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Abstract—Subtractive dither is a powerful method for remov-
ing the signal dependence of quantization noise for coarsely-
quantized signals. However, estimation from dithered measure-
ments often naively applies the sample mean or midrange, even
when the total noise is not well described with a Gaussian or
uniform distribution. We show that the generalized Gaussian dis-
tribution approximately describes subtractively-dithered, quan-
tized samples of a Gaussian signal. Furthermore, a generalized
Gaussian fit leads to simple estimators based on order statistics
that match the performance of more complicated maximum like-
lihood estimators requiring iterative solvers. The order statistics-
based estimators outperform both the sample mean and midrange
for nontrivial sums of Gaussian and uniform noise. Additional
analysis of the generalized Gaussian approximation yields rules
of thumb for determining when and how to apply dither to
quantized measurements. Specifically, we find subtractive dither
to be beneficial when the ratio between the Gaussian standard
deviation and quantization interval length is roughly less than
1/3. If that ratio is also greater than 0.822/K°-°%° for the number
of measurements K > 20, we present estimators more efficient
than the midrange.

Index Terms—Quantization, subtractive dither, generalized
Gaussian distribution, order statistics, L-estimator, alpha-
trimmed mean, midrange

I. INTRODUCTION

Estimation of the mean of a Gaussian distribution from inde-
pendent and identically distributed (i.i.d.) samples is a canon-
ical problem in statistics, yet it has important subtleties when
the samples are quantized. Without quantization, the sample
mean is an unbiased, efficient, and consistent estimator. With
uniformly quantized samples, the situation is immediately
more complicated: The sample mean is an unbiased estimate
only when the true mean falls on the quantizer’s reproduction
grid or asymptotically in the limit of fine quantization [1];
and in the opposite extreme of very coarse quantization, all
the samples are identical, so the estimates do not even improve
with increasing numbers of data samples.

The use of subtractive dither changes the situation sub-
stantially. The sample mean is then an unbiased and con-
sistent estimator—Ilike in the unquantized case—but it may
be arbitrarily far from minimizing the mean-squared error
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(MSE). For example, when the population variance vanishes,
the sample mean estimator has MSE inversely proportional
to the number of samples, whereas the MSE achieved by the
midrange estimator is inversely proportional to the square of
the number of samples [2].

In this paper, we develop estimators for cases where the
quantization is neither extremely fine nor extremely coarse.
The motivation for this work stemmed from a series of
experiments performed by the authors and colleagues with
single-photon lidar. In [3], temporally spreading a narrow
laser pulse, equivalent to adding non-subtractive Gaussian
dither, was found to reduce the effects of the detector’s coarse
temporal resolution on ranging accuracy. Later work on a
similar system showed that implementing subtractive dither
could likewise reduce the effects of coarse quantization [4],
[5]. Our aim was then to compare the two approaches by
determining performance limits, optimal estimators, and when
one method might be preferable over the other. The estimators
we develop in this work are based on a generalized Gaussian
(GG) approximation for the combination of sample variation
and quantization noise, which the authors first proposed in [5].
While the benefit of the GG approximation did not yield
improved results for the lidar data due to model mismatch,
our framework is valid for a more general set of problems
in which quantization of a Gaussian scalar signal occurs. We
propose a number of estimators for additive GG noise and
find a clear computational advantage with negligible loss in
accuracy for simple estimators based on order statistics.

A. Main Contributions

This paper makes the following contributions:

1) Estimation Efficiency: We demonstrate the inefficiency
of the mean and midrange estimators for subtractively-dithered
measurements of a Gaussian signal by deriving the maximum
likelihood estimator and Cramér-Rao bound.

2) Generalized Gaussian Approximation: We expand upon
the generalized Gaussian approximation introduced in [5] for
the sum of Gaussian and uniform random variables that arises
from subtractively dithered quantization of a Gaussian signal,
using the approximation to determine three distinct regimes of
estimator behavior.

3) Estimator Proposal: We consider a family of location
estimators based on the GG approximation, in particular linear
combinations of the measurement order statistics. We intro-
duce a version of the trimmed mean estimator with trimming
determined by the GG approximation that is simple, com-
putationally efficient, and performs as well as the maximum



likelihood (ML) estimator. Monte Carlo estimator comparisons
are shown versus the number of measurements K and versus
oz /A, the ratio of the Gaussian standard deviation to the
quantization bin size.

4) Rules of Thumb: We determine several key rules of
thumb for deciding when and how to use subtractive dither.
For instance, we find dither is not beneficial roughly for
oz /A > 1/3; below this value, however, applying subtractive
dither and a GG-based estimator lowers the MSE. Moreover,
if the quantization is coarser than oz /A = 0.822/K%939 and
K > 20, then the midrange is a good estimator.

B. Outline

This paper is organized as follows. Section II sets up the
problem of measuring a Gaussian signal with a subtractively-
dithered quantizer and explores the fact that the mean and
midrange are inefficient estimators. Section III motivates the
use of the generalized Gaussian distribution and estimators
based on order statistics. Section IV discusses several esti-
mator implementations for our noise model. Section V in-
troduces mean-squared error expressions as a guide to better
understanding the results of numerical simulation presented in
Section VI, which tests several estimators and compares the
use of quantized data with and without dithering. Finally, Sec-
tion VII presents our conclusions regarding which estimators
to use and when to apply dither.

II. FORMULATION, BACKGROUND, AND MOTIVATION

A. Quantized Measurement

We begin by presenting and expanding upon the signal
acquisition model introduced in [S]. Suppose we have an
unknown constant signal px corrupted by additive, zero-mean
Gaussian noise Z ~ N(0,0%). Then estimation of px from
K independent samples

Xz:ﬂX+Zza i:1,2,...,K,

is straightforward, as the sample mean g = (1/K) Zfil X
can easily be shown to be an efficient estimator of the mean of
a Gaussian distribution. However, all measurement instruments
perform some quantization. For instance, consider a uniform
midtread quantizer g(-) with bin size A applied to X; when
oz < A. Except when px is close to a quantizer threshold,
it will be the case that U; = ¢(X;) is identical for all 7, so
that the “quantized-sample mean” given as

1 K
fiq = Ui (1)
=1

is no more informative an estimate of px than any single
measurement. For oz not too small compared to A, estimation
error can be reduced by properly accounting for the quantiza-
tion and the underlying distribution, e.g., via the maximum

likelihood estimator for quantized samples of a Gaussian

signal [6], [7]:
o <Ui — kx + %) B
0z

L _A
q;(ul““>1, )
oz

where ®(-) is the cumulative distribution function (CDF) of
a standard normal random variable. Still, ﬁQML is no more
accurate than fiq when all of the samples have the same value.
Because of the coarse quantization mapping every value in
[FA—=A/2,jA + A/2] to jA for j € Z, the resolution of an
estimate [ix is limited by the bin size A and the quantization
error is signal-dependent.

