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An overview of continuous and discrete phasor analysis of binned or time-
gated periodic decays

X Michalet!
Department of Chemistry & Biochemistry
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ABSTRACT

Time-resolved analysis of periodically excited luminescence decays by the phasor method in the presence of time-gating
or binning is revisited. Analytical expressions for discrete configurations of square gates are derived and the locus of the
phasors of such modified periodic single-exponential decays is compared to the canonical universal semicircle. The effects
of IRF offset, decay truncation and gate shape are also discussed. Finally, modified expressions for the phase and modulus
lifetimes are provided for some simple cases. A discussion of a modified phasor calibration approach is presented.
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1. INTRODUCTION

The analysis of luminescence decays remains an active research topic [1-3]. Experimentally, information on the tem-
poral dependence of fluorescence, phosphorescence and other types of luminescence decay can be obtained by either
frequency-modulated or pulsed excitation. Periodic pulsed excitation-based approaches result in time-resolved recordings
of the periodic emission intensity, which are fitted by a decay model, typically multi-exponential, but not necessarily [4-
6]. An alternative, and in many ways simpler approach, phasor analysis [7-9], has recently emerged as a popular method.

Signals recorded with TCSPC (time-correlated single-photon counting) hardware can, after proper correction, be de-
termined with exquisite precision and considered quasi-continuous. In this case, the phasor z of such decays can be defined
as an integral and possess the remarkable property that the phasor of the recorded decay is identical to that of the (un-
known) emitted signal up to a rotation and/or dilation in the complex plane [10, 11]. The situation arising when sparse
(instead of quasi-continuous) sampling or lower photon arrival time resolution (encountered for instance in time-gated
data or when data is binned with lower resolution) are encountered, is a bit different and theoretical results about it are
limited [12-16]. Time-gating scheme involving overlapping gates, or non-adjacent gates bring their own set of complica-
tions.

More generally, partial coverage of the laser period (which correspond to ‘truncated’ decays) or situations where the
excitation pulse is offset with respect to time 0 in the recording time window, which are common experimentally, further
affect phasor calculation, whether one deals with quasi-continuous (TCSPC) or discrete (time-gated or integrated) signals.
As new detectors with non-standard gating schemes are introduced, and because results obtained with various modalities
need to be quantitatively compared [17], studying modifications to phasor analysis and the interpretation of its results in
these non-canonical situations appears timely.

This article presents results for the phasor of periodic single-exponential decays (PSEDs), but extension to linear
combinations of PSEDs or more general decays is straightforward and can be found in [18].

The article is organized as follows: Section 2 introduces basic concepts and definitions regarding gated (as well as
ungated) decays encountered in luminescence lifetime experiment involving periodic excitation. Section 3 discussed
phasor analysis concepts, including properties of the phasor of convolution products, in particular phasor of decays with
finite sampling (or ‘discrete’ phasor). It also reviews basic properties of the loci of phasors of PSEDs (‘Single-Exponential
Phasor Loci’ curves or SEPL). In Section 4, the effect of a decay offset, decay truncation on the phasor of PSEDs are
studied. We also briefly address the influence of a non-square gate shape on previous results. Section 5 then examines
extensions of the standard phase and modulus lifetime definitions for some of the cases discussed in the previous sections.
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Section 6 examines modifications to the concept of phasor calibration in the different situations described previously.
Finally, the conclusion summarizes the concepts introduced in the article.

This article assumes some conceptual familiarity with phasor analysis, which has been discussed in recent reviews
(for instance ref. [19, 20]). It is an abridged version of a recently article, to which the interested readers are referred for
details [18].

