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The elemental stoichiometry of particulate organic carbon (C), nitrogen (N), and
phosphorus (P) connects the C fluxes of biological production to the availability of the
limiting nutrients in the ocean. It also influences the marine food-web by modulating
zooplankton’s feeding behavior and organic matter decomposition by bacteria. Despite
its importance, there is a general paucity of information on how the global C:N:P
ratio evolves seasonally and interannually, and large parts of the global ocean remain
devoid of observational data. Here, we present a new method combining satellite
ocean-color data with a cellular-trait-based model to characterize the spatio-temporal
variability of the phytoplankton stoichiometry in the surface mixed layer of the ocean.
This new method is demonstrated specifically for the C:P ratio. The approach was
applied to phytoplankton growth rates and chlorophyll-to-carbon ratios derived from
MODIS-Aqua and maps of temperature-dependent nutrient limitation to generate global
and seasonal maps of upper-ocean phytoplankton C:P. Taking it a step further, we
determined the C:P of the bulk particulate organic matter, using MODIS-Aqua estimates
of particulate organic carbon and phytoplankton biomass. Our results are within 95%
confidence interval of available data for both horizontal distributions and time series,
indicating our new method’s viability in accurately quantifying seasonally resolved global
ocean bulk C:P. We anticipate the new hyperspectral capabilities of the NASA PACE
(Plankton, Aerosol, Cloud, ocean Ecosystem) mission will facilitate the determination
of phytoplankton stoichiometry for different size classes and further enhance the
predictability of marine-ecosystem stoichiometry from space.

Keywords: phytoplankton, stoichiometry, ocean color, satellite, organic matter, carbon cycle

INTRODUCTION

Ever since Redfield first reported on the C:N:P ratio of particulate organic matter (POM) more
than 85 years ago (Redfield, 1934), the ratio has been widely assumed to be stable. A fixed
C:N:P ratio has long played a central role in ocean biogeochemistry because this ratio largely
determines the strength of the biologically mediated ocean carbon cycle. However, recent studies
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show convincingly that the C:N:P stoichiometry of POM varies
substantially on ocean-basin scales. For example, Martiny et al.
(2013a) showed a globally coherent pattern, with C:N:P ratio of
195:28:1 in the subtropical gyres, 137:18:1 in the warm upwelling
zones, and 78:13:1 in the nutrient-rich polar regions. An inverse
model of ocean biogeochemistry also inferred a similar spatial
pattern of the global C:P and N:P ratios (Teng et al, 2014;
Wang et al., 2019).

As carbon export is inversely related to atmospheric CO,
(Volk and Hoffert, 1985), carbon-enriched particulate organic
matter in subtropical gyres could lead to lower atmospheric CO,
and higher export production of carbon, thereby influencing
climate (Galbraith and Martiny, 2015; Tanioka and Matsumoto,
2017; Matsumoto et al., 2020a; Odalen et al., 2020). The ocean
carbon modeling community is beginning to respond to this
development. For example, the state of the art CMIP5/6 models
developed by various climate modeling teams around the world
represent phytoplankton stoichiometry with varying degree of
flexibility, from no flexibility (i.e., fixed C:N:P ratio) to fully
flexible (e.g., Bopp et al., 2013; Arora et al., 2020).

A major challenge to adopting fully flexible stoichiometry in
biogeochemical models is our current inability to observationally
constrain the temporal variability of the C:N:P in the global
ocean. Although some progress has been made to explore a
temporal shift in C:N:P using local time-series data (Hebel and
Karl, 2001; Karl et al., 2001; Singh et al., 2015; Martiny et al,,
2016; Talarmin et al., 2016), our holistic global view of the global
C:N:P ratio variation is still unclear. In situ C:N:P measurements
of POM inherently suffer from bias toward regions and periods
of active oceanographic research, and large parts of the global
ocean remain devoid of data. For example, there is a considerable
paucity of POM sampling efforts in the South and Equatorial
Atlantic regions (Sharoni and Halevy, 2020).

Satellite ocean-color sensors have the potential to provide a
unique tool to constrain the temporal evolution of organic matter
C:N:P ratio. Ocean color provides global, synoptic views of the
spectral remote-sensing reflectance of the ocean that can be used
to generate estimates of marine inherent optical properties (IOPs)
at various timescales (Werdell et al., 2018). Satellite ocean color
(i.e., remote-sensing reflectance) provides an unparalleled tool to
capture climate-driven signals in the upper biological functions of
the global ocean (Dierssen, 2010; Dutkiewicz et al., 2019), and has
the potential to yield crucial information on the modes of C:N:P
variability. Previous field studies have shown that C:N:P ratio is
significantly influenced by interannual climate variabilities such
as ENSO and Pacific Decadal Oscillation (Martiny et al., 2016;
Fagan et al., 2019).

One possible approach to assess the spatio-temporal variability
in the C:N:P of POM is to directly estimate the change in
the total concentration of particulate organic carbon (POC),
particulate organic nitrogen (PON), and particulate organic
phosphorus (POP) using satellite ocean color data. Multiple
methods of estimating total POC from satellite ocean color
have been developed over the years, and the satellite estimates
are extensively calibrated with in situ measurements (Evers-
King et al.,, 2017; Rasse et al., 2017). More recently, Fumenia
et al. (2020) have developed a method to link the backscattering

coeflicient (bbp) at 700 nm with PON and POP concentrations
in the oligotrophic Western Tropical South Pacific. However, the
reliability of by, as a quantitative proxy of PON and POP still
needs to be investigated in other oceanographic areas, including
non-oligotrophic regions.

Another possible approach of deriving C:N:P of bulk
POM is to predict phytoplankton’s elemental composition
and use it as a proxy for the bulk composition, assuming
phytoplankton makes up the largest proportion of POM. The
study by Arteaga et al. (2014) showed a seasonally variable
global C:N:P ratio of phytoplankton by using a combination
of remote sensing data and a mechanistic growth-model
of phytoplankton (Pahlow et al., 2013). More recently, Roy
(2018) developed a method to estimate the macromolecular
content of phytoplankton protein, carbohydrate, and lipid via
satellite ocean color by using empirical relationships between
the particulate backscattering coefficient, phytoplankton cell
size, and cellular macromolecular concentrations. However, this
method cannot derive phytoplankton C:P as there is no empirical
link between cell size and P-rich macromolecules such as RNA
and DNA (Finkel et al., 2016; Tanioka and Matsumoto, 2020b).
Furthermore, a fundamental limitation in both of these studies
is that the elemental composition of phytoplankton may not
be able to explain the full dynamics of bulk POM because,
in reality, phytoplankton biomass typically constitute only 30-
50% of bulk particulate organic matter in the open ocean
(Eppley et al., 1992; Durand et al., 2001; Gundersen et al., 2001;
Behrenfeld et al., 2005).

