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STABILITY OF CURRENT DENSITY IMPEDANCE IMAGING\ast 

ROBERT LOPEZ\dagger AND AMIR MORADIFAM\dagger 

Abstract. We study stability of reconstruction in current density impedance imaging (CDII),
that is, the inverse problem of recovering the conductivity of a body from the measurement of the
magnitude of the current density vector field in the interior of the object. Our results show that
CDII is stable with respect to errors in interior measurements of the current density vector field and
confirm the stability of reconstruction which was previously observed in numerical simulations and
was long believed to be the case.
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1. Introduction. The classical electrical impedance tomography (EIT) aims to
obtain quantitative information on the electrical conductivity \sigma of a conductive body
from measurements of voltages and corresponding currents at its boundary. Mathe-
matics of EIT has been extensively studied, and many interesting results have been
obtained about uniqueness, stability and reconstruction algorithms for this problem.
See [4, 5, 6, 9] for excellent reviews of the results. It is well known that that EIT is
severely ill-posed and provides images with very low resolution away from the bound-
ary [12, 16].

A more recent class of inverse problems seeks to provide images with high ac-
curacy and by using data obtained from the interior of the region. Such methods
are referred to as hybrid inverse problems or coupled-physics methods, as they usu-
ally involve the interaction of two kinds of physical fields. In this paper we study
stability of reconstruction in current density impedance imaging (CDII), that is, the
inverse problem of recovering the conductivity of a body from the measurement of
the magnitude of the current density vector field in the interior of the object. Interior
measurements of current density is possible by magnetic resonance imaging due to
the work of M. Joy and his collaborators [14, 15]. This problem has been studied in
[8, 11, 19, 21, 23, 25, 26, 27, 29]. See also [28] for a comprehensive review. While the
uniqueness of the reconstruction in CDII is established and a robust reconstruction al-
gorithm is developed in [22], the stability of CDII is still open. In this paper, we aim to
settle the stability of reconstruction in CDII and provide a detailed stability analysis.

Let \sigma be the isotropic conductivity of an object \Omega \subset \BbbR n, n \geq 2, where \Omega is a
bounded open region in with connected boundary. Suppose J is the current density
vector field generated by imposing a given boundary voltage f on \partial \Omega . Then the
corresponding voltage potential u satisfies the elliptic equation

\nabla \cdot (\sigma \nabla u) = 0, u| \partial \Omega = f.(1)
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STABILITY OF CURRENT DENSITY IMPEDANCE IMAGING 4507

By Ohm's law J =  - \sigma \nabla u, and u is the unique minimizer of the weighted least gradient
problem

I(w) = min
w\in BVf (\Omega )

\int 
\Omega 

a| \nabla w| dx,(2)

where a = | J | , and BVf (\Omega ) = \{ w \in BV (\Omega ), w| \partial \Omega = f\} ; see [21, 23, 25, 26, 27].

Note that the weighted least gradient problem (2) is not strictly convex, and hence
in general it may not have a unique minimizer. See [13] where the second author and
his collaborators showed that for a \in C1,\alpha (\Omega ), 0 < \alpha < 1, the least gradient problem
(2) could have infinitely many minimizers. Since any stability result trivially implies
uniqueness, it is evident that one needs additional assumptions to prove any stability
result. Indeed stability analysis of CDII is a challenging problem. The first stability
result on CDII was proved by Montalto and Stefanov in [18].

Theorem 1.1 (see [18]). Let u solve (1), and let \~u solve (1) for \~\sigma with | \nabla \~u| > 0
in \Omega . For any 0 < \alpha < 1, there exists s > 0 such that if \| \sigma \| Hs(\Omega ) < L for some
L > 0, then there is an \epsilon > 0 such that if

\| \sigma  - \~\sigma \| C2(\Omega ) < \epsilon ,(3)

then
\| \sigma  - \~\sigma \| L2(\Omega ) < C\| | J |  - | \~J | \| \alpha L2(\Omega )

Later in [17], Montalto and Tamasn proved the following stability result.

Theorem 1.2 (see [17]). Let \sigma \in C1,\alpha (\Omega ), 0 < \alpha < 1, be positive in \Omega . Let u
solve (1) with | \nabla u| > 0 in \Omega . There exists \epsilon > 0 depending on \Omega and some C > 0
depending on \epsilon such that if \~\sigma \in C1,\alpha (\Omega ) with \~u solving (1) for \~\sigma , u = \~u = f on \partial \Omega ,
\sigma = \~\sigma on \partial \Omega , and

\| \sigma  - \~\sigma \| C1,\alpha (\Omega ) < \epsilon ,

then
\| \sigma  - \~\sigma \| L2(\Omega ) \leq C\| \nabla \cdot (\Pi \nabla u(J  - \~J))\| 

\alpha 
2+\alpha 

L2(\Omega ),

where \Pi \nabla u(J  - \~J) is the projection of J  - \~J onto \nabla u.

Note that both of the above results assume a priori that \sigma and \~\sigma are close, and
a natural question which remains open is whether there exist two distant conductivi-
ties \sigma and \~\sigma which could induce the corresponding currents J and \~J with | | J |  - | \~J | | 
arbitrarily small. In this paper we address this question and show that the answer
is negative, and hence show that CDII is actually stable. Under some natural as-
sumption, we shall prove that in dimensions n = 2, 3 the following stability result
holds:

\| \sigma  - \~\sigma \| L1(\Omega ) \leq C\| | J |  - | \~J | \| 
1
4

L\infty (\Omega )(4)

for some constant C independent of \~\sigma (see Theorems 4.6 and 4.7 for precise statements
of the results).

The paper is organized as follows. In section 2, under very weak assumptions, we
will prove that the structure of level sets of the least gradient problem (2) is stable.
In section 3, we will provide stability results for minimizers of (2) in L1. In section
4, we will prove stability of minimizers of (2) in W 1,1 and shall use them to prove
Theorems 4.6 and 4.7 which are the main results of this paper.
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4508 ROBERT LOPEZ AND AMIR MORADIFAM

2. Stability of level sets. In this section, we show that the structure of the
level sets of minimizers of the least gradient problem (2) is stable. Throughout the
paper, we will assume that a, \~a \in C(\Omega ) with

0 < m \leq a(x), \~a(x) \leq M \forall x \in \Omega (5)

for some positive constants m,M . The following theorem, which was proved in [20] by
the second author, shall play a crucial role in the proof of the results in this section.

Remark 2.1. In general the least gradient problem (2) may not have a minimizer
[7, 30]. Throughout the paper we shall assume that (2) has a solution. For sufficient
conditions for the existence of minimizers of weighted least gradient problems we refer
to [8, 13, 20]. Note also that any voltage potential u solving (1) is also a minimizer
of (2). In particular, if 0 < a(x) \in C(\Omega ) and \partial \Omega satisfies a barrier condition (see
Definition 3.1 in [13]), then for every f \in C(\partial \Omega ) the least gradient problem (2) has a
minimizer in BVf (\Omega ). In other words the set of weights for which the least gradient
problem (2) has a solution is open in C(\Omega ) if \partial \Omega satisfies a barrier condition.

