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STABILITY OF CURRENT DENSITY IMPEDANCE IMAGING*

ROBERT LOPEZ! AND AMIR MORADIFAMT

Abstract. We study stability of reconstruction in current density impedance imaging (CDII),
that is, the inverse problem of recovering the conductivity of a body from the measurement of the
magnitude of the current density vector field in the interior of the object. Our results show that
CDII is stable with respect to errors in interior measurements of the current density vector field and
confirm the stability of reconstruction which was previously observed in numerical simulations and
was long believed to be the case.
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1. Introduction. The classical electrical impedance tomography (EIT) aims to
obtain quantitative information on the electrical conductivity o of a conductive body
from measurements of voltages and corresponding currents at its boundary. Mathe-
matics of EIT has been extensively studied, and many interesting results have been
obtained about uniqueness, stability and reconstruction algorithms for this problem.
See [4, 5, 6, 9] for excellent reviews of the results. It is well known that that EIT is
severely ill-posed and provides images with very low resolution away from the bound-
ary [12, 16].

A more recent class of inverse problems seeks to provide images with high ac-
curacy and by using data obtained from the interior of the region. Such methods
are referred to as hybrid inverse problems or coupled-physics methods, as they usu-
ally involve the interaction of two kinds of physical fields. In this paper we study
stability of reconstruction in current density impedance imaging (CDII), that is, the
inverse problem of recovering the conductivity of a body from the measurement of
the magnitude of the current density vector field in the interior of the object. Interior
measurements of current density is possible by magnetic resonance imaging due to
the work of M. Joy and his collaborators [14, 15]. This problem has been studied in
[8, 11, 19, 21, 23, 25, 26, 27, 29]. See also [28] for a comprehensive review. While the
uniqueness of the reconstruction in CDII is established and a robust reconstruction al-
gorithm is developed in [22], the stability of CDII is still open. In this paper, we aim to
settle the stability of reconstruction in CDII and provide a detailed stability analysis.

Let o be the isotropic conductivity of an object 2 C R™, n > 2, where (2 is a
bounded open region in with connected boundary. Suppose J is the current density
vector field generated by imposing a given boundary voltage f on 0€). Then the
corresponding voltage potential u satisfies the elliptic equation

(1) V- (oVu) =0, ulgg=f.

*Received by the editors May 30, 2019; accepted for publication (in revised form) June 29, 2020;

published electronically September 21, 2020.

https://doi.org/10.1137/19M126520X

Funding: The work of the second author was supported by NSF grants DMS-1715850 and
DMS-1953620.

TDepartment of Mathematics, University of California, Riverside, Riverside, CA (rlope021@ucr.
edu, amirm@ucr.edu).

4506

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/19M126520X
mailto:rlope021@ucr.edu
mailto:rlope021@ucr.edu
mailto:amirm@ucr.edu

Downloaded 06/30/21 to 169.235.64.254. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STABILITY OF CURRENT DENSITY IMPEDANCE IMAGING 4507

By Ohm'’s law J = —oVu, and u is the unique minimizer of the weighted least gradient
problem

2 I = i Vw|dz,

) )=, min | aVulds

where a = |J|, and BV;(Q?) = {w € BV (Q), w|aq = f}; see [21, 23, 25, 26, 27].

Note that the weighted least gradient problem (2) is not strictly convex, and hence
in general it may not have a unique minimizer. See [13] where the second author and
his collaborators showed that for a € C1®(Q), 0 < a < 1, the least gradient problem
(2) could have infinitely many minimizers. Since any stability result trivially implies
uniqueness, it is evident that one needs additional assumptions to prove any stability
result. Indeed stability analysis of CDII is a challenging problem. The first stability
result on CDII was proved by Montalto and Stefanov in [18].

_THEOREM 1.1 (see [18]). Let u solve (1), and let @ solve (1) for & with |[Vi| > 0
in Q. For any 0 < a < 1, there exists s > 0 such that if |o||gs) < L for some
L > 0, then there is an € > 0 such that if

(3) lo—Glle2) <e

then )
lo—allz2 < CllIJI = [I720)

Later in [17], Montalto and Tamasn proved the following stability result.

THEOREM 1.2 (see [17]). Let 0 € C1*(Q), 0 < a < 1, be positive in Q. Let u
solve (1) with [Vu| > 0 in Q. There exists € > 0 depending on 2 and some C > 0
depending on € such that if & € CH*(Q) with @ solving (1) for &, w =4 = f on 9Q,
o =25 on 0N, and

o — &”cl-,a(ﬁ) <€,

then .
lo = &l 20) < CIV - (g (T — I 750,

where My, (J — j) is the projection of J — J onto Vu.