Here, we propose a new remote-sensing approach that
uniquely combines established methodologies in order to
quantify the spatio-temporal variability of the upper-ocean
stoichiometry of phytoplankton and bulk POM (Figure 1).
We demonstrate that this method specifically for the C:P
ratio as C:P is more commonly compared to observations
than C:N and N:P under different environmental conditions
(e.g., Sterner et al, 2008). Furthermore, the C:P is a key
variable for converting phosphorus-based fluxes to carbon-based
fluxes in biogeochemical models, and therefore has important
implications for the carbon cycle (e.g., Matsumoto et al,
2020b). The framework, however, can theoretically be expanded
to include C:N and N:P ratios. In this approach, we first
determine C:P of phytoplankton by combining satellite-derived
estimates of growth rate, Chl:C ratio, and nutrient depletion
temperatures (NDTs) with a newly developed mechanistic model
of phytoplankton stoichiometry (Inomura et al., 2020). We then
convert phytoplankton C:P ratio to the total POC:POP using
remotely sensed concentrations of phytoplankton biomass and
POC. This approach is unique in that all inputs are derived
from satellite remote sensing and does not rely on in situ
measurements, thereby enabling us to predict the “real-time”
evolution of phytoplankton and bulk POM C:P on various
temporal and spatial scales of interest.

The relative importance of the two main drivers of POC:POP
variability are discussed following their (1) variability due
to change in phytoplankton C:P that reflect changes in
environmental condition such as nutrient supply (e.g., Martiny
etal,, 2013a; Garcia et al,, 2018), and (2) variability due to change
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FIGURE 1 | Flowchart summarizing the modeling framework. White squares represent globally gridded data from MODIS-Aqua and their direct products (NPP,
Cphyto, and POC). The dashed arrows pointing toward NPP indicate that remotely sensed SST and Chl are used in deriving NPP. Orange boxes are main products

from this study; C:P of phytoplankton (r¢.p) and bulk POC:POP.
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in community plankton composition (e.g., Weber and Deutsch,
2010; Talmy et al., 2016; Sharoni and Halevy, 2020). Finally, we
discuss caveats, limitations, and future directions. Our ultimate
goal in this paper is to demonstrate the method’s feasibility, given
all the assumptions and limitations. We envision that future
advances in satellite instrumentation will enhance the accuracy
of satellite-derived input parameters and improve the overall
estimate of C:N:P from space.

MATERIALS AND METHODS

Satellite-Informed Modeling Framework

The flowchart shown in Figure 1 provides an overview of how
we determine phytoplankton C:P and bulk POC:POP ratios from
satellite products. In the sections below, we briefly describe
the phytoplankton stoichiometry model and the method of
estimating the bulk C:P of POM.

Phytoplankton Stoichiometry Model

In this study, we determined the C:P ratio for a single
phytoplankton functional type using a recently developed
phytoplankton stoichiometry model (Inomura et al, 2020).
The phytoplankton stoichiometry model of Inomura et al.
(2020) is conceptually simple but facilitates the accurate
computation of phytoplankton C:P and C:N ratios under
a variety of environmental conditions. The input variables
required in calculating phytoplankton C:P are light intensity,
growth rate, and the presence/absence of limiting nutrients.
The model is based on four empirically supported lines of
evidence: (1) a saturating relationship between light intensity
and photosynthesis, (2) a linear relationship between RNA-to-
Protein ratio and growth rate, (3) a linear relationship between
biosynthetic proteins and growth rate, and (4) a constant
macromolecular composition of the light-harvesting machinery.
Also, it follows from these assumptions that chlorophyll-to-
carbon ratio (Chl:Cypys,) and growth rate are directly linked for
any given light intensity (Laws and Bannister, 1980). Inomura
et al. (2020) calibrated their model parameters subject to

constraints from published laboratory chemostat studies for
several key prokaryotic and eukaryotic phytoplankton species.
For this study, we used the model parameter set for the
cyanobacteria Synechococcus linearis because the parameters for
this species were most rigorously calibrated with laboratory
data compared to the other two possible options (cf. a diatom,
Skeletonema costatum, and a haptophyte, Paviova lutheri). Also,
picocyanobacteria such as Synechococcus and Prochlorococcus are
the most abundant phytoplankton types in the global ocean
(Flombaum et al., 2013; Berube et al., 2018). Thus, if we are
choosing a single group of phytoplankton to represent the whole
phytoplankton community, as we do in this study, Synechococcus
would be a reasonable choice. However, as this particular species
of Synechococcus is a freshwater species, further calibration efforts
specific to the marine cyanobacteria species would be necessary.
Although the ecology of marine and freshwater phytoplankton
is fundamentally similar (Kilham and Hecky, 1988), a previous
meta-analysis study has shown that the interactive effects of
multiple environmental stressors (e.g., temperature, light, and
nutrients) on C:N:P may be significantly different for marine
and freshwater species (Villar-Argaiz et al., 2018). A complete
description and evaluation of the phytoplankton stoichiometry
model are provided in the original model description paper
(Inomura et al., 2020).

In order to determine phytoplankton C:P, we made three
minor modifications to the original stoichiometry model by
Inomura et al. (2020). First, we drove the stoichiometry model
directly with depth-integrated ChLCppy, in the mixed layer
obtained from the satellite ocean color instead of calculating
Chl:Cppyto as a function of photon-flux density. This way,
we could circumvent the need to estimate depth-dependent
irradiance, which is complicated by issues such as self-shading
and particle scattering (Jamet et al., 2019). Second, we imposed a
fixed maximum growth rate of 2 d~! in calculating C:P, which
is equal to the maximum growth rate commonly imposed on
the satellite-based estimates of growth rate (Westberry et al,
2008; Laws, 2013). Third, we imposed a constant C:P value of
102 under the P-replete condition regardless of the P supply.
A C:P of 102 corresponds to the maximum capacity of cellular

Frontiers in Marine Science | www.frontiersin.org

November 2020 | Volume 7 | Article 604893


https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Tanioka et al.

