, 5 (2017), 171:1–171:27.

P.A.M. Dirac. 1981. The Principles of Quantum Mechanics. Clarendon Press.
Peter Dyer and SR McReynolds. 1968. On optimal control problems with discontinuities.

J. Math. Anal. Appl. 23, 3 (1968), 585–603.
Conal Elliott. 2018. The Simple Essence of Automatic Di�erentiation. International

Conference on Functional Programming (2018).
Timon Gehr, Samuel Ste�en, and Martin Vechev. 2020. _PSI: exact inference for higher-

order probabilistic programs. In Programming Language Design and Implementation.
883–897.

Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bächer, Bernhard Thomaszewski,
and Stelian Coros. 2020. ADD: Analytically Di�erentiable Dynamics for Multi-Body
Systems with Frictional Contact. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 39, 6
(2020).

Ioannis Gkioulekas, Shuang Zhao, Kavita Bala, Todd Zickler, and Anat Levin. 2013.
Inverse Volume Rendering with Material Dictionaries. ACM Trans. Graph. (Proc.
SIGGRAPH Asia) 32, 6 (2013), 162:1–162:13.

Andreas Griewank and Andrea Walther. 2008. Evaluating Derivatives. Society for
Industrial and Applied Mathematics.

Yu Guo, Miloš Hašan, Lingqi Yan, and Shuang Zhao. 2020. A Bayesian Inference
Framework for Procedural Material Parameter Estimation. Comput. Graph. Forum
(Proc. Paci�c Graphics) 39, 7 (2020), 255–266.

Christian Hafner, Christian Schumacher, Espen Knoop, Thomas Auzinger, Bernd Bickel,
and Moritz Bächer. 2019. X-CAD: Optimizing CAD Models with Extended Finite
Elements. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 38, 6 (2019).

William Rowan Hamilton. 1834. XV. On a general method in dynamics; by which the
study of the motions of all free systems of attracting or repelling points is reduced
to the search and di�erentiation of one central relation, or characteristic function.
Philosophical transactions of the Royal Society of London 124 (1834), 247–308.

Charles R Hargraves and Stephen W Paris. 1987. Direct trajectory optimization using
nonlinear programming and collocation. Journal of guidance, control, and dynamics
10, 4 (1987), 338–342.

R.C. Hibbeler. 2000. Mechanics of Materials. Prentice Hall.
Philipp Holl, Nils Thuerey, and Vladlen Koltun. 2020. Learning to Control PDEs with

Di�erentiable Physics. In International Conference on Learning Representations.
Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-

Kelley, and Frédo Durand. 2020. Di�Taichi: Di�erentiable Programming for Physical
Simulation. International Conference on Learning Representations (2020).

K. H. Hunt and F. R. E. Crossley. 1975. Coe�cient of Restitution Interpreted as Damping
in Vibroimpact. Journal of Applied Mechanics 42, 2 (1975), 440–445.

Jeevana Priya Inala, Sicun Gao, Soonho Kong, and Armando Solar-Lezama. 2018. REAS:
combining numerical optimization with SAT solving. arXiv (2018).

Kenneth E. Iverson. 1962. A Programming Language. John Wiley & Sons, Inc.
Wenzel Jakob. 2019. Enoki: structured vectorization and di�erentiation on modern

processor architectures. https://github.com/mitsuba-renderer/enoki.

ACM Trans. Graph., Vol. 40, No. 4, Article 107. Publication date: August 2021.

http://github.com/google/jax


107:16 • Sai Praveen Bangaru, Jesse Michel, Kevin Mu, Gilbert Bernstein, Tzu-Mao Li, and Jonathan Ragan-Kelley

James T. Kajiya. 1986. The Rendering Equation. Comput. Graph. (Proc. SIGGRAPH) 20,
4 (1986), 143–150.

Michael Kass. 1992. CONDOR: Constraint-Based Data�ow. Comput. Graph. (Proc.
SIGGRAPH) 26, 2 (1992), 321–330.

Michael Kass, Andrew Witkin, and Demetri Terzopoulos. 1988. Snakes: Active contour
models. Int. J. Comput. Vision 1, 4 (1988), 321–331.

Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. 2018. Neural 3D Mesh Renderer.
In Computer Vision and Pattern Recognition. IEEE, 3907–3916.

Diederick P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization.
In International Conference on Learning Representations.

Donald E Knuth. 1992. Two notes on notation. The American Mathematical Monthly 99,
5 (1992), 403–422.

Alp Kucukelbir, Rajesh Ranganath, AndrewGelman, and DavidM. Blei. 2015. Automatic
Variational Inference in Stan. In Advances in Neural Information Processing Systems.
568–576.

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo
Aila. 2020. Modular primitives for high-performance di�erentiable rendering. ACM
Trans. Graph. (Proc. SIGGRAPH Asia) 39, 6 (2020), 1–14.

Kai Lawonn and Tobias Günther. 2019. Stylized Image Triangulation. In Computer
Graphics Forum, Vol. 38. Wiley Online Library, 221–234.

Wonyeol Lee, Hangyeol Yu, Xavier Rival, and Hongseok Yang. 2020. On Correctness of
Automatic Di�erentiation for Non-Di�erentiable Functions. In Advances in Neural
Information Processing Systems.

Wonyeol Lee, Hangyeol Yu, and Hongseok Yang. 2018. Reparameterization gradient
for non-di�erentiable models. In Advances in Neural Information Processing Systems.
5553–5563.

Alexander K Lew, Marco F Cusumano-Towner, Benjamin Sherman, Michael Carbin,
and Vikash K Mansinghka. 2019. Trace types and denotational semantics for sound
programmable inference in probabilistic languages. Proc. ACM Program. Lang. 4,
POPL (2019), 1–32.

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele
Panozzo, Chenfanfu Jiang, and Danny M Kaufman. 2020a. Incremental potential
contact: Intersection-and inversion-free, large-deformation dynamics. ACM Trans.
Graph. (Proc. SIGGRAPH) (2020).

Tzu-Mao Li. 2019. Di�erentiable Visual Computing. Ph.D. Dissertation. Massachusetts
Institute of Technology. Advisor(s) Durand, Frédo.

Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018a. Di�erentiable
Monte Carlo Ray Tracing through Edge Sampling. ACM Trans. Graph. (Proc. SIG-
GRAPH Asia) 37, 6 (2018), 222:1–222:11.

Tzu-Mao Li, Michaël Gharbi, Andrew Adams, Frédo Durand, and Jonathan Ragan-
Kelley. 2018b. Di�erentiable programming for image processing and deep learning
in Halide. ACM Trans. Graph. (Proc. SIGGRAPH) 37, 4 (2018), 139:1–139:13.

Tzu-Mao Li, Michal Lukáč, Gharbi Michaël, and Jonathan Ragan-Kelley. 2020b. Di�er-
entiable Vector Graphics Rasterization for Editing and Learning. ACM Trans. Graph.
(Proc. SIGGRAPH Asia) 39, 6 (2020), 193:1–193:15.

Peng Lin, Yonggang Hao, Baoyou Zhang, Shuzhi Zhang, and Jun Shen. 2017. Strain rate
sensitivity of Ti-22Al-25Nb (at.alloy during high temperature deformation. Materials
Science and Engineering: A (2017).

Seppo Linnainmaa. 1970. The representation of the cumulative rounding error of an
algorithm as a Taylor expansion of the local rounding errors. Master’s thesis. Univ.
Helsinki.

Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. 2019. Soft Rasterizer: A Di�erentiable
Renderer for Image-based 3D Reasoning. International Conference on Computer
Vision (2019).

Matthew M. Loper and Michael J. Black. 2014. OpenDR: An Approximate Di�erentiable
Renderer. In European Conference on Computer Vision, Vol. 8695. ACM, 154–169.

Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob. 2019. Reparameterizing
discontinuous integrands for di�erentiable rendering. ACM Trans. Graph. (Proc.
SIGGRAPH Asia) 38, 6 (2019), 228.

DamianoMazza andMichele Pagani. 2021. Automatic di�erentiation in PCF. Proceedings
of the ACM on Programming Languages 5 (2021), 1–27.

Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid control
using the adjoint method. ACM Trans. Graph. (Proc. SIGGRAPH) 23, 3 (2004), 449–
456.

Brian Vincent Mirtich. 1996. Impulse-based dynamic simulation of rigid body systems.
University of California, Berkeley.

Don PMitchell and Arun N Netravali. 1988. Reconstruction �lters in computer-graphics.
Comput. Graph. (Proc. SIGGRAPH) 22, 4 (1988), 221–228.

Igor Mordatch, Emanuel Todorov, and Zoran Popović. 2012. Discovery of Complex
Behaviors through Contact-Invariant Optimization. ACM Trans. Graph. (Proc. SIG-
GRAPH) 31, 4 (2012).

Igor Mordatch, Jack M Wang, Emanuel Todorov, and Vladlen Koltun. 2013. Animating
human lower limbs using contact-invariant optimization. ACM Trans. Graph. 32, 6
(2013), 1–8.

Henry P Moreton and Carlo H Séquin. 1992. Functional optimization for fair surface
design. Comput. Graph. (Proc. SIGGRAPH) 26, 2 (1992), 167–176.

Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2:
A retargetable forward and inverse renderer. ACM Trans. Graph. (Proc. SIGGRAPH
Asia) 38, 6 (2019), 1–17.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems. 8024–8035.

Barak A. Pearlmutter and Je�rey Mark Siskind. 2008. Reverse-mode AD in a Functional
Framework: Lambda the Ultimate Backpropagator. Trans. Program. Lang. Syst. 30, 2
(2008), 7:1–7:36.

Ken Perlin. 1985. An image synthesizer. Comput. Graph. (Proc. SIGGRAPH) 19, 3 (1985),
287–296.

Jovan Popović, Steven M Seitz, Michael Erdmann, Zoran Popović, and Andrew Witkin.
2000. Interactive manipulation of rigid body simulations. In SIGGRAPH. 209–217.

Zoran Popović and Andrew Witkin. 1999. Physically based motion transformation. In
Comput. Graph. (Proc. SIGGRAPH). 11–20.

Michael Posa, Cecilia Cantu, and Russ Tedrake. 2014. A direct method for trajectory
optimization of rigid bodies through contact. The International Journal of Robotics
Research 33, 1 (2014), 69–81.

Ravi Ramamoorthi, Dhruv Mahajan, and Peter Belhumeur. 2007. A First-order Analysis
of Lighting, Shading, and Shadows. ACM Trans. Graph. 26, 1 (2007), 2.

Maxime Roger, Stéphane Blanco, Mouna El Ha�, and Richard Fournier. 2005. Monte
Carlo estimates of domain-deformation sensitivities. Physical review letters 95, 18
(2005), 180601.

L. Schwartz. 1950. Théorie des distributions. Number v. 2 in Actualités scienti�ques et
industrielles. Hermann.

L. Schwartz. 1954. Sur l’impossibilité de la multiplication des distributions. C. R. Acad.
Sci. Paris (1954).

Benjamin Sherman, Jesse Michel, and Michael Carbin. 2021. _( : Computable semantics
for di�erentiable programming with higher-order functions and datatypes. Proc.
ACM Program. Lang. 5, POPL, Article 3 (2021), 31 pages.

Liang Shi, Beichen Li, Miloš Hašan, Kalyan Sunkavalli, Tamy Boubekeur, Radomir
Mech, and Wojciech Matusik. 2020. MATch: Di�erentiable Material Graphs for
Procedural Material Capture. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 39, 6 (2020),
1–15.

Stan Development Team. 2015. Stan Modeling Language Users Guide and Reference
Manual, Version 2.9.0. http://mc-stan.org/

Robert F Stengel. 1994. Optimal control and estimation. Courier Corporation.
J. Tabin, B. Skoczen, and J. Bielski. 2016. Strain localization during discontinuous plastic

�ow at extremely low temperatures. International Journal of Solids and Structures
(2016).

Emanuel Todorov. 2011. A convex, smooth and invertible contact model for trajectory
optimization. In International Conference on Robotics and Automation. IEEE, 1071–
1076.

