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ABSTRACT
We propose a new approach to the problem of high-dimensional multivariate ANOVA via bootstrapping
max statistics that involve the differences of sample mean vectors. The proposed method proceeds via
the construction of simultaneous confidence regions for the differences of population mean vectors. It is
suited to simultaneously test the equality of several pairs of mean vectors of potentially more than two
populations. By exploiting the variance decay property that is a natural feature in relevant applications, we
are able to provide dimension-free and nearly parametric convergence rates for Gaussian approximation,
bootstrap approximation, and the size of the test. We demonstrate the proposed approach with ANOVA
problems for functional data and sparse count data. The proposed methodology is shown to work well in
simulations and several real data applications.
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1. Introduction

The MANOVA problem of detecting significant differences
among the means of multivariate populations is of central
importance in a myriad of statistical applications. However, the
classical MANOVA approaches are only intended to handle
low-dimensional settings where the number of covariates is
much smaller than the sample size, which is a crucial lim-
itation for modern high-dimensional data analysis. Due to
the demand for methodology that provides valid inference for
high-dimensional data, the challenge of finding suitable new
MANOVAmethods has developed into amajor line of research.
For example, the special case of high-dimensional two-sample
testing has been investigated by Bai and Saranadasa (1996),
Lopes, Jacob, and Wainwright (2011), Cai, Liu, and Xia (2014),
Thulin (2014), Xu et al. (2016), Zhang and Pan (2016), and
Zhang et al. (2019b) under the condition that populations
share a common covariance matrix, while procedures designed
by Chen and Qin (2010), Feng and Sun (2015), Feng et al.
(2015), Gregory et al. (2015), Städler and Mukherjee (2016),
Chang et al. (2017), and Xue and Yao (2020) do not require
such a common covariance assumption. For the more gen-
eral multiple-sample problem, methods and theory were stud-
ied by Fujikoshi, Himeno, and Wakaki (2004), Srivastava and
Fujikoshi (2006), Schott (2007), Yamada and Srivastava (2012),
Srivastava and Kubokawa (2013), Cai and Xia (2014), Zhang,
Guo, and Zhou (2017), Bai, Choi, and Fujikoshi (2018), and
Li, Aue, and Paul (2020) when the populations share common
covariance structure, while Zhang and Xu (2009), Yamada and
Himeno (2015), Li et al. (2017), Hu et al. (2017), Zhou, Guo,
and Zhang (2017), and Zhang et al. (2018) eliminated the
requirement of common covariance. Among these, Chang et al.
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(2017), Zhang et al. (2018), and Xue and Yao (2020) adopted
a bootstrap approach following Chernozhukov, Chetverikov,
and Kato (2013) and Chernozhukov, Chetverikov, and Kato
(2017).

An important observation in this context is that the variances
of variables often exhibit a certain decay pattern. As an example,
consider a multinomial model of p categories. Without loss of
generality, assume that the probabilities of the p categories are
ordered as π1 ≥ · · · ≥ πp. Since the probabilities sum to one, it
follows that the varianceσ 2

j = πj(1−πj) of the jth categorymust
decay at least as fast as j−1. Additional examples that arise in
connection with principal component analysis and the Fourier
coefficients of functional data may be found in Lopes, Lin, and
Müller (2020).

When the structure of variance decay is available, Lopes, Lin,
andMüller (2020) showed that near-parametric and dimension-
free rates of Gaussian and bootstrap approximation can be
established for max statistics of the form max1≤j≤p

√
n{X̄ −

μ}(j)/σ τ
j . In this expression, X̄ = (X̄(1), . . . , X̄(p)) is the sam-

ple mean of n independent and identically distributed random
vectorswithmean vectorμ = (μ(1), . . . ,μ(p)) and coordinate-
wise variances σ 2

1 , . . . , σ 2
p , while the symbol τ denotes a tun-

ing parameter in the interval [0, 1). Remarkably, the near-
parametric rates of approximation remain valid even when the
decay is very weak, that is, σj � j−α for an arbitrarily small
α > 0. In this paper, we harness such decay patterns to develop
promising bootstrap-based inference for the high-dimensional
MANOVA problem.

We consider a general setting withK ≥ 2 populations having
mean vectors μ1, . . . ,μK ∈ R

p. For any collection of ordered
pairs P taken from the set {(k, l) : 1 ≤ k < l ≤ K}, the
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hypothesis testing problem of interest is

H0 : μk = μl for all (k, l) ∈ P versus (1)
Ha : μk �= μl for some (k, l) ∈ P .

Note that this includes a very general class of null hypotheses of
possible interest. The proposed strategy is to construct simulta-
neous confidence region (SCR) for the differencesμk−μl for all
pairs inP via bootstrapping amaximum-type statistic related to
μk−μl across all coordinates and all pairs. In addition, we adopt
the idea of partial standardization developed in Lopes, Lin, and
Müller (2020) to take advantage of the variance decay. This
differs from the existing bootstrap-based methods proposed in
Chang et al. (2017), Xue and Yao (2020), and Zhang et al. (2018)
that do not exploit the decay. Furthermore, in the first two
papers the authors consider only one- or two-sample problems,
and in the last article only the standard global null hypothesis
μ1 = · · · = μK .

The proposed method has several favorable properties:

• There is flexibility in the choice of null hypothesis. In addi-
tion to the basic global null hypothesis μ1 = · · · = μK ,
which corresponds to choosing P = {(k, l) : 1 ≤ k < l ≤
K}, we can also test more specific hypotheses. For instance,
the null hypothesis μ1 = μ2 and μ3 = μ4 corresponds to
P = {(1, 2), (3, 4)}. In general, whenever P contains more
than one pair, traditional methods often require that two
or more separate tests are performed. This requires extra
adjustments for multiple comparisons, which often have a
negative impact on power. Indeed, the effect of multiplicity
can be severe, because the number of pairs |P| may grow
quadratically as a function of K, as in the case of the global
null hypothesis with |P| = K(K − 1)/2.

• The proposed method performs the test via constructing
SCR for the differences μk − μl indexed by (k, l) ∈ P .
Such SCR are also valuable in their own right (in addition
to their utility for hypothesis testing), as they provide quan-
titative information about the separation of the mean vectors
μ1, . . . ,μK that is often of interest in applications.

• When the null hypothesis is rejected, the proposed approach
makes it possible to immediately identify pairs of populations
that have significantly different means without performing
additional tests. By contrast, additional testing is often nec-
essary when one adopts and extends traditional MANOVA
approaches.

• Like Chang et al. (2017), Zhang et al. (2018), and Xue
and Yao (2020), who essentially proposed two-sample or
multiple-sample comparisons based on bootstrapping, we do
not require that the ratio of the sample sizes of any pair of
populations converges to a specific limit.

• In contrast to the testing procedures of Chang et al. (2017),
Zhang et al. (2018) (where the convergence rates for the
size of the test are not established), and the method of
Xue and Yao (2020) (for which the convergence rate is at
most

√
log p/n1/6), the proposed approach is shown to enjoy

a near-parametric rate of convergence. Furthermore, this
near-parametric rate is free of the dimension p and holds
under mild assumptions. These improvements are achieved
by exploiting variance decay.

To demonstrate the usefulness of the proposed approach,
we apply our procedure to perform ANOVA for functional
data and sparse count data. Functional data are commonly
encountered in many types of statistical analysis, as surveyed
in the monographs (Ramsay and Silverman 2005; Ferraty and
Vieu 2006; Horváth and Kokoszka 2012; Zhang 2013; Hsing
and Eubank 2015; Kokoszka and Reimherr 2017) and review
papers (Wang, Chiou, and Müller 2016; Aneiros et al. 2019).
Previous examples of methods for functional ANOVA are
pointwise F-tests (Ramsay and Silverman 2005, p. 227), an
integrated F-test and its variants (Shen and Faraway 2004;
Zhang 2011, 2013), globalization of pointwise F-tests (Zhang
and Liang 2014), a test based on the maximum of point-
wise F-statistics (Zhang et al. 2019a), the HANOVA method
(Fan and Lin 1998), L2 norm-based methods (Faraway 1997;
Zhang and Chen 2007), random projection-based test (Cuesta-
Albertos and Febrero-Bande 2010), a GET with graphical inter-
pretation (Mrkvička et al. 2020), and an empirical likelihood
ratio approach (Chang and McKeague 2020), in addition to
resampling methods (Zhang 2013; Paparoditis and Sapatinas
2016).