Statisticians have long recognized that working with
rounded data is not the same as working with underlying
continuous-valued data. Let X3,;s; be the continuous random
variable with density constant on intervals ((j — £)A, (j +
1)A) with P(Xuet € (( — DA, (j +2)A)) = P(U = kA),
for all j € 7Z. Because of the piecewise-constant form,
Xhist 18 said to have a histogram density [8]. The widely
known Sheppard’s corrections introduced in [9], [10] relate
the moments of U and the moments of Xy;st [11]. From the
construction of X ;s¢, it is immediate that these corrections are
zero for odd moments. See [12] for a review of Sheppard’s
corrections and [13] for results for autoregressive and moving
average processes and more recent references.

The moments of Xy being close to the moments of
X depends on continuity arguments and A being small. In
contrast, our interest here is in situations where the quantiza-
tion is coarse relative to the desired precision in estimating
wx. Quantization may be coarse because of limitation of
instruments, such as the fundamental trade-offs in analog-to-
digital converters [14] or the time resolution in time-correlated
single photon counting [15], which may be coarse relative to
the resolution desired for time-of-flight ranging.

When quantizing Xyist, the quantization error Eyjgy =
q(Xnist) — Xnist is uniformly distributed on [—A/2; A/2]
and independent of Xj;s. In general, however, quantization
error being uniformly distributed and independent of the input
does not extend to the quantization of X; approximating
quantization error as such—without regard to whether the
input has a histogram density—is often called the “additive-
noise model,” “quantization-noise model,” or “white-noise
model.” A substantial literature is devoted to understanding
the validity of this approximation, e.g. [16]-[20].

One approach to improving the precision of estimates from
quantization-limited measurements is the use of dither, a small
signal introduced before the discretization to produce enough
variation in the input such that it spans multiple quantization
levels. By combining multiple dithered measurements, esti-
mates can achieve resolution below the least-significant bit
and the result may also have desirable statistical and per-
ceptual properties, such as whitened noise. Early applications
empirically demonstrating the benefits of dither include control
systems [21], [22], image display [23], [24], and audio [25],
with numerous contributions to the statistical theory developed

K

QML = arg max Z log
BX =1




in [16], [17], [26]-[30], among others. More recent work has
focused on varying the quantizer thresholds primarily for 1-bit
measurements in wireless sensing networks, including [31]-
[37].

B. Subtractively-Dithered Quantization

When not only the dither distribution but also the ex-
act value is known for each sample, it is possible to
achieve an additional reduction in estimation error. Papadopou-
los et al. showed that a sawtooth waveform was optimal
for known dither, whereas further improvement could be
achieved with adaptively-selected dither values [31]. However,
a deterministic-length dither sequence is ill-suited to appli-
cations such as single-photon lidar, for which the number
of measurements is random, and adaptive dither may be
infeasible to implement for such high-speed systems. Instead,
we consider subtractively-dithered quantization, which uses
a random dither signal that is measured for every sample.
The ML estimator for subtractive dither can be shown to be
equivalent to generic quantization schemes with known dither
values, e.g., [33], [37]. However, principled selection of the
subtractive dither signal distribution makes the quantization
error uniformly distributed and independent of the input, which
we show can lead to simple, non-iterative estimators.

Define the dither signal D;, ¢ = 1,..., K as a sequence
of i.i.d. random variables, independent of the noisy quantizer
input X;. The output of a subtractively-dithered quantizer is

Y = q(Xi + D;) — Dy, 3)
with the quantization error defined as
Wi =Yi— X, “

Define the characteristic function of the dither signal proba-
bility density function (PDF) as

Mp(ju) = E[e*P]. (5)

Then Schuchman’s condition [28] is the property of the dither
PDF that
Mp (j2ml/A) =0, £ € Z\ 0. (6)

As long as the quantizer has a sufficient number of levels so
that it does not overload, by [17], [29] the Schuchman condi-
tion is necessary and sufficient for X; to be independent of W
for all 4, j, with i.i.d. W; ~ U[—A/2, A/2]. Subtractive dither
often uses a uniform dither signal with D ~ U[-A/2,A/2]
because its characteristic function

sin(uA /2
Mp(ju) = M
meets Schuchman’s condition (6).

The rest of this paper considers only when Schuchman’s
condition is met, with an i.i.d. input signal of the form
X; = pux + Zi, Z ~N(0,0%), an i.i.d. dither signal D; ~
U[-A/2,A/2] independent of the input signal, and a non-
overloading uniform quantizer.'

I'Since Gaussian noise has infinite support, in principle the quantizer must
have an infinite number of levels.

Then the dithered measurements take the form
Yi=px +Z; + Wi, (7

and the problem of estimating px simply becomes one of mit-
igating independent additive noise. The sum of the Gaussian
and uniform terms can be combined into a single total noise
term to obtain

Yi = px + Vi, 8)

where V; = Z;, + W, are i.i.d. Then the means and variances
simply add so that gy = 0 and 0%, = 0% + A%/12.

For convenient shorthand, we refer to measurements from
a quantizer without dither as “quantized” and measurements
from a subtractively-dithered quantizer as “dithered.” The
usual approach to estimating px from K dithered measure-

ments Y;, i =1, 2, ..., K, is via the sample mean
1K
Hmean = ? ;Y; (9)

The MSE of the sample mean is

MSE(mean) = 0% /K, (10)

which is O(K ). Although using the sample mean is logical
when oz > A so that the contribution of the uniform noise
component is negligible, the sample mean is not in general an
efficient estimator. For example, in an alternative case of o7 =
0, a maximum likelihood (ML) estimator is the midrange?