Note that both of the above results assume a priori that ¢ and & are close, and
a natural question which remains open is whether there exist two distant conductivi-
ties o and & which could induce the corresponding currents .J and J with ||.J| — |.J|]
arbitrarily small. In this paper we address this question and show that the answer
is negative, and hence show that CDII is actually stable. Under some natural as-
sumption, we shall prove that in dimensions n = 2,3 the following stability result
holds:

L1
(4) lo =&l < ClIIT = [l 1o q)

for some constant C' independent of & (see Theorems 4.6 and 4.7 for precise statements
of the results).

The paper is organized as follows. In section 2, under very weak assumptions, we
will prove that the structure of level sets of the least gradient problem (2) is stable.
In section 3, we will provide stability results for minimizers of (2) in L!. In section
4, we will prove stability of minimizers of (2) in W1 and shall use them to prove
Theorems 4.6 and 4.7 which are the main results of this paper.
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2. Stability of level sets. In this section, we show that the structure of the
level sets of minimizers of the least gradient problem (2) is stable. Throughout the
paper, we will assume that a,a € C(Q2) with

(5) 0<m<a(x),alr) <M VYre

for some positive constants m, M. The following theorem, which was proved in [20] by
the second author, shall play a crucial role in the proof of the results in this section.

Remark 2.1. In general the least gradient problem (2) may not have a minimizer
[7, 30]. Throughout the paper we shall assume that (2) has a solution. For sufficient
conditions for the existence of minimizers of weighted least gradient problems we refer
to [8, 13, 20]. Note also that any voltage potential u solving (1) is also a minimizer
of (2). In particular, if 0 < a(z) € C(Q2) and 0N satisfies a barrier condition (see
Definition 3.1 in [13]), then for every f € C(99) the least gradient problem (2) has a
minimizer in BV;(Q). In other words the set of weights for which the least gradient
problem (2) has a solution is open in C(Q) if 92 satisfies a barrier condition.

THEOREM 2.2 (see [20]). Let 2 C R™ be a bounded open set with Lipschitz
boundary, and assume that a € C(Q) is a nonnegative function and f € L'(05).
Then there exists a divergence free vector field J € (L= ()™ with |J| < a a.e. in Q
such that every minimizer w of (2) satisfies

D
(6) : ﬁ =|J|=a, |Dw|—ae. in Q,
where |g—1w”| is the Radon—Nikodym derivative of Dw with respect to |Dw].

LEMMA 2.3. Let f € LY(09), and assume u and @ are minimizers of (2) with
the weights a and a, respectively. Then

(M) ’/ a|Du|dx—/d|Dﬂ|dm
Q Q

for some constant C = C(m, M,Q, f) independent of u and .

< Clla - allp=(q)

Proof. First note that in view of (5) we have

m/ |Dﬂ|dx§/d\Dﬂ\dmﬁ/&|Dw|dm§M/ | Dw|
Q Q ) Q

for any w € BV;(Q). Thus [, |Da| < C, and similarly [, [Du| < C for some constant
C which depends only on m, M, and 2. Hence

(8) max{/Q|Da|,/QDu} <C

for some C'(m, M) independent of & and u. Since u, @ are the minimizers of (2) with
the weights a and a,

/a|Du|dm—/&\Du|da¢§/a|Du|dm—/&|Dﬂ|da:
Q Q Q Q

g/a|Dﬂ|d1:—/d|Dﬂ|dz.
Q Q
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Thus
/(af a)|Duldz < / a|Du|dx — / a|Duldz < /(af&)\Diddx,

Q Q Q Q

and we get
—lla — all Lo )| Dul 1 (o) < / a\Du|dx7/ a|Duldx
Q Q
< lla = dll (o) |1 Dl 1)

Hence (7) follows from (8). 0

Let vg denote the outer unit normal vector to 9. Then for every T € (L*°(02))"
with V- T € L™(Q) there exists a unique function [T, vq] € L (09Q) such that

(9) / [T, voudH™ ' = / uV - Tdx +/ T - Dudzx, ue€C Q).
o0 Q Q

Moreover, for u € BV(Q) and T € (L ()" with V-T € L™(Q), the linear functional
u > (T - Du) gives rise to a Radon measure on 2, and (9) holds for every u € BV (Q2)
(see [1, 3] for a proof). We shall need the weak integration by parts formula (9).