While the proposed approach makes use of the techniques
and some results developed in Lopes, Lin, and Müller (2020),
adapting these results to the multiple-sample setting is a major
challenge. The key obstacle is that, in contrast to the sit-
uation studied in Lopes, Lin, and Müller (2020), the max
statistic (2) in the MANOVA setting is not the maximum
of an average of independent vectors. Overcoming this dif-
ficulty requires a delicate transformation of the statistic to
represent it as the maximum of the average of indepen-
dent random vectors that are further transformations of the
data; see Proposition A.1 in the supplementary material. In
addition, the theory here is more comprehensive in the way
that it accounts for the effect using estimated standard devi-
ations σ̂j in the SCR. This is done by establishing a uni-
form bound on the estimation error of σ̂j over all coordi-
nates and groups, which holds when the data satisfy a basic
continuity assumption; see Lemma E.10 in the supplementary
material.

The rest of the article is structured as follows. In Section 2,
we present the details of the proposed method. In Section 3,
we establish theoretical guarantees for bootstrappingmax statis-
tics under a multiple-sample setting, including a result on the
convergence rate of the empirical size of the proposed test. Our
signature application to functional ANOVA is given in Section 4
and the second application to sparse count data is given in
Section 5. We conclude the article in Section 6.

2. High-Dimensional Multiple-Sample Test

Consider K independent groups of observations, where we
assume that for the kth group one has nk iid (indepen-
dently and identically distributed) p-dimensional observations
Xk,1, . . . ,Xk,nk with meanμk ∈ R

p. Our goal is to test any of the
null hypotheses in Equation (1) based on these data.

To motivate our approach, consider a two-sample test in the
classical setting that corresponds to the special case p = 1
and K = 2 with (k, l) = (1, 2). The common statistic T =

https://doi.org/10.1080/01621459.2021.1920959
https://doi.org/10.1080/01621459.2021.1920959
https://doi.org/10.1080/01621459.2021.1920959
https://doi.org/10.1080/01621459.2021.1920959
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{(X̄k − μk) − (X̄l − μl)}/
√
var(X̄k − X̄l) asymptotically follows

a standard Gaussian distribution, where X̄k = n−1
k

∑nk
i=1 Xk,i

denotes the sample mean of the kth group for k = 1, 2. This
statistic can be used to construct a confidence interval of level
1 − � for the difference μk − μl, which can then be used to
implement the standard two-sample test at the level �. When
p > 1, one can construct a SCR for μk − μl ∈ R

p in terms of
the distribution of the max statistic

M′(k, l) = max
1≤j≤p

{X̄k(j) − μk(j)} − {X̄l(j) − μl(j)}√
var(X̄k(j) − X̄l(j))

.

For the general case when K ≥ 2, it is natural to consider the
max statistic M′ = max(k,l)∈P M′(k, l). One may equivalently
rewrite the statisticM′(k, l) as

M′(k, l) = max
1≤j≤p

(√
nl

nk+nl
Sk,j
σk,l,j

−
√

nk
nk+nl

Sl,j
σk,l,j

)
,

where Sk = n−1/2
k

∑nk
i=1(Xk,i − μk), Sk,j = Sk(j) denotes the jth

coordinate, and σ 2
k,l,j = {nlvar(Xk(j))+nkvar(Xl(j))}/(nk +nl).

As shown in Lopes, Lin, and Müller (2020), when the variances
σ 2
k,l,j exhibit a decay pattern, it is beneficial to use partial stan-

dardization,

M(k, l) = max
1≤j≤p

(√
nl

nk+nl
Sk,j
στ
k,l,j

−
√

nk
nk+nl

Sl,j
στ
k,l,j

)
and (2)

M = max
(k,l)∈P

M(k, l),

where τ ∈ [0, 1) is a parameter that may be tuned to maximize
power.

Remark. To intuitively understand the role of τ , it is helpful to
consider the extreme cases of τ = 1 (ordinary standardization)
and τ = 0 (no standardization). In the case of τ = 1, the
jth difference in Equation (2) has variance equal to 1 for every
j = 1, . . . , p, and hence, the “low-dimensional structure” of
variance decay is eliminated. Likewise, in this situation, all of the
p coordinates are “equally important,” which makes the prob-
lem genuinely high-dimensional—and hence, makes bootstrap
approximationmore difficult. In the opposite casewhen τ = 0, a
different issue arises. It can be seen fromEquation (3) below that
all of the p SCRs will have the same width. This is undesirable,
as the widths of the intervals should be adapted to the variance
of each coordinate. In view of these undesirable effects when
choosing the endpoints τ = 1 or τ = 0, the proposed partial
standardization seeks a tradeoff by allowing for intermediate
values of τ between 0 and 1.

As M is the maximum of random variables that are in turn
coordinate-wise maxima of a random vector, it is difficult to
derive its distribution.1 This difficulty, fortunately, can be cir-
cumvented efficiently by bootstrapping, as follows. Let �̂k =
n−1
k

∑nk
i=1(Xk,i−X̄k)(Xk,i−X̄k)

	 be the sample covariance of the
kth group. Define the bootstrap version of Sk by S�

k ∼ N(0, �̂k).
(An equivalent definition is S�

k = n−1/2
k

∑nk
i=1 X

�
k,i with X�

k,i

1Note thatM itself is not a test statistic since it involves unknownparameters,
but being able to estimate the quantiles of M will enable our testing
procedure based on SCRs.

iid sampled from N(0, �̂k).) Likewise, the bootstrap version of
M(k, l) is defined by

M�(k, l) = max
1≤j≤p

(√
nl

nk+nl
S�
k,j

σ̂ τ
k,l,j

−
√

nk
nk+nl

S�
l,j

σ̂ τ
k,l,j

)
,

where σ̂ 2
k,l,j are diagonal elements of �̂k,l = nl

nk+nl �̂k + nk
nk+nl �̂l,

and altogether, the bootstrap version ofM is defined by

M� = max
(k,l)∈P

M�(k, l).

For a given dataset X = {Xk,i : 1 ≤ k ≤ K, 1 ≤ i ≤ nk},
we generate B ≥ 1 independent samples of (S�

1, . . . , S�
K), which

yieldB independent samples ofM�. Then, the empirical quantile
function of these samples ofM�, denoted by q̂M(·), serves as an
estimate of the quantile function qM(·) ofM.

Analogously, we define the min statistic

L(k, l) = min
1≤j≤p

(√
nl

nk+nl
Sk,j
στ
k,l,j

−
√

nk
nk+nl

Sl,j
στ
k,l,j

)
and

L = min
(k,l)∈P

L(k, l),

as well as their bootstrap counterparts,

L�(k, l) = min
1≤j≤p

(√
nl

nk+nl
S�
k,j

σ̂ τ
k,l,j

−
√

nk
nk+nl

S�
l,j

σ̂ τ
k,l,j

)
and

L� = min
(k,l)∈P

L�(k, l).

Similarly, the quantile function of L� can be obtained by drawing
samples from the distributions N(0, �̂k).

Finally, the 1 − � two-sided SCRs for the jth coordinates of
μk − μl for j = 1, . . . , p, (k, l) ∈ P , are given by

SCR(k, l, j) =
[
X̄k(j) − X̄l(j) − q̂M(1−�/2)σ̂ τ

k,l,j√nk,l ,

X̄k(j) − X̄l(j) − q̂L(�/2)σ̂ τ
k,l,j√nk,l

]
, (3)

where nk,l := nknl/(nk + nl) denotes the harmonic sample
size of the kth and lth groups. With these SCRs in hand, we
perform the test in (1) by rejecting the null hypothesis at the
significance level � if 0 /∈ SCR(k, l, j) for some (k, l) ∈ P and
j = 1, . . . , p. One-sided SCRs can be constructed and one-
sided hypothesis tests can be conducted in a similar fashion.
For the testing problem (1), it is often desirable to obtain the
p-value, which corresponds to the largest value of � such that
all SCRs in Equation (3) contain zero and can easily be found
numerically.