Christopher D. Twigg and Doug L. James. 2008. Backward Steps in Rigid Body Simula-
tion. ACM Trans. Graph. (Proc. SIGGRAPH), Article 25 (2008).

Kiwon Um, Robert Brand, Yun Fei, Philipp Holl, and Nils Thuerey. 2020. Solver-in-the-
Loop: Learning from Di�erentiable Physics to Interact with Iterative PDE-Solvers.
Advances in Neural Information Processing Systems (2020).

Eric Veach. 1998. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D.
Dissertation. Stanford University. Advisor(s) Guibas, Leonidas J.

WilliamWelch and AndrewWitkin. 1992. Variational surface modeling. Comput. Graph.
(Proc. SIGGRAPH) 26, 2 (1992), 157–166.

R. E. Wengert. 1964. A Simple Automatic Derivative Evaluation Program. Commun.
ACM 7, 8 (1964), 463–464.

Andrew Witkin and Michael Kass. 1988. Spacetime constraints. ACM Trans. Graph.
(Proc. SIGGRAPH) 22, 4 (1988), 159–168.

LifanWu, Guangyan Cai, Shuang Zhao, and Ravi Ramamoorthi. 2020. Analytic spherical
harmonic gradients for real-time rendering with many polygonal area lights. ACM
Trans. Graph. (Proc. SIGGRAPH) 39, 4 (2020), 134.

Dong Yu, Adam Eversole, Mike Seltzer, Kaisheng Yao, Oleksii Kuchaiev, Yu Zhang, Frank
Seide, Zhiheng Huang, Brian Guenter, Huaming Wang, Jasha Droppo, Geo�rey
Zweig, Chris Rossbach, Jie Gao, Andreas Stolcke, Jon Currey, Malcolm Slaney,
Guoguo Chen, Amit Agarwal, Chris Basoglu, Marko Padmilac, Alexey Kamenev,
Vladimir Ivanov, Scott Cypher, Hari Parthasarathi, Bhaskar Mitra, Baolin Peng,
and Xuedong Huang. 2014. An Introduction to Computational Networks and the
Computational Network Toolkit. Technical Report. Microsoft Research.

Do� Y.H. Yun. 2013. DMesh, Triangulation Image Generator. http://dmesh.thedo�.com/
Accessed: 2021-01-26.

Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas, and Shuang Zhao. 2020.
Path-space Di�erentiable Rendering. ACM Trans. Graph. (Proc. SIGGRAPH) 39, 6
(2020), 143:1–143:19.

Cheng Zhang, Lifan Wu, Changxi Zheng, Ioannis Gkioulekas, Ravi Ramamoorthi, and
Shuang Zhao. 2019. A di�erential theory of radiative transfer. ACM Trans. Graph.

ACM Trans. Graph., Vol. 40, No. 4, Article 107. Publication date: August 2021.

http://mc-stan.org/
http://dmesh.thedofl.com/


Systematically Di�erentiating Parametric Discontinuities • 107:17

(Proc. SIGGRAPH Asia) 38, 6 (2019), 227.
Yuan Zhou, Bradley J. Gram-Hansen, Tobias Kohn, Tom Rainforth, Hongseok Yang,

and Frank Wood. 2019. LF-PPL: A Low-Level First Order Probabilistic Programming
Language for Non-Di�erentiable Models. In International Conference on Arti�cial
Intelligence and Statistics (AISTATS), Vol. 89. PMLR, 148–157.

A AFFINE DIFFEOMORPHISMS
We syntactically pattern-match a�ne expressions and automatically
generate the appropriate mappings. Assuming the a�ne expres-
sion is of the pattern c0x0 + c1x1 + · · · cnxn (the translation term
does not a�ect the reparametrization), we can think of this as a
dot product between the expression vector Æc = [c0, c1, · · · cn] and
the variable vector Æx. In a similar manner, we can pose our target
expression as a dot product: bq1 (Æz, Æy) = y1 = [1, 0, · · · 0] · Æy.
Our approach to �nding such a transformation is to apply a

symbolic rotation matrix ' to Æx such that ' satis�es the mapping
[1, 0, · · · 0] 7! [c0, c1, · · · cn].
We arrive at the following quintuplet for our a�ne di�eomor-

phism:

