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ABSTRACT

Low complexity domains (LCDs) in proteins are regions predominantly composed of a small
subset of the possible amino acids. LCDs are involved in a variety of normal and pathological processes
across all domains of life. Existing methods define LCDs using information-theoretical complexity
thresholds, sequence alignment with repetitive regions, or statistical overrepresentation of amino acids
relative to whole-proteome frequencies. While these methods have proven valuable, they are all
indirectly quantifying amino acid composition, which is the fundamental and biologically-relevant feature
related to protein sequence complexity. Here, we present a new computational tool, LCD-Composer, that
directly identifies LCDs based on amino acid composition and linear amino acid dispersion. Using LCD-
Composer’s default parameters, we identified simple LCDs across all organisms available through
UniProt and provide the resulting data in an accessible form as a resource. Furthermore, we describe
large-scale differences between organisms from different domains of life and explore organisms with
extreme LCD content for different LCD classes. Finally, we illustrate the versatility and specificity
achievable with LCD-Composer by identifying diverse classes of LCDs using both simple and
multifaceted composition criteria. We demonstrate that the ability to dissect LCDs based on these
multifaceted criteria enhances the functional mapping and classification of LCDs.

INTRODUCTION

Protein sequence complexity is a measure of the diversity of amino acids found in a sequence.
Proteins lie along a finite spectrum of sequence complexity constrained by protein length and the amino
acid “alphabet” (generally, the 20 canonical amino acids). While the maijority of protein sequences are
composed of a diverse mixture of the possible amino acids, a substantial number of proteins contain low-
complexity domains (LCDs) composed of only a small subset of the possible amino acid residues.
Proteins with LCDs participate in a wide array of molecular processes and have been associated with
unique structural, functional, and regulatory tendencies (1-24). Additionally, a variety of human diseases
are associated with mutation or expansion of LCDs (3, 14, 25, 26).

A variety of methods have been developed to distinguish LCDs from regions of moderate or high
sequence complexity, including SEG (27), CAST (28), fLPS (29), and others (30—33), and many of these
methods were recently combined in a meta-server for LCD identification (34). However, these methods
rely on mathematical definitions of sequence complexity or statistical enrichment of amino acids (relative
to whole-proteome frequencies) to distinguish LCDs from complex sequences. Although these methods
provide well-defined cutoffs for LCDs, they do not intuitively correspond to biochemical features, making
it difficult for researchers to customize search parameters for desired purposes. Additionally, LCDs can
be further decomposed into classes based on which specific amino acid(s) are most common. While the
amino acids are often treated equivalently by sequence complexity methods, the actual physical
properties of the amino acids can be radically different, resulting in LCDs with completely distinct
physical behavior.

For example, although the SEG algorithm has been used effectively to identify LCDs for
biochemical characterization, its original intended purpose was for the masking of LCDs to improve
sequence alignment, and it is still used in the pervasive BLAST tool (35). Consequently, SEG does not
distinguish between LCDs of different classes (e.g. N-rich LCDs vs. K-rich LCDs). A search for protein
domains with a given complexity score will return a highly heterogeneous mixture of LCDs with
dramatically different compositions (and therefore different structural and functional behaviors), requiring
additional downstream sequence analysis to narrow results to specific LCDs of interest with particular
compositional features.

Likewise, although methods that use statistical overrepresentation of specific amino acids have
numerous applications, they face a different set of limitations. Specifically, while a protein’s amino acid
composition is directly linked to its physical properties, amino acid overrepresentation is only indirectly
linked. Although it is possible in some cases for users to vary the parameters for statistical
overrepresentation methods to identify thresholds that mimic composition-based approaches (though
only for the most basic LCD searches), a method that directly detects amino acid composition is likely to
be simpler and more intuitive for researchers interested in searching for domains that meet specific
compositional thresholds. Furthermore, the simplicity of a composition-based approach enables intuitive,
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multifaceted searches for LCDs enriched in multiple amino acids or groups of amino acids at different
composition thresholds, which are not currently built-in features of existing methods employing statistical
enrichment.

Finally, since protein sequence complexity exists along a spectrum, a single complexity threshold,
though often useful, may not always be biologically relevant (1). Consequently, different complexity
thresholds may be suitable depending on the types of LCDs of interest and the research question at
hand. However, with both approaches, choosing a threshold for sequence complexity or statistical
overrepresentation for a specific LCD search purpose will often require extensive experimentation,
optimization, or prior calculations, since neither a complexity score (such as <2.2 bits) or a statistical
overrepresentation (such as P<10-3) is intuitively linked to a protein’s physical properties.

Here, we report a new computational tool, the low-complexity domain composition scanner (LCD-
Composer), which defines LCDs in proteins based on amino acid composition and linear dispersion of
amino acids. The primary intended purpose of LCD-Composer is the intuitive identification of LCDs with
a focus on the predominant physicochemical characteristics of the LCDs. LCD-Composer is a stand-
alone Python script (requiring no external packages, downloads, or configuration) that runs on all
operating systems. The algorithm completes full-proteome scans in seconds, and runtime scales linearly
with proteome size, permitting whole-proteome or multi-proteome analyses. Optional LCD-Composer
parameters are customizable, allowing for both simple and multifaceted compositional constraints that
can be specified by users. Together, these features make LCD-Composer intuitive, accessible to
researchers with limited computational experience, and suitable for diverse research applications.
Additionally, we demonstrate the unique ability of LCD-Composer to rapidly identify both simple and
multifaceted LCDs with high specificity, and to dissect LCDs into distinct subclasses of functional
importance across an array of model organisms.

MATERIAL AND METHODS

Calculation of Amino Acid Composition and Linear Amino Acid Dispersion

LCD-Composer implements a sliding window approach (with a 20aa default window size, and a
step size=1) to evaluate local amino acid composition. For each window, the amino acid composition, C,
is calculated as the sum of the total occurrences of each amino acid in the specified set divided by the
length of the sequence:

C = Zrez ny
where A represents the set of specified amino acids, n, represents the number of times residue r occurs
in the window sequence, and L represents the window size used (or the length of the sequence being
analyzed).

Let B represent the set of the canonical amino acids not in set A. The linear dispersion of
residues in the chosen set vis-a-vis all other residues and the sequence termini is calculated as the
normalized standard deviation of the spacing of residues in set A and the spacing of residues in set B,
with sequence termini included in the consideration. Specifically, for a given protein sequence, the
differences in numerical position for all residues in set A from the nearest neighbor of the same set and
from the sequence termini are calculated. This procedure is repeated for all residues in set B. The
spacing values are then combined into a single array, and the standard deviation s of the array is

calculated as:
oo [Zdi—d)
B N

where d; represents the difference between the position of the ith residue and the position of the previous
residue from among the corresponding set (or the sequence terminus) in the given protein sequence, d
represents the mean of the spacing values, and N represents total number of differences calculated. For
searches with multiple specified groups of amino acids, residues from all groups are combined into a
single set, and their linear dispersion vis-a-vis all other residues is calculated. Note that, while this
enhances the sensitivity of detecting LCDs with multi-faceted search criteria by mitigating exclusion of
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domains on the basis of insufficient dispersion of amino acid(s) with low composition thresholds, in rare
instances this can identify regions with adjacent LCDs that are not well-mixed.