In practical applications, one needs to determine a value
for the parameter τ . Although in the next section, it is shown
that any fixed value in [0, 1) gives rise to the same asymptotic
behavior of the proposed test, a data-drivenmethod to optimize
the empirical power is desirable. We propose to select the value
of τ that yields the smallest p-value while keeping the size at
the nominal level �. We first observe that for a given value of
τ , the above bootstrap test provides a corresponding p-value.
It remains to estimate the empirical size for a given value of
τ . To this end, we propose the following resampling approach.
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Figure 1. Computation time in a server with an NVIDIA Quadro P400 graphics card.

First, the data are centered within each group, so that the null
hypothesis holds for the centered data. For each group, a new
sample of the same size is generated by resampling the original
dataset with replacement. Then, the proposed test is applied
on the new samples with the nominal significance level �.
This process is repeated several times, for example, 100 times,
and the empirical size is estimated by the proportion of the
resampled datasets that lead to rejecting the null hypothesis.
If a value of τ yields an empirical size that is bounded by the
nominal level �, then it is retained, and from these retained
values of τ , the one corresponding to the smallest p-value is
selected.

To tackle the additional computational burden that this
incurs, one can leverage the two levels of parallelism of the
proposed algorithm: Each candidate value of τ in a grid can
be examined in parallel, and for a given τ , all the subsequent
computations are parallel. Therefore, the proposed method is
scalable with modern cloud, cluster or GPU (graphics process-
ing unit) based computing. For illustration, we created anR soft-
ware to implement the above parallel algorithm for aGPUbased
platform. Figure 1 shows the computation time that includes
selecting a value for τ from 11 candidate values, constructing
the SCRs and performing the test, for datasets of K = 3
groups, (n1, n2, n3) = (n, n, n) samples and p dimensions. It is
observed that the computation time scales efficiently in both n
and p.

3. Theory

3.1. BootstrappingMax Statistics forMultiple Samples

Notation. The identity matrix of size p × p is denoted by Ip.
For a deterministic vector v ∈ R

p and r > 0, let ‖v‖r =
(
∑p

j=1 |vj|r)1/r , and for a scalar random variable ξ , let ‖ξ‖r =
E(|ξ |r)1/r . The ψ1-Orlicz norm of a random variable ξ is
denoted and defined by ‖ξ‖ψ1 = inf{t > 0 : E[exp(|ξ |/t)] ≤
2}. If a and b are real numbers, then we write a∧ b = min{a, b}
and a ∨ b = max{a, b}.

Conventions. The main results are formulated in terms
of a sequence of models indexed by the integer n =
min{n1, . . . , nK}. All aspects of these models may depend
on n, except where stated otherwise. Likewise, the following
numbers may depend on n: the dimension p, the number of

groups K, the group sample sizes n1, . . . , nK ,2 and the tuning
parameter τ . The set of pairs P , as well as the population
distributions of the groups may also depend on n. Accordingly,
if it is stated that a constant c does not depend on n, then it
is understood that c does not depend on any of these other
numbers or objects. For constants of this type, the symbol c will
often be reused with different values at each occurrence. If an
and bn are two sequences of nonnegative real numbers, then
an � bn means that there is a constant c > 0 not depending
on n, such that an ≤ cbn holds for all large n. If both of the
conditions an � bn and bn � an hold, then we write an � bn.

Assumption 1 (Data-generating model).

(i) For each k ∈ {1, . . . ,K}, there exists a vector μk ∈ R
p and

a positive semidefinite matrix �k ∈ R
p×p, such that the

observations Xk,1, . . .Xk,nk ∈ R
p are generated as Xk,i =

μk + �
1/2
k Zk,i for each 1 ≤ i ≤ nk, where Zk,1, . . . ,Zk,nk ∈

R
p are iid random vectors.

(ii) There is a constant c0 > 0 not depending on n, such that
for each k ∈ {1, . . . ,K}, the random vector Zk,1 satisfies
sup‖u‖2=1 ‖Z	

k,1u‖ψ1 ≤ c0, as well as EZk,1 = 0 and
E(Zk,1Z	

k,1) = Ip.

In the above assumption, themean vectorsμk and covariance
matrices �k are allowed to vary with the sample size nk. Also,
the random vectors Z1,1, . . . ,Z1,n1 , . . . ,ZK,1, . . . ,ZK,nK across
different populations are independent, and Z1,1, . . . ,ZK,1 may
have different distributions.

To state the next assumption, for d ∈ {1, . . . , p}, we useJk(d)
to denote a set of indices corresponding to the d largest values
among σk,1, . . . , σk,p. In addition, let Rk(d) ∈ R

d×d denote the
correlationmatrix of the random variables {Xk,1(j) : j ∈ Jk(d)}.
Lastly, let a ∈ (0, 1/2) be a fixed constant, and define the integers
�k andmk according to

�k = �(1 ∨ log3 nk) ∧ p�,

mk = �(�k ∨ n
1

log(nk)a

k ) ∧ p�.
Assumption 2 (Structural assumptions).

(i) The parameters σk,1, . . . , σk,p are positive, and there are
positive constants α, c1, and c◦ ∈ (0, 1), not depending on

2that is, for each n = 1, 2, . . . , the equation n = min{n1(n), . . . , nK (n)} is
satisfied.
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n, such that for each k ∈ {1, . . . ,K},
σk,(j) ≤ c1j−α for all j ∈ {mk, . . . , p},
σk,(j) ≥ c◦j−α for all j ∈ {1, . . . ,mk},

where σk,(j) denotes the jth largest value of σk,1, . . . , σk,p.
(ii) There exists a constant ε0 ∈ (0, 1), not depending on n, such

that for k = 1, . . . ,K,
max
i�=j

Rk,i,j(�k) ≤ 1 − ε0,

where Rk,i,j(�k) denotes the (i, j) entry of the matrix Rk(�k).
Also, for k = 1, . . . ,K, the matrix R+

k (�k) with (i, j) entry
given by max{Rk,i,j(�k), 0} is positive semidefinite. More-
over, there is a constant C0 > 0, not depending on n, such
that for each k = 1, . . . ,K, we have∑

1≤i<j≤�k

R+
k,i,j(�k) ≤ C0�k.

The above two assumptions are multiple-sample analogs of
assumptions in Lopes, Lin, and Müller (2020), where examples
of correlationmatrices satisfying the above conditions are given.
The following assumption imposes constraints on τ in conjunc-
tion with n and on the sample sizes n1, . . . , nK .

Assumption 3. There exist positive constants c2 and c3 not
depending on n such that the bounds c2 ≤ nk

nk+nl ≤ c3 hold
for all k, l ∈ {1, . . . ,K}. Also, the conditions (1 − τ)

√
log n � 1

and max{K, |P|} � e
√

log n hold.

In the last assumption, note that τ is allowed to approach
to 1 at a slow rate. Although n1, . . . , nK are required to be of
the same order, their ratios do not have to converge to certain
limits. Such convergence conditions are required by some of the
test procedures surveyed in Section 1 based on asymptotic limit
distributions of test statistics rather than bootstrap. Also, it is
notable that the current setting allows K → ∞ and |P| →
∞ as n → ∞. Overall, Assumptions 1–3 are quite mild and
are satisfied for many relevant applications, with examples in
Sections 4 and 5.

Let S̃k ∼ N(0,�k) for each k = 1, . . . ,K, and define the
Gaussian counterparts of the partially standardized statistics
M(k, l) andM,

M̃(k, l) = max
1≤j≤p

(√
nl

nk+nl
S̃k,j
στ
k,l,j

−
√

nk
nk+nl

S̃l,j
στ
k,l,j

)
and

M̃ = max
(k,l)∈P

M̃(k, l).

The following two theorems, with proofs provided in the suppl-
ementary material, extend the Gaussian and bootstrap approxi-
mation results in Lopes, Lin, and Müller (2020) to the multiple-
sample setting as encountered in MANOVA, where dK denotes
the Kolmogorov distance, defined by dK(L(U),L(V)) =
supt∈R |P(U ≤ t) − P(V ≤ t)| for generic random variables
U and V with probability distributions L(U) and L(V). As
discussed in Section 1, this extension from the one- to the
multi-sample case is nontrivial. The key theoretical results are
in Theorems 3.1 and 3.2, which provide theoretical justifications
for the proposed bootstrap procedure. In these theorems, the
constant δ may be taken to be arbitrarily small, and so the
convergence rates are nearly parametric.