Satellite-Informed Upper Ocean C:P

P (QF™), and was used in the original stoichiometry model
by Inomura et al. (2020). This assumption for Synechococcus
is supported by culture experiments (e.g., Healey, 1985) and
makes it possible to circumvent the need to calculate C:P
based on the absolute values of external nutrient supply.
Under P limitation, all cellular P tends to be allocated toward
DNA, RNA, and phospholipids in the thylakoid membranes.
Therefore, by default, the stoichiometry model does not require
information on external nutrient concentration in calculating
cellular C:P. With these three modifications, we were able
to predict phytoplankton C:P using only satellite ocean color
products as inputs.

Satellite-Derived Inputs

We drove the modified Inomura model with satellite-derived
phytoplankton growth rates (1), Chl:Cypyyo (a measure of light
intensity), and P limitation [as the difference between Sea
Surface Temperature (SST) and cubic root-corrected phosphate
depletion temperature (PDT3)] to estimate phytoplankton C:P
(rc.p) in the surface mixed layer (Eq. 1):

re.p = Cphyto/Pphyto

| 102 if SST < PDT3 (P — replete) (0
| f (. Chl: Cypyo) if SST = PDT3 (P — limited)
The required input data in Eq. 1 are monthly binned and averaged
observations from the Aqua Moderate Resolution Imaging
Spectroradiometer (MODIS-Aqua) acquired from January 2003
to December 2018 and re-gridded on a regular 1°-latitude by 1°-
longitude grid. All satellite-derived input data and estimates of
mixed-layer depth are available for download from the Oregon
State Ocean Productivity Website'.

The carbon-based specific growth rate x4 (measured in d—h
is estimated by dividing the depth-integrated net primary
productivity (NPP, measured in mg C m~2 d~!) by the standing
stock of phytoplankton carbon (Cpp, measured in mg C m~2):

n= NPP/Cphytu (2)

Growth rate is influenced by light, temperature, and nutrient
availability, and previous culture measurements (e.g., Maclntyre
et al, 2002) provide robust and well-understood empirical
relationships between u and satellite products (Silsbe et al,
2016). There are multiple NPP data products available to date
(Westberry and Behrenfeld, 2014; Bisson et al., 2018). In order to
illustrate the robustness of our C:P determination to the choice
of the NPP products, we used the following four NPP satellite
data products: (1) the Carbon, Absorption and Fluorescence
Euphotic-resolving model (CAFE) (Silsbe et al., 2016), (2) the
Vertically Generalized Productivity Model (VGPM) (Behrenfeld
and Falkowski, 1997), (3) the Eppley-VGPM Model (Eppley,
1972; Behrenfeld and Falkowski, 1997), and (4) the Carbon-
based Productivity Model (CbPM) (Westberry et al., 2008).
A previous study showed that CAFE compares best with in situ

Uhttp://sites.science.oregonstate.edu/ocean.productivity/index.php (last access:
June 22, 2020)

NPP measurements (Bisson et al., 2018). Because the growth
rates from VGPM, Eppley-VGPM, and CbPM are similar
quantitatively (Supplementary Figure 1), we only present results
from VGPM as representing the three models in the main
text. Throughout the text, we use the phrases “CAFE-informed
phytoplankton C:P” and “VGPM-informed phytoplankton C:P”
to refer to C:P calculated using x from CAFE-based NPP and
VGPM-based NPP, respectively.

For Cppyo, the satellite data product of Westberry et al.
(2008) was used, who computed Cppyyo as a linear function
of the particulate backscatter coefficient at 443 nm, by, (443).
We only considered a single algorithm of Cppy, in this study
because the previous intercomparison study showed that no
single algorithm outperforms any of the other algorithms when
compared with in situ data (Martinez-Vicente et al., 2017).
We excluded from our analyses the coastal regions with Cppyso
exceeding 1,000 mg C m™> and we multiplied the monthly
mean surface concentration of Cppy, with monthly mean
mixed layer depth (MLD) from the Hybrid Coordinate Ocean
Model (HYCOM) to get the depth-integrated Cphyto- Here,
MLD is defined as the depth where the density of water is
greater than that of water at a reference depth of 10 m by
0.125 kg m~3 (Levitus, 1982). The growth rate calculated this
way in Eq. 2 is representative of a well-mixed, photoacclimated
community subject to the median PAR in the mixed layer. The
satellite-derived seasonal variability in u reflect changes in light
and nutrient limitation, as well as phytoplankton community
composition (Behrenfeld et al., 2005).

Supplementary Figure 1 shows satellite-derived estimates of
u during summer and winter. CAFE predicts a higher x during
summer months compared to winter months for the large parts of
the ocean (Supplementary Figures 1A-C). VGPM and the other
two NPP products (CbPM and Eppley-VGPM) show similar
trends at high latitudes but show the opposite trend in the
subtropics with lower x4 during summer compared to winter.
As a result, the range of estimated x amongst NPP products
are higher during the summer compared to winter and is most
extensive in the subtropics. Throughout the rest of this paper, the
“summer” average refers to average values during July-September
in the Northern Hemisphere and January—March in the Southern
Hemisphere. For the “winter;” the target months are reversed
between two hemispheres.

