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ABSTRACT 
 Low complexity domains (LCDs) in proteins are regions predominantly composed of a small 
subset of the possible amino acids. LCDs are involved in a variety of normal and pathological processes 
across all domains of life. Existing methods define LCDs using information-theoretical complexity 
thresholds, sequence alignment with repetitive regions, or statistical overrepresentation of amino acids 
relative to whole-proteome frequencies. While these methods have proven valuable, they are all 
indirectly quantifying amino acid composition, which is the fundamental and biologically-relevant feature 
related to protein sequence complexity. Here, we present a new computational tool, LCD-Composer, that 
directly identifies LCDs based on amino acid composition and linear amino acid dispersion. Using LCD-
Composer’s default parameters, we identified simple LCDs across all organisms available through 
UniProt and provide the resulting data in an accessible form as a resource. Furthermore, we describe 
large-scale differences between organisms from different domains of life and explore organisms with 
extreme LCD content for different LCD classes. Finally, we illustrate the versatility and specificity 
achievable with LCD-Composer by identifying diverse classes of LCDs using both simple and 
multifaceted composition criteria. We demonstrate that the ability to dissect LCDs based on these 
multifaceted criteria enhances the functional mapping and classification of LCDs. 
 

INTRODUCTION 
Protein sequence complexity is a measure of the diversity of amino acids found in a sequence. 

Proteins lie along a finite spectrum of sequence complexity constrained by protein length and the amino 
acid “alphabet” (generally, the 20 canonical amino acids). While the majority of protein sequences are 
composed of a diverse mixture of the possible amino acids, a substantial number of proteins contain low-
complexity domains (LCDs) composed of only a small subset of the possible amino acid residues. 
Proteins with LCDs participate in a wide array of molecular processes and have been associated with 
unique structural, functional, and regulatory tendencies (1-24). Additionally, a variety of human diseases 
are associated with mutation or expansion of LCDs (3, 14, 25, 26). 

A variety of methods have been developed to distinguish LCDs from regions of moderate or high 
sequence complexity, including SEG (27), CAST (28), fLPS (29), and others (30–33), and many of these 
methods were recently combined in a meta-server for LCD identification (34). However, these methods 
rely on mathematical definitions of sequence complexity or statistical enrichment of amino acids (relative 
to whole-proteome frequencies) to distinguish LCDs from complex sequences. Although these methods 
provide well-defined cutoffs for LCDs, they do not intuitively correspond to biochemical features, making 
it difficult for researchers to customize search parameters for desired purposes. Additionally, LCDs can 
be further decomposed into classes based on which specific amino acid(s) are most common. While the 
amino acids are often treated equivalently by sequence complexity methods, the actual physical 
properties of the amino acids can be radically different, resulting in LCDs with completely distinct 
physical behavior. 

For example, although the SEG algorithm has been used effectively to identify LCDs for 
biochemical characterization, its original intended purpose was for the masking of LCDs to improve 
sequence alignment, and it is still used in the pervasive BLAST tool (35). Consequently, SEG does not 
distinguish between LCDs of different classes (e.g. N-rich LCDs vs. K-rich LCDs). A search for protein 
domains with a given complexity score will return a highly heterogeneous mixture of LCDs with 
dramatically different compositions (and therefore different structural and functional behaviors), requiring 
additional downstream sequence analysis to narrow results to specific LCDs of interest with particular 
compositional features. 

Likewise, although methods that use statistical overrepresentation of specific amino acids have 
numerous applications, they face a different set of limitations. Specifically, while a protein’s amino acid 
composition is directly linked to its physical properties, amino acid overrepresentation is only indirectly 
linked. Although it is possible in some cases for users to vary the parameters for statistical 
overrepresentation methods to identify thresholds that mimic composition-based approaches (though 
only for the most basic LCD searches), a method that directly detects amino acid composition is likely to 
be simpler and more intuitive for researchers interested in searching for domains that meet specific 
compositional thresholds. Furthermore, the simplicity of a composition-based approach enables intuitive, 
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multifaceted searches for LCDs enriched in multiple amino acids or groups of amino acids at different 
composition thresholds, which are not currently built-in features of existing methods employing statistical 
enrichment. 

Finally, since protein sequence complexity exists along a spectrum, a single complexity threshold, 
though often useful, may not always be biologically relevant (1). Consequently, different complexity 
thresholds may be suitable depending on the types of LCDs of interest and the research question at 
hand. However, with both approaches, choosing a threshold for sequence complexity or statistical 
overrepresentation for a specific LCD search purpose will often require extensive experimentation, 
optimization, or prior calculations, since neither a complexity score (such as <2.2 bits) or a statistical 
overrepresentation (such as P<10-3) is intuitively linked to a protein’s physical properties. 

Here, we report a new computational tool, the low-complexity domain composition scanner (LCD-
Composer), which defines LCDs in proteins based on amino acid composition and linear dispersion of 
amino acids. The primary intended purpose of LCD-Composer is the intuitive identification of LCDs with 
a focus on the predominant physicochemical characteristics of the LCDs. LCD-Composer is a stand-
alone Python script (requiring no external packages, downloads, or configuration) that runs on all 
operating systems. The algorithm completes full-proteome scans in seconds, and runtime scales linearly 
with proteome size, permitting whole-proteome or multi-proteome analyses. Optional LCD-Composer 
parameters are customizable, allowing for both simple and multifaceted compositional constraints that 
can be specified by users. Together, these features make LCD-Composer intuitive, accessible to 
researchers with limited computational experience, and suitable for diverse research applications. 
Additionally, we demonstrate the unique ability of LCD-Composer to rapidly identify both simple and 
multifaceted LCDs with high specificity, and to dissect LCDs into distinct subclasses of functional 
importance across an array of model organisms. 
 

MATERIAL AND METHODS 
Calculation of Amino Acid Composition and Linear Amino Acid Dispersion 
 LCD-Composer implements a sliding window approach (with a 20aa default window size, and a 
step size=1) to evaluate local amino acid composition. For each window, the amino acid composition, C, 
is calculated as the sum of the total occurrences of each amino acid in the specified set divided by the 
length of the sequence: 

𝐶 =
∑  𝑛𝑟𝑟∈𝐴

𝐿
 

where A represents the set of specified amino acids, nr represents the number of times residue r occurs 
in the window sequence, and L represents the window size used (or the length of the sequence being 
analyzed).  

Let B represent the set of the canonical amino acids not in set A. The linear dispersion of 
residues in the chosen set vis-à-vis all other residues and the sequence termini is calculated as the 
normalized standard deviation of the spacing of residues in set A and the spacing of residues in set B, 
with sequence termini included in the consideration. Specifically, for a given protein sequence, the 
differences in numerical position for all residues in set A from the nearest neighbor of the same set and 
from the sequence termini are calculated. This procedure is repeated for all residues in set B. The 
spacing values are then combined into a single array, and the standard deviation s of the array is 
calculated as: 

𝑠 =  √
∑(𝑑𝑖 −  𝑑̅)2

𝑁
 

where di represents the difference between the position of the ith residue and the position of the previous 

residue from among the corresponding set (or the sequence terminus) in the given protein sequence, 𝑑̅ 
represents the mean of the spacing values, and N represents total number of differences calculated. For 
searches with multiple specified groups of amino acids, residues from all groups are combined into a 
single set, and their linear dispersion vis-à-vis all other residues is calculated. Note that, while this 
enhances the sensitivity of detecting LCDs with multi-faceted search criteria by mitigating exclusion of 
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domains on the basis of insufficient dispersion of amino acid(s) with low composition thresholds, in rare 
instances this can identify regions with adjacent LCDs that are not well-mixed. 
 Since the length and composition of a sequence determines the range of possible values for the 
standard deviation of linear spacings, the standard deviation s is then normalized to the range of 
possible values: 

𝑠𝑛𝑜𝑟𝑚 = 1 − (
𝑠 − 𝑠𝑚𝑖𝑛

𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛
) 

where smin and smax are standard deviations calculated from two artificially generated sequences of 
identical length and composition designed to minimize and maximize s, respectively. smin is obtained 
when the specified amino acid is distributed as uniformly as possible across the sequence window. smax 
is obtained when the specified amino acid is entirely clustered at one end of the sequence. This method 
of determining smin and smax was validated on exhaustive sets of sequences ranging from 5aa to 30aa in 
length, and should scale to all window sizes (see Supplementary Material). The final linear dispersion 
snorm is on a scale from 0 to 1, where larger values indicate increased linear dispersion of the amino 
acid(s) of interest (i.e. well-mixed sequences). By default, LCD-Composer ignores the linear dispersion 
parameter if the composition of the amino acid(s) of interest exceeds the midpoint between the user-
specified composition threshold and 100% in order to correct for sequences of very high composition but 
containing intervening gaps between residues of interest resulting in a low linear dispersion (see Fig S3 
in Supplementary Material). However, users can also specify a composition value at which the linear 
dispersion parameter is ignored using the “-i” flag (e.g. “-i 75” to ignore the linear dispersion parameter 
for sequences with >75% composition of the amino acid of interest). Additionally, all regions for which 
100% of the residues are among the amino acids of interest are automatically identified as an LCD 
regardless of chosen linear dispersion parameters. 
 