Theorem 3.1 (Gaussian approximation). Fix any small δ > 0,
and suppose that Assumptions 1–3 hold. Then,

dK
(
L(M),L(M̃)

)
� n− 1

2+δ .

Theorem 3.2 (Bootstrap approximation). Fix any small δ >

0, and suppose that Assumptions 1–3 hold. Then there is a
constant c > 0, not depending on n, such that the event

dK
(
L(M̃),L(M�|X)

)
≤ cn− 1

2+δ

occurs with probability at least 1− cn−1, whereL(M�|X) repre-
sents the distribution ofM� conditional on the observed data.

3.2. High-Dimensional MANOVA

We first analyze the power of the proposedmethod in Section 2.
All proofs are deferred to the supplementary material.

Theorem 3.3. If Assumptions 1–3 hold and the number of boot-
strap samples satisfies B � log2 n, then the following statements
are true.

(i) For any fixed � ∈ (0, 1), we have |q̂M(�)| ≤ c log1/2 n
with probability at least 1 − cn−1, where c is a constant not
depending on n.

(ii) For some constant c > 0 not depending on n, we have

Pr
(

max
(k,l)∈P

max
1≤j≤p

σ̂ 2
k,l,j < 2σ 2

max

)
≥ 1 − cn−1,

where σmax = max{σk,j : 1 ≤ j ≤ p, 1 ≤ k ≤ K}.
Consequently, if max(k,l)∈P max1≤j≤p |μk(j) − μl(j)| ≥
cσmaxn−1/2 log1/2 n for a sufficiently large positive constant cnot
depending on n, then for any choice of P , the null hypothesis
will be rejected with probability tending to one as n → ∞.

To analyze the size of the proposed test, we observe that
when we construct the SCRs, we use σ̂k,l,j instead of σk,l,j. This
requires us to quantify the Kolmogorov distance between the
distributions ofM and

M̂ = max
(k,l)∈P

M̂(k, l), (4)

where

M̂(k, l) = max
1≤j≤p

(√
nl

nk+nl
Sk,j
σ̂ τ
k,l,j

−
√

nk
nk+nl

Sl,j
σ̂ τ
k,l,j

)
. (5)

Note that like M defined in Equation (2), the random variable
M̂ itself is not a test statistic. With Fk,j denoting the cumula-
tive distribution function of the standardized random variable
{Xk,1(j) − μk(j)}/σk,j, we require the following mild condition
on the distribution of the standardized observations.

Assumption 4. There are positive constants
ν, r0, and c not depending on n such that
max1≤k≤K max1≤j≤p supx∈R supr∈(0,r0) r

−ν
(
Fk,j(x + r) −

Fk,j(x − r)
)

≤ c.

https://doi.org/10.1080/01621459.2021.1920959
https://doi.org/10.1080/01621459.2021.1920959
https://doi.org/10.1080/01621459.2021.1920959
https://doi.org/10.1080/01621459.2021.1920959
https://doi.org/10.1080/01621459.2021.1920959
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The above condition is essentially equivalent to common
Hölder continuity of the distribution functions Fk,j, that is,
there is a common Hölder constant ν that is fixed but could
be arbitrarily small. The assumption is satisfied if each of
the distributions Fk,j has a density function fk,j such that
max1≤k≤K max1≤j≤p ‖fk,j‖∞ � 1, where ‖·‖∞ is the supremum
norm. However, the condition is much weaker than this, as it
may hold even when the distributions do not have densities, or
the densities are unbounded.

Theorem 3.4. Fix any small δ > 0, and suppose that Assump-
tions 1–4 hold. Then,

dK(L(M̂),L(M)) � n− 1
2+δ .

With the triangle inequality, the above theorem together
with Theorem 3.1 and 3.2 implies that, with probability at least
1 − cn−1, we have dK(L(M̂),L(M� | X)) ≤ cn− 1

2+δ , for some
constant c > 0 not depending on n. This allows us to quantify
the convergence rate of the size of the test, as follows. Let size(�)

be the probability that H0 is rejected at the level � when it is
true. When B � n, the Dvoretzky–Kiefer–Wolfowitz–Massart
inequality (Dvoretzky, Kiefer, and Wolfowitz 1956; Massart
1990) implies that the empirical distribution of B independent
samples ofM� uniformly converges to the distribution ofM� at
the rate n−1/2+δ with probability at least 1−cn−1. The following
result is then a direct consequence of Theorems 3.1–3.4 and
it asserts that the size of the test is asymptotically correctly
controlled at the rate n−1/2+δ .

Theorem 3.5. Fix any small δ > 0, and fix any � ∈ (0, 1). If
Assumptions 1–4 hold, with B � n, then

|size(�) − �| � n−1/2+δ .

We note that in Theorems 3.4 and 3.5, Assumption 4 can
be replaced with the condition n−1/2 log3 p � 1 which then
imposes an upper bound on the growth rate of p relative to
n. In conjunction with the consistency of the general test as
in Theorem 3.3, Theorem 3.5 provides strong justification for
the application of the proposed test for a large class of null
hypotheses that are typically all of interest in MANOVA in
addition to the main global null hypothesis that all means are
equal.

4. Application to Functional ANOVA

Consider a separable Hilbert space H and a second-order ran-
dom element Y with mean element μ ∈ H, that is, E‖Y‖2H <

∞, where ‖ · ‖H denotes the norm of the Hilbert space. In our
context, the random element Y represents an observed func-
tional data atom drawn from a population of functional data.
Commonly considered Hilbert spaces in the area of functional
data analysis include reproducing kernel Hilbert spaces and
the space L2(T ) of squared integrable functions defined on a
domain T . In one-way functional ANOVA, one aims to test the
hypothesis

H0 : μ1 = · · · = μK , (6)
given K independent groups of iid elements Yk,1, . . . ,Yk,nk ∈ H
with common mean element μk ∈ H, with k = 1, . . . ,K.

Given an orthonormal basis φ1,φ2, . . . of H, each μk may
be represented in terms of this basis, that is, μk = ∑∞

j=1 ukjφj,
where uk,j are generalized Fourier coefficients. Then the null
hypothesis (6) is equivalent to the statement that uk,j = ul,j
for all j ≥ 1 and all 1 ≤ k < l ≤ K. This suggests
that in empirical situations we choose a large integer p ≥ 1
and test whether the vectors uk ≡ (uk,1, . . . , uk,p) are equal
for k = 1, . . . ,K, which is precisely the hypothesis testing
problem introduced in Section 2. This idea of transforming a
functionalANOVAproblem into aMANOVAproblemhas been
proposed by Górecki and Smaga (2015) with a classic standard
MANOVAmethod. Here wemodify this idea with the proposed
MANOVA method to exploit the inherited decay in variances
for functional data. We first observe that each Yk admits the
Karhunen–Loève expansion Yk = μk + ∑∞

j=1 ξk,jϕj, where
ϕ1,ϕ2, . . . are orthonormal elements ofH, and ξkj are uncorre-
lated random variables such that Eξkj = 0 and

∑∞
j=1 var(ξkj) <

∞. This implies that var(ξkj) decays to zero at a rate faster than
j−1. Consequently, Proposition 2.1 of Lopes, Lin, and Müller
(2020) asserted that the variance of the (random) generalized
Fourier coefficient of Yk with respect to the basis element φj
also decays, which allows us to adopt the test proposed in
Section 2.

4.1. Simulation Studies

We assess the above method in terms of its finite sample per-
formance by numerical simulations and compare it with three
popular methods in the literature, namely the L2 based method
(L2) (Faraway 1997; Zhang and Chen 2007), the F-statistic-
based method (F) (Shen and Faraway 2004; Zhang 2011) and
the global pointwise F test (GPF) (Zhang and Liang 2014).
These were briefly reviewed in the introduction and numerical
implementations are available from Górecki and Smaga (2019),
see also Górecki and Smaga (2015). We also compare it with the
random projection-based method (RP) (Cuesta-Albertos and
Febrero-Bande 2010), the global envelope test (GET) (Mrkvička
et al. 2020) and a method (MPF) recently developed by Zhang
et al. (2019a) that takes the maximum of the pointwise F-
statistics as a test statistic and also leverages bootstrapping to
approximate the critical value of the test.