Theorem 2.2 (see [20]). Let \Omega \subset \BbbR n be a bounded open set with Lipschitz
boundary, and assume that a \in C(\Omega ) is a nonnegative function and f \in L1(\partial \Omega ).
Then there exists a divergence free vector field J \in (L\infty (\Omega ))n with | J | \leq a a.e. in \Omega 
such that every minimizer w of (2) satisfies

J \cdot Dw

| Dw| 
= | J | = a, | Dw|  - a.e. in \Omega ,(6)

where Dw
| Dw| is the Radon--Nikodym derivative of Dw with respect to | Dw| .

Lemma 2.3. Let f \in L1(\partial \Omega ), and assume u and \~u are minimizers of (2) with
the weights a and \~a, respectively. Then\bigm| \bigm| \bigm| \bigm| \int 

\Omega 

a| Du| dx - 
\int 
\Omega 

\~a| D\~u| dx
\bigm| \bigm| \bigm| \bigm| \leq C\| a - \~a\| L\infty (\Omega )(7)

for some constant C = C(m,M,\Omega , f) independent of u and \~u.

Proof. First note that in view of (5) we have

m

\int 
\Omega 

| D\~u| dx \leq 
\int 
\Omega 

\~a| D\~u| dx \leq 
\int 
\Omega 

\~a| Dw| dx \leq M

\int 
\Omega 

| Dw| 

for any w \in BVf (\Omega ). Thus
\int 
\Omega 
| D\~u| \leq C, and similarly

\int 
\Omega 
| Du| \leq C for some constant

C which depends only on m,M, and \Omega . Hence

max

\biggl\{ \int 
\Omega 

| D\~u| ,
\int 
\Omega 

| Du| 
\biggr\} 

\leq C(8)

for some C(m,M) independent of \~u and u. Since u, \~u are the minimizers of (2) with
the weights a and \~a,\int 

\Omega 

a| Du| dx - 
\int 
\Omega 

\~a| Du| dx \leq 
\int 
\Omega 

a| Du| dx - 
\int 
\Omega 

\~a| D\~u| dx

\leq 
\int 
\Omega 

a| D\~u| dx - 
\int 
\Omega 

\~a| D\~u| dx.
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STABILITY OF CURRENT DENSITY IMPEDANCE IMAGING 4509

Thus \int 
\Omega 

(a - \~a)| Du| dx \leq 
\int 
\Omega 

a| Du| dx - 
\int 
\Omega 

\~a| Du| dx \leq 
\int 
\Omega 

(a - \~a)| D\~u| dx,

and we get

 - \| a - \~a\| L\infty (\Omega )\| Du\| L1(\Omega ) \leq 
\int 
\Omega 

a| Du| dx - 
\int 
\Omega 

\~a| Du| dx

\leq \| a - \~a\| L\infty (\Omega )\| D\~u\| L1(\Omega ).

Hence (7) follows from (8).

Let \nu \Omega denote the outer unit normal vector to \partial \Omega . Then for every T \in (L\infty (\Omega ))n

with \nabla \cdot T \in Ln(\Omega ) there exists a unique function [T, \nu \Omega ] \in L\infty (\partial \Omega ) such that\int 
\partial \Omega 

[T, \nu \Omega ]u d\scrH n - 1 =

\int 
\Omega 

u\nabla \cdot Tdx+

\int 
\Omega 

T \cdot Dudx, u \in C1(\=\Omega ).(9)

Moreover, for u \in BV (\Omega ) and T \in (L\infty (\Omega ))n with \nabla \cdot T \in Ln(\Omega ), the linear functional
u \mapsto \rightarrow (T \cdot Du) gives rise to a Radon measure on \Omega , and (9) holds for every u \in BV (\Omega )
(see [1, 3] for a proof). We shall need the weak integration by parts formula (9).

Lemma 2.4. Let f \in L1(\partial \Omega ), and assume u and \~u are minimizers of (2) with
the weights a and \~a, respectively. Let J and \~J be the divergence free vector fields
guaranteed by Theorem 2.2. Suppose 0 \leq \sigma (x) \leq \sigma 1 in \Omega for some constant \sigma 1 > 0,
where \sigma is the Radon--Nikodym derivative of | J | dx with respect to | Du| . Then\int 

\Omega 

| J | | \~J |  - J \cdot \~Jdx \leq C\| a - \~a\| L\infty (\Omega ),(10)

where C = C(m,M, \sigma 1,\Omega , f, u) is a constant independent of \~a.

Proof. We have\int 
\Omega 

| J | | \~J |  - J \cdot \~Jdx =

\int 
\Omega 

\sigma | \~J | | Du|  - \sigma \~J \cdot Dudx

\leq \sigma 1

\int 
\Omega 

| \~J | | Du|  - \~J \cdot Dudx

= \sigma 1

\int 
\Omega 

| \~J | | Du| dx - 
\int 
\partial \Omega 

f [ \~J, \nu \Omega ]dx

= \sigma 1

\int 
\Omega 

| \~J | | Du|  - \~J \cdot D\~udx

= \sigma 1

\int 
\Omega 

| \~J | | Du|  - | \~J | | D\~u| dx,

where we have used (6) and the integration by parts formula (9). On the other hand
it follows from Lemma 2.3 that

\sigma 1

\int 
\Omega 

| \~J | | Du|  - | \~J | | D\~u| dx = \sigma 1

\int 
\Omega 

| \~J | | Du|  - | J | | Du| + | J | | Du|  - | \~J | | D\~u| dx

= \sigma 1

\biggl( \int 
\Omega 

(a - \~a)| Du| dx+

\int 
\Omega 

a| Du|  - \~a| D\~u| dx
\biggr) 

\leq \sigma 1(\| Du\| L1(\Omega )\| a - \~a\| L\infty (\Omega ) + C\| a - \~a\| L\infty (\Omega )),

which yields the desired result.
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4510 ROBERT LOPEZ AND AMIR MORADIFAM

Roughly speaking, Lemma 2.4 implies that as a \rightarrow \~a, Du
| Du| (x) becomes parallel to

D\~u
| D\~u| (x) at points where the two gradients do not vanish. We are now ready to prove

the main result of this section.

Theorem 2.5. Let f \in L1(\partial \Omega ), and assume u and \~u are minimizers of (2) with
the weights a and \~a, respectively. Let J and \~J be the divergence free vector fields
guaranteed by Theorem 2.2. Suppose 0 \leq \sigma (x) \leq \sigma 1 in \Omega for some constant \sigma 1 > 0,
where \sigma is the Radon--Nikodym derivative of | J | dx with respect to | Du| . Then

\| J  - \~J\| L1(\Omega ) \leq C\| a - \~a\| 
1
2

L\infty (\Omega ),(11)

where C = C(m,M, \sigma 1,\Omega , f, u) is a constant independent of \~a.