Since the length and composition of a sequence determines the range of possible values for the
standard deviation of linear spacings, the standard deviation s is then normalized to the range of
possible values:

_ S = Smin
Snorm = 1- ( — )
Smax ~ Smin
where smin and smax are standard deviations calculated from two artificially generated sequences of
identical length and composition designed to minimize and maximize s, respectively. Smi» is obtained
when the specified amino acid is distributed as uniformly as possible across the sequence window. Spmax
is obtained when the specified amino acid is entirely clustered at one end of the sequence. This method
of determining smin and smax wWas validated on exhaustive sets of sequences ranging from 5aa to 30aa in
length, and should scale to all window sizes (see Supplementary Material). The final linear dispersion
Snorm iS ON a scale from 0 to 1, where larger values indicate increased linear dispersion of the amino
acid(s) of interest (i.e. well-mixed sequences). By default, LCD-Composer ignores the linear dispersion
parameter if the composition of the amino acid(s) of interest exceeds the midpoint between the user-
specified composition threshold and 100% in order to correct for sequences of very high composition but
containing intervening gaps between residues of interest resulting in a low linear dispersion (see Fig S3
in Supplementary Material). However, users can also specify a composition value at which the linear
dispersion parameter is ignored using the “-i” flag (e.g. “-i 75” to ignore the linear dispersion parameter
for sequences with >75% composition of the amino acid of interest). Additionally, all regions for which
100% of the residues are among the amino acids of interest are automatically identified as an LCD
regardless of chosen linear dispersion parameters.

Merging and Trimming of Identified Domains

After each protein is scored, any overlapping domains that pass the user-specified amino acid
composition and linear spacing thresholds are merged into a single domain. All other regions are
masked, unless the verbose option is employed, in which case all regions are scored regardless of
whether they pass the user-specified thresholds. For each merged domain, both termini are trimmed until
the amino acid at each terminus matches an amino acid from the user-defined set of residues. After final
processing, the overall composition (with respect to the user-defined set of amino acids) and linear
dispersion is calculated for each merged/trimmed domain. In rare cases, merging and trimming of the
domain may result in a composition or linear dispersion that is slightly lower than the user-defined
threshold — this behavior is intentional and allowed since the identification and merging of underlying
windows maintains strict adherence to the user-defined composition and linear dispersion thresholds.

For each protein containing at least one domain of interest, all identified domains, corresponding
domain boundaries, final domain compositions, and final normalized standard deviations of linear
spacings are written to an output file. Additionally, if the verbose option is implemented, per-position
compositions and per-position linear dispersion values (up to the length of the sequence minus the
window size) are included in the results.

Whole-Proteome Analyses, Parameter Benchmarking, and Speed Tests

For in-depth analyses of specific proteomes, the yeast proteome (S. cerevisiae, UniProt ID
UP000002311) was downloaded from the UniProt website on 12/25/2019. Proteomes for model
eukaryotic organisms [Caenorhabditis elegans (nematode), UP000001940; Drosophila melanogaster
(fruit fly), UP0O00000803; Danio rerio (zebrafish), UP000000437; Xenopus laevis (African clawed frog),
UP000186698; Mus musculus (mouse), UP000000589; and Homo sapiens (human), UP000005640]
were initially downloaded from the UniProt website on 11/19/2020 for proteomes with only one protein
sequence per gene or 2/23/2020 for proteomes containing all known isoforms. For evaluation of simple
LCDs across all organisms on UniProt, all available proteomes for archaea, bacteria, and eukaryote were
downloaded from the UniProt FTP server (ftp://ftp.uniprot.org/pub/databases/uniprot/) on 8/21/2020. All
virus proteomes were downloaded from the same site on 8/23/2020-8/24/2020. Proteomes
UP000011843_306025, UP000202407_908070, and UP000269945 48420 were excluded from further
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analyses due to unusually small proteome sizes. Protein sequences were parsed using the Biopython
(version 1.76) FASTA parsing module (36). All analyses involving speed tests were run on a simple
desktop computer [HP EliteDesk 800 G2, with Intel Core i7-6700 processor (3.40GHz) and 8GB RAM]
operating on Windows 10. For parameter benchmarking, the yeast proteome was analyzed for each
amino acid, window size, linear dispersion threshold, and minimum composition threshold, with a single
parameter varied each time and the remaining parameters fixed as the default values (window
size=20aa, linear dispersion threshold=0.5, minimum composition threshold=40%). For GO term
analyses, the gene ontology file was downloaded from http://geneontology.org/ on 2/27/2020. GO
annotation files for all organisms were downloaded from ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/ on
2/27/2020. GO enrichment analyses were performed using the GOATOOLS (version 1.0.2) library, with
the propagate_counts option set to “False” to reduce the proportion of broad/non-specific GO terms
among statistically significant results (37).

Statistical estimation of cross-species GO term counts and secondary amino acid enrichment
within LCDs

Certain GO terms are statistically associated with long proteins, which can increase the
type | error rate using standard GO methodology despite multiple hypothesis test correction. To account
for this, cross-organism GO term enrichment counts were estimated by length-weighted random
sampling of proteins from each proteome and evaluation of the number of times the same GO term was
observed in multiple organisms. For each LCD class and organism, proteins were randomly sampled
(without replacement, weighted proportionally by protein length) until the sample size matched that of the
observed sample size for the same LCD class and organism, then evaluated for enriched terms by GO
analysis. For each GO term identified in any of the organisms, the number of times it occurred across the
seven organisms was calculated. This procedure was repeated 1000 times for every combination of LCD
class and organism, resulting in ~140k total GO term tests and ~20k cross-organism tests. Note that the
probability of an LCD occurring in a protein may not scale linearly with protein length when more than
one LCD is likely to occur in a protein of given length: in such cases, our method of estimating the effect
of protein length on type | error rate likely results in conservative estimates of GO term enrichment
counts (i.e. inflated numbers of enriched GO terms derived from sampling).To estimate the number of
times identical GO terms would be sampled in multiple organisms assuming the enriched GO term
sample size for the LCD-containing protein sets, GO terms were iteratively sampled for each organism.
Specifically, for each LCD class, GO terms were randomly selected (without replacement) for each
organism from a complete set of GO terms containing at least one directly annotated gene product in that
organism until the sample size matched the observed number of enriched GO terms. The number of
times each sampled GO term occurred across the sampled lists was then calculated and stored. This
procedure was repeated for a total of 100k iterations. Observed cross-organism GO term counts were
then statistically compared to the cross-organism GO term counts derived from iterative sampling using a
two-sided Fisher’s exact test, with Bonferroni correction for multiple hypothesis testing applied within
each LCD class (7 possible cross-organism count categories for each LCD class).

Secondary amino acid enrichment was calculated by first exhaustively scanning the yeast
proteome with a 20aa window size for each amino acid. For each of the 19 remaining secondary amino
acids, the number of windows for which that amino acid was either 1) unambiguously the most abundant,
or 2) the second-most abundant behind only the primary amino acid, was tallied. The degree of
enrichment or depletion (E) for each LCD subclass (s) was calculated as:

E; = In(ORy)

fSobs fswp
Ofs = (1 —fsab)/ <1 —fsw)

where f; , represents the fraction of the total observed primary LCDs assigned to the given LCD
subclass (s), and fst represents the fraction of windows encountered during the whole-proteome scan

for which the secondary amino acid was most abundant (again, excluding the primary amino acid).
Subclasses for which the scaled whole-proteome frequency (i.e. the fraction of windows assigned to the

and
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LCD subclass multiplied by the total observed primary LCDs) was <1 were excluded from analyses.
Subclasses for which the scaled whole-proteome frequency 21 but with no observed LCDs assigned to
that subclass were assigned an imputed value of 1 for the observed LCD frequency to provide a
conservatively biased estimate. P-values were calculated using a two-sided Fisher's exact test, with
Bonferroni correction for multiple hypothesis testing.