2. TIME-GATED PERIODIC DECAYS
Conventionally, luminescence decays are described as the response to a single excitation pulse, x, (t) . Starting from
the theoretical decay resulting from a hypothetical Dirac excitation pulse, F; (t), the emitted luminescence decay ¢(f)

resulting from the single pulse x, (t) reads as the convolution product of the former two:

a0 = [ X Fy (- uydu = x, % F, (£) (1

—o0

Experimentally, however, the sample is subjected to an infinite series of periodic excitations, which can be described
by the T-periodic summation:

n(t)
Xo.r (1) = z X, (t—kT) (2)

f—s

where n( t) = |_t/ T is the truncation index ensuring that excitations posterior to the current time point are ignored and T
is the excitation period. Correspondingly, the emitted signal is given by the T-periodic summation of Eq. (1):

by (0= 3. e,(t—KT) =3, #Fy () =5, 2, (1) 3)

k=—0

where we have introduced the cyclic convolution product:
T

xo,T?E),T (I)Z'[du Xo,r (H)E),T (t_”) “4)
0

The emitted signal is then detected by a detector and processed by some electronic hardware, whose characteristics
can be both combined into an electronic response function £ (t)( convolution product of the detector and processing

response functions), equal to the signal that would be recorded in response to a hypothetical incident Dirac signal. The
resulting signal is:

Sr(f)=E*é‘o,r(f)=Er;‘80,r(f)=1r’;E),r(f) %)
which introduces the T-periodic instrument response function (IRF) of the whole setup, 1, (t) :
1,(t)=E, *X, (1) (6)

Time-gating or binning can be considered as being part of the processing performed by the electronics, or when
needed, treated as a separate process. In that case, defining the gate (or bin) function T, (1)as the effective detection
efficiency of the instrument over the window [s, s+W]:

=0 ift<s
T,, @) 1€]0,1] if els,s+W] ™
=0 ift>s+W

the gated (or binned) signal is given by:
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Spy ()= T,y (S (0)dt =T, 5, (1) ®

where we have introduced the mirrored gate function:
r,(s—0)=T,, (1) )
Equations (1)-(9) can be used to handle most situations of interest and are applicable whether one is interested in
discrete or continuous recording. Their derivation and further details can be found in ref. [18]. As an illustration, Fig. 1
shows an example of periodic single-exponential decay (PSED, = 3.8 ns) resulting from a 7= 50 ns periodic excitation
by a single-exponential source (7 = 0.1 ns) and recording by a time-gated detector with a square gate width W = 20 ns.

Similar signals can be easily simulated using the Phasor Explorer software described in ref. [18] and freely available online
[21].

=== T=147 ns, 3.8 ns Decay
——W =6 ns, 5= 20 ps, Gated 0.1 ns Decay
——W =6 ns, 5= 20 ps, Gated 3.8 ns Decay

1.0 ( L0.8
0.8
L 0.6
0.6
E(t) ] 0.4
S(t,wW)
0.4 4
1 \ 0.2
0.2 4 \
] k = i
0.0- Tire-e- L 0.0
-2 0 2 4 6 8 10 12 14 16
t {ns)

Fig. 1: Gated decays (z; = 0.1 ns, representing the equivalent of an IRF, and 7> = 3.8 ns, laser period: 50 ns) with gate width
W = 25 ns and gate separation 6 = 500 ps, corresponding to settings used in SwissSPAD 2 measurements performed in
[16]. The time-gated decay (red) is essentially identical to the ungated decay (dashed, black), except at the end of the
period where the rise time of the time-gated decay is replaced by a mirror image of the decay, of width = 20 ns.

3. PHASOR OF PERIODIC DECAYS
3.1. Continuous decays

Phasor analysis has been discussed extensively in the literature [7, 20, 22, 23]. We will therefore keep its presentation
to a minimum, putting particular emphasis on a formalism revealing the underlying periodic nature of the signals being
analyzed.