Proof. We have\sqrt{} 
| J  - \~J | 2 =

\sqrt{} 
| J | 2 + | \~J | 2  - 2J \cdot \~J

=

\sqrt{} \bigm| \bigm| \bigm| | J |  - | \~J | 
\bigm| \bigm| \bigm| 2 + 2(| J | | \~J |  - J \cdot \~J)

\leq 
\bigm| \bigm| \bigm| | J |  - | \~J | 

\bigm| \bigm| \bigm| +\sqrt{} 2(| J | | \~J |  - J \cdot \~J).

Hence,

\| J  - \~J\| L1(\Omega ) =

\int 
\Omega 

\sqrt{} \bigm| \bigm| \bigm| | J |  - | \~J | 
\bigm| \bigm| \bigm| 2dx

\leq 
\int 
\Omega 

\bigm| \bigm| \bigm| | J |  - | \~J | 
\bigm| \bigm| \bigm| dx+

\int 
\Omega 

\sqrt{} 
2(| J | | \~J |  - J \cdot \~J)dx

=

\int 
\Omega 

| a - \~a| dx+

\int 
\Omega 

\sqrt{} 
2(| J | | \~J |  - J \cdot \~J)dx

\leq | \Omega | \| a - \~a\| L\infty (\Omega ) + | \Omega | 1/2
\biggl( \int 

\Omega 

2(| J | | \~J |  - J \cdot \~J)dx
\biggr) 1/2

\leq | \Omega | \| a - \~a\| L\infty (\Omega ) + (2| \Omega | )1/2(C\| a - \~a\| L\infty (\Omega ))
1/2

=
\Bigl( 
| \Omega | \| a - \~a\| 

1
2

L\infty (\Omega ) + (2| \Omega | )1/2C 1
2

\Bigr) 
\| a - \~a\| 

1
2

L\infty (\Omega ),

where we have used Holder's inequality and Lemma 2.4.

Remark 2.6. In view of Theorem 2.2, Du
| Du| and D\~u

| D\~u| are parallel to J and \~J ,

respectively. So Theorem 2.5 implies that if \~a is close to a, then the structure of level
sets of \~u is close to that of u.

3. \bfitL \bfone stability of the minimizers. In this section, we establish stability of
minimizers of the least gradient problem (2) in L1. In general (2) does not even have
unique minimizers, so in order to prove any stability results further assumptions on
the weights a, \~a and on the corresponding minimizers are expected.

Definition 3.1. Fix the positive constants \sigma 0, \sigma 1 \in \BbbR . We say that u \in C1(\=\Omega )
is admissible if it solves the conductivity equation (1) for some \sigma \in C(\Omega ) with

0 < \sigma 0 < \sigma \leq \sigma 1

and m \leq | J | = | \sigma \nabla u| \leq M , where m and M are positive constants as in (5). We
shall denote the corresponding induced current by J =  - \sigma \nabla u.
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STABILITY OF CURRENT DENSITY IMPEDANCE IMAGING 4511

Remark 3.2. Let \Omega \subset \BbbR n with n \geq 2 be a bounded Lipschitz domain, and suppose
\partial \Omega satisfies the barrier condition defined in Definition 3.1 in [13]. A. Zuniga proved in
[31] that if 0 < a \in C2(\Omega ), then for any boundary data f \in C(\partial \Omega ) the least gradient
problem (2) has a minimizer u \in C(\Omega ). If | \nabla u| > 0 in \Omega , then

\sigma =
a

| \nabla u| 
\in C(\Omega ),

and by elliptic regularity u \in C1(\Omega ), and therefore (2) has an admissible minimizer.
To guarantee the condition | \nabla u| > 0 on \Omega , in dimension n = 2 it suffices to assume
that the boundary data f \in \partial \Omega is two-to-one, i.e., f has only two critical points on
\partial \Omega (see Theorem 1.1 in [2]). In higher dimensions, it is still an open problem to find
sufficient conditions under which | \nabla u| > 0 on \Omega .

We will first prove our results in dimension n = 2 and then extend them to
dimensions n = 3.

Let u \in C1(\Omega ) with | \nabla u| > 0 in \Omega . Then it follows from the regularity result of
De Giorgi (see, e.g., Theorem 4.11 in [10]) that all level sets of u are C1 curves. We
will assume that the length of level sets of u in \Omega is uniformly bounded, i.e.,

sup
t\in \BbbR 

\int 
\{ u=t\} \cap \Omega 

1dl = LM < \infty .(12)

Theorem 3.3. Let n = 2, and suppose u and \~u are admissible with u| \partial \Omega = \~u| \partial \Omega =
f and corresponding current density vector fields J and \~J , respectively. If u satisfies
(12), then

\| u - \~u\| L1(\Omega ) \leq C \| | J |  - | \~J | \| 
1
2

L\infty (\Omega )(13)

for some constant C(m,M, \sigma 0, \sigma 1, f, u, LM ) independent of \~u and \~\sigma .

Proof. Since u is admissible,

| \nabla u(x)| = | J(x)| 
\sigma (x)

\geq m

\sigma 1
> 0 \forall x \in \Omega .

Using the coarea formula we get

m

\sigma 1

\int 
\Omega 

| u - \~u| dx \leq 
\int 
\Omega 

| \nabla u| | u - \~u| dx =

\int 
\BbbR 

\int 
\{ u=t\} \cap \Omega 

| u - \~u| dldt.(14)

Since | \nabla u| > 0 in \Omega , it follows from the regularity result of De Giorgi (Theorem 4.11
in [8]) that all level sets of u are C1 curves. Now let \Gamma t be a connected component
of \{ x \in \Omega : u(x) = t\} \subset \Omega , and let \gamma : [0, L] \rightarrow \Gamma t be a path parametrized by the arc
length with \gamma (0) \in \partial \Omega . Define

h(s) := u(\gamma (s)) - \~u(\gamma (s)).

Then h(0) = 0. Moreover since \nabla u(\gamma (s)) \cdot \gamma \prime (s) = 0 on \Gamma t,

h\prime (s) = \nabla u(\gamma (s)) \cdot \gamma \prime (s) - \nabla \~u(\gamma (s)) \cdot \gamma \prime (s)

=
\Bigl( \sigma 
\~\sigma 
(\gamma (s))\nabla u(\gamma (s) - \nabla \~u(\gamma (s)

\Bigr) 
\cdot \gamma \prime (s).

We can rewrite the above equality as

h\prime (s) =
J(\gamma (s)) - \~J(\gamma (s))

\~\sigma (\gamma (s))
\cdot \gamma \prime (s).
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4512 ROBERT LOPEZ AND AMIR MORADIFAM

Now let x\ast 
t be a point on \Gamma t where the maximum distance between u and \~u along the

path \gamma occurs, i.e.,

| u(x\ast 
t ) - \~u(x\ast 

t )| = max
x\in \Gamma t

| u(x) - \~u(x)| .