In the simulation study, we setH = L2([0, 1]), and consider
four families of mean functions, parameterized by θ ∈ [0, 1], as
follows,

(M1) μk(t) = μ0(t) + θk
∑10

j=1 j−2{sin(2jπ t) + cos(2jπ t)}/50
with μ0(t) = 5(t − 1/2)2,

(M2) μk(t) = μ0(t) + θk/40 with μ0(t) ≡ 1,
(M3) μk(t) = μ0(t) + θk{1+ (10t− 2)(10t− 5)(10t− 8)}/40

with μ0(t) = −(f1/4,1/10(t) + f3/4,1/10(t)),
(M4) μk(t) = μ0(t) + θk exp{−(t − 1/2)2/100}/25 with

μ0(t) = exp{sin(2π t)}/2,
for k = 1, 2, 3, where fa,b denotes the probability density
function of the normal distribution with mean a and variance
b2. Obviously μ1,μ2,μ3 are identical and equal to μ0 when
θ = 0, and differ from each other when θ �= 0. These families
are shown in Figure 2. Mean function families (M1) and (M2)
represent “sparse alternatives” in the frequency domain in the
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Figure 2. Mean functions. The first row shows the functionsμ0 employed for families (M1)–(M4), respectively, and the second row displays the functionsμ1 − μ0 (solid),
μ2 − μ0 (dashed) andμ3 − μ0 (dotted) with θ = 0.5 in the families (M1)–(M4), respectively, from left to right.

sense that the Fourier coefficients of the mean functions differ
most in the first few leading terms under the alternative when
θ �= 0, while the function family (M3) represents a “dense
alternative” in the frequency domain. When θ �= 0, the families
(M1)–(M3) are “dense” in the time domain. In particular, the
alternatives in (M2) are uniformly dense in the time domain,
in the sense that the differences of the mean functions between
the groups are nonzero and uniform in t ∈ T = [0, 1]. Thus,
families (M1)–(M3) favor the integral-based methods such as
the L2, F, and GPF tests, as these methods integrate certain
statistics over the time domain. In contrast, the alternatives in
the last family (M4) are “sparse” in the time domain.

We sample functional data of the form μk(·) + Wk(·), for
certain choices of centered random processes Wk(·) in two
different settings. In the first “common covariance” setting, the
random processes of all groups are Gaussian with the following
common Matérn covariance function:

C(s, t) = σ 2

16
21−ν

�(ν)

(√
2ν|s−t|

η

)ν

Bν

(√
2ν|s−t|

η

)
, (7)

where � is the gamma function, Bν is the modified Bessel func-
tion of the second kind, σ 2 is set to 2.5, η is set to 1, and ν is set to
1/2. In the “group-specific covariance” setting, the groups have

different covariance functions, as follows. For the first group,
the random process is the Gaussian process with the Matérn
covariance function (7). For the second group, the process is the
Wiener process with dispersion σ = 0.1, that is, the Gaussian
process with the covariance function C(s, t) = σ 2 min(s, t). For
the third group, we setW3(·) = ∑51

j=1 ξjφj(·)/20, whereφ1(t) ≡
1, φ2j = sin(2jπ t) and φ2j+1 = cos(2jπ t), and ξj follows
a uniform distribution on [−j−2√3, j−2√3], providing a non-
Gaussian case. All sampled functions are observed at m = 100
equally spaced points on the interval [0, 1]. Using larger values
of m does not have much effect on the performance; this is in
agreement with the findings in Zhang et al. (2019a).

We set the significance level at � = 0.05, consider balanced
sampling with n1 = n2 = n3 = 50 and also unbalanced
sampling with (n1, n2, n3) = (30, 50, 70), and use the afore-
mentioned basis φ1(t), . . . ,φp(t) with p = 51. The parameter
τ is selected by the method described in Section 2 from 11
candidate values, namely, 0, 0.1, . . . , 0.9, 0.99. Each simulation
setup is replicated 1000 times independently. The results for the
size of the global test are summarized in Table 1, showing that
the proposed method and most of the other methods have an
empirical size that is reasonably close to the nominal level. The

Table 1. Empirical size of functional ANOVA.

Covariance M (n1, n2, n3) Proposed L2 F GPF MPF GET RP

Common M1 50,50,50 0.051 0.054 0.052 0.053 0.043 0.049 0.038
30,50,70 0.053 0.056 0.057 0.056 0.055 0.033 0.035

M2 50,50,50 0.042 0.046 0.041 0.044 0.043 0.034 0.022
30,50,70 0.057 0.058 0.052 0.054 0.039 0.048 0.037

M3 50,50,50 0.057 0.056 0.050 0.054 0.047 0.036 0.023
30,50,70 0.056 0.057 0.053 0.055 0.049 0.049 0.033

M4 50,50,50 0.046 0.048 0.044 0.050 0.038 0.037 0.028
30,50,70 0.053 0.054 0.052 0.051 0.045 0.041 0.028

Group-specific M1 50,50,50 0.055 0.055 0.052 0.058 0.056 0.050 0.026
30,50,70 0.043 0.035 0.031 0.044 0.041 0.049 0.037

M2 50,50,50 0.056 0.059 0.056 0.061 0.057 0.054 0.034
30,50,70 0.052 0.047 0.044 0.052 0.039 0.055 0.033

M3 50,50,50 0.051 0.054 0.053 0.055 0.052 0.053 0.036
30,50,70 0.049 0.043 0.039 0.048 0.045 0.066 0.030

M4 50,50,50 0.052 0.041 0.040 0.042 0.044 0.057 0.038
30,50,70 0.050 0.040 0.039 0.049 0.054 0.056 0.026
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Figure 3. Empirical power of the proposed functional ANOVA (solid), L2 (dashed), F (dotted), GPF (dot-dashed), MPF (dot-dash-dashed), GET (short-long-dashed), and RP
(dot-dot-dashed) in the “common covariance”setting. Top: from left to right the panels display the empirical power functions for families (M1), (M2), (M3), and (M4), when
n1 = n2 = n3 = 50. Bottom: from left to right the panels display the empirical power functions for families (M1), (M2), (M3), and (M4) for unbalanced designs when
n1 = 30, n2 = 50 and n3 = 70. The power functions of L2, F and GPF are nearly indistinguishable.

Figure 4. Same as Figure 3 but for the case of covariance functions that differ between groups.

performance in terms of power is depicted in Figure 3 for the
scenario with common covariance structure. The average of the
selected values for τ is 0.713 ± 0.155 and 0.754 ± 0.172 for the
scenarioswith common covariance structure and group-specific
covariance structure, respectively.

When the alternatives are sparse in the frequency domain but
not uniformly dense in the time domain (as in (M1)), or when
the alternatives are sparse in the time domain (as in (M4)), the
proposed method clearly outperforms most existing methods
in terms of power by a large margin. The only exception is
the RP method, which has similar power in the case of (M1).
For the family (M2), all methods have nearly indistinguishable
power, except for the RP method, which has substantially lower
power. For the family (M3), the power ofMPF is slightly larger in

relation to the other methods. Similar observations emerge for
the scenario of group-specific covariance functions with results
shown in Figure 4, except that the power of GPF and MPF is
slightly larger when the family is (M2), where the alternatives
are uniformly dense in the time domain. In the group-specific
context, the power ofMPF is closer to the power of the proposed
method for (M1), while the power of all methods except the
RP method is nearly indistinguishable for (M3). In conclusion,
the proposed test is powerful against both dense and sparse
alternatives in either time or frequency domain, and provides
strong improvements over existing methods in the important
case where the alternative is sparse in the time domain or in
the frequency domain (but not uniformly dense in the time
domain).



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 9

Table 2. Computation times for functional ANOVA (in seconds).

Proposed (no GPU) Proposed (GPU) L2 F GPF MPF GET RP

4.792 0.085 0.002 0.002 0.005 3.602 1.629 0.877

The average computation time to complete a single Monte
Carlo simulation replicate in seconds, including selecting the
parameter τ by the proposed data-driven procedure in Sec-
tion 2 is presented in Table 2. It shows that a single simulation
replicate can be completed within 5 sec without GPU acceler-
ation and within only 0.1 sec when using an NVIDIA Quadro
P400 graphics card. Following the suggestion of a reviewer, we
also investigated the impact of within-function correlation on
the power by using the simulation models from Zhang et al.
(2019a) and found that the proposed method is preferred when
the within-function correlation is strong; see Section F of the
supplementary material for details, where we also examined
the effectiveness of the data-driven selection procedure for τ

proposed in Section 2.