LEMMA 2.4. Let f € L'(09), and assume u and @ are minimizers of (2) with
the weights a and a, respectively. Let J and J be the divergence free vector fields
guaranteed by Theorem 2.2. Suppose 0 < o(x) < o1 in Q for some constant o1 > 0,
where o is the Radon—Nikodym derivative of |J|dx with respect to |Dul|. Then
(10) [ =7 e < Cla =l <o

Q

where C = C(m, M, 01,9, f,u) is a constant independent of a.
Proof. We have

/|J||j|—J-jd:v:/a|j||Du|—aj-Dudx
Q Q
Sal/ |J||Du| — J - Dudz:
Q
201/ |j|\Du|dac—/ 1, volde
Q o0
:al/ \J||Du| - J - Dida
Q
:al/ \J || Dul — ||| Ditlda,
Q

where we have used (6) and the integration by parts formula (9). On the other hand
it follows from Lemma 2.3 that

o1 [ 17Dul - |7|Dilde = o1 [ |J1|Dal = |J1|Dl + |J||Dal ~ ||| Dilds
Q Q

=0 </ (a—&)|Du|dz+/ a|Dul &|Dﬂ|d:1:>
Q Q

< o1(|Dull oy lla — allL ) + Clla — allL~ (),

which yields the desired result. 0
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Roughly speaking, Lemma 2.4 implies that as a — a, u’%—“u‘(x) becomes parallel to
|g—g‘(:r) at points where the two gradients do not vanish. We are now ready to prove
the main result of this section.

THEOREM 2.5. Let f € LY(09), and assume u and @ are minimizers of (2) with
the weights a and a, respectively. Let J and J be the divergence free vector fields
guaranteed by Theorem 2.2. Suppose 0 < o(x) < o1 in Q for some constant o1 > 0,
where o is the Radon—Nikodym derivative of |J|dx with respect to |Dul|. Then

~ 1
(1) 1T = Tl < Clla =l .

where C = C(m, M,c1,Q, f,u) is a constant independent of a.
Proof. We have

V= J2 =\l +1d2 —27

~ 12 ~ ~
- ﬂm 1|+ 200191 = - )

< |11 = 1] + 20011 = 7 D,

~ ~ 12
19 = Tl = [\ 1=17] @
g/ ‘|J|—\j|‘dx+/\/2(\J||J|—J~j)dm
Q Q
:/ |a—d|dx+/ 2111 = T - F)da
Q Q

B B 1/2
< |9lla = @ll o @) + 1212 (/92<|J||J| - J~J>dx)
< Qe — @l g (o) + 21Q)2(Clla - 51||L°°(Q))1/2
U 1/2 1 s
= (19lla = @l < gy + I2)2CH ) lla = @l g,

Hence,

where we have used Holder’s inequality and Lemma 2.4. a0

Remark 2.6. In view of Theorem 2.2, @—z‘ and % are parallel to J and J,
respectively. So Theorem 2.5 implies that if @ is close to a, then the structure of level

sets of @ is close to that of u.

3. L' stability of the minimizers. In this section, we establish stability of
minimizers of the least gradient problem (2) in L. In general (2) does not even have
unique minimizers, so in order to prove any stability results further assumptions on
the weights a,a and on the corresponding minimizers are expected.

DEFINITION 3.1. Fiz the positive constants og,01 € R. We say that u € C1(Q)
is admissible if it solves the conductivity equation (1) for some o € C(Q) with

O<og<o<o;

and m < |J| = |cVu| < M, where m and M are positive constants as in (5). We
shall denote the corresponding induced current by J = —oVu.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Remark 3.2. Let Q C R™ with n > 2 be a bounded Lipschitz domain, and suppose
0f) satisfies the barrier condition defined in Definition 3.1 in [13]. A. Zuniga proved in
[31] that if 0 < a € C?(f2), then for any boundary data f € C(9€) the least gradient
problem (2) has a minimizer v € C(Q). If [Vu| > 0 in ©Q, then

o= \Vu| € 0(Q),
and by elliptic regularity u € C*(Q), and therefore (2) has an admissible minimizer.
To guarantee the condition |[Vu| > 0 on Q, in dimension n = 2 it suffices to assume
that the boundary data f € 0} is two-to-one, i.e., f has only two critical points on
O (see Theorem 1.1 in [2]). In higher dimensions, it is still an open problem to find
sufficient conditions under which |Vu| > 0 on €.

We will first prove our results in dimension n = 2 and then extend them to
dimensions n = 3.