. 1

fimid = 5 Yoy + YY) (11)
where Y(l) < Y(Q) <. < Y( K) are the order statistics of the
K measured samples. Whereas the MSE of the sample mean
for 0z = 0 is A?/(12K), the MSE of the midrange is

MSE(mid) = A?/[2(K + 1)(K + 2)], (12)

which is O(K ~2) and hence better than the sample mean by
an unbounded factor [39]. Nevertheless, the midrange is not
a good estimator in the general case of oz > 0, as it relies
on the finite support of the uniform distribution. If instead
oz is much larger than A, rendering the uniform component
negligible, then the MSE of the midrange would only improve
as O(1/log(K)) [40]. As others have noted for quantization
of a Gaussian signal without dither [6], [7], the key figure of
merit for determining estimator performance is then oz /A,
a measure of the relative sizes of the noise components. We
observe that normalizing the MSE by A? removes the separate
dependence on oz and A, resulting in

NMSE(mean) = [(07/A)? 4+ 1/12]/K, (13)

and

NMSE(mid) = 1/[2(K + 1)(K + 2)]. (14)

Except in trivial cases (o7 > A or 0z < A), V has neither
Gaussian nor uniform distribution, so the conventional mean

2Any statistic in Yy — A/2,Y(q) + A/2] is an ML estimator for
the mean of a uniform distribution with known variance [38, p. 282]. The
midrange is commonly used because it is unbiased and the minimum-
variance estimator among linear functions of order statistics [39]. However,
no uniformly minimum-variance unbiased estimator exists [38, p. 331].



and midrange estimators are expected to be suboptimal. Fur-
thermore, existing nonlinear processing schemes for dithered
measurements do not adapt to best suit the noise statistics [41].
A first approach to finding a better estimator for arbitrary
oz /A is to derive the ML estimator for the dithered noise
model. From the definitions of the random variables, the PDF

of W is
fur () = {1/A, we[-A/2,A/2]

0, otherwise,

and the PDF of Z is fz(2) = ¢(z/0z)/0z, where ¢(x) is
the standard normal PDF. Since the total noise is the sum of
independent noise terms, the PDF of the samples is given by
the convolution

fv(v) = fz(2) * fw(w)
/ fz(v—="1)d
1 vty v- 4%
=X (I)( JZ>—<I><JZ )] (15)

For i.i.d. samples from a dithered quantizer, the likelihood
function is then

K
L({yitnx) =[] fvlvi—
=1
—px + 3

(0ot

(16)
From the log-likelihood, the dithered-sample ML estimator of

px is
o Yi — px + _
0z

RN
<1><y1 o 2)] 17)
oz

The ML estimator is notably identical to (2), except the
dithered measurements are not discrete-valued as are the
samples used for Ligmr.

To determine the efficiency of the mean, midrange, and
DML estimators, we derive the Cramér-Rao bound (CRB),
which is a limit on the MSE that an unbiased estimator can
achieve [42, Chapter 4.2.2]. The normalized CRB is derived
in Appendix A for one dithered measurement to be

(02/A)?
2
u—1/2 u+1/2
[ o (58) - (55),
u+1/2 u—1/2
@ (78) e (%)
which can be evaluated via numerical integration. Note that the
uniform PDF does not meet the regularity condition required

for the CRB to apply, so (18) is not expected to be meaningful
for oz/A =0.

oz

vl

DML = arg max Z log

nx =1

, (18)
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Fig. 1: Applied to subtractively-dithered measurements, the midrange
is approximately optimal only for small oz /A (Regime I, red), and
the sample mean is approximately optimal only for large oz/A
(Regime III, blue). For confirmation, in Regime I the midrange
approaches NMSE = 1/[2(K + 1)(K + 2)] ~ 3.12 x 107 and
the mean approaches NMSE = (1/12)/K =~ 6.67 x 10™%, and in
Regime III the mean approaches NMSE = (07/A)?/K, which is
8.00 x 1073 at 0z /A = 1. We seek an estimator simpler than the
dithered-sample maximum likelihood that performs at least as well as
the mean and midrange for intermediate values of oz /A (Regime II,
green).

Fig. 1 illustrates the suboptimality of the mean and
midrange estimators compared to fipnp, for intermediate val-
ues of oz/A. In a Monte Carlo simulation with T = 20000
trials, K = 125 measurements were generated according
to (3), where both ux and D were selected uniformly at
random over [—A/2; A/2]. Computing the normalized MSE
of the fmean, fmid,» and fippr, estimates as

T ~ 2
- 1 -
NMSE(jix) = S (“XA“X>

t=1

(19)

reveals how the performance of each estimator changes as a
function of oz /A.

Fig. 1 highlights three distinct regimes of estimator be-
havior. In Regime I (red), the Gaussian noise component
is negligible, so the ML estimator and the midrange are
nearly identical and outperform the mean. In Regime III
(blue), the uniform noise component is negligible, so the ML
estimator and the mean are nearly identical and outperform
the midrange. In Regime II (green), neither the uniform nor
the Gaussian component dominates, and the DML estimator
performs significantly better than both the mean and midrange.
Still, fipmr, does not achieve the CRB for small oz/A,
indicating that an efficient estimator of px does not exist;
however, fipnmy, is asymptotically efficient in K for oz /A >
0 [43, Theorem 7.1].

From the results in Fig. 1, it may seem obvious that
pML is a better choice than [ipean OF fimig for any value
of oz/A. However, lipymi, requires iterative solution, thus
making it far more computationally complex than the mean
and midrange. In this work, one of our primary aims is
to find a computationally simple estimator that can likewise
outperform the mean and midrange in Regime II. We show that
a generalized Gaussian approximation to the total noise of a



dithered quantizer gives rise to order statistics-based estimators
that approach the performance of pyr. In addition, we
compare their results to those from quantized measurements
without dither, leading to design rules for when to use dither
and which estimator to apply.

C. Mixed Measurements of Vector Signals

Whereas this paper is focused on the estimation of a single
scalar value from multiple direct noisy measurements, many
other estimation problems involving quantized data have been
studied extensively. In particular, interest in linear inverse
problems—both undersampled and oversampled—has resulted
in work on estimating vectors from quantized linearly mixed
measurements, with and without subtractive dither.

Quantized, mixed, noisy measurements of a vector X can
be represented as y = Q(Ax + z), where A € CE*YN s
a linear operator, z is additive noise, and @Q(-) represents
scalar quantization. Theoretical results on how well x can be
estimated generally depend on the structure of A, such as being
an oversampled inverse discrete Fourier transform—thus mod-
eling oversampled analog-to-digital conversion (OADC)—or
being large and random.

For noiseless (z = 0) OADC, O(K~?2) upper- and lower-
bounds on MSE using deterministic analyses [44], [45] are
reminiscent of (12) and similarly rooted in quantized values
providing hard constraints on x. For general A, such con-
straints can be expressed with a linear program [46], and
introduction of subtractive dither makes the optimal O(K ~?)
rate provably achievable by a very simple algorithm [47]. The
compressive case of K < N is addressed, for example, in [48].

For Gaussian z, [49] provides a method applicable with
nonuniform quantization to provide an ¢;-regularized estimate
of x. More general priors and quantizers (potentially non-
regular as well as nonuniform) can be incorporated in the
method of [50]. Like these earlier works, this paper also
addresses the case of Gaussian z, but A being a K x 1 matrix of
1s makes it qualitatively different, in part because the estimate
of a single scalar from K > 1 measurements need not be
regularized.