It is convenient to combine the two components g and s of the phasor representation of a signal S (¢) into a single

complex number z = g + is:

j dt S(t) e

2[81(/) = (10)

) TdtS(t)
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where fis the harmonic frequency and i is the complex root of -1. Because a signal is generally defined for # > 0 only, the
integral lower bound is effectively 0, but the above expression has the merit to connect explicitly phasor and Fourier
transform. Eq. (10) can be rewritten in term of the 7-periodic summation S7 of S as:

T
[ars, ()¢

2IS1(f) =2[8,1(f) = — (0
[ats, ()

The “cyclic” phasors (with a ‘C’ below the phasor symbol z, a notation which will drop henceforth, as it will be
implicit when dealing with the phasor of periodic functions) computed at the various harmonics f, = n/T, are therefore
related to the Fourier series coefficients of St.

A useful property resulting from this connection is that the cyclic phasor of the convolution product of two T-periodic
functions fr and gr is equal to the product of their cyclic phasors (the harmonic f has been dropped from the notation for
simplicity):

2| frrer | =[]z ler] (12)

From Eq. (5), it follows that the phasor of a recorded decay is the product of the IRF’s phasor and that of the “pure” decay,
that is the decay which would be observed with a T-periodic Dirac comb:

AR AR S (13)

This identity is of course at the origin of the well-known calibration procedure, to which we will return in Section 8.
3.2. Discrete decays

So far, we have assumed that the different functions are known at all time points ¢ within the period 7. While this is a
good approximation for decays measured with high temporal resolution TCSPC hardware, binning, or in the case of time-
gated integrating detectors, acquisition duration constraints, can limit the number N of samples per period that are available
for analysis. In these cases, the integrals of Eq. (11) are replaced by finite sums and the definition of what we will call the
discrete (cyclic) phasor is given by:

N
=25 (1, )¢ ZS( ) (14
p=1
where the N sampling points #, are generally equidistant, ¢, —¢, =T /N, p=1..N and represent the start time of
the bin or gate.

The main difference with the continuous definition (11) is that the discrete phasor of a convolution product is generally
not equal to the product of the individual discrete phasor, with obvious consequences for the calibration process commonly
used in phasor analysis. This is most obvious when looking at some practical examples, as done in the next subsections.

3.3. Some examples in the continuous case

One of the hallmarks of phasor analysis is the special role played by single-exponential decays. We will denote a
normalized single-exponential decay with time constant zby A _ (z) and its 7-periodic summation by A_, (t) The continuous

phasor of A_ (z), equal to the continuous cyclic phasor of A (t)is given by the well-known expression (in which we have

dropped the mention of frequency fin the notation for the phasor z for simplicity):

_ _ 1 _ 1+2xft (13
(A ]=¢ (e 1-i2zft 142z f7)
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The location of their phasors (7 [0,00[) is a half-circle of radius 2, centered at z = }%, referred to as the universal semi-

circle. Using the convolution rule (Eq. (12)) or by direct calculation, it is straightforward to compute the phasor of PSEDs
convolved with a PSED IRF (time constant 7):

2| Ayt =4, (70)¢, () (16)

Likewise, the phasor of time-gated PSEDs computed with a square gate of width W is given by the following expres-
sion:

[y ehs =2 [T00, 06, () = Mo, (0)

17
Oy =W 1n
M, = sin @,
Pw

where HW,T is the mirror-image of a square gate of width W.

In both cases (and in fact, in all cases), the phasors of these PSEDs are the products of a constant (complex number)
by the standard functional form given by Eq. (15). In other words, the locus of the continuous phasors of PSEDs is always
a half-circle, but with a radius generally different from '2 and rotated about the origin. Of course, calibration (Section 8)
will bring these phasors back to the universal semi-circle.

3.4. Some examples in the discrete case

The simplest case of discrete phasor is encountered for “pure” PSEDs (Dirac IRF, no gating or binning) and corre-
sponds to a continuous decay sampled at a few discrete points, a situation analogous (but not exactly identical) to that
encountered with TCSPC data acquired with high timing resolution (the relevant formula for binned data, which TCSPC
data is, is discussed next). A simple calculation yields:

1-x(¢)

zy| A, |= T)=—"7"-""—
vlAer )= )=, (18)
x(r)=e"a=2nf0
This expression is clearly different from that in the continuous case (Eq. (15)) and describes an arc of circle, noted
L, » where N is the number of sampling points. Note that, although we dropped its mention to simplify notations, it also
depends on the harmonic frequency f. Its center location (g., s.) and radius r are given by:
1
g. ==, s.=——tan(a/2)
2 2 (19)
e 1
2 |cos (af 2)|

L, converges towards the universal semicircle when /N —> o0 as expected. By extension, we will designate the universal

semicircle by £ . A few examples of these loci are shown in Fig. 2.