Merging and Trimming of Identified Domains 

After each protein is scored, any overlapping domains that pass the user-specified amino acid 
composition and linear spacing thresholds are merged into a single domain. All other regions are 
masked, unless the verbose option is employed, in which case all regions are scored regardless of 
whether they pass the user-specified thresholds. For each merged domain, both termini are trimmed until 
the amino acid at each terminus matches an amino acid from the user-defined set of residues. After final 
processing, the overall composition (with respect to the user-defined set of amino acids) and linear 
dispersion is calculated for each merged/trimmed domain. In rare cases, merging and trimming of the 
domain may result in a composition or linear dispersion that is slightly lower than the user-defined 
threshold – this behavior is intentional and allowed since the identification and merging of underlying 
windows maintains strict adherence to the user-defined composition and linear dispersion thresholds. 

For each protein containing at least one domain of interest, all identified domains, corresponding 
domain boundaries, final domain compositions, and final normalized standard deviations of linear 
spacings are written to an output file. Additionally, if the verbose option is implemented, per-position 
compositions and per-position linear dispersion values (up to the length of the sequence minus the 
window size) are included in the results. 
 
Whole-Proteome Analyses, Parameter Benchmarking, and Speed Tests 

For in-depth analyses of specific proteomes, the yeast proteome (S. cerevisiae, UniProt ID 
UP000002311) was downloaded from the UniProt website on 12/25/2019. Proteomes for model 
eukaryotic organisms [Caenorhabditis elegans (nematode), UP000001940; Drosophila melanogaster 
(fruit fly), UP000000803; Danio rerio (zebrafish), UP000000437; Xenopus laevis (African clawed frog), 
UP000186698; Mus musculus (mouse), UP000000589; and Homo sapiens (human), UP000005640] 
were initially downloaded from the UniProt website on 11/19/2020 for proteomes with only one protein 
sequence per gene or 2/23/2020 for proteomes containing all known isoforms. For evaluation of simple 
LCDs across all organisms on UniProt, all available proteomes for archaea, bacteria, and eukaryote were 
downloaded from the UniProt FTP server (ftp://ftp.uniprot.org/pub/databases/uniprot/) on 8/21/2020. All 
virus proteomes were downloaded from the same site on 8/23/2020-8/24/2020. Proteomes 
UP000011843_306025, UP000202407_908070, and UP000269945_48420 were excluded from further 
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analyses due to unusually small proteome sizes. Protein sequences were parsed using the Biopython 
(version 1.76) FASTA parsing module (36). All analyses involving speed tests were run on a simple 
desktop computer [HP EliteDesk 800 G2, with Intel Core i7-6700 processor (3.40GHz) and 8GB RAM] 
operating on Windows 10. For parameter benchmarking, the yeast proteome was analyzed for each 
amino acid, window size, linear dispersion threshold, and minimum composition threshold, with a single 
parameter varied each time and the remaining parameters fixed as the default values (window 
size=20aa, linear dispersion threshold=0.5, minimum composition threshold=40%). For GO term 
analyses, the gene ontology file was downloaded from http://geneontology.org/ on 2/27/2020. GO 
annotation files for all organisms were downloaded from ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/ on 
2/27/2020. GO enrichment analyses were performed using the GOATOOLS (version 1.0.2) library, with 
the propagate_counts option set to “False” to reduce the proportion of broad/non-specific GO terms 
among statistically significant results (37). 
 
Statistical estimation of cross-species GO term counts and secondary amino acid enrichment 
within LCDs 

 Certain GO terms are statistically associated with long proteins, which can increase the 
type I error rate using standard GO methodology despite multiple hypothesis test correction. To account 
for this, cross-organism GO term enrichment counts were estimated by length-weighted random 
sampling of proteins from each proteome and evaluation of the number of times the same GO term was 
observed in multiple organisms. For each LCD class and organism, proteins were randomly sampled 
(without replacement, weighted proportionally by protein length) until the sample size matched that of the 
observed sample size for the same LCD class and organism, then evaluated for enriched terms by GO 
analysis. For each GO term identified in any of the organisms, the number of times it occurred across the 
seven organisms was calculated. This procedure was repeated 1000 times for every combination of LCD 
class and organism, resulting in ~140k total GO term tests and ~20k cross-organism tests. Note that the 
probability of an LCD occurring in a protein may not scale linearly with protein length when more than 
one LCD is likely to occur in a protein of given length: in such cases, our method of estimating the effect 
of protein length on type I error rate likely results in conservative estimates of GO term enrichment 
counts (i.e. inflated numbers of enriched GO terms derived from sampling).To estimate the number of 
times identical GO terms would be sampled in multiple organisms assuming the enriched GO term 
sample size for the LCD-containing protein sets, GO terms were iteratively sampled for each organism. 
Specifically, for each LCD class, GO terms were randomly selected (without replacement) for each 
organism from a complete set of GO terms containing at least one directly annotated gene product in that 
organism until the sample size matched the observed number of enriched GO terms. The number of 
times each sampled GO term occurred across the sampled lists was then calculated and stored. This 
procedure was repeated for a total of 100k iterations. Observed cross-organism GO term counts were 
then statistically compared to the cross-organism GO term counts derived from iterative sampling using a 
two-sided Fisher’s exact test, with Bonferroni correction for multiple hypothesis testing applied within 
each LCD class (7 possible cross-organism count categories for each LCD class). 
 Secondary amino acid enrichment was calculated by first exhaustively scanning the yeast 
proteome with a 20aa window size for each amino acid. For each of the 19 remaining secondary amino 
acids, the number of windows for which that amino acid was either 1) unambiguously the most abundant, 
or 2) the second-most abundant behind only the primary amino acid, was tallied. The degree of 
enrichment or depletion (E) for each LCD subclass (s) was calculated as: 

𝐸𝑠 = ln (𝑂𝑅𝑠) 
and 

𝑂𝑅𝑠 =  (
𝑓𝑠𝑜𝑏𝑠

1 − 𝑓𝑠𝑜𝑏𝑠

)  (
𝑓𝑠𝑤𝑝

1 − 𝑓𝑠𝑤𝑝

)⁄  

where fsobs
 represents the fraction of the total observed primary LCDs assigned to the given LCD 

subclass (s), and fswp
 represents the fraction of windows encountered during the whole-proteome scan 

for which the secondary amino acid was most abundant (again, excluding the primary amino acid). 
Subclasses for which the scaled whole-proteome frequency (i.e. the fraction of windows assigned to the 

http://geneontology.org/
ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/
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LCD subclass multiplied by the total observed primary LCDs) was <1 were excluded from analyses. 
Subclasses for which the scaled whole-proteome frequency ≥1 but with no observed LCDs assigned to 
that subclass were assigned an imputed value of 1 for the observed LCD frequency to provide a 
conservatively biased estimate. P-values were calculated using a two-sided Fisher’s exact test, with 
Bonferroni correction for multiple hypothesis testing. 
 

RESULTS 
LCD-Composer: Identification and Demarcation of LCDs 

Compared with sequence complexity or statistical amino acid bias, amino acid composition more 
closely reflects the physicochemical properties of LCDs in proteins. Additionally, a direct readout of 
amino acid composition is likely to be more intuitive to cellular and molecular biologists than a statistical 
score of complexity or bias. However, one limitation of using amino acid composition alone to define LCD 
boundaries is the occurrence of LCDs which pass the specified composition criteria (e.g. 50% Q, for Q-
rich domains) but exhibit an asymmetric distribution of the amino acid of interest. For example, Q 
residues constitute 50% of the sequence QQQQQPGTRR, but the residues at the C-terminus are 
unrelated to the LCD of interest. The spacing of particular amino acids is an important determinant of 
biophysical behavior across a variety of LCDs (38–45). Therefore, we considered a second parameter, 
the distribution of the amino acid(s) of interest across the sequence, as an important feature capable of 
further resolving LCDs of similar or identical compositions. 

To measure the spacing of amino acids in protein sequences, we derived a basic procedure to 
quantify the normalized standard deviation of the spacing of a specified amino acid (or set of amino 
acids) relative to each other and relative to the termini of a given window sequence (Fig 1; see Material 
and Methods and Supplementary Material for detailed descriptions). This statistic, which we refer to as 
the “linear dispersion” of amino acids, was tested on an exhaustive series of benchmark sequences 
consisting of all possible 20-residue sequences composed of two representative amino acids (see Figs 
S1-S3 for extensive analysis and discussion of the linear dispersion parameter). 
 These two parameters – amino acid composition and linear dispersion of amino acids – were 
combined into a single computational approach to identify and demarcate LCDs (Fig 2). This method, 
which we call LCD-Composer, is available as a stand-alone command-line script written in Python 
(https://github.com/RossLabCSU/LCD-Composer). Briefly, LCD-Composer uses a sliding window to scan 
protein sequences. For each subsequence, the percent composition and linear dispersion corresponding 
to the amino acid (or group of amino acids) of interest are calculated. Overlapping subsequences that 
pass the user-specified composition and linear dispersion criteria are merged into a single domain. 
Domain termini are then trimmed until an amino acid of interest is the ultimate residue at both extremes 
of the domain, resulting in the final LCD. 