(1) Mapping: bq (Æz, Æy) = ��Æc��RÆy, where

Rij =

8>>>><
>>>>:

2
0
9 , for 8 = 0
�208 , for 9 = 0

X8, 9 �
2
0
8 ·2

0
9

1+200
, for 0  =  1

9>>>>=
>>>>;

and c
0
i
denotes the normalized expressions c

0
i
= ci/

��Æc��
(2) Inverse: q�1 (Æz, Æy) =

��Æc���1 RTÆy. The inverse of a rotation trans-
formation is also the transpose.

(3) Jacobian: |Jq | (Æz, Æy) =
��Æc���1. Although the compiler can au-

tomatically derive an equivalent expression, we can use the
properties of our rotation transformation to simplify the re-
sulting program. The Jacobian adjustment term in this case
is the norm of the vector of coe�cients.

(4) Bounds transfer: a function Bq (Æz) : (Æa, Æb) ! ( Æa0, Æb0). This ex-
pression can be computed through applying interval arith-
metic. The expression for the general a�ne case resolves to
the following:

B
(j)
q

(Æz) = (RÆu(j) ,RÆv(j) ), where

u
(j)
i

=
⇢
08 for '8 9 > 0
18 for '8 9  0

�
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(j)
i

=
⇢
18 for '8 9 > 0
08 for '8 9  0

�

Essentially, we construct expressions for the extreme values
for each target-space variable by selecting between the upper
or lower bound for each source-space variable depending on
the sign of the corresponding coe�cient in R. This constructs
a set of bounds that are guaranteed to enclose the integration
domain.

(5) Bounds mask: a function Mq (Æz). The bounds mask is automati-
cally constructed by the compiler, using the process discussed
previously in Sec. 4.5.

B PROOF SKETCH OF LANGUAGE CORRECTNESS
P����. In order to reason about the correctness of our transfor-

mations, we must extend the denotational semantics of L to include
X (X (X ( · ))). This can be done through any suitable choice of a mathemati-
cal theory of distributions [Colombeau 1984; Dirac 1981; Schwartz
1950]. This argument will remain agnostic to this choice.

Given our general position assumption, (⇡W⇢ [[4]])f = ⇢ [[� [[4]]W]]f
will hold everywhere except for in some = � 2 sub-manifold of the
free variables of e. This property is true recursively for all sub-
expressions of e.
Proceeding on to the Delta Elimination passes, normalization

(Pass 1) will preserve equality. The �rst of our two normalization
rewrites is sound because the expression being distributed cannot
contain a Dirac delta (by linearity of the L0 grammar). The second
of the two rewrites is sound by linearity of integration. Again by
the linearity of L0, we must reach the desired normal form.
Reparameterization (Pass 2) is a direct application of change-of-

coordinates, and therefore preserves the meaning of the program.
As a di�eomorphism, the change of coordinates must preserve the
general position condition.
Finally, Delta Annihilation replaces our “volume” integral over

= dimensions with a “surface” integral over = � 1 dimensions. This
change of integration domain is sound by the sifting property of
the Dirac delta (i.e.

Ø
G X (G) 5 (G) = 5 (0)). Furthermore, thanks to our

general position assumption, the di�eomorphisms for the remaining
step/indicator-functions can only evaluate (i.e. bq1) to 0 on a = � 2 di-
mensional sub-manifold of our new domain of integration, which is
a measure zero sub-set of the integration domain. As a consequence,
this integral is well-de�ned regardless of the underlying theory of
distributions, and produces the expected result.

Finally, the remaining deltas are no longer contained within inte-
grals (since they have either been factored out during Delta Anni-
hilation, or were already outside thanks to normalization). The q
maps inside these deltas are zero on at most a measure zero subset
of the domain of the free variables. This is �ne, since we only claim
correctness almost everywhere, like most automatic di�erentiation
systems’ claim without integrals [Mazza and Pagani 2021].

⇤
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