The Chl:Cypyy, ratio, a proxy for light limitation (Falkowski
et al., 1985; MacIntyre et al., 2002), is computed here by dividing
MODIS-derived Chl-a with Cppyro. Chl-a concentration is depth-
integrated and therefore converted from mg Chl m~3 to mg
Chl m~2 by multiplying the monthly mean surface concentration
with monthly mean MLD. Like for growth rate, Chl:Cppyy, is
assumed to be vertically uniform in the mixed layer. Considering
ocean-color measurements are typically representative of the
first optical depth of the surface ocean (Volpe et al., 2012;
Bellacicco et al., 2018), this assumption is widely used in satellite
remote sensing models, including the four NPP models used here.
However, this assumption overlooks depth-dependent changes
in Chl:Cypyyo, for example when the deep chlorophyll maximum
(DCM) becomes much shallower than the mixed layer depth
(Cullen, 1982). Supplementary Figures 2A-C shows estimates
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of Chl:Cppyyo during summer and winter. In general, Chl:Cppyro
is higher during winter than summer as the reduced incident
irradiance causes phytoplankton to allocate more of the cellular
component to the light-harvesting apparatus (Geider, 1987;
Maclntyre et al., 2002; Arteaga et al.,, 2016). High ChLCppy,
in the sunlit layer of the continental margins are known to
be relatively inaccurate and biases due to interferences by the
high and variable amounts of colored dissolved organic matter
(CDOM) and detritus (Siegel et al., 2005; Morel and Gentili,
2009; Loisel et al., 2010). As we excluded coastal regions in the
subsequence analyses, this issue should not affect our satellite-
informed C:P estimates.

P limitation was assessed by utilizing nutrient depletion
temperatures (NDTs), which are temperatures above which
nutrients are no longer detectable by traditional wet-chemistry
techniques (Zentara and Kamykowski, 1977; Kamykowski and
Zentara, 1986). The method leverages an observed inverse
empirical relationship between surface nutrient concentration
and sea-surface temperature (SST). In this relationship,
phytoplankton is considered nutrient-limited if the difference
between SST and NDT is higher than 0 and vice versa if the
difference is lower than 0. We used a global NDT mask of
the percentile-based, cubic root-corrected phosphate depletion
temperatures (PDT3) re-gridded to a 1-by-1° spatial resolution
(Supplementary Figure 2F; Kamykowski et al., 2002). PDT3
was subtracted from MODIS-derived monthly mean SST to
determine the absence/presence of P limitation in the surface
ocean. P limitation as a result of SST exceeding phosphate
depletion temperature is globally prevalent during summer
(Supplementary Figure 2D). Phosphate depletion is alleviated
during winter months at high latitudes and in some parts of the
equatorial regions as the surface ocean cools in part because of
enhanced vertical mixing (Supplementary Figure 2E). For the
current work, we limited our study to latitudes ranging from
50°S to 70°N as the original data on PDT3 beyond this latitudinal
range are sparse (Kamykowski et al., 2002). We further discuss
the caveats and limitations of this approach in section “Caveats,
Limitations, and Future Needs.”

MODIS-derived ~ total ~ monthly  averaged = POC
(0.7 um < D < 17 um) was obtained from the NASA
Ocean Color Product webpage?. This total POC determination
is based on an empirical relationship between POC and the
blue-to-green band of spectral remote-sensing reflectance
(Stramski et al., 2008). The algorithm employed here is widely
implemented for producing maps of surface POC. The global
mean Cppyo:POC is ~30% (Supplementary Figures 2G,H),
consistent with previous estimates (Behrenfeld et al., 2005). The
Cphyto:POC is generally higher in the subtropical gyres than other
regions reaching up to 50-70% during summer (Supplementary
Figure 2G). Cpp10:POC ratio rarely exceeds a value of 1 except
during episodic events in coastal regions, which we disregard
in our analyses. Although Cpyp and POC are independently
determined, the fact that Cy,;,:POC ratio rarely exceeds a value
of 1 increases our confidence in the predictability of Cypy,:POC.

Zhttp://oceancolor.gsfc.nasa.gov (last access: June 22, 2020)

Estimating C:P of Bulk POM

Globally, phytoplankton-derived organic matter represents on
average ~30% of bulk organic matter (Eppley et al., 1992; Durand
et al., 2001; Gundersen et al., 2001; Behrenfeld et al., 2005),
and the rest is due to contributions from zooplankton and
non-living detrital materials. A previous satellite-based study
showed that phytoplankton carbon biomass makes up 30-70%
of the total POC pool in the tropical oligotrophic regions and
~10-30% in higher latitudes and equatorial Pacific (Arteaga
et al, 2016). The relative contribution from phytoplankton
biomass is lower in nutrient-rich regions, possibly due to the
top-down control on phytoplankton biomass by zooplankton
(Ward et al, 2014; Talmy et al, 2016), resulting in higher
zooplankton fraction and smaller phytoplankton fraction in
the total POC pool.

In order to estimate C:P of bulk POM, we split the POC and
particulate organic phosphorus (POP) into two components: (1)
phytoplankton-derived organic matter with C:P ratio following
the stoichiometry model in the previous section, and (2) non-
algal component with fixed C:P of 117:1 following Anderson
and Sarmiento (1994). Throughout the rest of this paper,
the “community composition” refers to the relative balance
between the algal and non-algal components of organic matter,
not the community composition of different phytoplankton
functional types.

The non-algal component of particulate organic matter with
fixed C:P represents a combination of zooplankton and other
non-living detrital materials such as fecal pellets and other
organic matter left over from sloppy feeding (Martiny et al,
2013a,b; Talmy et al., 2016). Previous studies have shown that
zooplankton generally has a C:P close to the Redfield ratio even
under P-limited conditions (e.g., Copin-Montegut and Copin-
Montegut, 1983; Sterner and Elser, 2002). Isopycnal analysis of
export and remineralization stoichiometry of the deep ocean
(>400 m) also indicates a relatively constant C:P of around ~117
globally (Anderson and Sarmiento, 1994).

In calculating the C:P ratio of bulk POM, we solve for three
unknowns: (1) the carbon content of non-algal POM (Cjy), (2)
the phosphorus content of non-algal POM (P,,,), and (3) total
POP. This is achieved with three equations:

Cphyto + Cnon = POC (3)
Pphyto + Pnon = POP (4)
Cnon/Pnun =117 (5)

The subscript “phyto” refers to the phytoplankton component,
and “non” refers to the non-algal component of POM. All the
quantities are in mol per unit volume. Eqs 3 and 4 describe
the conservation of carbon and phosphorus, respectively, and
the Eq. 5 describes the fixed C:P ratio of non-algal organic
matter. Essentially, Eqs 3-5 constitute a simple two end-
member mixing model of the algal and non-algal components.
We can obtain C:P of the bulk organic matter as a function
of the known quantities from section “Satellite-Informed
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Modeling Framework,” Cppyso, c:p, and total POC by rearranging
Egs 1, 3-5:

117 - reep
POC : POP = (6)
117 - Cppyto/POC + rc:p - (1 = Cppyro/POC)

Eq. 6 shows that the bulk C:P ratio is a non-linear function of
phytoplankton C:P (rc.p) and the relative abundance of Cohyto
over total POC (Cppyso/ POC).