Let u € CY(Q) with |[Vu| > 0 in Q. Then it follows from the regularity result of
De Giorgi (see, e.g., Theorem 4.11 in [10]) that all level sets of u are C'! curves. We
will assume that the length of level sets of u in €2 is uniformly bounded, i.e.,

(12) sup/ 1dl = Ly < 0.
teR J {u=t}nQ

THEOREM 3.3. Letn = 2, and suppose u and i are admissible with u|pq = U|aq =
f and corresponding current density vector fields J and J, respectively. If u satisfies
(12), then

~ 1
(13) lu—allr@) < C I =] 1 Z 0

for some constant C(m, M, oq,01, f,u, Lpr) independent of & and &.

Proof. Since u is admissible,

[Vu(z)| =

Using the coarea formula we get

(14) ﬂ/ u — il|dz < / Vul|u — i|dz = / / |u — @|dldt.
01 Jq Q R J{u=t}NQ

Since |Vu| > 0 in €, it follows from the regularity result of De Giorgi (Theorem 4.11
in [8]) that all level sets of u are C! curves. Now let I'; be a connected component
of {x € Q: u(x) =t} C Q, and let v: [0, L] — I'; be a path parametrized by the arc
length with +(0) € 9. Define

h(s) = u(y(s)) — a(v(s))-
Then h(0) = 0. Moreover since Vu(y(s)) - ¥'(s) = 0 on T,
h'(s) = Vu(y(s)) - 7'(s) = Va(y(s)) - 7' (s)
= (205D Vulr(s) = Valy(s) ) - (s).

We can rewrite the above equality as

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Now let =} be a point on I'y where the maximum distance between v and @ along the
path v occurs, i.e.,

[u(er) — a(ay)| = max fu(z) —a(z)]

Then z; = v(sg) for some sg € [0, L], and

© I =T
/ oTes) A

S0 1 ~
< / sy 0 Ta)lr

u(ay) — a(z)] = |h(s0)| =

<L "6 - Tom)ar
(o)) 0
In particular for every x € I’y
L
u(z) —a(z)| < fu(zp) —alef)] < i/ [T (v(7)) = J(v(7))|dr,
o0 Jo

where L denotes the entire length of I';. Hence

lu(z) — a(x)|dl < u(x;) — a(zy)] [ 1dl
I Iy

< Larlu(xy) — alay)|

Ly [* .
<— [ [J((7) = J(v(7))|dr
(o1 0
L -
== [ 7= Jd,
g0 T
and therefore
. L =
(15) / lu —a|dl < — |J — J|dl.
{u=t}NQ 00 J{u=t}nQ

Thus we have

L -
// lu — @|dldt < —M// |J — J|dldt
R J{u=t}NQ 00 JR J{u=t}

I 3
:ﬂ/ VullJ — Jldz
Q

o
L ~
< I ) e / T — J|de
(e)7) Q
1
< Clla—alfw g,

for some constant C'(m, M, 09,01, f,u, Lps) independent of & and &, where we have
used (15) and Theorem 2.5. d

Next we generalize Theorem 3.3 to dimension n = 3. In order to do this, we need
the following additional assumption on level sets of u.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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DEFINITION 3.4. Let u € CY(Q) be admissible. We say that level sets of u can be
foliated to one-dimensional curves if for almost every t € range(u), every connected
component Ty of {u =t} (equipped with the metric induced from the Euclidean metric
in R3) there exists a function gi(z) € CY(I'y) such that 0 < ¢y < |Vgi| < C, for
some constants c¢g and Cy independent of t. Moreover, every connected component
of {fu=t}N{g =r}NQis aC' curve reaching the boundary Q for almost every
t € range(u) and all r € R. Similar to the case n = 2, we assume that the length
of connected components of {u = t} N {g: = r} N Q is uniformly bounded by some
constant Ljy.

Remark 3.5. Tt follows from the regularity result of De Giorgi (see, e.g., Theorem
4.11 in [8]) that for a function u € BV(Q), level set {u = t} is a C''-hypersurface
for almost all ¢t € range(u). Note also that every connected component of {u = t}
reaches the boundary 9 (see [21, 23, 25, 26]) for almost every t. Now let T'; be a
C! connected component of {u = t}. If f has only two critical points (one minimum
and one maximum point) on 92, then I'; is a simply connected C! surface reaching
the boundary 952, and hence there exists a C'! homeomorphism F; from B(0,1) C R?
to the closure of I'; in Q (see Theorem 3.7 and Theorem 2.9 in [24]). It is easy to
see that the unit ball B(0,1) can be foliated to one-dimensional curves by level sets
of g : B(0,1) — R defined by g(z,y) = y. Consequently I'; can be foliated into one-
dimensional curves reaching the boundary of 99 by level sets of g;(X) = g(F; }(X)),
X € T;. Note also that since g and ]—"t_1 are both C', and since T is compact, there
exists constant ¢(t), C(t) > 0 such that