Then x\ast 
t = \gamma (s0) for some s0 \in [0, L], and

| u(x\ast 
t ) - \~u(x\ast 

t )| = | h(s0)| =

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int s0

0

J(\gamma (\tau )) - \~J(\gamma (\tau ))

\~\sigma (\gamma (\tau ))
\cdot \gamma \prime (\tau )d\tau 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 
\int s0

0

1

\~\sigma (\gamma (\tau ))
| J(\gamma (\tau )) - \~J(\gamma (\tau ))| d\tau 

\leq 1

\sigma 0

\int s0

0

| J(\gamma (\tau )) - \~J(\gamma (\tau ))| d\tau .

In particular for every x \in \Gamma t

| u(x) - \~u(x)| \leq | u(x\ast 
t ) - \~u(x\ast 

t )| \leq 
1

\sigma 0

\int L

0

| J(\gamma (\tau )) - \~J(\gamma (\tau ))| d\tau ,

where L denotes the entire length of \Gamma t. Hence\int 
\Gamma t

| u(x) - \~u(x)| dl \leq | u(x\ast 
t ) - \~u(x\ast 

t )| 
\int 
\Gamma t

1dl

\leq LM | u(x\ast 
t ) - \~u(x\ast 

t )| 

\leq LM

\sigma 0

\int L

0

| J(\gamma (\tau )) - \~J(\gamma (\tau ))| d\tau 

=
LM

\sigma 0

\int 
\Gamma t

| J  - \~J | dl,

and therefore \int 
\{ u=t\} \cap \Omega 

| u - \~u| dl \leq LM

\sigma 0

\int 
\{ u=t\} \cap \Omega 

| J  - \~J | dl.(15)

Thus we have \int 
\BbbR 

\int 
\{ u=t\} \cap \Omega 

| u - \~u| dldt \leq LM

\sigma 0

\int 
\BbbR 

\int 
\{ u=t\} 

| J  - \~J | dldt

=
LM

\sigma 0

\int 
\Omega 

| \nabla u| | J  - \~J | dx

\leq LM

\sigma 0
\| \nabla u\| L\infty (\Omega )

\int 
\Omega 

| J  - \~J | dx

\leq C\| a - \~a\| 
1
2

L\infty (\Omega )

for some constant C(m,M, \sigma 0, \sigma 1, f, u, LM ) independent of \~u and \~\sigma , where we have
used (15) and Theorem 2.5.

Next we generalize Theorem 3.3 to dimension n = 3. In order to do this, we need
the following additional assumption on level sets of u.
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STABILITY OF CURRENT DENSITY IMPEDANCE IMAGING 4513

Definition 3.4. Let u \in C1(\=\Omega ) be admissible. We say that level sets of u can be
foliated to one-dimensional curves if for almost every t \in range(u), every connected
component \Gamma t of \{ u = t\} (equipped with the metric induced from the Euclidean metric
in \BbbR 3) there exists a function gt(x) \in C1(\Gamma t) such that 0 < cg \leq | \nabla gt| \leq Cg for
some constants cg and Cg independent of t. Moreover, every connected component
of \{ u = t\} \cap \{ gt = r\} \cap \Omega is a C1 curve reaching the boundary \partial \Omega for almost every
t \in range(u) and all r \in \BbbR . Similar to the case n = 2, we assume that the length
of connected components of \{ u = t\} \cap \{ gt = r\} \cap \Omega is uniformly bounded by some
constant LM .

Remark 3.5. It follows from the regularity result of De Giorgi (see, e.g., Theorem
4.11 in [8]) that for a function u \in BV (\Omega ), level set \{ u = t\} is a C1-hypersurface
for almost all t \in range(u). Note also that every connected component of \{ u = t\} 
reaches the boundary \partial \Omega (see [21, 23, 25, 26]) for almost every t. Now let \Gamma t be a
C1 connected component of \{ u = t\} . If f has only two critical points (one minimum
and one maximum point) on \partial \Omega , then \Gamma t is a simply connected C1 surface reaching
the boundary \partial \Omega , and hence there exists a C1 homeomorphism \scrF t from B(0, 1) \subset \BbbR 2

to the closure of \Gamma t in \Omega (see Theorem 3.7 and Theorem 2.9 in [24]). It is easy to
see that the unit ball B(0, 1) can be foliated to one-dimensional curves by level sets
of g : B(0, 1) \rightarrow \BbbR defined by g(x, y) = y. Consequently \Gamma t can be foliated into one-
dimensional curves reaching the boundary of \partial \Omega by level sets of gt(X) = g(\scrF  - 1

t (X)),
X \in \Gamma t. Note also that since g and \scrF  - 1

t are both C1, and since \Gamma t is compact, there
exists constant c(t), C(t) > 0 such that

0 < c(t) < | \nabla gt| < C(t) on \Gamma t.(16)

Indeed the above argument shows that (16) holds for every connected components of
almost every level sets of a function u \in BV (\Omega ) for some constant c(t), C(t) depending
on t. So in Definition 3.4 the only significant assumption is that the constants c(t) and
C(t) are uniformly bounded from below and above by two positive constants cg and
Cg. In particular, if u is a C1 function with | \nabla u| > 0 in \Omega and \{ x \in \partial \Omega : f(x) = t\} 
has finitely many connected components for all t, then it follows from the implicit
function theorem that every level set of u is a C1 surface, and hence existence of cg
and Cg follows immediately from compactness of range(u), and hence level sets of u
can be foliated to one-dimensional curves in the sense of Definition 3.4.

Definition 3.6. Let t \in range(u), and suppose \Gamma i
t, i \in I, are C1 connected

components of \{ u = t\} , where I is countable. In view of Remark 3.5, there exist
functions git : \Gamma i

t \rightarrow R whose level sets foliate \Gamma i
t into one-dimensional curves in the

sense of Definition 3.4. We define gt : \{ u = t\} \rightarrow R to be the function with

gt| \Gamma i
t
= git, i \in I.(17)

We shall use this notation throughout the paper.

Theorem 3.7. Let n = 3, and suppose u and \~u are admissible with u| \partial \Omega = \~u| \partial \Omega =
f and corresponding current density vector fields J and \~J , respectively. Suppose the
level sets of u can be foliated to one-dimensional curves in the sense of Definition 3.4.
Then

\| u - \~u\| L1(\Omega ) \leq C\| | J |  - | \~J | \| 
1
2

L\infty (\Omega ),(18)

where C(m,M, \sigma 0, \sigma 1, f, u, LM , cg, Cg) is independent of \~u and \~\sigma .
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4514 ROBERT LOPEZ AND AMIR MORADIFAM

Proof. The proof is similar to the proof of Theorem 3.3, and we provide the details
for the sake of the reader. Since u is admissible,

m

\sigma 1

\int 
\Omega 

| u - \~u| dx \leq 
\int 
\Omega 

| \nabla u| | u - \~u| dx =

\int 
\BbbR 

\int 
\{ u=t\} \cap \Omega 

| u - \~u| dSdt.(19)

The level sets of u can be foliated into one-dimensional curves by level sets of
some function gt in the sense of Definition 3.4. Thus\int 

\BbbR 

\int 
\{ u=t\} \cap \Omega 

| u - \~u| dSdt =
\int 
\BbbR 

\int 
\{ u=t\} \cap \Omega 

| \nabla gt| 
| \nabla gt| 

| u - \~u| dSdt

=

\int 
\BbbR 

\int 
\BbbR 

\int 
\{ u=t\} \cap \{ gt=r\} \cap \Omega 

1

| \nabla gt| 
| u - \~u| dldrdt

\leq 1

cg

\int 
\BbbR 

\int 
\BbbR 

\int 
\{ u=t\} \cap \{ gt=r\} \cap \Omega 

| u - \~u| dldrdt.