Model-Data Comparison of POC:POP

We compared the satellite-informed bulk POC:POP with a
recently compiled data set of 5573 in situ observations of
suspended oceanic POC:POP ratios from cruises and other
marine stations distributed globally (Martiny et al, 2014).
The suspended POM samples were collected on 0.7 um
filters (GF/F), and their C:P ratios reflect contributions from
phytoplankton, microzooplankton, detrital material, and mixed
particle aggregates. We note that the nominal pore size of 0.7 um
cannot fully capture biomass of small bacterioplankton cells (Lee
and Fuhrman, 1987; Gundersen et al., 2001), which typically have
C:N:P close to the Redfield Ratio (Gundersen et al., 2002). Here,
we only used samples from the upper 100 m of the water column,
representative of an average mixed layer (Kara et al, 2003)
and excluded samples with POP concentrations inferior to the
reported detection limit of 5 nM. We also removed samples from
coastal waters, which often include a substantial contribution of
allochthonous POM (e.g., benthic, riverine) (Liénart et al., 2018).

When comparing the large-scale temporal variability of in situ
C:P with satellite estimates, we binned the measured C:P data into
10°-latitude increments. At each sampling station, we calculated
the mean C:P in the top 100 m. After this screening process,
we were left with 185 observational points for summer and 111
observational points for winter (Figure 2). We compared the
seasonally averaged, satellite-informed POC:POP with the C:P of
suspended POM spanning from 50°S to 70°N.

To further evaluate the performance of our modeling
framework, we compared our satellite-informed estimates of C:P
to direct POC:POP measurements at the BATS and HOT sites.
The time-series data of POC and POP measurements from these
two stations are included in the global POM database. Here, we
selected data in the top 100 m that were collected between 2003
and 2010 for the “point-to-point” comparison with the satellite
estimates of C:P.

RESULTS AND DISCUSSION

Large-Scale Seasonal Variability in
Phytoplankton C:P

Combining the estimates of growth rate, ChLCppy, and P
limitation can help determine the seasonal variability in rc.p
(Figure 3). The satellite-informed rc.p is highest in the stratified
oligotrophic gyres and lowest in the higher-latitude, seasonally
stratified seas and equatorial upwelling regions, consistent with
existing field observations (Martiny et al., 2013a). Both the CAFE

(Figures 3A-C) and VGPM-informed r¢.p (Figures 3D-F) show
elevated rc.p in the higher-latitude region during the summer
months compared to the winter months as ocean warming
enhances stratification and phytoplankton becomes P-limited.
The increase in light availability during summer, shown by a
decrease in Chl:Cpyyyo, also helps in increasing rc.p at higher-
latitude regions.

Although the spatio-temporal pattern of rc.p is consistent
across four satellite-informed cases for high-latitude regions
and equatorial regions (Supplementary Figure 3), the range
of the four satellite rc.p estimates is large in the subtropics
(Figures 3G,H). This larger range reveals a relatively large
uncertainty in rc.p in the subtropics. Here, we used range
instead of arithmetic standard deviation as a measure of
uncertainty because the ratios by their nature do not follow
normal distributions (Isles, 2020) and the sample size is small
(n = 4). We show the uncertainty of rc.p expressed in terms of
geometric standard deviation from the mean in Supplementary
Figure 5. Note that the spatial pattern of geometric standard
deviation (Supplementary Figures 5A,B) is very similar to the
spatial pattern of range (Figures 3G,H). Considering that the
oligotrophic gyres tend to be P-limited throughout the year and
the change in Chl:Cppyyo is small, large uncertainties in u are
predominantly responsible for this uncertainty in rc.p in those
regions of the global ocean. While the CAFE-informed r¢.p shows
a noticeable decrease during summer by ~100-200 molar units
(Figure 3C), VGPM-informed rc.p shows an increase during
summer (Figure 3F).

In theory, rc.p should decrease as growth rate increases,
and the fractional change in rc.p should be highest for low
growth (Droop, 1974; Burmaster, 1979; Goldman et al., 1979;
Morel, 1987). In other words, a small change in growth rate
should lead to a large change in rc.p when the growth rate is
low. Multiple culture experiments support this prediction, where
phytoplankton growing at a high rate is both P-rich and has
reduced stoichiometric flexibility (e.g., Hillebrand et al., 2013).
If we assume P-limited growth condition and we replace growth
rate with POy concentration, this pattern would also be true
for POy vs. rc.p where phytoplankton growing under low P
environment are frugal (high rc.p) and more stoichiometrically
flexible (Galbraith and Martiny, 2015; Tanioka and Matsumoto,
2017, 2020a). As subtropical regions are strongly P limited and
the growth is suppressed (Wu et al., 2000; Martiny et al., 2019),
this reasoning can explain the elevated rc.p with large uncertainty
and sensitivity.

Figure 4 illustrates how rc.p varies under varying growth
rates and Chl:Cphym in specific regions. Contour lines (isopleths)
representing the theoretical values of rc.p are predicted by
the Inomura phytoplankton stoichiometry model for different
combinations of x and Chl:Cppyy, under the P limited scenario.
In order to illustrate the regional variability, we superimposed
monthly averaged, CAFE-informed rc.p in four oceanographic
regions. These four regions are: (1) the high latitude bloom-
forming North Atlantic Ocean (NAT: 25°W - 35°W, 45°N -
50°N), (2) the North Atlantic subtropical gyre (NASG: 25°W-
70°W, 25°-35°N), (3) the South Pacific subtropical gyre (SPSG:
90°W-150°W, 15°S-40°S), and (4) the Equatorial upwelling
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FIGURE 2 | Geographical locations of suspended POM sample stations used in this study. Red dots represent samples collected in summer months
(July-September in the Northern Hemisphere, January-March in the Southern Hemisphere), and blue dots represent samples collected in winter months
(January-March in the Northern Hemisphere, July-September in the Southern Hemisphere). Dashed boxes delineate regions where the seasonality of
satellite-informed estimate is examined (NAT, North Atlantic Temperate; NASG, North Atlantic Subtropical Gyre; SPSG, South Pacific Subtropical Gyre; EQU,
Equatorial Upwelling regions).