LCD-Composer offers a variety of optional parameters that can be specified by users at runtime 
to tailor LCD-Composer behavior to suit individual purposes. Optional parameters include scanning 
window size (default=20aa), minimum percent composition threshold (default=40), minimum linear 
dispersion threshold (default=0.5), and an amino acid or group of amino acids of interest. To help guide 
the choice of non-default parameters, the effects of varying each parameter on LCD identification and 
definition were systematically evaluated and are included in Figs S4-S5. Additionally, we evaluated the 
speed and scalability of LCD-Composer on a variety of model proteomes. LCD-Composer is reasonably 
fast (~4sec and ~30sec for analysis of the yeast and human proteomes, respectively, on a basic desktop 
computer; see Material and Methods) with a computation time that scales linearly with proteome size (Fig 
S6), making it suitable for multi-proteome analyses. 
 To highlight the diversity of LCD features and contexts, we identified proteins with specific types 
of LCDs or combinations of LCDs (Fig 3). We broadly classify these situations into 4 main categories: 1) 
proteins with only a single type of LCD (“simple LCDs”; Fig 3A); 2) proteins with multiple, non-
overlapping LCDs from distinct classes (“co-occurring LCDs”; Fig 3B); 3) LCDs that exhibit a clearly 
predominant amino acid, but also exhibit a subsidiary preference for a second type of amino acid (“LCD 
subclasses”; Fig 3C); and 4) LCDs that can be characteristically defined by enrichment of multiple types 
of amino acids (“multifaceted LCDs”; Fig 3D). Each of these situations is evaluated in greater detail 
below. 

https://github.com/RossLabCSU/LCD-Composer
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A Comprehensive Survey of Simple LCDs and Organisms with Extreme LCD Content Across All 
Domains of Life 
 The computational efficiency of LCD-Composer is sufficient to perform high-throughput analyses 
on multiple proteomes in a relatively short span of time. To gain a broad perspective of whole-proteome 
LCD content within and across domains of life (we refer to viruses as a “domain of life” for simplicity 
only), we ran LCD-Composer for each amino acid using default parameters on all reference proteomes 
available on the UniProt website (n = 18,896). All identified LCDs are available as a supplementary 
resource at https://figshare.com/collections/Low-Complexity_Domains_LCD-Composer/5118665. 

To explore gross differences in whole-proteome LCD content between domains of life, the 
percentage of each proteome classified as LCD was calculated for each LCD class. Proteomes were 
then binned within each domain of life based on the percentage of the proteome classified as LCD for 
each LCD class (Fig 4 and Tables S1, S2). For most amino acids, the proportion of organisms with at 
least some LCD content progressively increases in the order viruses→archaea→bacteria→eukaryota. 
However, the different domains of life showed distinct biases in terms of which class of LCDs was most 
likely to be highly enriched. For example, S-rich LCDs constitute >0.5% of each proteome for nearly all 
eukaryotic organisms, yet S-rich LCD content rarely exceeds 0.1% for the majority of archaeal, bacterial, 
and viral organisms. By contrast, bacteria were far more likely than other types of organisms to have a 
relatively high (>2%) A-rich LCD content. 

While the majority of organisms contain relatively low LCD content for each LCD class, we were 
intrigued by the small proportion of organisms that contain an unusually high percentage of their 
proteome classified as LCD. To explore organisms from each domain with the highest overall LCD 
content, the total LCD content was determined for each organism by summing the percentage of the 
proteome classified as LCD across all LCD classes. Eukaryotic organisms achieve the most extreme 
overall LCD content (~15-38% for the top 30 organisms), followed by viruses, bacteria, and archaea, 
respectively (Fig 5). The LCD content profiles for high-LCD organisms differs substantially between 
domains of life. For example, high-LCD archaea tend to have higher proportions of negatively charged 
(D- or E-rich), T-rich, and V-rich LCDs compared to high-LCD organisms from other domains (Fig 5A). 
The top 5 bacterial organisms contain unusually high proportions of I-rich, K-rich, and N-rich LCDs, 
whereas the majority of the remaining 25 organisms tend to have an extremely high percentage 
classified as A-rich LCD (Fig 5B). High-LCD eukaryotic organisms tend to have a high percentage of A-
rich and S-rich LCD coupled with either a high proportion of Q-rich LCD or G-rich LCD. Interestingly, 
humans are among the top 30 organisms (out of 1473) in terms of total LCD content, yet exhibit a 
remarkably diverse LCD profile consisting predominantly of A-, E-, G-, K-, L-, P-, Q-, R-, S-, and T-rich 
LCDs (Fig 5C). Finally, the majority of high-LCD viruses are torque teno viruses that tend to have high 
percentages of R-, P-, G-, and S-rich LCDs, whereas alphaherpes viruses have high A-, G-, and P-rich 
LCD percentages, and hepatitis viruses exhibit high E- and G-rich LCD percentages (Fig 5D). 
 Overall these data reveal large-scale trends in LCD content across organisms, identify organisms 
with extreme LCD content, and serve as an accessible resource for LCDs in all reference proteomes 
currently available from UniProt. In the ensuing sections, we utilize a limited set of model organisms to 
explore relationships between LCD composition and LCD function in greater depth. 
 
Common and Unique Functions of LCDs Across Eukaryotic Model Organisms 

As demonstrated in Figs 4 and 5, and consistent with previous research, proteome compositions 
and the number of instances of each type of LCD often differ between organisms (1, 2, 6, 13, 17). 
However, similar LCDs may perform related functions across organisms owing to shared biophysical 
properties. To explore common and unique functional relationships for each LCD class across a limited 
set of model organisms, we collected all LCDs identified within the proteomes of 7 common eukaryotic 
model organisms (S. cerevisiae, C. elegans, D. melanogaster, D. rerio, X. laevis, M. musculus, and H. 
sapiens) and performed a separate Gene Ontology (GO) analysis for each class of LCDs within each 
organism. The complete list of LCDs identified for each organism is provided in Table S3 (127,472 
distinct LCDs across the 7 eukaryotic model organisms). 

https://figshare.com/collections/Low-Complexity_Domains_LCD-Composer/5118665
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For most LCD classes, a substantial number of functional associations are significantly enriched 
in at least one organism (Fig 6; see Table S4 for the number of instances of all significantly enriched 
functional annotations across all 7 organisms; complete functional annotation results for all LCD classes 
for all 7 model organisms are provided in Table S5). In many instances, an identical GO term was 
significantly enriched for the same LCD class in more than one organism. Additionally, the mean 
proportion of overlap in GO terms is unanimously higher for comparisons of the same LCD class across 
organisms (e.g. A-rich LCDs vs A-rich LCDs) than for comparisons of distinct LCD classes across 
organisms (e.g. A-rich LCDs vs E-rich LCDs), indicating that the observed GO term conservation is an 
effect specifically related to each LCD class (Fig S7 and Table S6). Finally, similar results are obtained 
when protein sampling is weighted by protein length (Fig S8), all protein isoforms are included in the 
original LCD analysis (Fig S9), GO annotations assigned on the basis of sequence homology are 
excluded from the gene annotation files (Fig S10), or GO terms (rather than proteins) are iteratively 
sampled (Fig S11 and Table S7). 

For the majority of LCD classes, ~15-20% of all enriched GO terms are shared across 3 or more 
organisms (Fig S12), suggesting that some classes of LCDs are specifically suited for certain cellular and 
molecular functions across eukaryotes. 175 GO terms spanning 14 LCD classes (A, D, E, F, G, H, I, K, L, 
P, Q, R, S, and V) are significantly enriched for 4 or more distinct organisms (~10% of all enriched GO 
terms). For example, D-rich, E-rich, and K-rich LCDs are individually significantly associated with the 
nucleus and/or nucleolus in all 7 eukaryotic organisms examined (and related functions such as histone, 
chromatin, and/or DNA binding in 6 of 7 organisms), consistent with previous observations and the 
known association of highly charged domains with the nucleus/nucleolus (44, 46–48). L-rich LCDs are 
significantly associated with integral membrane proteins involved in transmembrane transport in all 7 
eukaryotes. Q-rich LCDs are associated with the regulation of transcription by RNA polymerase II in all 7 
eukaryotes, consistent with previous observations (5, 16, 17, 49). R-rich LCDs are specifically associated 
with RNA-binding and the regulation of RNA-splicing in 6 of the 7 organisms. S-rich LCDs are associated 
with an identical set of 9 functional annotations related to nuclear localization, DNA-binding, and 
transcription across 6 of the 7 eukaryotic organisms. While previous studies have uncovered a small 
subset of these associations (5, 11, 14, 16, 17), the composition-centric method employed by LCD-
Composer yields, to our knowledge, the most comprehensive set of linkages between LCD properties 
and their common functions across eukaryotes. 
 