4.2. Data Application

We apply the proposed method to analyze the functional data
described in Carey et al. (2008) concerning egg-laying trajecto-
ries for Mexican fruit flies (Anastrepha ludens) under various
diets, with further perspective and background provided in
Carey et al. (1998, 2002). In this study, newly merged female
flies were placed in individual glass cages and during their entire
lifespanwere fed different diets. The number of eggs laid by each
individual fly on each day was recorded and the resulting trajec-
tories of daily egg-laying were then viewed as functional data.
Since flies started egg-laying only around day 10 after emergence
and to avoid selection effects due to individually varying age-at-
death, we considered the trajectories on a domain [10, 50] days
and included only those flies that were still alive at the right
endpoint at age 50 days.

Of interest is the effect of the amount of protein in the diet
on the egg-laying trajectory, as female flies require protein to
produce eggs. We compare three cohorts of fruit flies which all
received an overall reduced diet at 25% of full level and three
different protein levels, with sugar-to-protein ratios of 3:1, 9:1,
and 24:1, corresponding to fractions of 25%, 10%, and 4% of
protein in the diet. The cohorts consist of n1 = 25, n2 = 41,
and n3 = 50 flies, respectively and are thus unbalanced. The
sample mean functions for the three cohorts are depicted in
Figure 5, where the noisy character of the data is reflected in the
fluctuations of the functions. Themean of the cohort under a 4%
protein diet is seen to be substantially smaller than themeans for
the other two groups, indicating that egg production is severely
impeded if flies receive only 4% protein. Themean functions for
the cohorts receiving 10% and 25% are much closer, indicating
that protein levels above 10% have a relatively much smaller
impact on egg-laying trajectories than protein levels declining
below 10%.

These visual impressions are confirmed when applying the
proposed functional ANOVA approach. The selected value for
τ was τ = 0.4 and 51 Fourier basis functions are used to
represent the data. The overall p value for the null hypothesis

Figure 5. Sample mean trajectories of the number of eggs laid between age 10
and 50 days by female fruit flies under three different diets, where the dotted curve
corresponds to a cohort of n1 = 25 flies receiving a diet with 25% protein, the
dashed curve to a cohort of n2 = 41 flies under a diet with 10% protein, and the
solid curve to a cohort of n = 50 flies under a diet with 4% protein.

that the three mean functions are the same is p < 10−7 from
Table 3. The pairwise comparisons between the groupswith 25%
protein and the 4% protein as well as between the 10% protein
group and the 4% protein group show significant differences,
while this is not the case for the comparison between the 25%
protein group and the 10% protein group. This confirms that
there is a minimum protein level that needs to be maintained as
otherwise egg-laying is impeded over the entire lifespan, while
more than 10% protein does not lead to major changes in the
expected egg-laying trajectory. This valuable extra information
is obtained without performing additional hypothesis tests and
thus no requirement for adjustments for multiple comparisons
that might lower the power of the test.

5. Application to Sparse Count Data

Count data, often modeled by multinomial or Poisson distribu-
tions, occur in many applications. For the multinomial model,
the decay in variance is an inherent feature due to the require-
ment that the sum of the probabilities of all categories is one.
For the Poisson distribution, since the variance is equal to the
mean, sparseness in the mean induces decay in the variance.
Here, sparseness refers to situations where there are only a few
nonzero coordinates, or where the ordered mean coordinates
decrease to zero. For instance, in the field of text mining or
information retrieval in which word frequency is an important
feature, words in a vocabulary often have drastically differ-
ent frequencies. In addition, the frequency of words decreases
rapidly whenmoving from frequent to rare words. For example,

https://doi.org/10.1080/01621459.2021.1920959
https://doi.org/10.1080/01621459.2021.1920959
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Table 3. p-values for the study on the egg-laying trajectories.

Proposed L2 F GPF MPF GET RP

< 10−7 3.0 × 10−15 2.4 × 10−14 2.4 × 10−13 0.012 0.0005 0.0007

for the English language, the orderedword frequency is found to
approximately follow Zipf ’s law (Zipf 1949). Belowwe assess the
performance of the proposedmethod for sparse Poisson data via
simulation studies and two real data applications.

5.1. Simulation Studies

We considered three groups, represented by the p-dimensional
random vectors X1, X2, and X3. Each random vector Xk follows
a multivariate Poisson distribution (Inouye et al. 2017) and
is represented by (Wk0 + Wk1, . . . ,Wk0 + Wkp), where for
k = 1, 2, 3, Wk0, . . . ,Wkp are independent Poisson random
variables with mean ηk0, . . . , ηkp ∈ R, respectively. Then the
jth coordinate of Xk follows also a Poisson distribution with
mean ηk0 + ηkj. In addition, all coordinates are correlated due
to the shared random variableWk0. In our study, we set ηk0 = 1
for k = 1, 2, 3, and consider two settings for ηk1, . . . , ηkp. In
the first “sparse” setting, ηkj = (1 + θk)j−1 for k = 1, 2, 3
and j = 1, . . . , p. In this setting, when θ �= 0, the difference
of the mean in the jth coordinate decays as j−1. In the second
“dense” setting, we set ηkj = j−1 + θk/2, so that the difference
of the mean in each coordinate is equal. Note that the setting
with θ = 0 corresponds to the null hypothesis, under which
the mean vectors of all groups are identical. For the dimension,
we consider two cases, namely p = 25 and p = 100, and
for sample size the balanced case (n1, n2, n3) = (50, 50, 50)
and an unbalanced case with (n1, n2, n3) = (30, 50, 70). The
parameter τ is selected by the method described in Section 2.
Each simulation is repeated 1000 times. Across all settings, the
average value of selected τ is 0.305 ± 0.221 and 0.341 ± 0.237
for p = 25 and p = 100, respectively.

For comparison purposes, we implemented the procedure
(S) of Schott (2007) and the data-adaptive �p-norm-based test
(DALp) (Zhang et al. 2018) that are reviewed in the introduc-
tion. The former is based on the limit distribution of a test
statistic that is composed of inter-group and within-group sums
of squares, while the latter utilizes an adjusted �p-norm-based
test statistic whose distribution is approximated by a multiplier
bootstrap. The former is favored for testing problems with
a dense alternative, while the latter has been reported to be
powerful against different patterns of alternatives (Zhang et al.
2018). We also include the classic Lawley–Hotelling trace test
(LH) (Lawley 1938; Hotelling 1947) as a baseline method which
is not specifically designed for the high-dimensional setting,
and its ridge-regularized version (RRLH) (Li, Aue, and Paul
2020) targeting the high-dimensional scenario. The empirical
sizes in Table 4 demonstrate that those of the proposed test
and the test of Schott (2007) are quite close to the nominal
level, while the size of the test of Zhang et al. (2018) seemed
slightly inflated and the sizes of the Lawley–Hotelling trace test
and its regularized version are rather conservative in the high-
dimensional case p = 100. The power function for the sparse
case (n1, n2, n3) = (30, 50, 70) is shown in Figure 6, while the

Table 4. Empirical size of ANOVA on the Poisson data.

p n Proposed S DALp LH RRLH

Sparse 25 50,50,50 0.055 0.042 0.065 0.045 0.051
30,50,70 0.052 0.053 0.069 0.048 0.053

100 50,50,50 0.056 0.045 0.054 0.000 0.000
30,50,70 0.056 0.055 0.065 0.000 0.002

Dense 25 50,50,50 0.050 0.051 0.065 0.045 0.065
30,50,70 0.045 0.066 0.062 0.050 0.050

100 50,50,50 0.057 0.054 0.064 0.001 0.004
30,50,70 0.051 0.049 0.067 0.001 0.000

Table 5. Average computation time for ANOVA on the Poisson data (in seconds).