III. GENERALIZED GAUSSIAN APPROXIMATION AND
ESTIMATION

In order to find a simple estimator for Regime II, we begin
by examining the other two regimes and the simple forms
of the ML estimator there. We notice that the uniform and
Gaussian noise distributions in Regimes I and III are special
cases of the generalized Gaussian distribution (GGD), which

has PDF [51]
et ()]

20)
where A(p) = \/02I'(1/p)/T(3/p) and I'() is the Gamma
function. In addition to mean and variance parameters u and
o2, the GG density has a third parameter p that controls the
exponential decay of its tails. When p = 2 or p — o0,
the GGD simplifies to the Gaussian or uniform distributions,

fo(vsp,0,p) =

respectively. Another special case of the GGD is the Laplace
distribution for p = 1.

For each of the special cases, we further notice that the ML
estimator (median, mean, and midrange for p = 1, 2, co) is
a linear combination of order statistics. When p = 1, only the
middle order statistic has nonzero weight, whereas the reverse
is true for p — oo, with all weight on the two extreme samples.
For p = 2, all of the order statistics are equally weighted. With
these two observations in mind, we hypothesize that, if there
is a value of p that approximates intermediate combinations
of uniform and Gaussian noise, then there may be a corre-
sponding order statistics-based estimator that approaches the
performance of fpmr,.

A. Approximation

For our stated purpose, it would be ideal if proper selection
of p exactly represented nontrivial sums of Gaussian and
uniform terms. Unfortunately the sum of any two independent
GG random variables (GGRVs) is another GGRV only when
p = 2 for each addend® [52]. Nevertheless, the sum of
independent GGRVs has many of the same properties as a
GGRYV, and can be well-approximated as a GGRV through
a number of approximation methods. A simple approach
from [53] matches the mean, variance, and kurtosis of the GG
approximation to the corresponding moments of the true noise
distribution as follows. Defining V' as the GG approximation
to V = Z + W, then since the uniform and Gaussian noise
components are independent random variables, the mean and
variance parameters of the GG noise approximation are simply
given as puy = pw + pz and 02 = 0% + ofy. The shape
parameter approximation py; for the special case of uniform
and Gaussian addends is computed as the unique solution to

LQ/p)tG/py) _, 6 1

T(3/py)? o [12(%)" +1] ’
(see derivation in Appendix B). We thus see that py; depends
on oz /A, with the relationship plotted in Fig. 2. Solving (21)
is fast, and the values of ﬁ‘7 for a range of oz/A values
could be precomputed and stored in a table if necessary. A
rough approximation and good initial value for a solver is
ﬁ(‘;)) =max{2,A/oz}.

To verify the quality of the generalized Gaussian approxima-
tion to the output noise distribution using the kurtosis match,
Fig. 3 shows comparisons between the true density, computed
numerically according to (15), and its GG approximation
from (20). We test oz /A = 0.004, 0.04, and 0.4, maintaining
A =1 for consistency. For 0z < A, the distribution is close
to uniform, and at oz ~ A, the distribution is almost Gaussian.
In the intermediate regime, however, the distribution combines
attributes of each component, with the flat top of the uniform
distribution and exponential tails of the Gaussian distribution.
The GGD appears to be a good approximation of the true noise
distribution, almost perfectly matching the shape behavior.

2n

3The limiting distribution of the sum of i.i.d. GGRVs is Gaussian by the
Central Limit Theorem [38, Chapter 5.4.2], but the sum of any finite number
of GGRVs will only be approximately Gaussian unless each term is Gaussian.



GG shape approximation versus oz /A

107" 100 10’
Uz/A
Fig. 2: The value of py goes to infinity as oz /A decreases and

converges to pi; = 2 as 0z /A increases, with convergence beginning
around oz /A = 1/3 matching the anticipated behavior.
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Fig. 3: The three plots show the noise PDF calculated numerically
from the true density (15) (solid red) and via the GG approxima-
tion (20) (dashed black). The close agreement suggests the GGD is
a good approximation for the noise.

B. Estimation

For ii.d. samples of a GG distribution, the likelihood
function is

K
Lo}y mop) = [ fo(vip,0,p).

i=1

(22)

By differentiating the log of (22) with respect to pu, the ML
estimator iggmr, for the mean of a GGRYV is given in [51] as
the solution to

K
> sen(yi — fcemw)lyi — AeaunP =0, (23)
i=1

and is shown to be asymptotically normal and efficient in K
for p > 2, which is the regime of interest. The asymptotic
variance of Jiggyr, normalized by A? is given by

BP)(oz/A)? +1/12]
% ;

NVar(GGML) = (24)

Relationship between S(p) and p

2 10 100
p
Fig. 4: As p increases beyond p = 2, 5(p) becomes much less than
1, implying that MSE(ficemr) is much lower than MSE(Zimean )-

where

B(p) = — D) (25)

T () TG/

We notice that (24) decreases as O(K '), but the coefficient
B(p), which is plotted in Fig. 4, is much less than 1 for
large p, suggesting that ficamr should outperform fimean
for pj; > 2. Since the GGD closely approximates the total
noise distribution, it would be ideal if iggwmr reduced to a
computationally simple estimator such as one based on order
statistics for all p. Unfortunately, the ML estimator does not
generally have a closed-form expression, except in special
cases such as p = 1,2,00 (an explicit expression has also
recently been derived for p = 4 [54]), so iterative solution
would again be necessary.

We have already observed that the ML estimators for p =
1,2, 00 all belong to a class of linear combinations of order
statistics called L-estimates [55], which are attractive because
they have closed-form definitions of the form

K
fhx = Z a; Y-
im1

We thus consider how to obtain the coefficients a; for L-
estimates that perform well for GG noise when p is not one
of the special cases.

An effective L-estimate should weight the order statistics
in accordance with the noise distribution. Notable past ap-
proaches include that of Lloyd, who derived the minimum-
variance unbiased estimator among linear functions of the
order statistics in [39]. This formulation is impractical, how-
ever, as it requires the correlations of the order statistics for
a given distribution, which are often not known even for
common special cases like the Gaussian distribution. Bovik et
al. [56], [57] further specified the minimum variance unbiased
L-estimate and then numerically computed results for several
values of p from samples of a GGD with K = 3.

A number of approximations to Lloyd’s formulation exist
to more simply compute near-optimal coefficients for linear
combinations of order statistics, including [58], [59]. Oten
and de Figueiredo introduced one such method using Taylor
expansion approximations to get around the difficulties of
knowing distributions of order statistics [60]. This method
does still require knowledge of the inverse CDF of the noise
distribution, and while there is no closed form expression

(26)



for the GGD, the necessary values can be pre-computed
numerically.