Similar to the two-dimensional case, we parametrize every connected component \Gamma t

of \{ u = t\} \cap \{ gt = r\} \cap \Omega by arc length, \gamma : [0, L] \rightarrow \Gamma t with \gamma (0) \in \partial \Omega , and let
h(s) = u(\gamma (s))  - \~u(\gamma (s)). Let x\ast 

t be the point that maximizes | u  - \~u| on \Gamma t, and
suppose \gamma (s0) = x\ast 

t for some s0 \in (0, L), where L is the length of \Gamma t. Then by an
argument similar to the one in the proof of Theorem 3.3 we get

| u(x\ast 
t ) - \~u(x\ast 

t )| \leq 
1

\sigma 0

\int L

0

| J(\gamma (\tau )) - \~J(\gamma (\tau ))| d\tau ,

and consequently \int 
\Gamma t

| u(x) - \~u(x)| dl \leq LM

\sigma 0

\int 
\Gamma t

| J  - \~J | dl.

Hence \int 
\{ u=t\} \cap \{ gt=r\} \cap \Omega 

| u - \~u| dl \leq LM

\sigma 0

\int 
\{ u=t\} \cap \{ gt=r\} \cap \Omega 

| J  - \~J | dl.(20)

Using this estimate and the coarea formula we have

m

\sigma 1

\int 
\Omega 

| u - \~u| dx \leq 
\int 
\BbbR 

\int 
\{ u=t\} \cap \Omega 

| u - \~u| dSdt

\leq 1

cg

\int 
\BbbR 

\int 
\BbbR 

\int 
\{ u=t\} \cap \{ gt=r\} \cap \Omega 

| u - \~u| dldrdt

\leq LM

cg\sigma 0

\int 
\BbbR 

\int 
\BbbR 

\int 
\{ u=t\} \cap \{ gt=r\} \cap \Omega 

| J  - \~J | dldrdt

=
LM

cg\sigma 0

\int 
\BbbR 

\int 
\{ u=t\} 

| \nabla gt| | J  - \~J | dSdt

\leq LMCg

cg\sigma 0

\int 
\BbbR 

\int 
\{ u=t\} 

| J  - \~J | dSdt

=
LMCg

cg\sigma 0

\int 
\Omega 

| \nabla u| | J  - \~J | dx
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STABILITY OF CURRENT DENSITY IMPEDANCE IMAGING 4515

\leq LMCg

cg\sigma 0
\| \nabla u\| L\infty (\Omega )

\Bigl( 
C\| | J |  - | \~J | \| 

1
2

L\infty (\Omega )

\Bigr) 
\leq LMCgM

cg\sigma 2
0

\Bigl( 
C\| | J |  - | \~J | \| 

1
2

L\infty (\Omega )

\Bigr) 
,

where we have applied Theorem 2.5.

4. \bfitW \bfone ,\bfone stability of the minimizers. In this section, we prove stability of
minimizers of (2) in W 1,1. As mentioned in section 3, in general (2) does not even
have unique minimizers, so in order to prove stability results in W 1,1, it is natural to
expect stronger assumptions on the minimizers.

Lemma 4.1. Let n = 2, 3, and suppose u and \~u are admissible with u| \partial \Omega = \~u| \partial \Omega =
f \in L\infty (\partial \Omega ) and corresponding conductivities \sigma and \~\sigma and current density vector
fields J and \~J , respectively. Suppose \sigma , \~\sigma \in C2(\=\Omega ) with

\| \sigma \| C2(\Omega ), \| \~\sigma \| C2(\Omega )\leq \sigma 2(21)

for some \sigma 2 \in \BbbR . Let

G(x) :=
\~J(x) - J(x)

\~\sigma (x)
, x \in \Omega ,(22)

with G = (G1, G2) for n = 2 and G = (G1, G2, G3) for n = 3. Then

\| \nabla Gi\| L1(\Omega ) \leq C1\| J  - \~J\| 1/2L1(\Omega )(23)

for some constant C1 which depends only on \Omega , \sigma 0, \sigma 2, and \| f \| L\infty (\Omega ).

Proof. Since u and \~u satisfy (1), it follows from elliptic regularity that

\| u \| H3(\Omega ), \| \~u \| H3(\Omega )\leq C1 \| f \| L2(\Omega )\leq C1| \Omega | 
1
2 \| f \| L\infty (\Omega )(24)

for some constant C1 depending only on \sigma 0, \sigma 2, and \Omega . Now note that

G(x) = \nabla \~u - \sigma 

\~\sigma 
\nabla u.

Thus it follows from (21) and (24) that

\| D2Gi \| L1(\Omega )\leq | \Omega | 12 \| D2Gi \| L2(\Omega )\leq C, 1 \leq i \leq n,(25)

for some constant C which only depends on \sigma 0, \sigma 2, \Omega , and \| f \| L\infty (\Omega ). On the other
hand it follows from the Gagliardo--Nirenberg interpolation inequality that

\| \nabla Gi\| L1(\Omega ) \leq C2\| D2Gi\| 1/2L1(\Omega )\| Gi\| 1/2L1(\Omega )(26)

for some C2 which only depends on \Omega . Combining (25), (26), and

\| Gi \| L1(\Omega )\leq 
\| J  - \~J \| L1(\Omega )

\sigma 0
, 1 \leq i \leq n,

we arrive at the inequality (26).

Next we prove that u and \~u are close in W 1,1(\Omega ). In order to do so, we need
additional assumptions on the structure of level sets of u.
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4516 ROBERT LOPEZ AND AMIR MORADIFAM

Definition 4.2. Suppose u is admissible, n = 2, and x \in \Omega . Pick h \in \BbbR 2 with
| h| = 1, and t \in \BbbR small enough such that x + th \in \Omega . Let \Gamma and \Gamma t be the level
sets of u passing through x and x + th, respectively. Parametrize \Gamma and \Gamma t by the
arc length such that \gamma (0), \gamma t(0) \in \partial \Omega , and denote these parametrizations by \gamma and \gamma t,
respectively.