RESULTS

LCD-Composer: Identification and Demarcation of LCDs

Compared with sequence complexity or statistical amino acid bias, amino acid composition more
closely reflects the physicochemical properties of LCDs in proteins. Additionally, a direct readout of
amino acid composition is likely to be more intuitive to cellular and molecular biologists than a statistical
score of complexity or bias. However, one limitation of using amino acid composition alone to define LCD
boundaries is the occurrence of LCDs which pass the specified composition criteria (e.g. 50% Q, for Q-
rich domains) but exhibit an asymmetric distribution of the amino acid of interest. For example, Q
residues constitute 50% of the sequence QQQQQPGTRR, but the residues at the C-terminus are
unrelated to the LCD of interest. The spacing of particular amino acids is an important determinant of
biophysical behavior across a variety of LCDs (38—45). Therefore, we considered a second parameter,
the distribution of the amino acid(s) of interest across the sequence, as an important feature capable of
further resolving LCDs of similar or identical compositions.

To measure the spacing of amino acids in protein sequences, we derived a basic procedure to
quantify the normalized standard deviation of the spacing of a specified amino acid (or set of amino
acids) relative to each other and relative to the termini of a given window sequence (Fig 1; see Material
and Methods and Supplementary Material for detailed descriptions). This statistic, which we refer to as
the “linear dispersion” of amino acids, was tested on an exhaustive series of benchmark sequences
consisting of all possible 20-residue sequences composed of two representative amino acids (see Figs
S1-S3 for extensive analysis and discussion of the linear dispersion parameter).

These two parameters — amino acid composition and linear dispersion of amino acids — were
combined into a single computational approach to identify and demarcate LCDs (Fig 2). This method,
which we call LCD-Composer, is available as a stand-alone command-line script written in Python
(https://github.com/RossLabCSU/LCD-Composer). Briefly, LCD-Composer uses a sliding window to scan
protein sequences. For each subsequence, the percent composition and linear dispersion corresponding
to the amino acid (or group of amino acids) of interest are calculated. Overlapping subsequences that
pass the user-specified composition and linear dispersion criteria are merged into a single domain.
Domain termini are then trimmed until an amino acid of interest is the ultimate residue at both extremes
of the domain, resulting in the final LCD.

LCD-Composer offers a variety of optional parameters that can be specified by users at runtime
to tailor LCD-Composer behavior to suit individual purposes. Optional parameters include scanning
window size (default=20aa), minimum percent composition threshold (default=40), minimum linear
dispersion threshold (default=0.5), and an amino acid or group of amino acids of interest. To help guide
the choice of non-default parameters, the effects of varying each parameter on LCD identification and
definition were systematically evaluated and are included in Figs S4-S5. Additionally, we evaluated the
speed and scalability of LCD-Composer on a variety of model proteomes. LCD-Composer is reasonably
fast (~4sec and ~30sec for analysis of the yeast and human proteomes, respectively, on a basic desktop
computer; see Material and Methods) with a computation time that scales linearly with proteome size (Fig
S6), making it suitable for multi-proteome analyses.

To highlight the diversity of LCD features and contexts, we identified proteins with specific types
of LCDs or combinations of LCDs (Fig 3). We broadly classify these situations into 4 main categories: 1)
proteins with only a single type of LCD (“simple LCDs”; Fig 3A); 2) proteins with multiple, non-
overlapping LCDs from distinct classes (“co-occurring LCDs”; Fig 3B); 3) LCDs that exhibit a clearly
predominant amino acid, but also exhibit a subsidiary preference for a second type of amino acid (“LCD
subclasses”; Fig 3C); and 4) LCDs that can be characteristically defined by enrichment of multiple types
of amino acids (“multifaceted LCDs”; Fig 3D). Each of these situations is evaluated in greater detalil
below.
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A Comprehensive Survey of Simple LCDs and Organisms with Extreme LCD Content Across All
Domains of Life

The computational efficiency of LCD-Composer is sufficient to perform high-throughput analyses
on multiple proteomes in a relatively short span of time. To gain a broad perspective of whole-proteome
LCD content within and across domains of life (we refer to viruses as a “domain of life” for simplicity
only), we ran LCD-Composer for each amino acid using default parameters on all reference proteomes
available on the UniProt website (n = 18,896). All identified LCDs are available as a supplementary
resource at https://figshare.com/collections/Low-Complexity Domains_LCD-Composer/5118665.

To explore gross differences in whole-proteome LCD content between domains of life, the
percentage of each proteome classified as LCD was calculated for each LCD class. Proteomes were
then binned within each domain of life based on the percentage of the proteome classified as LCD for
each LCD class (Fig 4 and Tables S1, S2). For most amino acids, the proportion of organisms with at
least some LCD content progressively increases in the order viruses—archaea—bacteria—eukaryota.
However, the different domains of life showed distinct biases in terms of which class of LCDs was most
likely to be highly enriched. For example, S-rich LCDs constitute >0.5% of each proteome for nearly all
eukaryotic organisms, yet S-rich LCD content rarely exceeds 0.1% for the majority of archaeal, bacterial,
and viral organisms. By contrast, bacteria were far more likely than other types of organisms to have a
relatively high (>2%) A-rich LCD content.

While the majority of organisms contain relatively low LCD content for each LCD class, we were
intrigued by the small proportion of organisms that contain an unusually high percentage of their
proteome classified as LCD. To explore organisms from each domain with the highest overall LCD
content, the total LCD content was determined for each organism by summing the percentage of the
proteome classified as LCD across all LCD classes. Eukaryotic organisms achieve the most extreme
overall LCD content (~15-38% for the top 30 organisms), followed by viruses, bacteria, and archaea,
respectively (Fig 5). The LCD content profiles for high-LCD organisms differs substantially between
domains of life. For example, high-LCD archaea tend to have higher proportions of negatively charged
(D- or E-rich), T-rich, and V-rich LCDs compared to high-LCD organisms from other domains (Fig 5A).
The top 5 bacterial organisms contain unusually high proportions of I-rich, K-rich, and N-rich LCDs,
whereas the majority of the remaining 25 organisms tend to have an extremely high percentage
classified as A-rich LCD (Fig 5B). High-LCD eukaryotic organisms tend to have a high percentage of A-
rich and S-rich LCD coupled with either a high proportion of Q-rich LCD or G-rich LCD. Interestingly,
humans are among the top 30 organisms (out of 1473) in terms of total LCD content, yet exhibit a
remarkably diverse LCD profile consisting predominantly of A-, E-, G-, K-, L-, P-, Q-, R-, S-, and T-rich
LCDs (Fig 5C). Finally, the majority of high-LCD viruses are torque teno viruses that tend to have high
percentages of R-, P-, G-, and S-rich LCDs, whereas alphaherpes viruses have high A-, G-, and P-rich
LCD percentages, and hepatitis viruses exhibit high E- and G-rich LCD percentages (Fig 5D).