Simpler L-estimates have much longer histories, with con-
sideration of trimming extreme or middle order statistics at
least as old as [61] (credited to Gergonne in [62]), with
the first known mathematical analysis by Daniell, who called
such an estimate the “discard-average” [63], [64]. The method
now known as the a-trimmed mean and popularized by
Tukey [65], [66] avoids extensive computation of the weights
by trimming a fixed fraction « from the extremes of the order
statistics. Restrepo and Bovik defined a complementary a-
“outer” trimmed-mean [67], which retains a fraction « of the
data by trimming the middle order statistics and is suitable for
distributions with short tails within the range from Gaussian
to uniform distributions. They tabulated several instances of
the trimmed mean for GGDs with multiple combinations of
K and p.

Lastly, Beaulieu and Guo introduced an estimator specifi-
cally for the GGD but using nonlinear combinations of the
order statistics [68]. The weighting of the order statistics
depends on p via a heuristically-justified function and is shown
to perform almost identically to figgmr. This estimator is
unbiased and exactly matches the ML estimator for the special
cases of p =2 and oo.

In the following section, we consider three of the most
computationally-efficient order statistics-based estimators to
use for the GG approximation: the nearly-best L-estimate jing
of [60], the trimmed-mean estimator i, modeled on [67],
and the non-linear estimator jiny, of [68]. Each estimator
takes the form of (26) with different computations of the
coefficients a;. While finy, is specifically designed for use with
GG noise, we modify the more general jixg and fi, to match
the GG approximation. For fixg, we use the PDF and inverse
CDF (computed numerically) of the GG approximation to
determine the coefficients. One could alternatively compute the
coefficients for jinp directly from the true noise distribution
in (15); however, additional numerical evaluation would be
required for the inverse CDF, which we eschew in our search
for computationally efficient estimators. There is no explicit
distribution assumed by [i,, but we propose a choice of
the trimmed fraction « based on the estimated ﬁ;, value to
implicitly link the estimator to the GGD.

IV. ESTIMATOR IMPLEMENTATIONS

A. ML Estimators

An EM algorithm for obtaining the quantized-sample ML
estimate [igvr, was introduced by Papadopoulos et al. [31,
Appendix EJ:

K
~(+1) _ ~(9) 0z
= + m(u;), 27
OML = HQMmL K\/%; (u;) 27)
where
w— @ 1? wt o @ 1?
exp <[ i QQUgQML] ) —exp ([ ] 22O-ZQML:| )
m(u;) =

Zymnis et al. derived a gradient descent algorithm equivalent
to that in (27) for the special case of a repeated scalar input
and no mixing (i.e., the mixing matrix is a column of 1s) [49].
They also showed the negative log-likelihood to be convex,
so the EM algorithm converges to the ML estimate. A good
initialization is ﬁgﬁ/m = Jiq, since the estimators are equal for
oz = 0, 00. Since fipmr, has the same formulation as figwmr,,
the same algorithm also works for continuous-valued dithered
measurements:

K
~(§4+1) ~(4) 0z

= + m(y;). 29
HPML = HDML % TF; (vi) (29)

We initialize with /7](301)VIL = [mid, since the midrange is known
to be the ML estimator for oz = 0. A solver for figgmL Was
likewise initialized with 7o\, = Fimid-

B. Order Statistics-Based Estimators

To evaluate the GG noise approximation and find the best
non-iterative estimator, we compared the three simplest esti-
mators based on the order statistics: the nearly-best L-estimate,
the a-outer mean, and the nonlinear combination from [68].
Since the GGD is symmetric, the coefficients of an unbiased
order statistics-based estimator are defined symmetrically and
only half must be uniquely computed. It is thus useful to define
M = |K/2| and N = [K/2] using the floor and ceiling
functions, respectively.

To derive the nearly-best L-estimate of [60]

K
liNg = Z a; Yy,

(30)
i=1
we first compute
b = fv(cl)[_fo/(Cl) + f‘7(62)], (31a)
bi = fi(ci)[fi(cic1 — 2fp(c1) + fi(cigr)], (31b)
i=2,... N—1,
bn = fy(en)[fy(en—1) = fi(en)], (3lc)

where ¢; = F‘;l(z/(K + 1)), and F‘;l is the inverse of the
GG CDF. From this, the weights are derived forv =1,..., N
as

bi/(2 SN bi), K even;
b7;/<bN +25°M b)), K odd.

a® = a?(Bﬂ'H =
(32)
For the simulations in Python, the inverse CDF was nu-
merically computed with the stats.gennorm.ppf GGD
percentile function in scipy, as no closed-form expression
exists.
For the a-outer mean estimate

K
fio = Y adY), (33)
i=1



the order statistics’ weights a§’ are only given in [67] for a
symmetric filter applied to an odd number of samples:

1
—, i<|ik
LK Lllg((j/ - LQ aJ
pfta— Al . 1
K—a, 1 = ngai‘i’l,/K]
o o . _1 .
a; =Aag_i41 = <P ’
Koz—QL%KaJ . 1
o , 1= [5Kal+1,
ae[l-1/K, 1];
0, otherwise.

(34)
Since an even number of measurements is also possible, we
similarly define, for all « € [0, 1],

1 . 1
Ko’ 1< L§K04J§
Ko

(e

1
— « — =
a; =0 _iy1 = 2 2

oo , i=|iKa|+1;
0, otherwise.
(35)
Note that the outer mean is equivalent to fimean When o = 1
and reduces to [iy;q for & = 0. To match the GGD behavior,
we thus propose to define a@ = 2/py;, which yields the ML
estimate for both pi; = 2 and py; = oc.

Finally, the nonlinear estimator of [68] is given as
K
N =Y ai Y,
i=1

where the data-dependent coefficients are given for i =
1,..., M by

(36)

NL _ NL 1 [Yi—in) = Y)P 2

aQ; = Ag_j41 = 521\4 [
j=1

5 (37)
Yire—j41) = YiplP~
Note that if K is odd, the median term (¢ = N) is ignored, as
it would correspond to a numerator of zero.

V. DITHER NOISE REGIMES

To better understand the dither noise behavior, we have pre-
viously described three regimes of the dither noise distribution,
with Regimes I and III corresponding to approximately uni-
form and Gaussian noise, respectively. We have furthermore
proposed the GGD with p € (2,00) as an approximation for
the noise distribution in Regime II. However, the boundaries
of these regions are imprecise, and we aim to more rigorously
define them in this section. We first define & and &5 as the
values of the ratio oz /A separating the regimes such that the
noise distribution is approximately uniform for oz /A < &,
GG for & < oz/A < &, and Gaussian for o7 /A < &. In
each regime, we have an expression for the expected MSE
or asymptotic variance of the ML estimator, so we use the
intersection or approximate point of convergence of these
expressions to define &; and &s.