The next example follows in the steps of that studied in the continuous case, namely the discrete phasor of PSEDs
with a PSED IRF. The calculation yields:

Zy |:ATO,T >;Ar,r:| = emZN [ATO,T]ZN [AT,T] (20)

where a has been defined in Eq. (18). Similarly to the continuous case, the discrete phasor of a PSED in the presence of a
PSED IRF is equal to the discrete phasor of the “pure” PSED, z [ A, T} , multiplied by a constant complex number: its

locus is therefore a rotated, scaled arc of circle, and calibration (Section 8) will bring phasors of PSEDs back to the corre-
sponding L, -
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Fig. 2: Locus of discrete phasors of single-exponential decays for different choices of N, the number of sampling points.
and n, the phasor harmonic. (f= 1/7). The extremum of these curves (indicated by a dot of the same color) is located at g
=1 and is attained for different values of 7 expressed in units of t*, = 7/2zn. Notice that for n = 1, N =2 results in a
straight line.

Unfortunately, the similitude between the continuous and discrete phasors ends here. Indeed, the calculation of the
discrete phasor of a square-gated PSED (with gate width W) yields a function whose analytical form has no simple geo-
metrical description, except in the special cases where the gate width 1 is proportional to the data point separation 6, i.e.
when W =0, q integer. In those cases, we find that:

Zapn[Aer ] =2 [T 28y [ =72 [, 16,0 (7) 1)

where the discrete phasor of a square gate z,, [ﬁw T} has a simple expression [21]. The important fact is that this phasor
is equal to a (complex) constant multiplied by the canonical discrete phasor of PSEDs, ¢ N (r), which shows that here
again, the locus of discrete phasors of PSEDs is a rotated, scaled arc of circle.

Most interestingly, for binned data (¢ = 1), the discrete phasor given by Eq. (21) is equal to the discrete phasor of
PSEDs. In other words, binning is equivalent to discrete sampling in phasor analysis.

In the general case, the situation can get quite complicated, as illustrated in Fig. 3, which shows other cases than the
special ones just discussed.

4. THE EFFECTS OF DECAY OFFSET, DECAY TRUNCATION AND GATE SHAPE

The ideal situations described in the previous sections are in practice rarely encountered. Oftentimes, recorded decays
are affected by multiple experimental constraints. For instance, it is rare that the IRF location corresponds to time point 0
(and in fact rarely desirable for multiple reasons independent from phasor analysis). In other words, decays are usually
offset with respect to the time axis. This turns out to have a trivial effect on the calculated continuous phasor, but in general,
a non-trivial one on discrete phasors. Another frequent departure from the ideal situation is decay truncation, i.e. a full
period recording is not available because of user choice (e.g. to speed up acquisition), or because parts of the recording
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Fig. 3: Locus of discrete phasors of square-gated PSEDs. Ly, for a constant number of gates N = 10 (and gate step 8 =
T/N, T=12.5 ns, f'= 1/T) and varying gate width. For W < 6, Lyw; is independent of W and equal to Ly (solid red circular
arc). For We 16, 26[ (long dash curves), all Ly share a common z(0) and z(o0) but only Ly for W= 6 (solid red curve)
is a circular arc. Similarly, for W e [20, 36[ (short dash curves) and W € [36, 40[ (dotted curves), the different Ly; share
a common z(0) and z(0) in each group but only Ly/w; for W= 26 (short red dash curve) and for W = 360 (red dotted curve)
are circular arcs.

are affected by artefacts and need to be “cut off” to keep only the reliable parts. This also affects the calculated phasor, but
can in some cases be easily compensated for by a specific choice of harmonic frequency. Finally, in the case of time-gated
data, the hypothesis of a square gate might be inappropriate, and the effect of this difference on the calculated phasor
deserves attention. This section will briefly examine these different topics, the reader being referred to ref. [18] for further
details.