Overall these data reveal large-scale trends in LCD content across organisms, identify organisms
with extreme LCD content, and serve as an accessible resource for LCDs in all reference proteomes
currently available from UniProt. In the ensuing sections, we utilize a limited set of model organisms to
explore relationships between LCD composition and LCD function in greater depth.

Common and Unique Functions of LCDs Across Eukaryotic Model Organisms

As demonstrated in Figs 4 and 5, and consistent with previous research, proteome compositions
and the number of instances of each type of LCD often differ between organisms (1, 2, 6, 13, 17).
However, similar LCDs may perform related functions across organisms owing to shared biophysical
properties. To explore common and unique functional relationships for each LCD class across a limited
set of model organisms, we collected all LCDs identified within the proteomes of 7 common eukaryotic
model organisms (S. cerevisiae, C. elegans, D. melanogaster, D. rerio, X. laevis, M. musculus, and H.
sapiens) and performed a separate Gene Ontology (GO) analysis for each class of LCDs within each
organism. The complete list of LCDs identified for each organism is provided in Table S3 (127,472
distinct LCDs across the 7 eukaryotic model organisms).
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For most LCD classes, a substantial number of functional associations are significantly enriched
in at least one organism (Fig 6; see Table S4 for the number of instances of all significantly enriched
functional annotations across all 7 organisms; complete functional annotation results for all LCD classes
for all 7 model organisms are provided in Table S5). In many instances, an identical GO term was
significantly enriched for the same LCD class in more than one organism. Additionally, the mean
proportion of overlap in GO terms is unanimously higher for comparisons of the same LCD class across
organisms (e.g. A-rich LCDs vs A-rich LCDs) than for comparisons of distinct LCD classes across
organisms (e.g. A-rich LCDs vs E-rich LCDs), indicating that the observed GO term conservation is an
effect specifically related to each LCD class (Fig S7 and Table S6). Finally, similar results are obtained
when protein sampling is weighted by protein length (Fig S8), all protein isoforms are included in the
original LCD analysis (Fig S9), GO annotations assigned on the basis of sequence homology are
excluded from the gene annotation files (Fig S10), or GO terms (rather than proteins) are iteratively
sampled (Fig S11 and Table S7).

For the majority of LCD classes, ~15-20% of all enriched GO terms are shared across 3 or more
organisms (Fig S12), suggesting that some classes of LCDs are specifically suited for certain cellular and
molecular functions across eukaryotes. 175 GO terms spanning 14 LCD classes (A, D, E, F, G, H, |, K, L,
P, Q, R, S, and V) are significantly enriched for 4 or more distinct organisms (~10% of all enriched GO
terms). For example, D-rich, E-rich, and K-rich LCDs are individually significantly associated with the
nucleus and/or nucleolus in all 7 eukaryotic organisms examined (and related functions such as histone,
chromatin, and/or DNA binding in 6 of 7 organisms), consistent with previous observations and the
known association of highly charged domains with the nucleus/nucleolus (44, 46—48). L-rich LCDs are
significantly associated with integral membrane proteins involved in transmembrane transport in all 7
eukaryotes. Q-rich LCDs are associated with the regulation of transcription by RNA polymerase Il in all 7
eukaryotes, consistent with previous observations (5, 16, 17, 49). R-rich LCDs are specifically associated
with RNA-binding and the regulation of RNA-splicing in 6 of the 7 organisms. S-rich LCDs are associated
with an identical set of 9 functional annotations related to nuclear localization, DNA-binding, and
transcription across 6 of the 7 eukaryotic organisms. While previous studies have uncovered a small
subset of these associations (5, 11, 14, 16, 17), the composition-centric method employed by LCD-
Composer yields, to our knowledge, the most comprehensive set of linkages between LCD properties
and their common functions across eukaryotes.

Multifaceted Composition Criteria Aid in the Identification of Specific Subclasses of LCDs

Some classes of LCDs are characteristically enriched in multiple amino acids, either individually
(a single residue from the group comprising the majority of the LCD; Fig 3C) or in combination (co-
occurring within the same LCD; Fig 3D). For instance, prototypical yeast prion domains are strongly
enriched in Q and/or N residues, but often have a subsidiary bias for Y (5, 50), which is important for
prion formation (51, 52). R/G/Y-rich domains have been associated with liquid-liquid phase separation
(LLPS) or liquid-solid gelation, which appear to be related to dynamic interactions in membraneless
organelles and/or nuclear pore complexes (44, 53—-60). Furthermore, the spacing of aromatic residues in
certain LLPS-competent domains tends to promote LLPS (38), and R/G/Y composition criteria have
already been incorporated into a prediction method for identifying similar domains (61). A P-rich LCD
(with additional biases for Q/N/G) modulates the ability of the yeast polyA-binding protein, Pab1, to
phase separate in response to stress, and this effect could be tuned by altering the hydrophobicity of the
LCD (62). Highly-charged domains often adopt a variety of disordered conformations (41, 42), though
some highly-charged domains with roughly balanced positive and negative amino acid compositions and
regular spacing can form a-helices (39, 40). Therefore, in addition to simple single-amino acid searches,
LCD-Composer allows for specification of multifaceted composition criteria involving multiple amino acids
at different minimum composition percentages.

To illustrate the use of multifaceted composition criteria to identify specific types of LCDs, we ran
LCD-Composer on the yeast proteome using composition criteria corresponding to defined features of
experimentally characterized LCDs (Table 1). Specification of multifaceted composition criteria primarily
works using “and” logic. For example, the command-line option “-a QN_Y -c 40_10” (-a referring to amino
acids of interest, and -c referring to corresponding minimum composition thresholds) stipulates that a
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domain must have a combined Q/N composition exceeding 40% and a Y content exceeding 10%. The
combination of these constraints would aid in the identification of domains that are predominantly Q/N-
rich but may have a secondary bias for Y. The command-line option “-a G_RY -c 30_15” identifies
domains with a primary G enrichment 230% and a secondary enrichment of R/Y residues 215%. A
simple composition analysis of the Pab1 P-rich LCD examined in (62) revealed Q/N, P, and G
compositions of ~20%, 19%, and ~15% respectively, with aliphatic residues being important subsidiary
components but variable with respect to predominant aliphatic residue across organisms. Conservative
composition thresholds based on these values identifies a number of candidate domains that may have
related physicochemical behavior. Finally, the composition criteria “-a DE_KR -c 40_40” identifies highly
charged domains containing a high fraction of both positively-charged and negatively-charged amino
acids. A number of the identified domains exhibit a charge composition and patterning characteristic of
charged single a-helices [e.g. Mnn4 and Fpr3; (39, 40)], while others have sufficient charge composition
but irregular charge spacing (e.g. Pxr1). Therefore, multifaceted composition criteria can 1) result in
identification of LCDs whose collective composition exceeds the minimum composition threshold even
though the individual amino acid compositions do not, 2) identify domains with both primary and
secondary amino acid biases, and 3) selectively exclude LCDs that would be identified by single-amino
acid searches but are not of interest to the user. Importantly, although some LCD-identification methods
can identify primary and secondary amino acid biases, they cannot (to our knowledge) simply and
specifically search for such domains using separate composition thresholds or customized amino acid
groupings.

Table 1. Examples of LCDs identified by LCD-Composer with multifaceted composition search
criteria. The yeast proteome was evaluated using LCD-Composer with varying search parameters (“-a”,
amino acids used in search; “-c¢”, minimum composition thresholds corresponding to amino acids in “-a”;
“-w”, scanning window size; “-d”, linear dispersion threshold).