Proposed (no GPU) proposed (GPU) S DALp LH RRLH

9.869 0.155 0.011 0.461 0.030 0.135

power function for (n1, n2, n3) = (50, 50, 50) is very similar
(not shown). One finds that in the sparse case, the proposed
test has substantially more power than the test of Zhang et al.
(2018), while the latter in turn has more power than the test
of Schott (2007) and the Lawley–Hotelling trace tests. In the
dense setting which does not favor the proposed test, it is seen
to have power behavior that is comparable with that of the
tests of Schott (2007) and Zhang et al. (2018), and all of these
methods outperform the Lawley–Hotelling trace test whose per-
formance substantially deteriorates for higher dimensions. The
regularized Lawley–Hotelling trace test substantially improves
upon the classic version only in the sparse setting and when
the dimension is relatively large, for example, when p = 100.
The average computation time to complete a singleMonte Carlo
simulation replicate is presented in Table 5, where p = 100 and
the parameter τ is selected from 11 candidate values by the data-
driven procedure proposed in Section 2.Weobserve that a single
simulation replicate can be completed within 10 sec without
GPU acceleration and within 0.2 sec by utilizing an NVIDIA
Quadro P400 graphics card. In addition to testing hypotheses,
the proposed method can also simultaneously identify the pairs
of groups, as well as coordinates, that have significantly different
means, as we demonstrate below for two real datasets.

5.2. Data Applications

We apply the proposed method to analyze the CLASSIC3
dataset3 (Dhillon, Mallela, and Modha 2003) that has been
studied in information retrieval. The data consist of 3891 docu-
ment abstracts from three different domains, specifically, n1 =
1460 from information retrieval (CISI), n2 = 1398 from
aeronautical systems (CRAN) and n3 = 1033 from medical
research (MED). Standard text preprocessing was applied to

3Originally available from ftp://ftp.cs.cornell.edu/pub/smart, and
now available publicly on the Internet, for example, https://www.
dataminingresearch.com/index.php/2010/09/classic3-classic4-datasets/

https://www.dataminingresearch.com/index.php/2010/09/classic3-classic4-datasets/
https://www.dataminingresearch.com/index.php/2010/09/classic3-classic4-datasets/
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Figure 6. Empirical power of the proposedhigh-dimensional ANOVA (solid), DALp (dashed), S (dotted), LH (dot-dashed), andRRLH (dot-dash-dashed),when (n1, n2, n3) =
(30, 50, 70), for the sparse setting with p = 25 (first panel) and p = 100 (second panel) and for the dense setting with p = 25 (third panel) and p = 100 (fourth panel).

Table 6. The average frequency of words that are significantly different among all categories.

Use Data Pressure Effect Theory Problem Body Increase Normal Group

CISI 0.715 0.401 0.011 0.060 0.167 0.301 0.017 0.089 0.007 0.129
CRAN 0.515 0.239 1.004 0.759 0.684 0.456 0.607 0.271 0.112 0.011
MED 0.265 0.082 0.139 0.338 0.024 0.069 0.162 0.437 0.351 0.304

Figure 7. Activity intensity trajectories of three randomly selected participants from the NHANES data 2005–2006.

these abstracts, including removal of high-frequency common
words (commonly referred to as stop words, such as “the,” “is,”
“and,” etc), punctuation and Arabic numbers. In addition, we
follow common practice in the field of information retrieval to
reduce inflected words to their word stem, base or root form by
using a stemmer, such as the Krovetz stemmer (Krovetz 1993).
Each document is then represented by a vector of word counts.
These vectors are naturally sparse, as the number of distinct
words appearing in a document is in general far less than the
size of the vocabulary. Intuitively, vocabularies from different
domains are different. Our goal is to examine this intuition
and to find the words that are substantially different among the
three domains. To this end, we focus on words with at least
50 occurrences in total to eliminate the effects of rare words.
This results in p = 1296 distinct words under consideration.
Then, we applied the proposed test to the processed data and
found that the vocabularies used in these three domains are
not the same among any pair of the domains, with p-value less
than 10−7 where τ was selected as τ = 0.6. In particular, the
proposed method simultaneously identifies the words that have
significantly different frequencies among the domains, which
are shown in Table 6, where the numbers represent the average
frequency of the words within each domain. The results for CISI
and CRAN match our intuition about these two domains. For
the domain ofmedical research, the word “normal” is often used

to refer to healthy patients or subjects, while the word “increase”
is used to describe the change of certain health metrics, such as
blood pressure.

Next, we apply the proposed method to study physical activ-
ity using data collected by wearable devices, as available in the
National Health and Nutrition Examination Survey (NHANES)
2005–2006. In the survey, each participant of age 6 years or
above was asked to wear a physical activity monitor (Actigraph
7164) for seven consecutive days, with bedtime excluded. Also,
as the device is not waterproof, participants were advised to
remove it during swimming or bathing. The monitor detected
and recorded the magnitude of acceleration of movement of the
participant. For each minute, the readings were summarized to
yield one single integer in the interval [0, 32, 767] that signifies
the average intensity of movement within that minute. This
results in m= 60 × 24 × 7 = 10,080 observations per partic-
ipant. Demographic characteristics of the participants are also
available, and in our analysis we focused on two age groups
and two marital categories. The two age groups are young
adulthood with age ranging from 18 to 44, and middle-age
adulthood with age ranging from 45 to 65. The two marital
groups are “single” (including the widowed, divorced, separated
and never-married categories in the original data) and “non-
single” (including married and living-with-partner categories).
These groups induce four cohorts: young nonsingle adults,
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Figure 8. Top: the coordinate-wise mean activity (left) and its standard deviation (right) of young non-single cohort (dash-dotted), young single cohort (dotted), middle-
age nonsingle cohort (dashed), and middle-age single cohort (solid); bottom-left: mean activity profiles of the young single cohort (dotted) and the middle-age single
cohort (solid) shown for the intensity spectrum on which the differences in the means are significant among the two cohorts; bottom-right: mean activity profiles of the
middle-age nonsingle cohort (dashed) and the middle-age single cohort (solid) over the spectrum on which the differences in the means are significant among the two
cohorts.

Figure 9. The empirical SCRs (dashed) for the difference (solid) of mean activity profiles over [1, 87]. The left panel corresponds to young single and middle-age single
cohorts. The right panel corresponds to middle-age nonsingle and middle-age single cohorts. The light gray solid lines are differences of activity profiles of some pairs of
participants from the corresponding pairs of cohorts, included to illustrate the variability of the differences in the individual level.

young single adults, middle-age non-single adults and middle-
age single adults. Our goal is to examine whether the physical
activity patterns are different among these cohorts.

Figure 7 presents the activity trajectories of three randomly
selected participants, showing that they have different circadian
rhythms. To address this problem, we adopt the strategy pro-
posed by Chang and McKeague (2020), who studied physical
activity of elder veterans from the perspective of functional data
analysis, by transforming each activity trajectory A(t) into an

activity profile X(j) = Leb({t ∈ [0, 7] : A(t) ≥ j}) for
j = 1, . . .,32,767, where Leb denotes the Lebesgue measure on
R. This is essentially equivalent to accumulated FA(j)/m, where
FA(j) denotes the frequency of j, that is, the number of occur-
rences of the intensity value j, in the trajectory A. Therefore,
the activity profile X(j) can be viewed as count data normalized
by m. As over 95% of the physical activity has low to moderate
intensity, that is, with intensity value below 1000,we focus on the
intensity spectrum [1, 1000]. In addition, we exclude subjects
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Table 7. p-values for studies on CLASSIC3 and NHANES datasets.

Proposed S DALp LH RRLH

CLASSIC3 < 10−7 0† < 10−7 0† 0†
NHANES 0.004 0.005 0.005 0.936 0.716

†The p-values are belowmachine precision.

with readings that are missing, unreliable or from amonitor not
in calibration. This results in four cohorts of size n1 = 1027,
n2 = 891, n3 = 610, and n4 = 339, respectively.