Multifaceted Composition Criteria Aid in the Identification of Specific Subclasses of LCDs 

Some classes of LCDs are characteristically enriched in multiple amino acids, either individually 
(a single residue from the group comprising the majority of the LCD; Fig 3C) or in combination (co-
occurring within the same LCD; Fig 3D). For instance, prototypical yeast prion domains are strongly 
enriched in Q and/or N residues, but often have a subsidiary bias for Y (5, 50), which is important for 
prion formation (51, 52). R/G/Y-rich domains have been associated with liquid-liquid phase separation 
(LLPS) or liquid-solid gelation, which appear to be related to dynamic interactions in membraneless 
organelles and/or nuclear pore complexes (44, 53–60). Furthermore, the spacing of aromatic residues in 
certain LLPS-competent domains tends to promote LLPS (38), and R/G/Y composition criteria have 
already been incorporated into a prediction method for identifying similar domains (61). A P-rich LCD 
(with additional biases for Q/N/G) modulates the ability of the yeast polyA-binding protein, Pab1, to 
phase separate in response to stress, and this effect could be tuned by altering the hydrophobicity of the 
LCD (62). Highly-charged domains often adopt a variety of disordered conformations (41, 42), though 
some highly-charged domains with roughly balanced positive and negative amino acid compositions and 
regular spacing can form α-helices (39, 40). Therefore, in addition to simple single-amino acid searches, 
LCD-Composer allows for specification of multifaceted composition criteria involving multiple amino acids 
at different minimum composition percentages. 

To illustrate the use of multifaceted composition criteria to identify specific types of LCDs, we ran 
LCD-Composer on the yeast proteome using composition criteria corresponding to defined features of 
experimentally characterized LCDs (Table 1). Specification of multifaceted composition criteria primarily 
works using “and” logic. For example, the command-line option “-a QN_Y -c 40_10” (-a referring to amino 
acids of interest, and -c referring to corresponding minimum composition thresholds) stipulates that a 
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domain must have a combined Q/N composition exceeding 40% and a Y content exceeding 10%. The 
combination of these constraints would aid in the identification of domains that are predominantly Q/N-
rich but may have a secondary bias for Y. The command-line option “-a G_RY -c 30_15” identifies 
domains with a primary G enrichment ≥30% and a secondary enrichment of R/Y residues ≥15%. A 
simple composition analysis of the Pab1 P-rich LCD examined in (62) revealed Q/N, P, and G 
compositions of ~20%, 19%, and ~15% respectively, with aliphatic residues being important subsidiary 
components but variable with respect to predominant aliphatic residue across organisms. Conservative 
composition thresholds based on these values identifies a number of candidate domains that may have 
related physicochemical behavior. Finally, the composition criteria “-a DE_KR -c 40_40” identifies highly 
charged domains containing a high fraction of both positively-charged and negatively-charged amino 
acids. A number of the identified domains exhibit a charge composition and patterning characteristic of 
charged single α-helices [e.g. Mnn4 and Fpr3; (39, 40)], while others have sufficient charge composition 
but irregular charge spacing (e.g. Pxr1). Therefore, multifaceted composition criteria can 1) result in 
identification of LCDs whose collective composition exceeds the minimum composition threshold even 
though the individual amino acid compositions do not, 2) identify domains with both primary and 
secondary amino acid biases, and 3) selectively exclude LCDs that would be identified by single-amino 
acid searches but are not of interest to the user. Importantly, although some LCD-identification methods 
can identify primary and secondary amino acid biases, they cannot (to our knowledge) simply and 
specifically search for such domains using separate composition thresholds or customized amino acid 
groupings. 
 
Table 1. Examples of LCDs identified by LCD-Composer with multifaceted composition search 
criteria. The yeast proteome was evaluated using LCD-Composer with varying search parameters (“-a”, 
amino acids used in search; “-c”, minimum composition thresholds corresponding to amino acids in “-a”; 
“-w”, scanning window size; “-d”, linear dispersion threshold). 

Domain Type Search 
Parameters 

# of 
Domains 
Identified 

Examples of Identified Domains Protein 
Source 

Multifaceted prion-like 
domains 

-a QN_Y 
-c 40_10 
-w 60 
-d 0.6 

18 

●QHRYMEGFSNNNNKQYRQNRNYNNNNNNSNNN
HGSNYNNFNNGNSYIKGWNKNFNKYRRPSSSSY 
●QQQQPQQQPAYYDIFGNPISQDEYLQYQYQQDQ
EQAMAQQRWLDQQQEQQQLAEQQYFQQQQQ 

●Ksp1 
 
●Ent2 

G/R/Y-rich domains 
associated with LLPS 

-a G_RY 
-c 30_15 
-w 60 
-d 0.7 

10 

●GEYIDNRPVRLDFSSPRPNNDGGRGGSRGFGGR
GGGRGGNRGFGGRGGARGGRGGFRPSGSGANT
APLGRSRNTASFAG 
●GPPKPKNKKKRSGAPGGRGGASMGRGGSRGGF
RGGRGGSSFRGGRGGSSFRGGSRGGSFRGGSR
GGSRGGFRGGRR 

●Nsr1 
 
 
●Gar1 

Pab1-like  
P-rich LCDs 

-a QN_P_G_ILMVF 
-c 15_15_10_10 
-w 60 
-d 0.5 

52 

●PRYYQPQQPQYPQYPQQQRYYPQQAPMPAAAP
QQAYYGTAPSTSKGSGHGGAMMGGLLGVGAGLL 
●QAQARQNQGTAPLNPYPGLTVTEPSFANPAGGY
ADGDLYPVGTSHPDWSGGLPNPLGNPSSQ 

●Wwm1 
 
●Fub1 

Highly charged 
domains (w/ high 
fraction of positively + 
negatively charged 
residues) 

-a DE_KR 
-c 40_40 
-w 30 
-d 0.5 

10 

●EDEEKKKNEEEEKKKQEEKNKKNEDEEKKKQEEE
EKKKNEEEEKKKQE 
●EEEQKEEVKPEPKKSKKEKKRKHEEKEEEK 
●KKRKREGDDSEDEDDDDKEDKDSDKKKHKKHKK
HKKDKKKD 

●Mnn4 
 
●Fpr3 
●Pxr1 

 
Exhaustive Composition Analyses Illuminate a Second Layer of Compositional and Functional 
Diversification Among LCDs 
 Secondary compositional biases have been noted previously for specific classes of LCDs (16, 17) 
but have not been thoroughly examined for all LCDs. Secondary biases among LCDs could, in principle, 
lead to subclasses of LCDs within each primary LCD class. To explore this possibility, the composition of 
all 20 canonical amino acids was calculated for each individual LCD identified by LCD-Composer within 
the yeast proteome. Indeed, many primary classes of LCDs exhibit strong preferences for a second 
amino acid resulting in clustered subclasses of LCDs (Figs 7, 8, S13, S14, and Table S8). For some 
types of LCDs a single cluster is observed, indicating a strong secondary preference for only one type of 
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amino acid (e.g. T-rich LCDs with a strong secondary preference for S; Figs 7, 8, and Table S8). For 
other classes of LCDs multiple distinct clusters of varying sizes are observed (e.g. D-rich LCDs exhibiting 
secondary preferences for E, N, or S, Figs 7, 8, and Table S8), suggesting a partitioning of the primary 
LCDs into specialized subclasses. Strikingly, in many cases the secondary preferences are not strongly 
overlapping even for apparently similar classes of LCDs. For example, while both D-rich and E-rich LCDs 
exhibit secondary preferences for each other, E-rich LCDs contain a cluster of LCDs secondarily 
enriched in K, whereas D-rich LCDs are almost completely devoid of secondary enrichment for K (Figs 7, 
8, and Table S8). Similarly, N-rich LCDs exhibit secondary preferences for D or S, while Q-rich LCDs 
exhibit secondary preferences for H, L, or P (Figs 7, 8, and Table S8). 