A. Defining &;

We define & as the value of oz/A where NMSE(mid)
and NVar(GGML) intersect, which from (14) and (24) is the
solution to
~ K/2
Bp)l(02/8)? +1/12) = — =/

— 38
K2 +3K +2 (38)

Regime I/II Boundary vs. K Regime II/IIT Boundary vs. K
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Fig. 5: The value of £; substantially decreases and &2 slowly increases
as K increases, expanding Regime II. (a) A log-log-cubic fit can
be used to compute a close approximation to &; for all K, while
a log-log-linear fit suffices for K > 20. (b) The square root of a
log-quadratic fit closely approximates £2.

for a given /. We remind the reader that py; is also dependent
on oz/A as shown in (21). Fig. 5a shows that &; decreases
as K increases, since the probability of observing an “outlier”
measurement due to the exponential tails increases with K,
so a lower oz /A value (i.e., with shorter tails) is needed for
the midrange estimator to achieve nearly-optimal performance.
The figure shows the exact values of &; computed by solv-
ing (38) as well as a log-log-cubic least-squares fit

log &1 =~ 0.0104(log K)® — 0.1760(log K)*

+0.0274(log K) — 1.8511, (39)

which can be used quickly to calculate an approximation for a

desired value of K. Since the relationship appears fairly linear
for K > 20, the simple log-log-linear fit

log &, ~ —0.9301(log K) — 0.1963, (40)

which can be rewritten as & ~ 0.8217/ K930 is also useful

for quick computation. The natural logarithm is used in each
case.

B. Defining &o

Since NMSE(mean) and NVar(GGML) both have 1/K
factors, they converge where 3(pj;) = 1, which is only the
case for py; = 2. This suggests that equality requires the noise
to be exactly Gaussian, which only occurs for o7 /A — oo.
Instead, we can look for a point where NVar(GGML) and
NMSE(mean) can reasonably be considered to have converged
(i.e., the GG is close enough to a Gaussian). We propose
that a reasonable definition of &, is the value of oz/A
that minimizes NMSE(Q), the expected normalized MSE of
Hq- Intuitively, as oz/A increases from &, the Gaussian
variance will dominate for both quantized and dithered mea-
surements, so that the effect of the quantization error is negli-
gible, whether signal-independent for dithered measurements
or signal-dependent without dither. Thus the point at which
NMSE(Q) is minimized indicates where the Gaussian variance
begins to dominate and is a reasonable place to consider a



GG approximation to be sufficiently Gaussian. We derive in
Appendix C that NMSE(Q) is given as

NMSE(Q) = E[(1iq — px)?]/ A
1/2
12 K/I/Zm_ " meR(m, px)dpx

1/2 2
/ ( m¥(m, MX)) dpx
1/2 \,, ==

1/2
- 2/ i S mUmpdee, @)
—-1/2 m=—M
where
m+1/2—MX m—l/Q—ﬂX
v =( ————— | - ———— | .
(m, ) < oz/A ) ( oz/A
(42)
Defining
& = arg min E[(fiq — px)?]/A? 43)

oz/A

and solving via a Nelder-Mead algorithm [69] and numerical
integration, we show in Fig. 5b that the value of £ changes
only slightly as a function of K. This range of values is
notably very close to the value oz /A = 1/2 recommended
by Vardeman and Lee [6], or the value oz /A = 1/3 at which
Moschitta et al. suggest that the loss of information from quan-
tizing samples of a Gaussian distribution becomes negligible
in estimation of the mean [7]. For quick computation, £ can
be approximated by the square root of a log-quadratic fit:

~ 1/—0.000756(log K)2 4 0.328log K.  (44)

We notice that the Regime boundary definitions are incon-
sistent for K < 3, as & > &o; however, the Regimes are
meaningless for K = 1 or 2 anyway, as symmetric order
statistics-based estimators (e.g., mean, median, midrange) are
all equivalent for such small numbers of measurements, so
there is no advantage to distinguishing between noise distri-
butions. We notice also that since £; decreases monotonically
and &, increases monotonically with K, Regime II grows as K
increases, since small mismatches between the assumed and
true PDFs become easier to observe. Intuitively, &; decreases
much faster than & increases because the difference between
a PDF with finite support (oz/A = 0) and one with infinite
support (oz/A > 0) is more significant for large K than the
difference between finite oz /A (e.g., GG approximation with
Py > 2 and 0z/A — oo corresponding to Py = 2).

VI. NUMERICAL RESULTS

Monte Carlo simulations were performed to compare the
NMSE performance of the generalized Gaussian and order
statistics-based estimators ({INB, [INL, fla) against the ML
estimators (ipmr, faeMmL) and the conventional sample mean
(Jimean) and midrange (fimiq). Estimates were also computed
applying the sample mean (fig) and ML estimator (Ligwmr,)
to the quantized data to determine under which conditions
subtractive dithering actually provides an advantage. As in
the motivating example in Section II, for each Monte Carlo

trial, ;1x was chosen uniformly at random from [—A /2, A/2],
and K samples of signal noise Z ~ N(0,0%) and dither
D ~U(—-A/2, A/2) were generated for (3). The quantization
bin size was maintained at A = 1 throughout. The normalized
MSE was computed for 7" = 20,000 trials.

A. Normalized MSE vs. o7/A

We begin by discussing the plots in Fig. 6 of NMSE as
a function of oz /A for K = 5, 25, and 125. Because nine
separate estimators and four NMSE bounds are displayed in
each plot, we acknowledge that the figures can be difficult to
follow due to the overlapping curves. A flowchart is included
in Fig. 7 that summarizes the results and provides a decision-
making process for whether to use dither and which estimator
to choose.

1) Generalized Gaussian Estimators: The GG-based es-
timators (JiNB, JINL, Ma» ficomL) have effectively identical
performance and match that of fpy. The actual differences
in performance vary on the order of a few percent over large
ranges of K and oz /A, compared to the orders of magnitude
differences for the mean and midrange. The negligible per-
formance difference further validates approximating the total
noise with the GGD. For this same reason, we collectively
discuss jipyr, and the GG-based estimators in the following
sections.

The GG-based estimators meet or exceed the performance
of all other estimators for all oz /A and for all K. More
specifically, the GG estimators converge to and match the per-
formance of the midrange in Regime I and likewise converge
to and match the performance of the mean in Regime III.
In Regime II, the GG estimators outperform both the mean
and the midrange. Thus, a GG estimator should be the default
estimator choice for any oz /A.

Given the approximate equivalence of the GG estimators,
we argue that the trimmed-mean fi, is the best choice of
general-purpose estimator for dithered data. The other esti-
mators either require iterative solvers (Jipmr, facML), rely
on numerical computation for the GG inverse CDF (lixg), or
are data-dependent (finr,). On the other hand, fi,, has a simple
closed-form solution that can be tabulated if needed.