CAFE

VGPM Composite

A Summer

D r.,: Summer

G Range: Summer

600
500
400
300
200
100
Ho

600
500
400
300
200
100
o

600
400
200
0
-200
-400
-600

-200
-400

median rc.p.

FIGURE 3 | Global climatology of summer and winter average CAFE-informed rc.p (A=C) and VGPM-informed rc.p (D-F) in the surface mixed layer. rc.p is in molar
units. Panels (G,H) show the maximum range in the four satellite-informed r¢.p for summer and winter, respectively. Panel (I) shows the seasonal change in

-600

region (EQU: 5°S - 5°N), following Westberry et al. (2016).
The size of the symbol indicates the extent of P limitation.
“P-replete” symbolizes <20% of grid boxes in the region are
P-limited, “Moderate” symbolizes 20-80%, and “Deplete” >80%
based on the seasonally varying SST. The numbers represent the
month of the year.

There are two key features in this plot. The first is that different
oceanographic regions occupy a unique space. For example,
North Atlantic (NAT) experiences large seasonal variability in
growth rate, P limitation, and rc.p, while EQU experiences
small seasonal changes. The second important feature is that the
contours representing rc.p become increasingly close together

as the growth rate decreases. This reiterates the fact that a
small change in satellite-derived growth rate can lead to a large
change in rc.p in chronically nutrient-deplete subtropical gyres
(NASG and SPSG).

Light availability also affects rc.p as light modulates the cellular
allocation between light-harvesting apparatus, biosynthetic
apparatus, and energy storage reserves (Falkowski and LaRoche,
1991; Moreno and Martiny, 2018). The Inomura phytoplankton
stoichiometry model predicts that increased light limitation
increases cellular allocation toward photosynthetic proteins
and decreases allocation toward C-rich biosynthetic proteins.
Therefore, an increase in Chl:Cyyy (ie., increased light
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FIGURE 4 | Influence of growth rate (x) and Chl:Cphyto On re.p under P limitation. Colored points represent seasonally averaged CAFE-informed Chl:Cppyo, 1, and
re.p for four oceanographic regions (NAT, North Atlantic Temperate; NASG, North Atlantic Subtropical Gyre; SPSG, South Pacific Subtropical Gyre; EQU, Equatorial
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>80%). The numbers next to the markers correspond to the months of the year. Contour lines show C:P calculated under varying u and Chl:Cppyto with

limitation) will lead to a decrease in rc.p at a constant growth
rate (Figure 4).

As expected, satellite-derived Chl:Cyy, shows maxima during
winter months (January-March in Northern Hemisphere and
July-September in Southern Hemisphere) due to decreased
exposure to sunlight (Figure 4). As shown in previous modeling
studies, the effect of light on r¢.p is disproportionally large when
the growth rate is low, and an increase in Chl:Cpy 4, can effectively
reduce rc.p during winter months (Arteaga et al., 2014; Talmy
etal., 2014). Compared to the growth rate, however, the effect of
light limitation on rc.p is weak, as shown by the vertically steep
contour lines in Figure 4. Indeed, a meta-analysis on published
laboratory studies has shown that the effects of light on rc.p are
significantly weaker than that of macronutrients and temperature
(Tanioka and Matsumoto, 2020a).

Large-Scale Seasonal Variability in Bulk
POC:POP

By combining the satellite-informed phytoplankton C:P and
the community composition measured by Cypy;:POC, we can
determine POC:POP of the bulk POM (Figure 5). Similar to
rc.p, bulk POC:POP ratios are highest in the gyres compared
to the equatorial upwelling and high-latitude regions. Globally,
satellite POC:POP is higher during the summer compared
to the winter. This seasonal trend can be explained by the
higher Cppy1o:POC during summer than winter (Supplementary
Figure 2I). This makes intuitive sense because the phytoplankton

biomass concentration is kept low in the mixed layer during
winter months due to the deepening of MLD, strong light
limitation, and zooplankton grazing (Behrenfeld and Boss,
2018). As C:P of P-limited phytoplankton is higher than C:P
of non-algal organic matter, increase in Cppy:POC during
summer leads to an increase in POC:POP. The most noticeable
increase is visible in the South Pacific Subtropic Gyre, where
summertime POC:POP is higher than the winter value by
~200 as Cppyo:POC increases by ~50% during summer
compared to winter. The range (uncertainty) in satellite-
informed POC:POP (Figures 5G,H) is much smaller compared
to that of phytoplankton C:P (Figures 3G,H), and all the
four satellite-informed estimates agree on a general increase in
POC:POP during summer compared to winter (Figure 5I and
Supplementary Figure 4).

Figure 6A illustrates how the bulk POC:POP is non-linearly
related to the community composition (measured by Cppy0:POC)
for a given change in rc.p. We observe from the satellite-derived
data of Cypyro and POC that Cppyo:POC is, on average, ~30%
and rarely exceeds 50% of the total POC pool. The increase
in POC:POP with respect to increase in rc.p reaches a plateau
quickly when Cpp,yo:POC < 30%. In other words, the community
dominance of non-algal POM over algal POM can effectively put
a cap on the increase in bulk POC:POP, even when phytoplankton
C:P is very high (e.g., NASG and SPSG). This top-down control
on POC:POP due to community composition also explains the
low uncertainty in the estimates of satellite-informed POC:POP
despite the large uncertainty in satellite-informed r¢.p.
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represent seasonally averaged POC:POP for four oceanographic regions, as in Figure 2. Both Panels (A,B) highlight the importance of top-down control on

POC:POP by Cppyto:POC.