The mean activity profiles and their standard deviations are
depicted in the top panels of Figure 8, from which we observe
that both the mean and standard deviation decay quite fast. In
addition, the mean profiles from the young single and middle-
age non-single cohorts are almost indistinguishable in the plot,
while the mean profile of the middle-age single cohort is visibly
different from the others. These visual impressions are in line
with the results obtained with the proposed test, which rejects
the global null hypothesis with an approximate p-value of 0.004
and thus suggests that somemean activity profiles are likely to be
substantially different, where the selected value for τ is 0.5. The
methods of Schott (2007) and Zhang et al. (2018) also rejected
the null hypothesis with a similar p-value, while both Lawley–
Hotelling trace test and its regularized version do not; see
Table 7 for the detailed p-values of thesemethods. The proposed
method also identifies two pairs of cohorts whose mean activity
profiles are different and the intensity spectrum on which the
differences are significant, namely, the young single cohort and
the middle-age single cohort on the spectrum [1, 87], and the
middle-age non-single cohort and middle-age single cohort on
the spectrum [1, 86]. These findings are visualized in the bottom
panels of Figure 8. Furthermore, the proposed method provides
SCRs for the differences ofmean activity profiles among all pairs
of cohorts. For instance, in Figure 9we present the 95% SCRs for
the pairs with differences in the mean activity profiles over the
spectrum onwhich the differences are statistically significant. In
summary, comparing to the young single and middle-age non-
single cohorts, themiddle-age single cohort is found to have less
activity on average in the low-intensity activity spectrum.

6. Concluding Remarks

The proposed method for high-dimensional ANOVA via boot-
strapping max statistics leads to the construction of SCRs for
the differences of population mean vectors and is applicable for
various statistical frameworks, including functional data anal-
ysis and multinomial and count data settings. The theoretical
justifications rely on two key ingredients, variance decay and
partial standardization, which imply near-parametric rates of
convergence in high dimensions. In simulations, the resulting
tests are shown to be highly competitive in terms of controlling
the size of the tests and power in a variety of scenarios. It
is notable that the proposed method can be completely par-
allelized which leads to very fast implementations on parallel
processors.

As predicted by theory, performance of the proposedmethod
is geared toward the case of sparse signals and in such scenarios
it routinely outperforms competing methods in simulations. It

is also found to be competitive for situations with dense signals.
Since it is often unknown whether signals are sparse or dense
in practice, this makes the method quite appealing for high-
dimensional ANOVA in the presence of variance decay, notably
for functional ANOVA problems where such variance decay is
an inherent feature.

The proposed method employs a parameter τ that controls
the partial standardization, which is chosen data adaptively. The
implementation can be further accelerated by choosing a fixed
value, where the choice τ = 0.8 was shown to be effective in
simulation studies in Sections F and G of the supplementary
material. The principle of partial standardization may be of
broader interest.

SupplementaryMaterial

Supplement: The Supplement contains the proofs for the results in Sec-
tion 3, and additional simulation studies for functional ANOVA and
high-dimensional MANOVA. (PDF)

R-package: The hdanova.cuda package4 implements the proposed
method for the GPU based computing platform.
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Mrkvička, T., Myllymäki, M., Jílek, M., and Hahn, U. (2020), “A One-
way ANOVA Test for Functional Data With Graphical Interpretation,”
Kybernetika, 56, 432–458. [2,6]

Paparoditis, E. and Sapatinas, T. (2016), “Bootstrap-based Testing of Equal-
ity of Mean Functions or Equality of Covariance Operators for Func-
tional Data,” Biometrika, 103, 727–733. [2]

Ramsay, J. O., and Silverman, B. W. (2005), Functional Data Analysis (2nd
ed.), Springer Series in Statistics, New York: Springer. [2]

Schott, J. R. (2007), “Some High-dimensional Tests for a One-way
MANOVA,” Journal of Multivariate Analysis, 98, 1825–1839.
[1,10,13]

Shen, Q., and Faraway, J. (2004), “An F Test for Linear Models With
Functional Responses,” Statistica Sinica, 14, 1239–1257. [2,6]

Srivastava, M. S., and Fujikoshi, Y. (2006), “Multivariate Analysis of Vari-
ance With Fewer Observations Than the Dimension,” Journal of Multi-
variate Analysis, 97, 1927 – 1940. [1]

Srivastava, M. S., and Kubokawa, T. (2013), “Tests for Multivariate Anal-
ysis of Variance in High Dimension Under Non-Normality,” Journal of
Multivariate Analysis, 115, 204–216. [1]

Städler, N., and Mukherjee, S. (2016), “Two-sample Testing in High
Dimensions,” Journal of Royal Statistical Society, Series B, 79, 225–
246. [1]

Thulin, M. (2014), “A High-dimensional Two-sample Test for the Mean
Using Random Subspaces,” Computational Statistics and Data Analysis,
74, 26–38. [1]

Wang, J.-L., Chiou, J.-M., and Müller, H.-G. (2016), “Functional Data
Analysis,” Annual Review of Statistics and Its Application, 3, 257–
295. [2]

Xu, G., Lin, L., Wei, P., and Pan, W. (2016), “An Adaptive Two-sample Test
for Highdimensional Means,” Biometrika, 103, 609–624. [1]

Xue, K., and Yao, F. (2020), “Distribution and Correlation Free Two-sample
Test of High-dimensional Means,” The Annals of Statistics. [1,2]

Yamada, T., andHimeno, T. (2015), “TestingHomogeneity ofMeanVectors
Under Heteroscedasticity in High-dimension,” Journal of Multivariate
Analysis, 139, 7 – 27. [1]

Yamada, T., and Srivastava, M. S. (2012), “A Test for Multivariate Analysis
of Variance in High Dimension,” Communications in Statistics - Theory
and Methods, 41, 2602–2615. [1]

Zhang, J., and Pan, M. (2016), “A High-dimension Two-sample Test for
the Mean Using Cluster Subspaces,” Computational Statistics & Data
Analysis, 97, 87 – 97. [1]

Zhang, J.-T. (2011), “Statistical Inferences for Linear Models With Func-
tional Responses,” Statistica Sinica, 21, 1431–1451. [2,6]

(2013),Analysis of Variance for FunctionalData, London: Chapman
& Hall. [2]

Zhang, J.-T., and Chen, J. (2007), “Statistical Inferences for Functional
Data,” The Annals of Statistics, 35, 1052–1079. [2,6]

Zhang, J.-T., Cheng, M.-Y., Wu, H.-T., and Zhou, B. (2019a), “A New
Test for Functional One-way ANOVA With Applications to Ischemic
Heart Screening,” Computational Statistics & Data Analysis, 132, 3–17.
[2,6,7,9]

Zhang, J.-T., Guo, J., and Zhou, B. (2017), “Linear Hypothesis Testing in
High-dimensional One-way MANOVA,” Journal of Multivariate Analy-
sis, 155, 200 – 216. [1]



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 15

Zhang, J.-T., Guo, J., Zhou, B., and Cheng, M.-Y. (2019b), “A Simple Two-
Sample Test in High Dimensions Based on L2-Norm,” Journal of the
American Statistical Association. [1]

Zhang, J.-T., and Liang, X. (2014), “One-Way ANOVA for Functional Data
via Globalizing the Pointwise F-test,” Scandinavian Journal of Statistics,
41, 51–71. [2,6]

Zhang, J.-T., and Xu, J. (2009), “On the k-sample Behrens-Fisher Problem
for High-dimensional Data,” Science in China, Series A:Mathematics, 52,
1285–1304. [1]

Zhang, M., Zhou, C., He, Y., and Liu, B. (2018), “Data-adaptive Test for
High-dimensional Multivariate Analysis of Variance Problem,” Aus-
tralian & New Zealand Journal of Statistics, 60, 447–470. [1,2,10,13]

Zhou, B., Guo, J., and Zhang, J.-T. (2017), “High-dimensional General Lin-
ear Hypothesis Testing Under Heteroscedasticity,” Journal of Statistical
Planning and Inference, 188, 36–54. [1]

Zipf, G. K. (1949), Human Behavior and the Principle of Least Effort: An
Introduction toHuman Ecology, Cambridge,MA:Addison-Wesley Press.
[10]


	Abstract
	1.  Introduction
	2.  High-Dimensional Multiple-Sample Test
	3.  Theory
	3.1.  Bootstrapping Max Statistics for Multiple Samples
	3.2.  High-Dimensional MANOVA

	4.  Application to Functional ANOVA
	4.1.  Simulation Studies
	4.2.  Data Application

	5.  Application to Sparse Count Data
	5.1.  Simulation Studies
	5.2.  Data Applications

	6.  Concluding Remarks
	Supplementary Material
	Funding
	ORCID
	References