(16) 0<e(t)<|Vg|<C() on Ty

Indeed the above argument shows that (16) holds for every connected components of
almost every level sets of a function u € BV (€2) for some constant ¢(t), C(t) depending
on t. So in Definition 3.4 the only significant assumption is that the constants ¢(¢) and
C(t) are uniformly bounded from below and above by two positive constants ¢, and
Cy. In particular, if u is a C* function with |[Vu| > 0 in Q and {z € 0Q : f(z) =t}
has finitely many connected components for all ¢, then it follows from the implicit
function theorem that every level set of u is a C! surface, and hence existence of ¢,
and Cy follows immediately from compactness of range(u), and hence level sets of u
can be foliated to one-dimensional curves in the sense of Definition 3.4.

DEFINITION 3.6. Let t € range(u), and suppose T't, i € I, are C* connected
components of {u = t}, where I is countable. In view of Remark 3.5, there exist
functions g : Tt — R whose level sets foliate Tt into one-dimensional curves in the
sense of Definition 3.4. We define g; : {u =1t} — R to be the function with

(17) gt

We shall use this notation throughout the paper.

THEOREM 3.7. Letn = 3, and suppose u and i are admissible with u|po = |on =
f and corresponding current density vector fields J and J, respectively. Suppose the
level sets of u can be foliated to one-dimensional curves in the sense of Definition 3.4.
Then

~ 1
(18) lu = allLr) < CIII| = 1l 7 < (g

where C(m, M, 00,01, f,u, Ly, cg, Cy) is independent of & and &.
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Proof. The proof is similar to the proof of Theorem 3.3, and we provide the details
for the sake of the reader. Since u is admissible,

(19) ﬁ/ \u7ﬂ|dx§/ |Vu||u—ﬂ\da::// lu — aldSat.
01 Jq Q R J {u=t}NQ

The level sets of u can be foliated into one-dimensional curves by level sets of
some function g; in the sense of Definition 3.4. Thus

// u — @|dSdt = // V9l glasa
{u=t}NQ {u=t}NQ Vgl
1
:/// ———|u — a|dldrdt
R JR J{u=t}n{gi=rine |V gt|
1
g—/// |u — @|dldrdt.
Cg JR JR J {u=t}n{g;=r}nQ

Similar to the two-dimensional case, we parametrize every connected component I'y
of {u =1t}N{g: = r} NQ by arc length, v: [0,L] — I'; with v(0) € 99, and let
h(s) = u(vy(s)) — a(y(s)). Let xF be the point that maximizes |u — @] on Ty, and
suppose v(sg) = z; for some sg € (0,L), where L is the length of I';. Then by an
argument similar to the one in the proof of Theorem 3.3 we get

* ~ 0k 1 r T
lu(z) — a(zy)| < ;0/0 |J(v(7)) = J(v(7))ldr,
and consequently
L .
lu(z) — az)|dl < 222 [ | = J|di.
r g0 Jr,
Hence
LM ~

(20) / lu —a|dl < — |J — J|dl.

{u=t}n{ge=r}nQ {u=t}N{ge=r}NQ

Using this estimate and the coarea formula we have

E/ |u—a|d:cg// u — @|dSdt
g1 Ja R J{u=t}nQ

1
§—/// |u — aldldrdt
{u=t}N{g:=r}NQ
<L /// |J — J|dldrdt
€900 {u=t}N{g;=r}NQ
L
= M// IVg,||J — J|dSdt
Cg00 JR J{u=t}
L -
gL%// |J — J|dSdt
Cg00 JR J{u=t}
L -
:ch/wuw—ﬂdx
CgUO o)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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LMC ~ 1
< SVl oy (CI1 = 11 e )
LMC M 1
< 2
<= (CII1 = 1113w )
where we have applied Theorem 2.5. O

4. Wb stability of the minimizers. In this section, we prove stability of
minimizers of (2) in Wi, As mentioned in section 3, in general (2) does not even
have unique minimizers, so in order to prove stability results in W1, it is natural to
expect stronger assumptions on the minimizers.