Domain Type Search # of Examples of Identified Domains Protein
Parameters Domains Source
Identified
Multifaceted prion-like | -a QN_Y oeQHRYMEGFSNNNNKQYRQNRNYNNNNNNSNNN | eKsp1
domains -c40_10 18 HGSNYNNFNNGNSYIKGWNKNFNKYRRPSSSSY
-w 60 ¢QQQQPQQQPAYYDIFGNPISQDEYLQYQYQQDQ | eEnt2
-d 0.6 EQAMAQQRWLDQQQEQQQLAEQQYFQQQQQ
G/R/Y-rich domains -aG_RY oGEYIDNRPVRLDFSSPRPNNDGGRGGSRGFGGR | eNsr1
associated with LLPS | -c 30_15 GGGRGGNRGFGGRGGARGGRGGFRPSGSGANT
-w 60 10 APLGRSRNTASFAG
-d 0.7 oeGPPKPKNKKKRSGAPGGRGGASMGRGGSRGGF | eGar1
RGGRGGSSFRGGRGGSSFRGGSRGGSFRGGSR
GGSRGGFRGGRR
Pab1-like -aQN_P_G_ILMVF oPRYYQPQQPQYPQYPQQQRYYPQQAPMPAAAP | eWwm1
P-rich LCDs -c15_15_10_10 52 QQAYYGTAPSTSKGSGHGGAMMGGLLGVGAGLL
-w 60 eQAQARQNQGTAPLNPYPGLTVTEPSFANPAGGY | eFub1
-d 0.5 ADGDLYPVGTSHPDWSGGLPNPLGNPSSQ
Highly charged -aDE_KR oEDEEKKKNEEEEKKKQEEKNKKNEDEEKKKQEEE | eMnn4
domains (w/ high -c 40_40 EKKKNEEEEKKKQE
fraction of positively + | -w 30 10 oEEEQKEEVKPEPKKSKKEKKRKHEEKEEEK oFpr3
negatively charged -d 0.5 oKKRKREGDDSEDEDDDDKEDKDSDKKKHKKHKK | ePxr1
residues) HKKDKKKD

Exhaustive Composition Analyses llluminate a Second Layer of Compositional and Functional
Diversification Among LCDs

Secondary compositional biases have been noted previously for specific classes of LCDs (16, 17)
but have not been thoroughly examined for all LCDs. Secondary biases among LCDs could, in principle,
lead to subclasses of LCDs within each primary LCD class. To explore this possibility, the composition of
all 20 canonical amino acids was calculated for each individual LCD identified by LCD-Composer within
the yeast proteome. Indeed, many primary classes of LCDs exhibit strong preferences for a second
amino acid resulting in clustered subclasses of LCDs (Figs 7, 8, S13, S14, and Table S8). For some
types of LCDs a single cluster is observed, indicating a strong secondary preference for only one type of
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amino acid (e.g. T-rich LCDs with a strong secondary preference for S; Figs 7, 8, and Table S8). For
other classes of LCDs multiple distinct clusters of varying sizes are observed (e.g. D-rich LCDs exhibiting
secondary preferences for E, N, or S, Figs 7, 8, and Table S8), suggesting a partitioning of the primary
LCDs into specialized subclasses. Strikingly, in many cases the secondary preferences are not strongly
overlapping even for apparently similar classes of LCDs. For example, while both D-rich and E-rich LCDs
exhibit secondary preferences for each other, E-rich LCDs contain a cluster of LCDs secondarily
enriched in K, whereas D-rich LCDs are almost completely devoid of secondary enrichment for K (Figs 7,
8, and Table S8). Similarly, N-rich LCDs exhibit secondary preferences for D or S, while Q-rich LCDs
exhibit secondary preferences for H, L, or P (Figs 7, 8, and Table S8).

These observations suggested that particular subclasses of LCDs emerge due to functional
specialization within each primary LCD class. Therefore, we re-analyzed the yeast proteome with LCD-
Composer using the built-in capacity for specifying multifaceted composition criteria. Specifically, for
each of the 20 canonical amino acids, the yeast proteome was searched for all LCDs with at least 40%
composition of the primary amino acid and at least 20% of a secondary amino acid (Fig 9A,B), resulting
in 380 possible pairwise search combinations (each of the 20 primary amino acids by each of the 19
possible secondary amino acids). GO term analyses were performed for each set of identified LCDs,
which we refer to as LCD “subclasses”. A priori, we expected three possible outcomes. First, a GO term
may co-segregate with specific subclasses of LCDs (i.e. the GO term is “retained” by at least one
subclass), suggesting that the original enrichment observed may actually be attributable to a specialized
subset among the larger LCD class. Second, a functional annotation might be enriched for the primary
LCD class as a whole but “lost” among the LCD subclasses, likely due to a reduction in sample size or to
the contribution of multiple LCD subclasses to the original enrichment. Finally, “new” GO term
annotations may appear for specific subclasses of LCDs if those LCDs (and not other subclasses of
LCDs) fulfill a specialized functional role in the cell (effectively modulating the “signal-to-noise” ratio via
retention of relevant LCD subclasses and exclusion of irrelevant subclasses).

GO term retention, loss, and de novo appearance was determined for all primary LCD classes
and secondary LCD subclasses across all 7 eukaryotic organisms. Functional annotations for nearly all
primary classes of LCDs exhibit each of the 3 possible effects resulting from subclassification (retention,
loss, and de novo appearance), though to varying degrees across LCD class and organism (Table S9).
For example, S-rich LCDs in yeast are associated with roughly equal proportions of retained, new, and
lost GO terms, while A-rich LCDs are associated with equal proportions of new and retained GO terms
(Fig 9C and Table S9). Proteins with G-rich LCDs exhibit the highest proportion of new GO terms
(excepting R, which only had 1 associated GO term), though all 3 possible subclassification effects are
observed (Fig 9C). For example, amino acid transport functions associated with the primary class of G-
rich domains in the yeast proteome do not appear in any of the subclasses, so these annotations were
lost upon subclassification (Fig 9D). However, multiple annotations related to protein folding and protein
chaperone activity are maintained or new across certain subclasses (namely, G-rich LCDs with a
secondary preference for A, F, or P). Similarly, functions related to mRNA-binding, ribonucleoprotein
complexes, and translation initiation factor binding are specifically maintained by G-rich LCDs with a
secondary preference for N, R, or F residues. Finally, multiple functional annotations related to tubulin,
microtubules, and microtubule-mediated nuclear migration are specifically associated with G-rich LCDs
with a secondary preference for L residues, even though these functions were not detected as enriched
among G-rich domains generally (i.e. de novo appearance only upon subclassification). Notably, the
majority of GO terms associated with most LCD classes are still detected when highly homologous
proteins within each LCD class are excluded (Fig S15A, B). Additionally, the log-odds ratios indicating
the degree of GO term enrichment for subclassified LCD protein sets is nearly always greater than that of
primary LCD protein sets and, in many cases, with non-overlapping confidence intervals (Table S10),
indicating that LCD subclassification specifically and broadly enhances enrichment of functional
annotations.