4.1. Decay offset

A T-periodic decay with offset #, SmO (t) , can be rewritten in terms of the offset-free T-periodic decay S, (t) as:

Sr, (1) =8 ((1=1,)[T]) (22)

where the [ 7] notation indicates the modulo operation. It is easy to verify that in the case of continuous phasors, the effect
of this modification is a mere rotation by an angle 2 7ft):

Z[STVJ =z[S, e (23)

In the case of discrete phasors, the situation is, as expected, subtler. In the simplest case of PSEDs (Dirac IRF), the discrete
phasor is given by:
ia’— 0 -‘
v [Arm ] = (r)e" e (24)

using the definitions introduced in Eq. (18) and the notation [ x | for the ceiling function (the smallest integer larger
than or equal to x). In other words, the discrete phasor of the offset decay is a rotated version of the offset-free decay, but
the rotation also depends on the sample separation € in a nonlinear manner.
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As we go through the different illustrative cases studied earlier (PSED IRF, square-gated PSED), the discrete phasor
of the offset version of these decays takes on more complex expressions (see ref. [18]) for details), which only simplify in
a few cases. For instance, for a PSED IRF, a simple expression is obtained only when the offset is proportional to the
sampling interval &

ty=q0=> 2y [ A, g, ¥A.; =2y (A ]z [ A r, e (25)

which is also a rotated version of the offset-free discrete phasor.
Likewise, in the case of a square gate of width 7 equal to the sampling step 6 (a case relevant to binning situations), and
the offset is proportional to the sampling interval, the discrete phasor of PSED with offset (Dirac IRF) reads:

ZN101 I:AT,T‘ZOJ = gf,N (T)eizmo =2Zy |:AI,T\IO:| (26)

Once again, we find that the discrete phasor of a binned decay is identical to the discrete phasor of a decay sampled at
discrete points, although only when the offset falls on the beginning of one of the bins.

4.2. Decay truncation

A truncated decay is defined over a sub-interval [#,, ;+D] of the full period [0, 7. ¢; is the first time point in the record
and D is its duration. By definition, the corresponding continuous “truncated” phasor is thus:

H+D
_[ dr S, (1)e*"

__h
Z[ST]z,,D ~ 44D

[ ars, (1)

4

@7

This expression can be computed in special cases, the simplest one being that of PSEDs with Dirac IRF, for which the

continuous phasor takes a simple form:
—D/rei27r/D

- l-e 27 f
A ], = @) (28)

This equation doesn’t describe a simple curve, unless fis a multiple of 1/D, in which case Eq. (28) takes the simple
canonical form of Eq. (15), up to a rotation by an angle 2 zft;.
The situation is similar for discrete decays, which are defined at equidistant points #;,..., tvsuch that 0 < ¢; <ty < T
and D = N6. In the case of PSEDs, we obtain:
1_efD/rei27rj'D

B[As] = e, (7) (29)

As in the continuous case, this equation describes a simple curve only if fis a multiple of 1/D, in which case Eq. (29) takes
the simple canonical form of Eq.(18), up to a rotation by an angle 2 zft;.

These results show that in some cases, the choice of a phasor harmonic frequency different from the “natural” n/T
series might be advantageous. Unfortunately, in cases where the IRF is not a Dirac function, or gating is used, the resulting
locus of phasors of PSEDs is in general not a simple curve, although it might sometimes be close to a semicircle (contin-
uous phasor) or an arc of circle (discrete phasor) in some cases. Direct numerical (or sometimes analytical) calculation
should then be used to check its actual shape.