LEMMA 4.1. Letn = 2,3, and suppose u and 4 are admissible with ulsq = Uaq =
[ € L>(09Q) and corresponding conductivities o and & and current density vector
fields J and J, respectively. Suppose 0,5 € C?(Q) with

(21) Il o llc2), | 7 le2@) < o2

for some o9 € R. Let

T €,

J(x) — J(x)
22 G(r) = ——F——=,
(22) (@) = T
with G = (G1,G2) forn =2 and G = (G1,G2,Gs) forn =3. Then
(23) IVGillLi o) < CillJ — JHIL/E(Q

for some constant Cy which depends only on Q, oo, 02, and || f ||L-=(q)-

Proof. Since u and @ satisfy (1), it follows from elliptic regularity that
- 1
(24) | w s, | @ lzs@< Crll f e < CilQ12 || f |lo= (o)
for some constant C7 depending only on g, o2, and . Now note that
G(z) = Vi — 2V
o
Thus it follows from (21) and (24) that
(25) | D2G; |l < 1912 || D2Gi |lL2@< C, 1<i<n,

for some constant C' which only depends on 0g, 02, 2, and || f ||z (). On the other
hand it follows from the Gagliardo—Nirenberg interpolation inequality that

(26) IVGillL ) < CollD2Gill o) IGill g
for some Cs which only depends on 2. Combining (25), (26), and

J—J
| ||L1(Q)71§i§n7

| Gilloy @< -

we arrive at the inequality (26). ad

Next we prove that u and % are close in WH(€2). In order to do so, we need
additional assumptions on the structure of level sets of u.
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DEFINITION 4.2. Suppose u is admissible, n = 2, and x € . Pick h € R? with
|h| = 1, and t € R small enough such that x +th € Q. Let T and Ty be the level
sets of u passing through x and x + th, respectively. Parametrize I' and Ty by the
arc length such that ¥(0),7:(0) € 9Q, and denote these parametrizations by v and 7z,
respectively.

Similarly in dimension n = 3, let u be admissible, and suppose level sets of u can
be foliated to one-dimensional curves in the sense of Definition 3.4. Pick x €  and
h € R® with |h| = 1, and choose t small enough such that x +th € Q. Let T and T,
be the unique curves in

{u=71in{g, =r} 7,reR}

which pass through x and x + th, respectively, and let v and ~; be the parametrization
of these curves with respect to arc length with v(0),7:(0) € 0S.

We say that level sets of u are well structured if the following conditions are
satisfied.

(a) There exists K > 0 such that
7e(5) = (s)

(27) t

<K

for every s € [0, L], t e R, x € Q, and h € S"~ L. In particular,

(28) 7;(3) — 'y/(s) as t— 0,
where ' (s) = dzl(ss) and ~;(s) = dvégs),
(b) There exists a bounded function F ,(s) = F(z,h;s) € L®(QxS""1x[0, L)
such that
_els) —(s) _
(29) tim 29 00) )

for every s € [0, L], x € Q, and h € S"~ .

Remark 4.3. Let x € Q, h € R? with |h| = 1, and ¢ € R be small enough such
that = + th € Q. Also, as in Definition 4.2, let v, and v; be the parametrization of
the curves passing through x and = + th. In view of Remark 3.5 we have

(30) V(s) = Fu@((s))  and  %i(s) = Fuaten)(3e(5)),

where 7(s) and 9;(s) are parametrization of two level sets of the function g(z,y) =
y = I, (FY(z)) and g(z,y) = y = IL,(F ' (x + th)), respectively. Here II, is the
projection operator on the y-axis, and Fy ;) and JFyz4¢n) are C' diffeomorphisms
from B(0,1) to the connected components of the level sets of u passing through z
and x + th, respectively. It is easy to see that J;(s) is continuously differentiable with
respect to t for each fixed s.

Now let I';;, be the connected component of the level set of u that passes through
xo, and assume that |Vu| > 0 on . Then in a neighborhood of o = u(x¢) we can
find C! diffeomorphisms F, so that F,.(y) is continuously differentiable with respect
to r for each fixed y. Indeed let y € B(0, 1), and consider the gradient flow

(31) 2y(q) = Vu(zy(q), 2(0) = Fo(y),
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which has a unique solution as long as z,(¢) € Q. Let r € range(u) and T, be a
connected component of {u = r}. Define F,. : B(0,1) — I, by

Fr.(y) = F, (Zy((b"))a

where ¢, € R is the unique point where z,(g,) € I',.. Also observe that the set
R ={rerange(u): F is well defined on {u=r}}

is both open and closed in range(u), and hence R = range(u) and therefore F), could
be defined globally as above for all r € range(u).