These observations suggested that particular subclasses of LCDs emerge due to functional 
specialization within each primary LCD class. Therefore, we re-analyzed the yeast proteome with LCD-
Composer using the built-in capacity for specifying multifaceted composition criteria. Specifically, for 
each of the 20 canonical amino acids, the yeast proteome was searched for all LCDs with at least 40% 
composition of the primary amino acid and at least 20% of a secondary amino acid (Fig 9A,B), resulting 
in 380 possible pairwise search combinations (each of the 20 primary amino acids by each of the 19 
possible secondary amino acids). GO term analyses were performed for each set of identified LCDs, 
which we refer to as LCD “subclasses”. A priori, we expected three possible outcomes. First, a GO term 
may co-segregate with specific subclasses of LCDs (i.e. the GO term is “retained” by at least one 
subclass), suggesting that the original enrichment observed may actually be attributable to a specialized 
subset among the larger LCD class. Second, a functional annotation might be enriched for the primary 
LCD class as a whole but “lost” among the LCD subclasses, likely due to a reduction in sample size or to 
the contribution of multiple LCD subclasses to the original enrichment. Finally, “new” GO term 
annotations may appear for specific subclasses of LCDs if those LCDs (and not other subclasses of 
LCDs) fulfill a specialized functional role in the cell (effectively modulating the “signal-to-noise” ratio via 
retention of relevant LCD subclasses and exclusion of irrelevant subclasses). 
 GO term retention, loss, and de novo appearance was determined for all primary LCD classes 
and secondary LCD subclasses across all 7 eukaryotic organisms. Functional annotations for nearly all 
primary classes of LCDs exhibit each of the 3 possible effects resulting from subclassification (retention, 
loss, and de novo appearance), though to varying degrees across LCD class and organism (Table S9). 
For example, S-rich LCDs in yeast are associated with roughly equal proportions of retained, new, and 
lost GO terms, while A-rich LCDs are associated with equal proportions of new and retained GO terms 
(Fig 9C and Table S9). Proteins with G-rich LCDs exhibit the highest proportion of new GO terms 
(excepting R, which only had 1 associated GO term), though all 3 possible subclassification effects are 
observed (Fig 9C). For example, amino acid transport functions associated with the primary class of G-
rich domains in the yeast proteome do not appear in any of the subclasses, so these annotations were 
lost upon subclassification (Fig 9D). However, multiple annotations related to protein folding and protein 
chaperone activity are maintained or new across certain subclasses (namely, G-rich LCDs with a 
secondary preference for A, F, or P). Similarly, functions related to mRNA-binding, ribonucleoprotein 
complexes, and translation initiation factor binding are specifically maintained by G-rich LCDs with a 
secondary preference for N, R, or F residues. Finally, multiple functional annotations related to tubulin, 
microtubules, and microtubule-mediated nuclear migration are specifically associated with G-rich LCDs 
with a secondary preference for L residues, even though these functions were not detected as enriched 
among G-rich domains generally (i.e. de novo appearance only upon subclassification). Notably, the 
majority of GO terms associated with most LCD classes are still detected when highly homologous 
proteins within each LCD class are excluded (Fig S15A, B). Additionally, the log-odds ratios indicating 
the degree of GO term enrichment for subclassified LCD protein sets is nearly always greater than that of 
primary LCD protein sets and, in many cases, with non-overlapping confidence intervals (Table S10), 
indicating that LCD subclassification specifically and broadly enhances enrichment of functional 
annotations. 
 In summary, the composition-centric approach employed by LCD-Composer illustrates the 
diversity of LCDs within and across eukaryotic organisms, and enables finer, multi-layered classification 
of LCDs. 
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Tracking Co-occurrence of Distinct Classes of LCDs within Individual Proteins Reveals 
Functional Associations for Multi-LCD Proteins 
 As depicted in Fig 3B, some proteins contain multiple non-overlapping LCDs from distinct LCD 
classes. This raises the intriguing possibility that proteins with multiple concurrent LCDs (e.g. proteins 
with both a G-rich domain and a Q-rich domain; Fig 10A) could specifically participate in particular 
functions that are not associated with the LCD classes individually. A number of yeast proteins contain 
non-overlapping LCDs of distinct LCD classes (Fig 10B). For each LCD class, multi-LCD proteins were 
further parsed into separate classes based on the predominant residue of each additional non-
overlapping LCD. GO term analyses were then performed separately for each set of parsed multi-LCD 
proteins. Most primary LCD classes exhibit a mixture of GO term loss, retention, and de novo 
appearance upon multi-LCD sorting (Fig 10C and Table S11). For G-rich LCDs, the majority of GO terms 
are lost when LCDs are divided among co-occurring LCD categories, likely due to smaller sample sizes 
associated with dual enrichment. However, proteins with non-overlapping G-rich and Q-rich LCDs are 
associated with nuclear pore organization and transport functions (Fig 10D). Importantly, these functional 
associations are also new GO terms when Q-rich LCDs are considered as the primary class (Fig 10E), 
indicating that these functions are specifically associated with the subset of LCDs containing both G-rich 
and Q-rich LCD classes (and not the individual LCD classes). Enriched GO term associations were not 
due to highly homologous proteins within each LCD class (Fig S15C). Again, the degree of GO term 
enrichment for multi-LCD protein sets was nearly always greater than the degree of GO term enrichment 
for the original primary LCD protein sets (Table S12). Together, this suggests that proteins containing 
specific combinations of non-overlapping LCDs may also fulfill specialized molecular roles. 
 

DISCUSSION 
 Recent studies have suggested that the amino acid composition and linear dispersion of amino 
acids within LCDs are important – if not predominant – features governing their biophysical behavior (22, 
41, 63–67). LCD-Composer was developed with this emerging view in mind. Although a variety of 
methods exist for identifying LCDs in proteins, the central focus of LCD-Composer is the amino acid 
composition of LCDs, making it intuitive to biologists and relevant to the actual physicochemical 
properties of the identified LCDs. While primary sequence undoubtedly plays a role in the functional 
properties of some LCDs, methods designed for initial classification of LCDs are an important step before 
more nuanced classification on the basis of specific features. In the future, integration of additional 
information including post-translational modifications, short linear motifs, intrinsic disorder, repetitiveness, 
and related features may lead to a richer LCD classification system. 
 LCD-Composer was designed specifically for the identification of LCDs on the basis of 
customizable composition profiles, irrespective of whole-proteome amino acid frequencies. In contrast to 
existing methods relying on mathematical sequence complexity or statistical enrichment of amino acids, 
LCD-Composer’s composition-based approach is extremely flexible, intuitive to use, and generates 
results that are easy for the average user to interpret. The simplicity of the LCD-Composer method and 
search parameters enables multifaceted LCD search criteria, including user-defined groupings of amino 
acids and distinct composition thresholds for each amino acid or group of amino acids, which cannot be 
easily implemented with existing methods.  

The speed and specificity of LCD-Composer make it a powerful yet intuitive LCD-identification 
method. Our database of simple LCDs identified for each LCD class across all organisms available from 
UniProt should serve as a valuable resource for researchers interested in specific types of LCDs. 
However, we would like to emphasize that these LCDs are derived from only one set of search criteria, 
even though LCD-Composer allows for an infinite number of combinations of amino acid(s) of interest, 
window size, composition threshold(s), and dispersion threshold. Therefore, LCD-Composer may still be 
of great utility to users wishing to specify non-default or composite search parameters. 

Our survey of LCDs in all reference proteomes raises a number of interesting and currently 
unanswered questions. The proteomes of Dictyostelium discoideum and Plasmodium falciparum were 
already known to have extremely high Q/N-rich and N-rich LCD content, respectively, and exhibit 
corresponding adaptations in proteostasis machinery that specifically accommodate such a high 
prevalence of aggregation-prone domains (68, 69). However, our database of LCDs unveils a multitude 
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of additional organisms with unusually high LCD content for specific classes of LCDs (even typically rare 
types of LCDs). For example, M-rich domains constitute ~0.75% of the proteome of the intestinal 
parasite, Echinostoma caproni (compared to ~0.006% average M-rich content among eukaryotes), while 
H-rich domains constitute nearly 2% of the Spodoptera litura (Asian cotton leafworm) proteome. How 
might these organisms have adapted to such an unusually high prevalence of particular LCDs or, 
conversely, how might prior adaptations have facilitated the development and utilization of these LCDs? 
What are the implications for protein synthesis, folding, and degradation systems in these organisms, 
and how do these systems differ across organisms with extremely high LCD content for different LCD 
classes? Are these adaptations specific to certain ecological niches? How might the discovery of new 
proteostasis machinery or mechanisms aid in the development of new biotechnology or human disease 
therapeutics? LCD-Composer and our database of LCDs provide a valuable launchpad for exploring 
these questions in both model and non-model organisms. 

LCD-Composer’s customizable search parameters enable specific and selective LCD searches. 
We demonstrate that these features can be used to resolve LCDs into richer hierarchies on the basis of 
multiple compositional features, including LCD subclasses (enriched in more than one amino acid) and 
co-occurring LCDs (non-overlapping LCDs in the same protein). Each level of the hierarchy appears to 
be of functional importance: in many cases, primary LCD classes were associated with particular 
functions that were lost upon subclassification, while other functional associations were only detected 
after subclassification. Therefore, integrating both fine and coarse resolution of LCDs yields a more 
complete picture of LCD functional specificity and diversity. However, it is also worth noting that some 
LCDs may exist for reasons unrelated to protein function, such as genomic nucleotide composition or 
non-functional repeat expansion. While GO term analyses can unveil statistical relationships between 
LCD classes and associated LCD functions, definitive assignment of functions (or lack thereof) to specific 
LCDs identified by LCD-Composer should be determined experimentally. Finally, particular classes of 
LCDs fulfill similar or identical molecular roles across a broad range of model eukaryotes, suggesting that 
the unusual sequence features of LCDs may occupy molecular niches and are indispensable for certain 
molecular processes. In our view, the combination of simplicity, flexibility, and direct quantification of 
biochemically relevant LCD features make LCD-Composer a powerful, intuitive, and adaptable tool for 
protein research. 
 