4.3. Gate shape

Although analytical results for square gates can be fairly easily obtained, as illustrated above with a few examples,
experimental gate shapes can depart significantly from this ideal situation. In the continuous case, due to the convolution
rule (Eq. (12)), a gate simply intervenes as a constant (complex) pre-factor in the phasor expression and thus doesn’t
change the nature of the locus of phasors of PSEDs, which remains a semicircle (rotated and rescaled with respect to the
universal semicircle). As should not come as a surprise, following the previous results, the picture is more complex in the
case of discrete decays. Fig. 4 presents a few cases of gate shapes (triangular, sawtooth and reversed sawtooth) by com-
parison with the square gate shape for illustration. As for the effect of truncation, it is therefore recommended to perform
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direct numerical or analytical calculation of the phasor of PSEDs to determine the actual shape of this locus, for instance
using the Phasor Explorer software [21].

B 0.6
1.0 — . R, X
e O Gate 04
—— O-Gated Decay
084  Liovir | eeeee- A Gate
—— A-Gated Decay 024
S 06 A Gate
S 064
= A-Gated Decay s 00-
g 1 Wt ] e A Gate
< 04 —— A -Gated Decay 02
| ‘Cm[a]’ o
024 04 Liogap 2
f’m[a]’ A
0.0~ -0.6 — Loy &
T M T T T T T T T T T N T T T T T T T T T T T T T T T 1
0 10 20 30 40 50 -0.2 0.0 0.2 04 06 08 1.0 1.2 1.4
T(ns) g

Fig. 4: Effect of gate shapes on the discrete phasors. A: 4 gates of width W = 6 ns (square, triangle, sawtooth and reversed
sawtooth, dashed curves) are shown starting at # = 0 within a period of duration 7= 50 ns (=20 MHz). The corresponding
gated-decays for a PSED with 7 = 3 ns are shown as plain curves. Due to the different locations of the maximum of each
gate, the corresponding 7-periodic gated decays exhibit different maxima locations as well as different shapes. This effect
is similar for all PSEDs and therefore results in different SEPL shown in B. B: universal semicircle (L., dashed curve)
and the 4 SEPLs with gate width W = 6 ns for the same number of equidistant gate locations N = 10. While the SEPLs
look fairly similar, noticeable differences exist. Ticks indicate the locations of PSEDs with lifetime 0.1 — 1 in steps of 0.1,
1-10 in steps of 1, etc., with ticks corresponding to 1, 10, and 100 drawn slightly longer.

5. PHASE LIFETIME

One of the common uses of phasor analysis is in estimating the lifetime of decays whose phasor is located on or in
close proximity to the SEPL. For continuous PSEDs, Eq. (15) yields a simple relation between the phasor’s phase ¢ =
arg(z) and the lifetime 7 on one hand, and between the modulus m = |z| and the lifetime on the other [24]:

= tan @
’o2xf (30)
T, = ! 1-m?
27 fm

These relations need to be modified for discrete phasors, based on the corresponding equations derived in the previous
sections. For instance, based on the definition of the discrete phasor of PSEDs with a Dirac IRf (Eq. (18)), a phase and
modulus lifetimes can be computed with:

0
T,=—F
tan o
In coso{lﬁLt H
< —r ang
m<l=rzt, =1, L 31)
a—l - + 0
l<m< cos—‘ =71,=1, tn = 1—m?
2 In ;
Jl—m%osinm sin&
2 2
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where o is defined in Eq. (18).

As discussed in Section 3, the expression for the discrete phasor of gate PSEDs is in general more complex and
therefore, no simple analytical relation between the phase or modulus and the lifetime can be derived, except in the few
cases discussed in that Section, which reduce to the previous case up to a rotation. This does not mean that no relation
exists betweenz and m or ¢, but only that these relations are implicit only, and need to be computed numerically (using
for instance the Phasor Explorer software).