Figure 6B is an alternative way of illustrating this top-
down control on bulk POC:POP by community composition.
Contour lines representing POC:POP based on our simple
two end-member algal/non-algal mixing model are widely
separated when Cppyo:POC is low, indicating that POC:POP
is relatively stable when Cppy;:POC is relatively low. On the
other hand, when Cppy;,:POC is high, contour lines become
closer together, and bulk POC:POP quickly approaches rc.p.
If we plot monthly averaged estimates of satellite-derived
bulk POC:POP under different regions, two distinct clusters

become apparent. Subtropical gyres (NASG and SPSG) are
characterized by high rc.p and Cppyyo:POC resulting in sizeable
seasonal variability in bulk POC:POP. On the other hand, NAT
and EQU experience a smaller seasonal change in POC:POP
as the Cppy1o:POC remains relatively constant around 15%.
The take-home message from Figure 6 is that a community
composition can exert a strong top-down control on POC:POP
even when phytoplankton C:P is much higher than the Redfield
ratio. Indeed, multiple studies emphasize this point, including
recent studies on C:N (e.g., Talmy et al, 2016), N:P (e.g,
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Sharoni and Halevy, 2020), as well as the original study by
Redfield et al. (1963).

Model-Data Comparison

To assess our model predictions, we first compare our seasonally
resolved zonally averaged satellite POC:POP estimates with
measurements of sampled POC:POP (Figure 7). Globally, both
the satellite estimates and the in situ observations show higher
POC:POP in summer (Figure 7A) than in winter (Figure 7B).
This increase during summer is likely to be driven by a change in
community composition, with an increased Cypyzp:POC during
summer. At high-latitudes, an increase in phytoplankton C:P
also drives an increase in POC:POP during summer. Therefore,
the combination of the change in community composition
and phytoplankton C:P is responsible for the increased bulk
POC:POP during summer.

Although it is promising that our predictions are mostly
consistent with observations, there are two distinct regions
where the satellite POC:POP and the observations do not agree.
The first is the equatorial region during summer (Figure 7A),
where satellite-informed POC:POP is around 150 but observed
POC:POP is close to the Redfield ratio of 106. This discrepancy
stems from the fact that our method likely overestimates the
degree to which the equatorial regions are P-limited, which in
turn leads to an overestimation of the phytoplankton C:P to as
high as ~200. In addition, our phytoplankton C:P model is tuned
to data for Synechococcus. In reality, fast-growing opportunistic
eukaryotic plankton such as diatoms and other eukaryotes
with lower C:P are more predominant in the equatorial region
(Arrigo, 2005; Martiny et al., 2013a; Kostadinov et al., 2016).
The second region where we observed a noticeable difference
between satellite estimates and in situ observation is around 20°S
during winter (Figure 7B). Given the paucity of observations
in this region, however, (n = 12 and 8 for summer and winter,
respectively), it is challenging to determine the exact cause for
the increase in POC:POP during the winter.

To further assess our model capability, we compare time-
series data of suspended POC:POP in the top 100 m from BATS
and HOT with satellite estimates in the seasonally mixed-layer
depth from 2003 to 2010 (Figure 8). It is important to note
that suspended POC:POP is a “point” value reflecting elemental
composition at a particular location and at a particular time,
whereas the satellite-informed POC:POP is a monthly and area-
averaged value for a 3-by-3-pixel area around the BATS and HOT
stations. We use the median satellite-informed phytoplankton
C:P and POC:POP values from four satellite products (CAFE,
VGPM, Eppley-VGPM, and CbPM) for comparison with the
data. Here, we use the median rather than the mean as
the measure of average C:P across satellite products because
the ratios by their nature do not follow normal distributions
(Isles, 2020).

In general, measured POC:POP ratios lie between our satellite
estimates of phytoplankton C:P and bulk POC:POP ratios at both
BATS and HOT (Figures 8A,B). Measured POC:POP, on average,
is closer to the satellite-informed POC:POP than to satellite-
informed rc.p (Figures 8C,D). This makes intuitive sense because
both satellite estimates (Figure 8E) and in situ observations

(Casey et al., 2013) show that the biomass of picocyanobacteria
(Prochlorococcus, Synechococcus) only contributes to <~40% of
the POC pool in the gyres. Qualitatively, our satellite estimates of
bulk POC:POP seem to capture the general seasonal variability,
with POC:POP being lowest in the winter and highest in the
summer and the fall. Also, both the satellite-informed and
the observed C:P are lowest in the late winter as a result of
deep mixing and increased supply of nutrients, which cause
phytoplankton C:P to decrease (Singh et al., 2015).

The amplitude of POC:POP variability is greater at BATS
than at HOT, reflecting larger temporal variability in Cypy0:POC
(Figure 8E). Phytoplankton carbon biomass can reach as high
as 60% of the total POC pool at BATS during the growing
season while the peak Cy,,,:POC at HOT does not exceed ~40%.
This difference between the two sites may reflect the fact that
the North Atlantic is a bottom-up ecosystem, while the North
Pacific is a top-down ecosystem (Steele and Henderson, 1992;
Siegel et al., 2016). Satellite-informed bulk POC:POP, however,
underestimates the observed POC:POP by ~50 on average at
BATS (Figure 8C) and ~20 at HOT (Figure 8D), and this may
reflect the fact that non-algal organic matter has a higher ratio
than Redfield of 117. Also, our satellite-informed estimate may
not be fully capturing episodic temporal changes in C:P, for
example, during the spring bloom when phytoplankton C:P is
expected to increase rapidly (Polimene et al., 2015).

The satellite-informed estimates of phytoplankton C:P and
POC:POP presented here are still preliminary and, therefore,
should not be treated as accurate estimates. Nevertheless, even
with this simple two-end-member mixing model approach,
we can make a testable hypothesis regarding the underlying
mechanisms causing the observed temporal change in suspended
POC:POP. First, to model temporal shifts in POC:POP, we need
to consider the contribution that non-algal organic matter makes
to POM and the change in phytoplankton C:P. Our results
indicate that phytoplankton C:P alone leads to a considerable
overestimation of bulk POC:POP, regionally and globally.
Second, our satellite-informed bulk POC:POP can capture the
seasonal trend in POC:POP, which shows elevated values during
summer compared to winter. We are optimistic that with
more sophisticated parameter calibration of the phytoplankton
stoichiometry model and non-algal C:P, it will be possible
to predict the temporal variability of POC:POP accurately
in future studies.