In summary, the composition-centric approach employed by LCD-Composer illustrates the
diversity of LCDs within and across eukaryotic organisms, and enables finer, multi-layered classification
of LCDs.
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Tracking Co-occurrence of Distinct Classes of LCDs within Individual Proteins Reveals
Functional Associations for Multi-LCD Proteins

As depicted in Fig 3B, some proteins contain multiple non-overlapping LCDs from distinct LCD
classes. This raises the intriguing possibility that proteins with multiple concurrent LCDs (e.g. proteins
with both a G-rich domain and a Q-rich domain; Fig 10A) could specifically participate in particular
functions that are not associated with the LCD classes individually. A number of yeast proteins contain
non-overlapping LCDs of distinct LCD classes (Fig 10B). For each LCD class, multi-LCD proteins were
further parsed into separate classes based on the predominant residue of each additional non-
overlapping LCD. GO term analyses were then performed separately for each set of parsed multi-LCD
proteins. Most primary LCD classes exhibit a mixture of GO term loss, retention, and de novo
appearance upon multi-LCD sorting (Fig 10C and Table S11). For G-rich LCDs, the majority of GO terms
are lost when LCDs are divided among co-occurring LCD categories, likely due to smaller sample sizes
associated with dual enrichment. However, proteins with non-overlapping G-rich and Q-rich LCDs are
associated with nuclear pore organization and transport functions (Fig 10D). Importantly, these functional
associations are also new GO terms when Q-rich LCDs are considered as the primary class (Fig 10E),
indicating that these functions are specifically associated with the subset of LCDs containing both G-rich
and Q-rich LCD classes (and not the individual LCD classes). Enriched GO term associations were not
due to highly homologous proteins within each LCD class (Fig S15C). Again, the degree of GO term
enrichment for multi-LCD protein sets was nearly always greater than the degree of GO term enrichment
for the original primary LCD protein sets (Table S12). Together, this suggests that proteins containing
specific combinations of non-overlapping LCDs may also fulfill specialized molecular roles.

DISCUSSION

Recent studies have suggested that the amino acid composition and linear dispersion of amino
acids within LCDs are important — if not predominant — features governing their biophysical behavior (22,
41, 63-67). LCD-Composer was developed with this emerging view in mind. Although a variety of
methods exist for identifying LCDs in proteins, the central focus of LCD-Composer is the amino acid
composition of LCDs, making it intuitive to biologists and relevant to the actual physicochemical
properties of the identified LCDs. While primary sequence undoubtedly plays a role in the functional
properties of some LCDs, methods designed for initial classification of LCDs are an important step before
more nuanced classification on the basis of specific features. In the future, integration of additional
information including post-translational modifications, short linear motifs, intrinsic disorder, repetitiveness,
and related features may lead to a richer LCD classification system.

LCD-Composer was designed specifically for the identification of LCDs on the basis of
customizable composition profiles, irrespective of whole-proteome amino acid frequencies. In contrast to
existing methods relying on mathematical sequence complexity or statistical enrichment of amino acids,
LCD-Composer’'s composition-based approach is extremely flexible, intuitive to use, and generates
results that are easy for the average user to interpret. The simplicity of the LCD-Composer method and
search parameters enables multifaceted LCD search criteria, including user-defined groupings of amino
acids and distinct composition thresholds for each amino acid or group of amino acids, which cannot be
easily implemented with existing methods.

The speed and specificity of LCD-Composer make it a powerful yet intuitive LCD-identification
method. Our database of simple LCDs identified for each LCD class across all organisms available from
UniProt should serve as a valuable resource for researchers interested in specific types of LCDs.
However, we would like to emphasize that these LCDs are derived from only one set of search criteria,
even though LCD-Composer allows for an infinite number of combinations of amino acid(s) of interest,
window size, composition threshold(s), and dispersion threshold. Therefore, LCD-Composer may still be
of great utility to users wishing to specify non-default or composite search parameters.

Our survey of LCDs in all reference proteomes raises a number of interesting and currently
unanswered questions. The proteomes of Dictyostelium discoideum and Plasmodium falciparum were
already known to have extremely high Q/N-rich and N-rich LCD content, respectively, and exhibit
corresponding adaptations in proteostasis machinery that specifically accommodate such a high
prevalence of aggregation-prone domains (68, 69). However, our database of LCDs unveils a multitude
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of additional organisms with unusually high LCD content for specific classes of LCDs (even typically rare
types of LCDs). For example, M-rich domains constitute ~0.75% of the proteome of the intestinal
parasite, Echinostoma caproni (compared to ~0.006% average M-rich content among eukaryotes), while
H-rich domains constitute nearly 2% of the Spodoptera litura (Asian cotton leafworm) proteome. How
might these organisms have adapted to such an unusually high prevalence of particular LCDs or,
conversely, how might prior adaptations have facilitated the development and utilization of these LCDs?
What are the implications for protein synthesis, folding, and degradation systems in these organisms,
and how do these systems differ across organisms with extremely high LCD content for different LCD
classes? Are these adaptations specific to certain ecological niches? How might the discovery of new
proteostasis machinery or mechanisms aid in the development of new biotechnology or human disease
therapeutics? LCD-Composer and our database of LCDs provide a valuable launchpad for exploring
these questions in both model and non-model organisms.

LCD-Composer’s customizable search parameters enable specific and selective LCD searches.
We demonstrate that these features can be used to resolve LCDs into richer hierarchies on the basis of
multiple compositional features, including LCD subclasses (enriched in more than one amino acid) and
co-occurring LCDs (non-overlapping LCDs in the same protein). Each level of the hierarchy appears to
be of functional importance: in many cases, primary LCD classes were associated with particular
functions that were lost upon subclassification, while other functional associations were only detected
after subclassification. Therefore, integrating both fine and coarse resolution of LCDs yields a more
complete picture of LCD functional specificity and diversity. However, it is also worth noting that some
LCDs may exist for reasons unrelated to protein function, such as genomic nucleotide composition or
non-functional repeat expansion. While GO term analyses can unveil statistical relationships between
LCD classes and associated LCD functions, definitive assignment of functions (or lack thereof) to specific
LCDs identified by LCD-Composer should be determined experimentally. Finally, particular classes of
LCDs fulfill similar or identical molecular roles across a broad range of model eukaryotes, suggesting that
the unusual sequence features of LCDs may occupy molecular niches and are indispensable for certain
molecular processes. In our view, the combination of simplicity, flexibility, and direct quantification of
biochemically relevant LCD features make LCD-Composer a powerful, intuitive, and adaptable tool for
protein research.
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Low-complexity domain (LCD); low-complexity domain composition scanner (LCD-Composer); liquid-
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Example

20aa sequence
6 G’s (Gly as residue of interest)
14 X’s (all other amino acids)

Minimum Possible Dispersion Maximum Possible Dispersion
GGGGGGXXXXXXXXXXXXXX XXGCXXGXXGXXGXXGXXGXX
111111 15 <—Gspacing—» 3 3 3 3 3 3 3

7 1111111111111 €—Xspacing—>»112121212121211

v v

Large gaps Small gaps

| Standard deviation | Standard deviation

| Linear Dispersion T Linear Dispersion
XXGXXGXXGXXGXXGXXGXX 1.0
XXXGXXGXXXGXXXGXXGXG
XGCXAXXGCXXXGGXGXGXXXXX
XXXXXGGXXGXXGGXXXXXG
GXXXXXGGXGCXGGXXXXXXX . _ .
XXXGXGGXGGXXXXXXXXXG [l 0.5 Linear Dispersion
GXGGGXXXGXXXXXXXXXXG Scale
GXGXXGGGGEXXXXXXXXXXX
XGGGGGXGXXXXXXXXXXXX
XGGGGGEXXXXXXXXXXXXXG

—— P GGGGGGXXXXXXXXXXXXXX [ 0.0

Fig 1. Depiction of linear dispersion parameter. Linear dispersion is calculated from the normalized
standard deviation in the combined spacing values for all residues of interest and all other residues.
Large gaps lead to large standard deviations, resulting in low linear dispersion values. Conversely, small
gaps with uniform spacing leads to small standard deviations and high linear dispersion values. The
linear dispersion scale ranges from 0.0-1.0, with high linear dispersion values indicating well-mixed
sequences.
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Linear

Composition Dispersion Amino Acid of
Window Size Threshold Threshold Interest
User-defined parameters: 20aa 40% 0.5 N
@ Initial identification of acceptable regions

Exhaustively scan ' I ! | )
protein sequence | I | |
Psp2 Sequence: ... KGGHNNRGNRGGYRGGSSYNNNNNNTNDNNNNNNNSSSNNNNGSRYHDRQNN...