Since u, F,,, and z, are all C'', it is easy to see that F,(y) is continuously differ-
entiable with respect to r for each fixed y € B(0,1). Now notice that the level sets
of the function g(x,y) : B(0,1) — R defined by g(x,y) = y are well structured in the
sense of Definition 4.2. In view of the above arguments, it follows from the chain rule
that v:(s) = F¢(7:(s)), where #;(s) is a parametrization of the level set g(z,y) =y
passing through F~!(z +th), and F; and 4; are both continuously differentiable with
respect to t. Therefore, since (27), (28), (29) hold for any parametrization of level sets
of g(z,y) = y, an application of the chain rule implies that (27), (28), (29) also hold
under the assumptions of Definition 4.2. In particular, if u is a C'! function with
[Vu| > 0in Q and {z € 9Q : f(z) = t} has finitely many connected components for
all t, then level sets of u are well structured in the sense of Definition 4.2.

THEOREM 4.4. Letn = 2, and suppose u and G are admissible with u|sq = @lgq =
[, corresponding conductivities 0,6 € C?(2), and current density vector fields J and
J, respectively. Suppose 7,5 € Cz( ) and satisfy (21). If u satisfies (12) and the
level sets of u are well structured in the sense of Definition 4.2, then

(32) Vi~ Vull oy < C 1111 = 1] i

for some constant C(m, M, o0q,01,09,u, f, Lps) independent of & and &.
Proof. Fix x € Q and h € R? with |h| = 1. Then

L(x,h) = (Vii(z) — Vu(x) - h = }g% [@(z + th) — u(z +tth)} — [u(z) — u(:c)}

First we estimate the above limit. Since all level sets of u reach the boundary 02,
there exist z, z; € 02 such that

u(r) = u(z) = a(2),
u(x + th) = u(z) = u(z).
Thus
[@(z + th) —u(z + th)] — [t(z) — u(x)] = [a(x + th) — 4(z)] — [a(x) — a(z)].

Let v and ~; be the curves passing through = and x + th, described in Definition
4.2 with v(0) = z and ~;(0) = 2z;. Suppose v(so) = x, and reparametrize v; so that
vt(s0) = & + th. Then we have

[u(z + th) — u(z)] — [u(z) — a(2)] = [@(y(s0)) — w(7(0))] — [@(v(s0)) — u(v(0))]

/OSV(( ‘Y (s ds—/ Va(y v (s)ds.
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Hence

Substituting V4 by

ety =t ([ Vit s = [ vato) - eas).

Qs

and using the fact that J is perpendicular to 4’ and ~; we get

L(z, h)

Now define

Hence

The

(33)

el =t 1 ([ Gouen i [ G 2 0as).

expression in the right-hand side can be rewritten as

1/050 [G(7e(s)) — G(v(s))] - vi(s)ds + % /OSO G(v(s)) - [vi(s) — 7/ (s)]ds.

It follows from assumption (a) in Definition 4.2 that

and

(34)

W) =) e
t — )
hence
S0 L B
2] et it = @as| < - [ - T @)las

Now we turn our attention to the first term in (33). Let G = (G1,G2). Since

Pg(l) M = F,n(s)

for i = 1,2 we have

i G00(9)) = Gi(x(s)) Gi(y(s) +tF(s)) — Gi(v(s))

t—0 t t—0 t

Thus the first term of (33) can be rewritten as

i 050 [G(e(5)) = G(v(s)] - 7i(s)dl

t—0 t
= / (VG1(+(s)) - F(s), VGa(r(s)) - F(s)) -7/ (s)dl
<|| F [l / VG ()] + [V Gy (s)

L
<[ F HLw/O IVGL(v(s) + [VG2(v(s))ldl,
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where we have used assumption (b) in Definition 4.2. Combining (34) and (35) we
obtain

|[Vi(z) — Vu(z)| < sup  L(z,h)

heR? |h|=1
L
s% RECIORRCIONT

L
. / VG (4(5))] + VG ((5))|dl.

/|Vﬂ(x)fVu(x) < KLM/\j(x)fJ(:cﬂdl
r g0 r

+ Ly || F e / VG (2)] + |VGa(x)|dl,
r

Thus

and consequently

(36)
KL .
/ \Va(z) — Vu(z)|dl < == |J(x) — J(z)|dl
{u=7}NQ g0 {u=7}NQ
+ Ly ||F||Loo/ VG ()] + |VGa(z)|dL.
{u=73}NQ

Using (36) and the coarea formula we have

ﬁ||V€L7Vu||L1(Q) S/ |Vul||Va — Vu|dz
g1 Q

:// |V — Vuldldr
R J{u=7}NQ
< KLM// ] — J|dldr
0o R J{u=7}NQ
+Lm HFHLOC// IVG1| + |VGa|didr
{u=73}NO
KL M i_
M // = iy
{u=7}NN ‘VU|
M [/ VG| +|VGal -
{u=7}NQ

[Vl
KL M
M /|J J|da

JrLM H Fllpe M
0o

/ VG| + [V Galda

KLy M
= (00)?