ABBREVIATIONS 
Low-complexity domain (LCD); low-complexity domain composition scanner (LCD-Composer); liquid-
liquid phase separation (LLPS); Gene Ontology (GO). 
 

DATA AVAILABILITY 
The LCD-Composer script and detailed usage information are available at 
https://github.com/RossLabCSU/LCD-Composer. All code required to fully reproduce the data presented 
in this paper are available at https://github.com/RossLabCSU/LCD-
Composer/tree/master/Reproducibility. Databases of all simple LCDs identified using LCD-Composer’s 
default parameters for all available reference proteomes from UniProt are available at 
https://figshare.com/collections/Low-Complexity_Domains_LCD-Composer/5118665. 
 

SUPPLEMENTARY DATA 
Supplementary Data are available at NAR Genomics and Bioinformatics online. 
 

AUTHOR CONTRIBUTIONS 
SMC developed original methodology and software, performed statistical analyses, visualized data, and 
wrote and edited the original manuscript. DCK performed data analysis/interpretation and manuscript 
editing. EON edited the manuscript and acquired funding. EDR aided in the development of analytical 
approaches, data interpretation, manuscript editing, and acquired funding. 
 

ACKNOWLEDGEMENTS 

https://github.com/RossLabCSU/LCD-Composer
https://github.com/RossLabCSU/LCD-Composer/tree/master/Reproducibility
https://github.com/RossLabCSU/LCD-Composer/tree/master/Reproducibility
https://figshare.com/collections/Low-Complexity_Domains_LCD-Composer/5118665


13 
 

The authors thank Lindsey Bush for editing suggestions during final manuscript preparation. 
 

FUNDING 
This work was supported by the National Science Foundation [MCB-1817622] awarded to EDR, the 
National Institutes of Health [R35GM124877] awarded to EON, and a Boettcher Webb-Warring 
Biomedical Research Award awarded to EON. Funding for open access charge: National Science 
Foundation. 
 

CONFLICT OF INTEREST 
The authors declare that they have no competing interests. 
 

REFERENCES 
1. Cascarina,S.M. and Ross,E.D. (2018) Proteome-scale relationships between local amino acid 

composition and protein fates and functions. PLOS Comput. Biol., 14, e1006256. 
2. Cascarina,S.M., Elder,M.R. and Ross,E.D. (2020) Atypical structural tendencies among low-

complexity domains in the protein data bank proteome. PLoS Comput. Biol., 16. 
3. Karlin,S., Brocchieri,L., Bergman,A., Mrazek,J. and Gentles,A.J. (2002) Amino acid runs in eukaryotic 

proteomes and disease associations. Proc Natl Acad Sci U S A, 99, 333–338. 
4. Kumari,B., Kumar,R. and Kumar,M. (2015) Low complexity and disordered regions of proteins have 

different structural and amino acid preferences. Mol Biosyst, 11, 585–594. 
5. Harrison,P.M. and Gerstein,M. (2003) A method to assess compositional bias in biological sequences 

and its application to prion-like glutamine/asparagine-rich domains in eukaryotic proteomes. 
Genome Biol., 4, R40. 

6. Sim,K.L. and Creamer,T.P. (2002) Abundance and distributions of eukaryote protein simple 
sequences. Mol. Cell. Proteomics, 1, 983–995. 

7. Marcotte,E.M., Pellegrini,M., Yeates,T.O. and Eisenberg,D. (1999) A census of protein repeats. J. Mol. 
Biol., 293, 151–160. 

8. Simon,M. and Hancock,J.M. (2009) Tandem and cryptic amino acid repeats accumulate in disordered 
regions of proteins. Genome Biol., 10. 

9. Albà,M.M. and Guigó,R. (2004) Comparative analysis of amino acid repeats in rodents and humans. 
Genome Res., 14, 549–554. 

10. Faux,N.G., Bottomley,S.P., Lesk,A.M., Irving,J.A., Morrison,J.R., De La Banda,M.G. and 
Whisstock,J.C. (2005) Functional insights from the distribution and role of homopeptide repeat-
containing proteins. Genome Res., 15, 537–551. 

11. Radó-Trilla,N., Arató,K., Pegueroles,C., Raya,A., de la Luna,S. and Albà,M.M. (2015) Key role of 
amino acid repeat expansions in the functional diversification of duplicated transcription factors. 
Mol. Biol. Evol., 32, 2263–72. 

12. Chong,S., Dugast-Darzacq,C., Liu,Z., Dong,P., Dailey,G.M., Cattoglio,C., Heckert,A., Banala,S., 
Lavis,L., Darzacq,X., et al. (2018) Imaging dynamic and selective low-complexity domain 
interactions that control gene transcription. Science (80-. )., 361. 

13. DePristo,M.A., Zilversmit,M.M. and Hartl,D.L. (2006) On the abundance, amino acid composition, 
and evolutionary dynamics of low-complexity regions in proteins. Gene, 378, 19–30. 

14. Lobanov,M.Y., Klus,P., Sokolovsky,I.V., Tartaglia,G.G. and Galzitskaya,O.V. (2016) Non-random 
distribution of homo-repeats: Links with biological functions and human diseases. Sci. Rep., 6. 

15. Michelitsch,M.D. and Weissman,J.S. (2000) A census of glutamine/asparagine-rich regions: 
implications for their conserved function and the prediction of novel prions. Proc. Natl. Acad. Sci. 
USA, 97, 11910–5. 

16. Harrison,P.M. (2006) Exhaustive assignment of compositional bias reveals universally prevalent 
biased regions: analysis of functional associations in human and Drosophila. BMC Bioinformatics, 7, 
441. 

17. Radó-Trilla,N. and Albà,M. (2012) Dissecting the role of low-complexity regions in the evolution of 
vertebrate proteins. BMC Evol. Biol., 12, 155. 



14 
 

18. Coletta,A., Pinney,J.W., Solís,D., Marsh,J., Pettifer,S.R. and Attwood,T.K. (2010) Low-complexity 
regions within protein sequences have position-dependent roles. BMC Syst. Biol., 4, 43. 

19. Pelassa,I. and Fiumara,F. (2015) Differential occurrence of interactions and interaction domains in 
proteins containing homopolymeric amino acid repeats. Front. Genet., 6. 

20. Wootton,J.C. (1994) Non-globular domains in protein sequences: Automated segmentation using 
complexity measures. Comput. Chem., 18, 269–285. 

21. Chavali,S., Chavali,P.L., Chalancon,G., De Groot,N.S., Gemayel,R., Latysheva,N.S., Ing-
Simmons,E., Verstrepen,K.J., Balaji,S. and Babu,M.M. (2017) Constraints and consequences of the 
emergence of amino acid repeats in eukaryotic proteins. Nat. Struct. Mol. Biol., 24, 765–777. 

22. Gomes,E. and Shorter,J. (2019) The molecular language of membraneless organelles. J. Biol. 
Chem., 294, 7115–7127. 

23. Ntountoumi,C., Vlastaridis,P., Mossialos,D., Stathopoulos,C., Iliopoulos,I., Promponas,V., Oliver,S.G. 
and Amoutzias,G.D. (2019) Low complexity regions in the proteins of prokaryotes perform important 
functional roles and are highly conserved. Nucleic Acids Res., 47, 9998–10009. 

24. Mier,P., Paladin,L., Tamana,S., Petrosian,S., Hajdu-Soltész,B., Urbanek,A., Gruca,A., 
Plewczynski,D., Grynberg,M., Bernadó,P., et al. (2019) Disentangling the complexity of low 
complexity proteins. Brief. Bioinform., 10.1093/bib/bbz007. 

25. La Spada,A.R. and Taylor,J.P. (2010) Repeat expansion disease: Progress and puzzles in disease 
pathogenesis. Nat. Rev. Genet., 11, 247–258. 

26. Harrison,A.F. and Shorter,J. (2017) RNA-binding proteins with prion-like domains in health and 
disease. Biochem. J., 474, 1417–1438. 

27. Wootton,J.C. and Federhen,S. (1993) Statistics of local complexity in amino acid sequences and 
sequence databases. Comput. Chem., 17, 149–163. 