NNNNTNDNNNNNNNSSSNNN 75% 0.69
NNNTNDNNNNNNNSSSNNNN 75%
NNTNDNNNNNNNSSSNNNNG 70%
NTNDNNNNNNNSSSNNNNGS 65%

TNDNNNNNNNSSSNNNNGSR 60%

<
o
©

0.62
0.57
0.50

Window Sequence N Composition N Linear Dispersion
KGGHNNRGNRGGYRGGSSYN 20%; 0.57 o
GGHNNRGNRGGYRGGSSYNN 25% 0.50 o
GHNNRGNRGGYRGGSSYNNN 30% ; 0.42
HNNRGNRGGYRGGSSYNNNN 35% 0.35
NNRGNRGGYRGGSSYNNNNN 40% of 0.27
NRGNRGGYRGGSSYNNNNNN 40% % 0.24
RGNRGGYRGGSSYNNNNNNT 35% 0.28
GNRGGYRGGSSYNNNNNNTN 40% of 0.25
NRGGYRGGSSYNNNNNNTND 40% of 0.25
RGGYRGGSSYNNNNNNTNDN 40% of 0.25
GGYRGGSSYNNNNNNTNDNN 45% of 0.28
GYRGGSSYNNNNNNTNDNNN 50% of 0.31
YRGGSSYNNNNNNTNDNNNN 55% of 0.37
RGGSSYNNNNNNTNDNNNNN 60% of 0.43 Pass J
__ GGSSYNNNNNNTNDNNNNNN 65% of 0.48
GSSYNNNNNNTNDNNNNNNN 70% of 0.50 o/ .
SSYNNNNNNTNDNNNNNNNS 70% of 053 o Fail *
SYNNNNNNTNDNNNNNNNSS 70% of 054 of
YNNNNNNTNDNNNNNNNSSS 70% of 053 o
NNNNNNTNDNNNNNNNSSSN 75% of 062 o
NNNNNTNDNNNNNNNSSSNN 75% 5 0.67 5
v v
v v
v v
v YA
NDNNNNNNNSSSNNNNGSRY 60% of 0.47
DNNNNNNNSSSNNNNGSRYH 55% of 0.39
NNNNNNNSSSNNNNGSRYHD 55% of 0.34
NNNNNNSSSNNNNGSRYHDR 50% of 0.32
NNNNNSSSNNNNGSRYHDRQ 45% of 0.32
NNNNSSSNNNNGSRYHDRQN 45% of 0.36
NNNSSSNNNNGSRYHDRQNN 45% of 0.38

Merge overlapping domains that pass composition and
linear dispersion criteria

GSSYNNNNNNTNDNNNNNNNSSSNNNNGSR

Trim domain termini until the ends
match an amino acid of interest

Y
‘GSSYNNNNNNTNDNNNNNNNSSSNNNNGSR’

Y
Final Domain: NNNNNNTNDNNNNNNNSSSNNNN

Fig 2. Computational procedure for identifying LCDs of interest. Identification of LCDs occurs in two
stages. (A) In the first stage, protein sequences are scanned using a sliding window. For each window
subsequence, the percent composition of the amino acid(s) of interest and its linear dispersion are
calculated. (B) In the second stage, overlapping domains that pass the composition and linear dispersion
criteria are merged into a single domain, then trimmed such that the final residue at both termini are an
amino acid of interest.
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A “Simple LCD” B “Co-oceurring LCDs”

Enrichment of a single amino acid Multiple non-overlapping LCDs from diverse classes
SIS1 100 MOT3
100 Distinct G-rich Q-rich Domain N-rich Domains A-rich Domains
Domains /
[
80 | 80
5 5
g 60 8 P-rich Domain
S a
£ 5 |
2 s R 1 i et e o s i o O o | W
© 2
20+ 20
0 L | | | | 0
0 50 100 150 200 250 300 350 0 100 200 300 400
Protein Position Protein Position
C “LCD Subclasses” D “Multifaceted LCD”
An LCD with a secondary amino acid preference An LCD with a defined mixture of multiple amino acids
R2 MNN4
100 GC 100
Mixed Charge
. . Domain
80' N-rich Domain 80 K4E4 repeat
c c
-..% secondary ..%
» 601 (preference for G) ‘0
@] o]
Q Q
g g
o 401 o
201
01 ‘ ‘ . . - . ‘ ‘ : . :
0 100 200 300 400 500 0 200 400 600 800 1000
Protein Position Protein Position

Fig 3. Examples of LCD contexts within individual proteins. (A) An LCD-Composer scan of the Sis1
protein identifies two distinct G-rich domains that pass the composition and linear dispersion thresholds.
(B) A complete LCD-Composer scan searching for all possible types of single-amino acid LCDs identifies
multiple non-overlapping LCDs of distinct classes in the Mot3 protein. (C) The Ger2 protein contains an
N-rich domain with a subsidiary preference for G. (D) The Mnn4 protein contains a multifaceted LCD with
a high and roughly balanced K/E composition.
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Fig 4. Cross-domain comparison of LCD content across all proteomes for each LCD class. LCDs
were identified using LCD-Composer with default parameters for all proteomes available from UniProt.
For each LCD class, the percentage of each proteome classified as LCD was defined as the percentage
of amino acids lying within LCD regions out of the total proteome size (in number of amino acids). Within
each domain of life, organisms were then sorted into one of seven categorical bins based on the
percentage of the proteome classified as LCD for each LCD class [None (0%), Extremely Low (0-0.1%),
Very Low (0.1-0.5%), Low (0.5-2%), Medium (2-5%), High (5-10%), Very High (10-15%), or Extremely
High (>15%)]. The proportion of total proteomes for each domain of life was then calculated for each bin
and plotted as a stacked bar chart. For all organisms, the “additional” file containing sequences of known
protein isoforms (when available) was combined with the corresponding organism’s main proteome prior
to analyses.
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th the highest total LCD content. For each

ISMS wi

Archaea (A), Bacteria (B), Eukaryota (C), and Viruses (D). LCD percentages for all organisms (including

overestimation of total LCD content due to overlapping LCDs from different classes but was chosen to
those ranking below the top 30) and all LCD classes are available in Table S1.

preserve LCD percentages for individual LCD classes). Organisms were then ranked from highest to

domain of life, the total percentage of LCD content was calculated as the sum of the individual LCD
lowest and the LCD percentages (parsed by LCD class) were plotted for the top 30 organisms for

content percentages for each LCD class (note that, in some cases, this method results in a slight