2L Cq || F |10
4+ 2Lu | F iz

0o

1T —J ”Ll(Q)

~ 1
SN PE .

where we have used (26) to obtain the last inequality. Applying Theorem 2.5, and
noting that

~ 1
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where M is defined in (5), we arrive at (32). |
Now we prove the three-dimensional version of this theorem.

THEOREM 4.5. Let n = 3, and suppose u and @ are admissible with ulpq =
@loa = f, corresponding conductivities 0,5 € C?(2), and current density vector fields
J and J, respectively. Suppose 0,5 € C?(Q) and satisfy (21). In addition suppose u
satisfies (12), the level sets of u can be foliated to one-dimensional curves in the sense
of Definition 3.4, and the level sets of u are well structured in the sense of Definition
4.2. Then

1
(37) IV~ Vull gy < Cla— o)

for some constant C'(m, M, 0¢,01, 02,4, f, L, cg, Cy) independent of 4 and 6.

Proof. With an argument similar to the one used in the proof of Theorem 4.4 we
get

/ Vii(x) — Vu(z)|dl < KLM/ (@) — J(2)|dl
Usr,r %0 Ju.,.

+ Ly || F IILoo/ IVGL(2)| + VG ()| + VG (2)|dl,

T,

where U, , :={u=71}N{g, =r} NQ and G = (G1, G2, G3) is defined in (22).
It follows from (38) and the coarea formula that

E”v'&:—VUHLI(Q) S/ |Vu||Va — Vu|dz
g1 Q

:// |Va — Vu|dSdr
{u=7}N0
// Vo] [V = Vuldsdr
{u=7}NQ ‘VgT
= ——|Vu — Vuldldrdr
LIS, v
KLy, 5
< M/// \J — J|dldrdt
0oCg JRJRJU,,

L F ||
+M/// VG| + [VGy| + |VGs|didrdt

KLMMC /// ‘J d dldrdt

LMMHFIILOOCQ/// |VG1|+\VG2|+|VG3\
+
T0Cq |Vul| Vgl

KLMMC’ // EETIP
{u=7}N0 |VU"

+LMM | F || g// VG| + [VGa| + VG|
{u=7}N0

dldrdt

dsdt

00Cq |Vul
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KLyM -
:M72Cg/ T — J|da
(00)cg  Ja

LyM || Fllp~ C
L LM E g/|VG1\+|VG2|+\VG3|dx
00Cyq Q
KLy MG, -
< o) | J=J L
2LM01M H F ||Loo Q C ~ 1
+ o T = sy

where we have used (26) to obtain the last inequality. Applying Theorem 2.5 and
noting that

L1
| 7= J 120y < 2M,
we obtain the inequality (32). d
Now, we are ready to prove our main stability results.

THEOREM 4.6. Letn = 2, and suppose u and G are admissible with u|aq = Uaq =
f, corresponding conductivities o,6 € C%()), and current density vector fields J and
J, respectively. Suppose 0,65 € C%(Q) and satisfy (21). If u satisfies (12) and level
sets of u are well structured in the sense of Definition 4.2, then

~ 1
lo =&l < C T = 11wy

for some constant C(m, M, oq,01,02,0, f, Ly) independent of &.

Proof. Using Theorem 4.4 we have

/|0—&|dx:/
Q Q

] s [ 2 ;
< _ — d — [|J]| = |J|| d
< | s IVl = Vallde+ [ = 171= 17| o

|J] _ / 1 =
< ——|Vu — Vuld ——||J| = |J|| d
—/Q|w|va|‘ u = Vildz + Q|va|‘| [ 11| da

J(|Va| - |V J = J
|JI(IVal IUI)+|| | /|

d
Vul [Vl val |

Mo?C ~ o1 1|9 ~

< o I = 1 ey + 2= 111 = 1] 20y
Mo?C  01]Q|(2M)3 Lo

< CE m I =T e ) -

THEOREM 4.7. Let n = 3, and suppose u and G are admissible with u|sq = o =
f, corresponding conductivities 0,6 € C?(Q), and current density vector fields J and
J, respectively. Suppose 0,65 € C2(Q) and satisfy (21). If u satisfies (12), the level
sets of u can be foliated to one-dimensional curves in the sense of Definition 3.4, and
the level sets of u are well structured in the sense of Definition 4.2, then

~ 1
(39) lo =l < Ol = Il f (g

for some constant C(m, M, 0¢,01, 02,0, f, L, cg, Cy) independent of &.

Proof. The proof follows from Theorem 4.5 and a calculation similar to that of
the proof of Theorem 4.6. O
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