6. PHASOR CALIBRATION

We have mentioned phasor calibration a number of times throughout this article. Due to space constraints, we will
keep its discussion qualitative, and refer the reader to ref. [ 18] for an extended version.

As noted in Section 3, continuous phasor analysis is conceptually simple, as all details of the experiments intervene
as constant (complex) multiplication factors in the final expression of the phasor. In other words, by dividing the final
expression by the product of these constant factors (comprising the IRF’s phasor, which, in its general sense, includes
gating and/or binning), the final “normalized” phasor is identical to that defined in Eq. (15) for PSEDs and equal to the
phasor of the “pure” decay (that is, the decay resulting from excitation and detection by a Dirac comb IRF) in case of other
functions. The standard way this pre-factor or calibration factor is obtained (as the actual IRF might not necessarily be
known), is by using a “calibration” PSED of known lifetime zc, and obtaining the phasor of the IRF as:

(32)

In the previous equation, z[ I %A, T} is referred to as the calibration phasor, or phasor of the reference decay before
T ¢

calibration (a quantity that can be computed from the data) and ¢ , (Tc) is the calibrated phasor of the reference sample,

given by the simple formula of Eq.(15).
Once such a calibration factor is obtained, any newly computed experimental (or uncalibrated) phasorz[ST] can be

corrected (or calibrated) using it, according to:

2 2[50]
HME =z| F, (33)
[5/] =TA [For ]
where the notation of Eq. (13) are used and F,r represents the decay emitted upon excitation by a Dirac comb (“pure”
decay). Following this procedure, the calibrated phasor of any PSED ends up on the universal semicircle L and the
phasor of any other decay where it would be found, had the IRF been a Dirac comb.

This familiar result is not affected by decay offset, but decay truncation will in general break it down. This can be
partially fixed by using an ad-hoc phasor harmonic frequency (see Section 4.2), but in general a naive application of Eq.
(32)-(33) will result in phasors that are close to those of the pure decays in the vicinity of the reference decay, but poten-
tially departing from them away from the reference. Careful study of each non-ideal case is therefore recommended, in
order to guide the choice of an appropriate reference decay (or change acquisition settings).

Unfortunately, such a simple procedure has an even more limited use case for discrete phasors. For one, as we have
seen in Section 3, the SEPL of discrete decays is in general different from the universal circle. While there are simple
cases (used as illustrations in Section 3.4) where the discrete phasor of a PSED is a simple product of a complex number
with the discrete phasor of the “pure” PSED, ¢ N (z-) (Eq. (18), this is the exception rather than the rule. In these favorable

cases where the discrete phasors of PSEDs can be rewritten:
z, [1, ;ARJ = xzy [ )20 [ A ] (34)

where x'is a complex constant, then the calibration procedure described for continuous phasor applies. The main difference
is that the calibration factor:
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rn(ze)
is now equal to the discrete phasor of the IRF times the x constant. Calibration of a computed phasor entails dividing it by

the calibration factor given by Eq. (35), which is different from the phasor of the IRF. Moreover, the phasor of PSEDs are
not brought back to the universal semicircle by this calibration procedure, but instead, to one of the SEPLs noted £, in

Section 3.4.

= xz,[1,] (35)

7. CONCLUSION

In this article, we have discussed some subtleties in the phasor analysis of periodic decays arising from the presence
of a few non-idealities such as offset, truncation and most importantly, finite sampling and binning or time-gating. In
particular, we have examined a few simple analytical examples of the modifications to the standard formulas generally
used in phasor analysis, and pointed out some differences which it appears important to be aware of. The conclusion to
draw from this work is certainly not that phasor analysis is of limited general use, but instead, that there exists a number
of situations where careless application of formulas or procedures derived for the continuous case, may lead to erroneous
results and conclusions. Importantly, binned data (e.g. TCSPC data) can be treated as discrete sampled data, for which the
locus of phasor of single-exponential decays is an arc of circle, which converges to the universal semicircle as the number
of sampling points increases.
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