28. Promponas,V.J., Enright,A.J., Tsoka,S., Kreil,D.P., Leroy,C., Hamodrakas,S., Sander,C. and 
Ouzounis,C.A. (2000) CAST: an iterative algorithm for the complexity analysis of sequence tracts. 
Bioinformatics, 16, 915–922. 

29. Harrison,P.M. (2017) fLPS: Fast discovery of compositional biases for the protein universe. BMC 
Bioinformatics, 18. 

30. Shin,S.W. and Kim,S.M. (2005) A new algorithm for detecting low-complexity regions in protein 
sequences. Bioinformatics, 21, 160–170. 

31. Claverie,J.M. and States,D.J. (1993) Information enhancement methods for large scale sequence 
analysis. Comput. Chem., 17, 191–201. 

32. Li,X. and Kahveci,T. (2006) A novel algorithm for identifying low-complexity regions in a protein 
sequence. Bioinformatics, 22, 2980–2987. 

33. Nandi,T., Dash,D., Ghai,R., C,B.R., Kannan,K., Brahmachari,S.K., Ramakrishnan,C. and 
Ramachandran,S. (2003) A novel complexity measure for comparative analysis of protein 
sequences from complete genomes. J Biomol Struct Dyn, 20, 657–668. 

34. Jarnot,P., Ziemska-Legiecka,J., Dobson,L., Merski,M., Mier,P., Andrade-Navarro,M.A., 
Hancock,J.M., Dosztányi,Z., Paladin,L., Necci,M., et al. (2020) PlaToLoCo: the first web meta-
server for visualization and annotation of low complexity regions in proteins. Nucleic Acids Res., 48, 
W77–W84. 

35. Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J. (1990) Basic local alignment search 
tool. J. Mol. Biol., 215, 403–410. 

36. Cock,P.J.A., Antao,T., Chang,J.T., Chapman,B.A., Cox,C.J., Dalke,A., Friedberg,I., Hamelryck,T., 
Kauff,F., Wilczynski,B., et al. (2009) Biopython: Freely available Python tools for computational 
molecular biology and bioinformatics. Bioinformatics, 25, 1422–1423. 

37. Klopfenstein,D. V., Zhang,L., Pedersen,B.S., Ramírez,F., Vesztrocy,A.W., Naldi,A., Mungall,C.J., 
Yunes,J.M., Botvinnik,O., Weigel,M., et al. (2018) GOATOOLS: A Python library for Gene Ontology 
analyses. Sci. Rep., 8. 

38. Martin,E.W., Holehouse,A.S., Peran,I., Farag,M., Incicco,J.J., Bremer,A., Grace,C.R., Soranno,A., 
Pappu,R. V. and Mittag,T. (2020) Valence and patterning of aromatic residues determine the phase 
behavior of prion-like domains. Science (80-. )., 367, 694–699. 

39. Süveges,D., Gáspári,Z., Tóth,G. and Nyitray,L. (2009) Charged single α-helix: A versatile protein 



15 
 

structural motif. Proteins Struct. Funct. Bioinforma., 74, 905–916. 
40. Gáspári,Z., Süveges,D., Perczel,A., Nyitray,L. and Tóth,G. (2012) Charged single alpha-helices in 

proteomes revealed by a consensus prediction approach. Biochim. Biophys. Acta - Proteins 
Proteomics, 1824, 637–646. 

41. Das,R.K., Ruff,K.M. and Pappu,R. V (2015) Relating sequence encoded information to form and 
function of intrinsically disordered proteins. Curr Opin Struct Biol, 32, 102–112. 

42. Das,R.K. and Pappu,R. V. (2013) Conformations of intrinsically disordered proteins are influenced by 
linear sequence distributions of oppositely charged residues. Proc. Natl. Acad. Sci. U. S. A., 110, 
13392–13397. 

43. Sherry,K.P., Das,R.K., Pappu,R. V. and Barrick,D. (2017) Control of transcriptional activity by design 
of charge patterning in the intrinsically disordered RAM region of the Notch receptor. Proc. Natl. 
Acad. Sci. U. S. A., 114, E9243–E9252. 

44. Nott,T.J., Petsalaki,E., Farber,P., Jervis,D., Fussner,E., Plochowietz,A., Craggs,T.D., Bazett-
Jones,D.P., Pawson,T., Forman-Kay,J.D., et al. (2015) Phase transition of a disordered nuage 
protein generates environmentally responsive membraneless organelles. Mol. Cell, 57, 936–947. 

45. Zheng,W., Dignon,G., Brown,M., Kim,Y.C. and Mittal,J. (2020) Hydropathy patterning complements 
charge patterning to describe conformational preferences of disordered proteins. J. Phys. Chem. 
Lett., 10.1021/acs.jpclett.0c00288. 

46. Pak,C.W., Kosno,M., Holehouse,A.S., Padrick,S.B., Mittal,A., Ali,R., Yunus,A.A., Liu,D.R., Pappu,R. 
V. and Rosen,M.K. (2016) Sequence determinants of intracellular phase separation by complex 
coacervation of a disordered protein. Mol. Cell, 63, 72–85. 

47. Altmeyer,M., Neelsen,K.J., Teloni,F., Pozdnyakova,I., Pellegrino,S., Grøfte,M., Rask,M.-B.D., 
Streicher,W., Jungmichel,S., Nielsen,M.L., et al. (2015) Liquid demixing of intrinsically disordered 
proteins is seeded by poly(ADP-ribose). Nat. Commun., 6, 8088. 

48. Greig,J.A., Nguyen,T.A., Lee,M., Holehouse,A.S., Posey,A.E., Pappu,R. V. and Jedd,G. (2020) 
Arginine-enriched mixed-charge domains provide cohesion for nuclear speckle condensation. Mol. 
Cell, 10.1016/j.molcel.2020.01.025. 

49. Gemayel,R., Chavali,S., Pougach,K., Legendre,M., Zhu,B., Boeynaems,S., van der Zande,E., 
Gevaert,K., Rousseau,F., Schymkowitz,J., et al. (2015) Variable glutamine-rich repeats modulate 
transcription factor activity. Mol. Cell, 10.1016/j.molcel.2015.07.003. 

50. Cascarina,S.M. and Ross,E.D. (2014) Yeast prions and human prion-like proteins: Sequence 
features and prediction methods. Cell. Mol. Life Sci., 10.1007/s00018-013-1543-6. 

51. Toombs,J.A., McCarty,B.R. and Ross,E.D. (2010) Compositional determinants of prion formation in 
yeast. Mol. Cell. Biol., 30, 319–332. 

52. Gonzalez Nelson,A.C., Paul,K.R., Petri,M., Flores,N., Rogge,R.A., Cascarina,S.M. and Ross,E.D. 
(2014) Increasing prion propensity by hydrophobic insertion. PLoS One, 
10.1371/journal.pone.0089286. 

53. Elbaum-Garfinkle,S., Kim,Y., Szczepaniak,K., Chen,C.C.H., Eckmann,C.R., Myong,S. and 
Brangwynne,C.P. (2015) The disordered P granule protein LAF-1 drives phase separation into 
droplets with tunable viscosity and dynamics. Proc. Natl. Acad. Sci. U. S. A., 112, 7189–7194. 

54. Kato,M., Han,T.W., Xie,S., Shi,K., Du,X., Wu,L.C., Mirzaei,H., Goldsmith,E.J., Longgood,J., Pei,J., et 
al. (2012) Cell-free formation of RNA granules: Low complexity sequence domains form dynamic 
fibers within hydrogels. Cell, 149, 753–767. 

55. Frey,S., Richter,R.P. and Görlich,D. (2006) FG-rich repeats of nuclear pore proteins form a three-
dimensional meshwork with hydrogel-like properties. Science (80-. )., 314, 815–817. 

56. Wang,J., Choi,J.M., Holehouse,A.S., Lee,H.O., Zhang,X., Jahnel,M., Maharana,S., Lemaitre,R., 
Pozniakovsky,A., Drechsel,D., et al. (2018) A molecular grammar governing the driving forces for 
phase separation of prion-like RNA binding proteins. Cell, 174, 688-699.e16. 

57. Schmidt,H.B. rode. and Görlich,D. (2015) Nup98 FG domains from diverse species spontaneously 
phase-separate into particles with nuclear pore-like permselectivity. Elife, 4. 

58. Tsang,B., Arsenault,J., Vernon,R.M., Lin,H., Sonenberg,N., Wang,L.Y., Bah,A. and Forman-Kay,J.D. 
(2019) Phosphoregulated FMRP phase separation models activity-dependent translation through 
bidirectional control of mRNA granule formation. Proc. Natl. Acad. Sci. U. S. A., 116, 4218–4227. 



16 
 

59. Qamar,S., Wang,G.Z., Randle,S.J., Ruggeri,F.S., Varela,J.A., Lin,J.Q., Phillips,E.C., Miyashita,A., 
Williams,D., Ströhl,F., et al. (2018) FUS phase separation is modulated by a molecular chaperone 
and methylation of arginine cation-π interactions. Cell, 173, 720-734.e15. 