Fig 5. Cross-domain comparison of organ
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Number of Organisms Sharing Enriched GO Term

Fig 6. Identification of identical and unique GO terms associated with each LCD class across 7
model eukaryotic organisms. GO analyses were performed independently for each LCD class within
each eukaryotic model organism. For each LCD class, significantly enriched GO terms were collected for
all eukaryotic model organisms in our study. The number of times each enriched GO term occurred
across organisms was then calculated and plotted.
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T-rich LCDs D-rich LCDs E-rich LCDs

Individual Domains (n = 159)
Individual Domains (n = 213)
Individual Domains (n = 330)

ACDEFGH | KLMN PQRSTVWY
Amino Acid Amino Acid Amino Acid

ACDEFGH I KLMNPQRSTVWY ACDEFGHI KLMNPQRSTVWY

N-rich LCDs Q-rich LCDs 100

Individual Domains (n = 258)
Individual Domains (n = 163)
Percent Composition

o

ACDEFGHIKLMNPQRSTVWY ACDEFGHIKLMNPQRSTVWY
Amino Acid Amino Acid

Fig 7. Yeast primary LCD classes exhibit unique preferences for secondary amino acids.
Complete composition analyses were performed for all LCDs for which a secondary amino acid could be
unambiguously assigned to a single residue type (i.e. a second amino acid with the next highest
composition, excluding the primary amino acid). Heatmaps indicate percent composition of each amino
acid (x-axis) for each LCD (y-axis), on a scale from 0%-100%. Some classes of LCDs exhibit a strong
preference for a single secondary amino acid (T-rich LCDs) or multiple secondary amino acid classes (D-
rich, E-rich, N-rich, and Q-rich LCDs), and secondary preferences observed for some primary LCD
classes do not strongly overlap with those of related primary LCD classes (e.g. D-rich vs. E-rich LCDs,
and N-rich vs. Q-rich LCDs). Complete composition analyses for the remaining LCD classes and model
organisms are indicated in Figs S13, S14 and Table S3).
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Fig 8. Quantitative analysis of secondary amino acid preferences among primary LCD classes.
For each LCD class, the number of LCDs observed for each possible secondary amino acid was
compared to corresponding window frequencies derived from a whole-proteome scan of the yeast
proteome (see Material and Methods). The natural log of the odds ratio (INOR) indicates the degree of
enrichment or depletion of LCDs with a secondary amino acid relative to whole-proteome frequencies
(see Material and Methods section). Indications of statistical significance are from Bonferroni-corrected
P-values (P < 0.001, “***; P <0.01, “**”; P <0.05, “*”; see Table S8). Secondary amino acid categories
with a scaled whole-proteome frequency <1 are colored teal to distinguish them from categories with a
true INOR=0. For secondary amino acid categories with no observed LCDs (colored orange), an imputed

Secondary AA

observed value of 1 was used as a conservatively biased estimator.
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Fig 9. The effects of subclassification on GO term retention, loss, or gain reveal a second layer of
functional diversification among yeast LCDs. (A) Multifaceted LCD-Composer search criteria were
used to identify LCDs for each possible LCD subclass (= 40% composition for a primary amino acid and
= 20% composition for a secondary amino acid). (B) Example of diverse G-rich domains with differing
secondary amino acids and secondary amino acid compositions. (C) For each primary LCD class, the
proportions of GO terms retained, lost, and new upon subclassification are indicated as stacked bars. (D)
Complete GO term retention, loss, and de novo appearance (“new”) network for yeast G-rich LCDs. Full
results for all LCD subclasses across all model organisms are available in Tables S9 and S10.

25



A NUP116 C
100 8 | eggRgeerwn ~ @ Effect of
LCD Class E 0 20 40 60 80 100 120 nnononon T ‘IT ‘\T : : wonon T : u | Subclassification
Q-rich — Q F Number of Proteins with - 10{SEESESESSEEEESECEE on GO term
80 domains — G a a Co-occurring LCDs E Retained
c . ™ Q [=]
Q-rich ~ G-rich o = New
Z'EE: 60 domain  domain 8 K‘ 2 2 IE "E’ 0.8 Lost
2 QL 1 =5
£ M ¢ ok 06
S apl XN | EN 3 5o
< 20 ' 5°
g § R " o 5 8 044
20 o s 3.9 5 e E
] R
0 0
0 ; . - w 0 0 0.0
0 200 400 600 800 1000 H M : Py
Protein Position Primary LCD Class SPQNETKIDAGLHR F8
Primary LCD Class =
<
D GO T A All Functions Associated
erms mong with G-rich LCDs .
Multi-LCD Proteins Multi-LCD Classes
Amino acid transmembrane transporter activity GO Term
Amino acid transmembrane transporter activity Chaperone cofactor-dependent protein refolding ]
Chaperone cofactor-dependent protein refolding Amino acid transmembrane transport na
Amino acid transmembrane transport Protein refelding .
Protein refolding mRNA binding Multi-LCD Classes
mRNAbinding Heat shock protein binding with GO Term
Heat shock protein binding Eukaryotic initiation factor 4G binding
Eukaryotic initiation factor 4G binding Nuclear pore organization Q
Nuclear pore central transport channel
E GO Terms Among All Functions Associated
Multi-LCD Proteins with Q-rich LCDs
. . Actin cortical patch assembly
Actin cortical patch assembly Negative regulation of translation
Clathrin binding Clathrin binding
Negative regulation of translation Cellular bud neck Multi-LCD Classes
Cellular bud neck in bindi
Protein binding GO Term

Protein binding

e e ) . DNA-binding transcription activator activity, RNA pol. Il-specific
DNA-binding transcription activator activity

RNA pol. Il cis-regulatory region sequence-specific DNA binding
RNA pol. Il activating transcription factor binding
Negative regulation of transcription by RNA pol. 1l

Cytoplasmic stress granule
mRNA binding
P-body
Nucleus
Sequence-specific DNA binding
Positive regulation of transcription by RNA pol. 1l

oz >

w

Multi-LCD Classes

Regulation of transcription by RNA pol. 1l with GO Term
Nuclear pore organization G
Nuclear pore central transport channel
Deadenylation-dependent decapping of nuclear-transcribed mRNA P
Paositive regulation of invasive growth in response to glucose limitation R

Fig 10. GO term retention, loss, or gain as a result of LCD co-occurrence indicates shared and
unique functions of multi-LCD proteins. (A) The Nup116 protein contains non-overlapping G-rich and
Q-rich LCDs. (B) Heatmap depicting the number of instances of co-occurring LCDs for each LCD class.
The upper-right half is numerically equivalent and therefore omitted for simplicity. (C) For each primary
LCD class, proteins with at least one additional non-overlapping LCD were sorted into each co-occurring
LCD secondary class. Each secondary class was then evaluated for significantly enriched functional
associations. The resulting proportions of GO terms retained, lost, and new for multi-LCD proteins are
indicated as stacked bars. (D) Complete GO term retention, loss, and new network for yeast G-rich multi-
LCD proteins. (E) The complete GO network for yeast Q-rich multi-LCD proteins demonstrates reciprocal
de novo appearance of the new GO terms associated with G-rich multi-LCD proteins. Q-rich multi-LCD
proteins also exhibit additional class-specific retention, loss, and gain of GO terms. Full results for all
multi-LCD proteins across all model organisms are available in Tables S11 and S12.
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