2) Performance by Regime—Dithered Measurements: The
plots in Fig. 6 validate the concept of three distinct regimes
of noise behavior. In the plots, the approximate regime
boundaries are computed to be & = {0.1098,3.85 X
1072,9.56 x 1073} and & = {0.2296,0.3132,0.3737} for

= {5,25,125}, respectively, confirming that Regime II
expands as K increases. In Regime I, the NMSE performance
of all estimators on the dithered data is basically flat and
equal to NMSE(mid). This suggests that for a practical system
where oz /A can be tuned, once the system is operating in
Regime I (dependent on a fixed K), there is no benefit from
further decreasing oz /A; performance can only be improved
by increasing K. In Regime II, the GG-based estimators
approach NCRB(ux), especially for large K. We note that
while NVar(GGML) and NCRB(ux) are close in Regime II,
NCRB(ux) is a tighter bound, as it is based on the true
noise distribution, although NVar(GGML) may be easier to
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Fig. 6: The performance of the estimators is evaluated for K = (a) 5, (b) 25, and (c) 125 to show the range of behavior as oz /A varies.
The ML estimator for dithered measurements fipmr, and the estimators based on the GGD (ficaMmr, UNB, INL, and [i,) achieve the lowest
NMSE for each oz /A regime (curves are overlapping). Results are shown for 20000 Monte Carlo trials.
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Fig. 7: The results of our Monte Carlo simulations lead to a simplified
decision process for when and how to use dither. If oz /A > & (=
1/3), there is no benefit to using anything but fiq applied to the
quantized measurements, whereas dither leads to reduce estimation
error when oz /A < 1/3. If subtractive dithering is not possible,
the best performance can be achieved by adding Gaussian noise to
set oz/A =~ 1/3 and applying liqur (although fiq can be used if
simplicity is required). However, larger performance improvements
can be achieved with a subtractively-dithered quantizer. For K
subtractively-dithered measurements, compute &; from either (39)
or (40) to determine whether to use [imia (in Regime I) or fi, (in
Regime II).

compute for a rough estimate of performance. In Regime III,
the NMSE performance of all estimators on the dithered data is
equal to NMSE(mean). In both Regimes II and III, the NMSE
decreases as 0z /A decreases. Performance likewise improves
with increasing K.

3) Performance by Regime—Quantized Measurements:
While the three Regimes were technically defined for dithered
measurements in particular, they are also informative of the
behavior of estimators applied to quantized measurements.
In Regime I, o7 /A is so small that, unless px lies on the
boundary between quantization bins, all measurements are
quantized to the same value. As a result, the NMSE of both
fiq and figwmr, is dominated by the squared bias term, which

is 1/12 (the variance is zero). Further decreasing oz /A or
increasing K provides no benefit.

In Regime II, oz /A is large enough that there is often some
variation in the measurements due to signal even without the
addition of dither. This phenomenon is sometimes referred
to in the literature as self-dithering, equivalent to adding
nonsubtractive Gaussian dither to a constant signal px [70].
Within Regime II, both fiq and figmr, improve as oz/A
increases because the increased signal variation reduces the
bias term of the NMSE faster than the variance increases.
The NMSE is minimized for fiq by definition at &3, and then
the NMSE increases as oz /A increases in Regime III. This
suggests that if oz /A is small and subtractive dither cannot
be used, then quantized measurements benefit from adding
nonsubtractive Gaussian dither such that oz /A = &;, which
is approximately 1/3. It is in Regime II that figwmr, shows the
largest improvement in performance over fig, with the ML
estimator accounting for the form of the signal variation for
quantized measurements.

In Regime III, the NMSE of [iq and figwmr, matches that
of the best estimators applied to dithered data. Clearly, o /A
is large enough that even the quantized measurements contain
sufficient information about the signal variation. This suggests
that dither provides no benefit in Regime III, since equal
performance can be achieved without dither. Again for both
Regimes II and III, the NMSE decreases as K is increased.

B. Order Statistics-Based Estimator Coefficients

To better understand why the order statistics-based esti-
mators have essentially identical performance, in Fig. 8 we
plot the coefficients a; from (26) for each estimator. The top
row shows example measurements for K = 20, A = 1, and
oz/A = 0.004, 0.04, and 0.4, respectively, with the samples
spreading out as the Gaussian variance increases. The second
row of plots depicts the resulting coefficients for ling, [INL,
and [i, using the estimated value py;. Fig. 8d shows the
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Fig. 8: Example dithered measurements are shown in (a-c) for oz /A = 0.004, 0.04, and 0.4 with K = 20. Plots (d-f) show the resulting
coefficient values for the GG estimators given the estimated value of py above. In (g), oz/A = 0.04 and K = 100, highlighting how
the coefficients change as K increases. Note that the coefficients of the order statistics for the NL estimator depend on the measured data

sequence shown above.

coefficients are equivalent to those of fin;q for small oz /A.
In Figs. 8e and 8f, the coefficients of the various estimators
are no longer identical. However, the coefficients follow the
same trends for each estimator, with zero weight on the middle
order statistics for small oz/A and more evenly-distributed
weights as the noise model approaches a Gaussian. We note
that the coefficients for jiny, vary depending on the particular
set of measurements shown in the top row, and that different
sample realizations can result in coefficients more or less
similar to those of fing and fi,. To show the behavior of
the coefficients as K increases, we also plot {a;}X | for K =
100 and oz /A = 0.04 in Fig. 8g. This plot underscores that
the coefficients for fi, are basically indicators of the most
significant non-zero coefficients of fixg and finr. Using the
simple formulation of fi,, as a guide, in the limit as K — oo,
only K« coefficients would have nonzero weight. Since the
performance of all three order statistics-based estimators is
similar, this further suggests that the selection of which order
statistics are used is more important than exactly how much
they are weighted.

C. Normalized MSE vs. K

To better understand how the number of measurements
affects the estimators’ performance, we plot results for three
fixed values of oz /A in each regime (0.004, 0.04, 0.4) while
varying K in Fig. 9.

In Fig. 9a, [iniq follows NMSE(mid) as expected for
Regime I until K ~ 200. At that point, the NMSE of the

midrange begins to diverge, with slower improvement as K
increases. Similarly, the GG estimators follow NMSE(mid)
until K ~ 200 and then switch to NCRB(ux). This suggests
that oz/A = 0.004 is in Regime I for K < 200 and in
Regime II for K > 200. This switch between regimes occurs
near the intersection of NMSE(mid) and NVar(GGML) as
a function of K, further validating these bounds as useful
demarcations of estimator performance. For all K in the
plotted range, the midrange and GG estimators outperform the
mean. The quantized estimators show almost no improvement
as K increases.