Similarly in dimension n = 3, let u be admissible, and suppose level sets of u can
be foliated to one-dimensional curves in the sense of Definition 3.4. Pick x \in \Omega and
h \in \BbbR 3 with | h| = 1, and choose t small enough such that x + th \in \Omega . Let \Gamma and \Gamma t

be the unique curves in

\{ \{ u = \tau \} \cap \{ g\tau = r\} \tau , r \in \BbbR \} 

which pass through x and x+ th, respectively, and let \gamma and \gamma t be the parametrization
of these curves with respect to arc length with \gamma (0), \gamma t(0) \in \partial \Omega .

We say that level sets of u are well structured if the following conditions are
satisfied.

(a) There exists K \geq 0 such that\bigm| \bigm| \bigm| \bigm| \bigm| \gamma 
\prime 

t(s) - \gamma 
\prime 
(s)

t

\bigm| \bigm| \bigm| \bigm| \bigm| \leq K(27)

for every s \in [0, L], t \in \BbbR , x \in \Omega , and h \in Sn - 1. In particular,

\gamma 
\prime 

t(s) \rightarrow \gamma 
\prime 
(s) as t \rightarrow 0,(28)

where \gamma \prime (s) = d\gamma (s)
ds and \gamma \prime 

t(s) =
d\gamma t(s)
ds .

(b) There exists a bounded function Fx,h(s) = F (x, h; s) \in L\infty (\Omega \times Sn - 1\times [0, LM ])
such that

lim
t\rightarrow 0

\gamma t(s) - \gamma (s)

t
= Fx,h(s)(29)

for every s \in [0, L], x \in \Omega , and h \in Sn - 1.

Remark 4.3. Let x \in \Omega , h \in \BbbR 2 with | h| = 1, and t \in \BbbR be small enough such
that x + th \in \Omega . Also, as in Definition 4.2, let \gamma , and \gamma t be the parametrization of
the curves passing through x and x+ th. In view of Remark 3.5 we have

\gamma (s) = \scrF u(x)(\=\gamma (s)) and \gamma t(s) = \scrF u(x+th)(\=\gamma t(s)),(30)

where \=\gamma (s) and \=\gamma t(s) are parametrization of two level sets of the function g(x, y) =
y = \Pi y(\scrF  - 1(x)) and g(x, y) = y = \Pi y(\scrF  - 1(x + th)), respectively. Here \Pi y is the
projection operator on the y-axis, and \scrF u(x) and \scrF u(x+th) are C1 diffeomorphisms
from B(0, 1) to the connected components of the level sets of u passing through x
and x+ th, respectively. It is easy to see that \=\gamma t(s) is continuously differentiable with
respect to t for each fixed s.

Now let \Gamma x0 be the connected component of the level set of u that passes through
x0, and assume that | \nabla u| > 0 on \Omega . Then in a neighborhood of r0 = u(x0) we can
find C1 diffeomorphisms Fr so that Fr(y) is continuously differentiable with respect
to r for each fixed y. Indeed let y \in B(0, 1), and consider the gradient flow

\.zy(q) = \nabla u(zy(q)), zy(0) = F0(y),(31)
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STABILITY OF CURRENT DENSITY IMPEDANCE IMAGING 4517

which has a unique solution as long as zy(q) \in \Omega . Let r \in range(u) and \Gamma r be a
connected component of \{ u = r\} . Define Fr : B(0, 1) \rightarrow \Gamma r by

Fr(y) = Fr0(zy(qr)),

where qr \in \BbbR is the unique point where zy(qr) \in \Gamma r. Also observe that the set

\scrR = \{ r \in range(u) : \scrF is well defined on \{ u = r\} \} 

is both open and closed in range(u), and hence \scrR = range(u) and therefore Fr could
be defined globally as above for all r \in range(u).

Since u, Fr0 , and zy are all C1, it is easy to see that Fr(y) is continuously differ-
entiable with respect to r for each fixed y \in B(0, 1). Now notice that the level sets
of the function g(x, y) : B(0, 1) \rightarrow \BbbR defined by g(x, y) = y are well structured in the
sense of Definition 4.2. In view of the above arguments, it follows from the chain rule
that \gamma t(s) = \BbbF t(\=\gamma t(s)), where \=\gamma t(s) is a parametrization of the level set g(x, y) = y
passing through \scrF  - 1(x+ th), and \scrF t and \=\gamma t are both continuously differentiable with
respect to t. Therefore, since (27), (28), (29) hold for any parametrization of level sets
of g(x, y) = y, an application of the chain rule implies that (27), (28), (29) also hold
under the assumptions of Definition 4.2. In particular, if u is a C1 function with
| \nabla u| > 0 in \Omega and \{ x \in \partial \Omega : f(x) = t\} has finitely many connected components for
all t, then level sets of u are well structured in the sense of Definition 4.2.

Theorem 4.4. Let n = 2, and suppose u and \~u are admissible with u| \partial \Omega = \~u| \partial \Omega =
f, corresponding conductivities \sigma , \~\sigma \in C2(\Omega ), and current density vector fields J and
\~J , respectively. Suppose \sigma , \~\sigma \in C2(\=\Omega ) and satisfy (21). If u satisfies (12) and the
level sets of u are well structured in the sense of Definition 4.2, then

\| \nabla \~u - \nabla u\| L1(\Omega ) \leq C \| | J |  - | \~J | \| 
1
4

L\infty (\Omega )(32)

for some constant C(m,M, \sigma 0, \sigma 1, \sigma 2, u, f, LM ) independent of \~u and \~\sigma .

Proof. Fix x \in \Omega and h \in \BbbR 2 with | h| = 1. Then

\scrL (x, h) := (\nabla \~u(x) - \nabla u(x)) \cdot h = lim
t\rightarrow 0

[\~u(x+ th) - u(x+ th)] - [\~u(x) - u(x)]

t
.

First we estimate the above limit. Since all level sets of u reach the boundary \partial \Omega ,
there exist z, zt \in \partial \Omega such that

u(x) = u(z) = \~u(z),

u(x+ th) = u(zt) = \~u(zt).

Thus

[\~u(x+ th) - u(x+ th)] - [\~u(x) - u(x)] = [\~u(x+ th) - \~u(zt)] - [\~u(x) - \~u(z)].

Let \gamma and \gamma t be the curves passing through x and x+ th, described in Definition
4.2 with \gamma (0) = z and \gamma t(0) = zt. Suppose \gamma (s0) = x, and reparametrize \gamma t so that
\gamma t(s0) = x+ th. Then we have

[\~u(x+ th) - \~u(z)] - [\~u(x) - \~u(z)] = [\~u(\gamma t(s0)) - \~u(\gamma t(0))] - [\~u(\gamma (s0)) - \~u(\gamma (0))]

=

\int s0

0

\nabla \~u(\gamma t(s)) \cdot \gamma \prime 
t(s)ds - 

\int s0

0

\nabla \~u(\gamma (s)) \cdot \gamma \prime (s)ds.
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Hence

\scrL (x, h) = lim
t\rightarrow 0

1

t

\biggl( \int s0

0

\nabla \~u(\gamma t(s)) \cdot \gamma \prime 
t(s)ds - 

\int s0

0

\nabla \~u(\gamma (s)) \cdot \gamma \prime (s)ds

\biggr) 
.