Caveats, Limitations, and Future Needs

Satellite estimates of phytoplankton and bulk C:P have
considerable uncertainty in the subtropical gyres during summer.
This mainly stems from the fact that satellite-derived growth-
rate estimates are considerably different depending on which
NPP product is used. In the future, we also need to conduct
careful sensitivity analyses of how different satellite-based
algorithms of Chl, Cppyto, and POC as well their depth-dependent
changes would affect satellite-informed estimates of ecosystem
stoichiometry. For example, a recent study suggests a substantial
shift in POC:POP from the surface to DCM in the Indian Ocean
during summer (Sahoo et al., 2020). It is inherently challenging
to characterize C:P accurately in subtropics with phytoplankton
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stoichiometry models (Garcia et al., 2020) as phytoplankton
turnover happens quickly on a time scale of days (Malone et al.,
1993). For a complete understanding of the temporal variability
of phytoplankton and bulk C:P, measurements of phytoplankton-
specific C:P using high-throughput flow cytometry (Graff et al.,
2015; Kirchman, 2016) or single-probe mass spectrometry
(Sun et al., 2018) would be necessary. Linking metagenomics
data with the phytoplankton stoichiometry model and remote
sensing may also help improve C:P estimates in the subtropics
(Garcia et al., 2020).

In this study, we used parameters for Synechococcus,
a cosmopolitan phytoplankton species with a broad
biogeographic distribution that extends from tropics to
subpolar regions (Flombaum et al., 2013; Berube et al., 2018).
This parameterization should be representative of another
picocyanobacterium, Prochlorococcus. Together, Prochlorococcus
and Synechococcus are responsible for roughly a quarter of
the total ocean net primary productivity (Flombaum et al,
2013). Given that the current satellite-derived products cannot
easily resolve size-partitioned phytoplankton physiologies
such as growth rate and ChLCppyyp, it seems reasonable
to tune the phytoplankton stoichiometry model to these
most common phytoplankton types. With new advances in
satellite instrumentation, such as the development of reliable
hyperspectral ocean color measurements (Werdell et al., 2018;
Schollaert Uz et al., 2019), we may be able to better resolve the
size-specific C:P of different phytoplankton functional types. This
would enable us to fully capture the spatio-temporal variability of
community phytoplankton C:P, particularly in nutrient-rich
upwelling and coastal regions where nano- and micro-
phytoplankton are more dominant than picophytoplankton
(Kostadinov et al., 2016).

We inferred the P limitation of phytoplankton by comparing
satellite-based SST and the previously compiled mask of nutrient
depletion temperature. Although our method can provide a first-
order pattern of P limitation, this method cannot resolve the
degree to which phytoplankton are P-stressed. In other words,
we cannot determine whether phosphate is the primary or
secondary limiting nutrient for phytoplankton growth (Moore
et al, 2013). Also, a recent study suggests that we cannot
determine for sure that phytoplankton is P-limited even when
the observed phosphate concentration is below the detection
limit (Martiny et al., 2019). Accurate determination of nutrient
concentration from space is inherently challenging (Goes et al.,
20005 Steinhoff et al., 2010; Arteaga et al., 2015), and this is one
of the major bottlenecks for accurately probing phytoplankton
nutrient limitation from space. Although there are no standard
protocols or algorithms currently available, we may be able
to accurately retrieve surface nutrient concentrations by using
advanced statistical and machine learning techniques applied to
satellite-retrieved sea surface salinity, temperature, and remote-
sensing reflectance (e.g., Wang et al., 2018).

A fundamental assumption made when predicting bulk
POC:POP is that C:P of non-algal organic matter is constant
with a Redfield Ratio of 117. There is a consensus from
previous marine and freshwater studies that C:P of heterotrophs
is generally lower and more homeostatic (relatively constant)

than that of phytoplankton (Elser and Urabe, 1999; Persson
et al, 2010). The bulk POM, however, can be modified
due to decomposition (Schneider et al., 2003), viral shunt
(Jover et al., 2014), preferential remineralization (Shaffer et al.,
1999), as well as the interplay between the dissolved and
particulate pools. Measuring the elemental composition of
separate constituents of organic matter should better help us
constrain the most appropriate end-member C:P for non-
algal organic matter. Alternatively, we can mechanistically
predict C:P of bulk POM by coupling the phytoplankton
stoichiometry model with models of prey-predator interaction
and decomposition (e.g., Anderson et al., 2005; Butenschon et al.,
2016; Tanioka and Matsumoto, 2018).

CONCLUSION

We showed that it is possible to determine spatially and
temporally coherent patterns of the C:P ratios of a single class of
marine phytoplankton and bulk POM using only remotely sensed
information. In principle, the same method can be extended to
the C:N ratio, which together with the C:P ratio can yield the N:P
ratio. The results shown here should not be treated as accurate
estimates of upper-ocean C:P but rather as a feasibility study
that can benefit from more accurate remotely sensed estimates
of growth rate and from a better understanding of the links
between growth rate and stoichiometry for different size classes
of marine phytoplankton. The number of measurements of the
C:P ratio of individual POM components (i.e., algal and non-algal
components) is currently insufficient to validate our estimates.
However, our main conclusion highlighting the importance of
community composition in controlling bulk POC:POP does
not depend on the accuracy of stoichiometry estimates. This
conclusion has important implications for estimating carbon
and phosphorus fluxes to the deep ocean and for the trophic
transfer to higher organisms. Indeed, if the POC:POP of exported
POM is controlled by community composition rather than
phytoplankton C:P, we would not expect large “stoichiometric
buffering” of carbon export under climate-change scenarios as
proposed by previous studies (Teng et al., 2014; Galbraith and
Martiny, 2015; Tanioka and Matsumoto, 2017; Matsumoto et al.,
2020a). However, the effects of change in phytoplankton C:P
will become more critical for carbon export if the total % of
phytoplankton in organic matter increases, or if the C:P of the
non-algal component increases. We hope the questions raised
here will foster collaborative work combining satellite remote
sensing, field sampling, and numerical modeling specialists to
improve our ability to predict organic-matter dynamics and
reduce uncertainties in our projections of the future carbon cycle.
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