In Fig. 9b, the midrange performance is similar to that in
Fig. 9a, with fi,iq following NMSE(mid) until the intersec-
tion of NMSE(mid) and NVar(GGML) and then improving
more slowly as a function of the number of measurements,
eventually being outperformed by fimean for large K. The GG
estimators likewise follow NMSE(mid) for small K and switch
to following NCRB(ux) after the intersection. For large K,
the NMSE of the GG estimators is a constant factor lower than
that of fimcan, With this factor approximately given by ((py ).
The NMSE of the quantized estimators decreases slowly as /K
increases, with marginally better performance for Ligwmr, than
Ha-

Figures 9a and 9b help answer the question of how the
order statistics-based estimators “between” the midrange and
the mean would perform as a function of K. The results
suggest that these estimators ultimately have O(K ~!) NMSE
reduction, although this reduction is faster for small values of
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of behavior as the number of measurements K increases. The plots show the MSE normalized to A = 1 from 20000 trials per data point.
Dashed lines show the theoretical NMSE of the mean and midrange, and the asymptotic variance of the ML estimator of the GGD mean.
The ML estimator for dithered measurements fipMmr and the estimators based on the GGD (gcwmL, UNB, UNL, and [is) achieve the lowest

NMSE for all K (curves are overlapping).

K.

In Fig. 9c where oz /A = 0.4, the noise can be sufficiently
described as Gaussian for K < 359 because oz /A > & as
shown in Fig. 5b; however, oz /A < & for K > 359, so the
noise distribution transitions from Regime III to Regime II.
The midrange has poor performance for all K, while the
other dithered estimators and the quantized estimators have
essentially identical performance for K < 359. Those esti-
mators follow NMSE(mean), NVar(GGML), and NCRB(ux),
which have converged. In Regime III, it is clear that there is
no benefit to using dither, as there is minimal improvement
in performance even for large K. In fact, implementing a
dithered quantizer is likely more complicated in practice and
is discouraged for Regime III.

VII. CONCLUSION

This work studied the task of estimating the mean of a
Gaussian signal from quantized measurements. By applying
subtractive dither to the measurement process, the noise be-
comes signal-independent but no longer has a Gaussian distri-
bution. We showed that the generalized Gaussian distribution
is a close and useful approximation for the Gaussian plus uni-
form total noise distribution. Estimators using the generalized
Gaussian approximation effectively match the performance of
the ML estimator for the total noise, which is a significant
improvement over the conventional mean and midrange es-
timators in Regime II. Due to its computational simplicity
and efficient performance, we recommend the trimmed mean
Iie. From further comparison against estimators for quantized
measurements, we determined simple design rules for deciding
whether and how to use quantized measurements. In short,
there is value in using dither in Regimes I and II, and a GG-
based estimator should be used in Regime II. Future work
will address variations on the measurement model, including

non-Gaussian signal distributions and different dither imple-
mentations.

APPENDIX A
CRAMER-RAO BOUND

The Cramér-Rao Bound is a lower bound on the variance
of an unbiased estimator [42], given by

CRB(px) = 1/1(px),
where I(px) is the Fisher information computed as

(alogfy(y;ux,az7A)>2
Opx
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where step (a) uses the definition of expectation and the chain
rule, (b) differentiates (15) with respect to pux for v =y—pux,
and (c) changes variables to u = v/A. Normalizing by A2
removes the separate dependence on oz or A, so we define
the normalized CRB as

NCRB(px) = CRB(jux) /A’

- (02/A)° . (46)

/ o (5558) -0 (22)]

o () o ()

du




Finally, Fisher information is additive for independent obser-
vations, so for K independent samples, the lower bound on
the NCRB is 1/K times that for one observation.

APPENDIX B
KURTOSIS MATCHING

The kurtosis of a random variable B is the standardized
fourth central moment [71], defined as
_ pa(B)

E[(B NBH
wAE - o @

The excess kurtosis v(B) = r(B)—3 is often used to simplify
computations. Define A = B + C, where B and C are
independent random variables. The kurtosis of the sum can
be computed by expanding (47) as follows:

k(A) = E((A—pa)t] _ BE{(B—pp)+(C—pc)l'}
{E[(A—pa)?l}> {E[((B—pup) + (C — pc))?}?
u4(B) pa(C) + 60%02,

(UB +0%)? ’

where independence eliminates the odd cross terms. Then the
excess kurtosis is

(A = Ze1B) + 7¢1(C)
ol '

(48)

The kurtosis of Gaussian and uniform random variables is
well-known and straightforward to compute from the defini-
tion; the excess kurtosis is O for a Gaussian and —6/5 for
a uniform distribution. From [53], we have that the excess
kurtosis* of a GGRV V' with shape parameter p,, is

L'(1/p,)T'(5/pv)
[T'(3/pv)]?
To fit the GGD to the sum of uniform and Gaussian random

variables, we set the kurtosis of the approximation to match
the kurtosis of the sum using (48)

(V)= - 3. (49)

L(/po)T(5/p0) _ o, 00+ 0w (=6/5)
[T(3/pv))? (o +0%)°
1
=3- g—zg, (50
[1+12(%)"]
where 03, = A?/12.
APPENDIX C

MEAN SQUARED ERROR OF ﬁQ

We use iterated expectation to compute the MSE of jiq as

El(fiq — 1x)?] = E [E[(fiq — px)*lux]], (1)

4Note that the definition of kurtosis in [53] corresponds to the excess
kurtosis in this work.

with no prior knowledge on the true value so that we assume
wx ~ U[—A/2; A/2] within a bin. Define a function g : R —
R as g(x) := E[(fiq — jix)2|ux = 2, then

+ZZE (z + Z)|Eq(z + Z;)]
=1 j#i
K
=1
—a?+ — L [ a«+Z))} = (Elge + 2)))
K
fQ:r/IE[( + 2)] (52)
Using the definition
m+1/2—x m—1/2—x
v = —— | - ——— 53
() ( oz/A ) ( oz/A >’ 69
note that
Elg(z + 2)]
M mA+A/2 _
= lim Y mA/ 1¢<z x)dz
M—roo — . ma-A/2 0Z o0z
M
~ A Z m¥(m, x)
m=—M
for some large number M. Similarly,
M
E[(q(erZ))Q]zAQ Z m?U(m, x).
m=—M

The MSE normalized by A? then follows as

El(fiq — ux) J/A?
1/2
K/1/2 77l_—

K1 1/2( M

m?W(m, z)dx

K ) 1

1/2 M
— 2/ T
—1/2 Z

m=—M

2
m¥(m, x)) dz
m=—M

m¥(m, z)dz. (54)
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