Substituting \nabla \~u by
\~J
\~\sigma and using the fact that J is perpendicular to \gamma \prime and \gamma \prime 

t we get

\scrL (x, h)

= lim
t\rightarrow 0

1

t

\Biggl( \int s0

0

\~J(\gamma t(s)) - J(\gamma t(s))

\~\sigma (\gamma t(s))
\cdot \gamma \prime 

t(s)ds - 
\int s0

0

\~J(\gamma (s)) - J(\gamma (s))

\~\sigma (\gamma (s))
\cdot \gamma \prime (s)ds

\Biggr) 
.

Now define

G(x) :=
\~J(x) - J(x)

\~\sigma (x)
, x \in \Omega .

Hence

\scrL (x, h) = lim
t\rightarrow 0

1

t

\biggl( \int s0

0

G(\gamma t(s)) \cdot \gamma \prime 
t(s)ds - 

\int s0

0

G(\gamma (s)) \cdot \gamma \prime (s)ds

\biggr) 
.

The expression in the right-hand side can be rewritten as

1

t

\int s0

0

[G(\gamma t(s)) - G(\gamma (s))] \cdot \gamma \prime 
t(s)ds+

1

t

\int s0

0

G(\gamma (s)) \cdot [\gamma \prime 
t(s) - \gamma \prime (s)]ds.(33)

It follows from assumption (a) in Definition 4.2 that\bigm| \bigm| \bigm| \bigm| \gamma \prime 
t(s) - \gamma \prime (s)

t

\bigm| \bigm| \bigm| \bigm| \leq K,

and hence\bigm| \bigm| \bigm| \bigm| 1t
\int s0

0

G(\gamma (s)) \cdot [\gamma \prime 
t(s) - \gamma \prime (s)]ds

\bigm| \bigm| \bigm| \bigm| \leq K

\sigma 0

\int L

0

| \~J(\gamma (s)) - J(\gamma (s))| ds.(34)

Now we turn our attention to the first term in (33). Let G = (G1, G2). Since

lim
t\rightarrow 0

\gamma t(s) - \gamma (s)

t
= Fx,h(s)

for i = 1, 2 we have

lim
t\rightarrow 0

Gi(\gamma t(s)) - Gi(\gamma (s))

t
= lim

t\rightarrow 0

Gi(\gamma (s) + tF (s)) - Gi(\gamma (s))

t
= \nabla Gi(\gamma (s)) \cdot F (s).

Thus the first term of (33) can be rewritten as

lim
t\rightarrow 0

1

t

\int s0

0

[G(\gamma t(s)) - G(\gamma (s))] \cdot \gamma \prime 
t(s)dl

=

\int s0

0

(\nabla G1(\gamma (s)) \cdot F (s),\nabla G2(\gamma (s)) \cdot F (s)) \cdot \gamma \prime (s)dl

\leq \| F \| L\infty 

\int s0

0

| \nabla G1(\gamma (s))| + | \nabla G2(\gamma (s))| dl

\leq \| F \| L\infty 

\int L

0

| \nabla G1(\gamma (s))| + | \nabla G2(\gamma (s))| dl,(35)
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where we have used assumption (b) in Definition 4.2. Combining (34) and (35) we
obtain

| \nabla \~u(x) - \nabla u(x)| \leq sup
h\in \BbbR 2,| h| =1

\scrL (x, h)

\leq K

\sigma 0

\int L

0

| \~J(\gamma (s)) - J(\gamma (s))| dl

+ \| F \| L\infty 

\int L

0

| \nabla G1(\gamma (s))| + | \nabla G2(\gamma (s))| dl.

Thus \int 
\Gamma 

| \nabla \~u(x) - \nabla u(x)| dl \leq KLM

\sigma 0

\int 
\Gamma 

| \~J(x) - J(x)| dl

+LM \| F \| L\infty 

\int 
\Gamma 

| \nabla G1(x)| + | \nabla G2(x)| dl,

and consequently

\int 
\{ u=\tau \} \cap \Omega 

| \nabla \~u(x) - \nabla u(x)| dl \leq KLM

\sigma 0

\int 
\{ u=\tau \} \cap \Omega 

| \~J(x) - J(x)| dl

(36)

+ LM \| F \| L\infty 

\int 
\{ u=\tau \} \cap \Omega 

| \nabla G1(x)| + | \nabla G2(x)| dl.

Using (36) and the coarea formula we have

m

\sigma 1
\| \nabla \~u - \nabla u\| L1(\Omega ) \leq 

\int 
\Omega 

| \nabla u| | \nabla \~u - \nabla u| dx

=

\int 
\BbbR 

\int 
\{ u=\tau \} \cap \Omega 

| \nabla \~u - \nabla u| dld\tau 

\leq KLM

\sigma 0

\int 
\BbbR 

\int 
\{ u=\tau \} \cap \Omega 

| \~J  - J | dld\tau 

+ LM \| F \| L\infty 

\int 
\BbbR 

\int 
\{ u=\tau \} \cap \Omega 

| \nabla G1| + | \nabla G2| dld\tau 

\leq KLMM

(\sigma 0)2

\int 
\BbbR 

\int 
\{ u=\tau \} \cap \Omega 

| \~J  - J | 
| \nabla u| 

dld\tau 

+
LM \| F \| L\infty M

\sigma 0

\int 
\BbbR 

\int 
\{ u=\tau \} \cap \Omega 

| \nabla G1| + | \nabla G2| 
| \nabla u| 

dld\tau 

=
KLMM

(\sigma 0)2

\int 
\Omega 

| \~J  - J | dx

+
LM \| F \| L\infty M

\sigma 0

\int 
\Omega 

| \nabla G1| + | \nabla G2| dx

\leq KLMM

(\sigma 0)2
\| J  - \~J \| L1(\Omega )

+
2LMC1 \| F \| L\infty M

\sigma 0
\| J  - \~J \| 

1
2

L1(\Omega ),

where we have used (26) to obtain the last inequality. Applying Theorem 2.5, and
noting that

\| J  - \~J \| 
1
2

L1(\Omega )\leq 2M,
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where M is defined in (5), we arrive at (32).

Now we prove the three-dimensional version of this theorem.

Theorem 4.5. Let n = 3, and suppose u and \~u are admissible with u| \partial \Omega =
\~u| \partial \Omega = f, corresponding conductivities \sigma , \~\sigma \in C2(\Omega ), and current density vector fields
J and \~J , respectively. Suppose \sigma , \~\sigma \in C2(\=\Omega ) and satisfy (21). In addition suppose u
satisfies (12), the level sets of u can be foliated to one-dimensional curves in the sense
of Definition 3.4, and the level sets of u are well structured in the sense of Definition
4.2. Then

\| \nabla \~u - \nabla u\| L1(\Omega ) \leq C\| a - \~a\| 
1
4

L\infty (\Omega )(37)

for some constant C(m,M, \sigma 0, \sigma 1, \sigma 2, u, f, LM , cg, Cg) independent of \~u and \~\sigma .

Proof. With an argument similar to the one used in the proof of Theorem 4.4 we
get

\int 
U\tau ,r

| \nabla \~u(x) - \nabla u(x)| dl \leq KLM

\sigma 0

\int 
U\tau ,r

| \~J(x) - J(x)| dl

(38)

+ LM \| F \| L\infty 

\int 
U\tau ,r

| \nabla G1(x)| + | \nabla G1(x)| + | \nabla G3(x)| dl,

where U\tau ,r := \{ u = \tau \} \cap \{ g\tau = r\} \cap \Omega and G = (G1, G2, G3) is defined in (22).
It follows from (38) and the coarea formula that

m

\sigma 1
\| \nabla \~u - \nabla u\| L1(\Omega ) \leq 

\int 
\Omega 

| \nabla u| | \nabla \~u - \nabla u| dx

=

\int 
\BbbR 

\int 
\{ u=\tau \} \cap \Omega 

| \nabla \~u - \nabla u| dSd\tau 

=

\int 
\BbbR 

\int 
\{ u=\tau \} \cap \Omega 

| \nabla g\tau | 
| \nabla g\tau | 

| \nabla \~u - \nabla u| dSd\tau 

=

\int 
\BbbR 

\int 
\BbbR 

\int 
U\tau ,r

1

| \nabla g\tau | 
| \nabla \~u - \nabla u| dldrd\tau 

\leq KLM

\sigma 0cg

\int 
\BbbR 

\int 
\BbbR 

\int 
U\tau ,r

| \~J  - J | dldrdt

+
LM \| F \| L\infty 

cg

\int 
\BbbR 

\int 
\BbbR 

\int 
U\tau ,r

| \nabla G1| + | \nabla G2| + | \nabla G3| dldrdt

\leq KLMMCg

(\sigma 0)2cg

\int 
\BbbR 

\int 
\BbbR 

\int 
U\tau ,r

| \~J  - J | 
| \nabla u| | \nabla g\tau | 

dldrdt

+
LMM \| F \| L\infty Cg

\sigma 0cg

\int 
\BbbR 

\int 
\BbbR 

\int 
U\tau ,r

| \nabla G1| + | \nabla G2| + | \nabla G3| 
| \nabla u| | \nabla gt| 

dldrdt

=
KLMMCg

(\sigma 0)2cg

\int 
\BbbR 

\int 
\{ u=\tau \} \cap \Omega 

| \~J  - J | 
| \nabla u| 

dSdt

+
LMM \| F \| L\infty Cg

\sigma 0cg

\int 
\BbbR 

\int 
\{ u=\tau \} \cap \Omega 

| \nabla G1| + | \nabla G2| + | \nabla G3| 
| \nabla u| 

dSdt
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=
KLMMCg

(\sigma 0)2cg

\int 
\Omega 

| \~J  - J | dx

+
LMM \| F \| L\infty Cg

\sigma 0cg

\int 
\Omega 

| \nabla G1| + | \nabla G2| + | \nabla G3| dx

\leq KLMMCg

(\sigma 0)2
\| J  - \~J \| L1(\Omega )

+
2LMC1M \| F \| L\infty (\Omega ) Cg

\sigma 0
\| J  - \~J \| 

1
2

L1(\Omega ),

where we have used (26) to obtain the last inequality. Applying Theorem 2.5 and
noting that

\| J  - \~J \| 
1
2

L1(\Omega )\leq 2M,

we obtain the inequality (32).

Now, we are ready to prove our main stability results.

Theorem 4.6. Let n = 2, and suppose u and \~u are admissible with u| \partial \Omega = \~u| \partial \Omega =
f, corresponding conductivities \sigma , \~\sigma \in C2(\Omega ), and current density vector fields J and
\~J , respectively. Suppose \sigma , \~\sigma \in C2(\=\Omega ) and satisfy (21). If u satisfies (12) and level
sets of u are well structured in the sense of Definition 4.2, then

\| \sigma  - \~\sigma \| L1(\Omega ) \leq C \| | J |  - | \~J | \| 
1
4

L\infty (\Omega )

for some constant C(m,M, \sigma 0, \sigma 1, \sigma 2, \sigma , f, LM ) independent of \~\sigma .

Proof. Using Theorem 4.4 we have\int 
\Omega 

| \sigma  - \~\sigma | dx =

\int 
\Omega 

\bigm| \bigm| \bigm| \bigm| \bigm| | J | (| \nabla \~u|  - | \nabla u| )
| \nabla u| | \nabla \~u| 

+
| J |  - | \~J | 
| \nabla \~u| 

\bigm| \bigm| \bigm| \bigm| \bigm| dx
\leq 
\int 
\Omega 

| J | 
| \nabla u| | \nabla \~u| 

| | \nabla u|  - | \nabla \~u| | dx+

\int 
\Omega 

1

| \nabla \~u| 

\bigm| \bigm| \bigm| | J |  - | \~J | 
\bigm| \bigm| \bigm| dx

\leq 
\int 
\Omega 

| J | 
| \nabla u| | \nabla \~u| 

| \nabla u - \nabla \~u| dx+

\int 
\Omega 

1

| \nabla \~u| 

\bigm| \bigm| \bigm| | J |  - | \~J | 
\bigm| \bigm| \bigm| dx

\leq M\sigma 2
1C

m2
\| | J |  - | \~J | \| 

1
4

L\infty (\Omega ) +
\sigma 1| \Omega | 
m

\| | J |  - | \~J | \| L\infty (\Omega )

\leq 

\Biggl[ 
M\sigma 2

1C

m2
+

\sigma 1| \Omega | (2M)
3
4

m

\Biggr] 
\| | J |  - | \~J | \| 

1
4

L\infty (\Omega ) .

Theorem 4.7. Let n = 3, and suppose u and \~u are admissible with u| \partial \Omega = \~u| \partial \Omega =
f, corresponding conductivities \sigma , \~\sigma \in C2(\Omega ), and current density vector fields J and
\~J , respectively. Suppose \sigma , \~\sigma \in C2(\=\Omega ) and satisfy (21). If u satisfies (12), the level
sets of u can be foliated to one-dimensional curves in the sense of Definition 3.4, and
the level sets of u are well structured in the sense of Definition 4.2, then

\| \sigma  - \~\sigma \| L1(\Omega ) \leq C\| | J |  - | \~J | \| 
1
4

L\infty (\Omega )(39)

for some constant C(m,M, \sigma 0, \sigma 1, \sigma 2, \sigma , f, LM , cg, Cg) independent of \~\sigma .

Proof. The proof follows from Theorem 4.5 and a calculation similar to that of
the proof of Theorem 4.6.
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