60. Ryan,V.H., Dignon,G.L., Zerze,G.H., Chabata,C. V., Silva,R., Conicella,A.E., Amaya,J., Burke,K.A., 
Mittal,J. and Fawzi,N.L. (2018) Mechanistic view of hnRNPA2 low-complexity domain structure, 
interactions, and phase separation altered by mutation and arginine methylation. Mol. Cell, 69, 465-
479.e7. 

61. Bolognesi,B., Gotor,N.L., Dhar,R., Cirillo,D., Baldrighi,M., Tartaglia,G.G. and Lehner,B. (2016) A 
concentration-dependent liquid phase separation can cause toxicity upon increased protein 
expression. Cell Rep., 16, 222–231. 

62. Riback,J.A., Katanski,C.D., Kear-Scott,J.L., Pilipenko,E. V., Rojek,A.E., Sosnick,T.R. and 
Drummond,D.A. (2017) Stress-triggered phase separation is an adaptive, evolutionarily tuned 
response. Cell, 168, 1028-1040.e19. 

63. Martin,E.W. and Mittag,T. (2018) The relationship of sequence and phase separation in protein low-
complexity regions. Biochemistry, 10.1021/acs.biochem.8b00008. 

64. Vernon,R.M. and Forman-Kay,J.D. (2019) First-generation predictors of biological protein phase 
separation. Curr. Opin. Struct. Biol., 58, 88–96. 

65. Ruff,K.M., Roberts,S., Chilkoti,A. and Pappu,R. V. (2018) Advances in understanding stimulus-
responsive phase behavior of intrinsically disordered protein polymers. J. Mol. Biol., 430, 4619–
4635. 

66. Liebman,S.W. and Chernoff,Y.O. (2012) Prions in yeast. Genetics, 191, 1041–1072. 
67. Hansen,J.C., Lu,X., Ross,E.D. and Woody,R.W. (2006) Intrinsic protein disorder, amino acid 

composition, and histone terminal domains. J Biol Chem, 281, 1853–1856. 
68. Malinovska,L., Palm,S., Gibson,K., Verbavatz,J.M. and Alberti,S. (2015) Dictyostelium discoideum 

has a highly Q/N-rich proteome and shows an unusual resilience to protein aggregation. Proc. Natl. 
Acad. Sci. U. S. A., 112, E2620–E2629. 

69. Muralidharan,V., Oksman,A., Pal,P., Lindquist,S. and Goldberg,D.E. (2012) Plasmodium 
falciparumheat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during 
malarial fevers. Nat. Commun., 3. 

 
  



17 
 

 
 
Fig 1. Depiction of linear dispersion parameter. Linear dispersion is calculated from the normalized 
standard deviation in the combined spacing values for all residues of interest and all other residues. 
Large gaps lead to large standard deviations, resulting in low linear dispersion values. Conversely, small 
gaps with uniform spacing leads to small standard deviations and high linear dispersion values. The 
linear dispersion scale ranges from 0.0-1.0, with high linear dispersion values indicating well-mixed 
sequences. 
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Fig 2. Computational procedure for identifying LCDs of interest. Identification of LCDs occurs in two 
stages. (A) In the first stage, protein sequences are scanned using a sliding window. For each window 
subsequence, the percent composition of the amino acid(s) of interest and its linear dispersion are 
calculated. (B) In the second stage, overlapping domains that pass the composition and linear dispersion 
criteria are merged into a single domain, then trimmed such that the final residue at both termini are an 
amino acid of interest.  
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Fig 3. Examples of LCD contexts within individual proteins. (A) An LCD-Composer scan of the Sis1 
protein identifies two distinct G-rich domains that pass the composition and linear dispersion thresholds. 
(B) A complete LCD-Composer scan searching for all possible types of single-amino acid LCDs identifies 
multiple non-overlapping LCDs of distinct classes in the Mot3 protein. (C) The Gcr2 protein contains an 
N-rich domain with a subsidiary preference for G. (D) The Mnn4 protein contains a multifaceted LCD with 
a high and roughly balanced K/E composition. 
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Fig 4. Cross-domain comparison of LCD content across all proteomes for each LCD class. LCDs 
were identified using LCD-Composer with default parameters for all proteomes available from UniProt. 
For each LCD class, the percentage of each proteome classified as LCD was defined as the percentage 
of amino acids lying within LCD regions out of the total proteome size (in number of amino acids). Within 
each domain of life, organisms were then sorted into one of seven categorical bins based on the 
percentage of the proteome classified as LCD for each LCD class [None (0%), Extremely Low (0-0.1%), 
Very Low (0.1-0.5%), Low (0.5-2%), Medium (2-5%), High (5-10%), Very High (10-15%), or Extremely 
High (>15%)]. The proportion of total proteomes for each domain of life was then calculated for each bin 
and plotted as a stacked bar chart. For all organisms, the “additional” file containing sequences of known 
protein isoforms (when available) was combined with the corresponding organism’s main proteome prior 
to analyses. 
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Fig 5. Cross-domain comparison of organisms with the highest total LCD content. For each 
domain of life, the total percentage of LCD content was calculated as the sum of the individual LCD 
content percentages for each LCD class (note that, in some cases, this method results in a slight 
overestimation of total LCD content due to overlapping LCDs from different classes but was chosen to 
preserve LCD percentages for individual LCD classes). Organisms were then ranked from highest to 
lowest and the LCD percentages (parsed by LCD class) were plotted for the top 30 organisms for 
Archaea (A), Bacteria (B), Eukaryota (C), and Viruses (D). LCD percentages for all organisms (including 
those ranking below the top 30) and all LCD classes are available in Table S1. 
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Fig 6. Identification of identical and unique GO terms associated with each LCD class across 7 
model eukaryotic organisms. GO analyses were performed independently for each LCD class within 
each eukaryotic model organism. For each LCD class, significantly enriched GO terms were collected for 
all eukaryotic model organisms in our study. The number of times each enriched GO term occurred 
across organisms was then calculated and plotted.  
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Fig 7. Yeast primary LCD classes exhibit unique preferences for secondary amino acids. 
Complete composition analyses were performed for all LCDs for which a secondary amino acid could be 
unambiguously assigned to a single residue type (i.e. a second amino acid with the next highest 
composition, excluding the primary amino acid). Heatmaps indicate percent composition of each amino 
acid (x-axis) for each LCD (y-axis), on a scale from 0%-100%. Some classes of LCDs exhibit a strong 
preference for a single secondary amino acid (T-rich LCDs) or multiple secondary amino acid classes (D-
rich, E-rich, N-rich, and Q-rich LCDs), and secondary preferences observed for some primary LCD 
classes do not strongly overlap with those of related primary LCD classes (e.g. D-rich vs. E-rich LCDs, 
and N-rich vs. Q-rich LCDs). Complete composition analyses for the remaining LCD classes and model 
organisms are indicated in Figs S13, S14 and Table S3). 
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Fig 8. Quantitative analysis of secondary amino acid preferences among primary LCD classes. 
For each LCD class, the number of LCDs observed for each possible secondary amino acid was 
compared to corresponding window frequencies derived from a whole-proteome scan of the yeast 
proteome (see Material and Methods). The natural log of the odds ratio (lnOR) indicates the degree of 
enrichment or depletion of LCDs with a secondary amino acid relative to whole-proteome frequencies 
(see Material and Methods section). Indications of statistical significance are from Bonferroni-corrected 
P-values (P < 0.001, “***”; P < 0.01, “**”; P < 0.05, “*”; see Table S8). Secondary amino acid categories 
with a scaled whole-proteome frequency <1 are colored teal to distinguish them from categories with a 
true lnOR=0. For secondary amino acid categories with no observed LCDs (colored orange), an imputed 
observed value of 1 was used as a conservatively biased estimator.  
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Fig 9. The effects of subclassification on GO term retention, loss, or gain reveal a second layer of 
functional diversification among yeast LCDs. (A) Multifaceted LCD-Composer search criteria were 
used to identify LCDs for each possible LCD subclass (≥ 40% composition for a primary amino acid and 
≥ 20% composition for a secondary amino acid). (B) Example of diverse G-rich domains with differing 
secondary amino acids and secondary amino acid compositions. (C) For each primary LCD class, the 
proportions of GO terms retained, lost, and new upon subclassification are indicated as stacked bars. (D) 
Complete GO term retention, loss, and de novo appearance (“new”) network for yeast G-rich LCDs. Full 
results for all LCD subclasses across all model organisms are available in Tables S9 and S10.  
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Fig 10. GO term retention, loss, or gain as a result of LCD co-occurrence indicates shared and 
unique functions of multi-LCD proteins. (A) The Nup116 protein contains non-overlapping G-rich and 
Q-rich LCDs. (B) Heatmap depicting the number of instances of co-occurring LCDs for each LCD class. 
The upper-right half is numerically equivalent and therefore omitted for simplicity. (C) For each primary 
LCD class, proteins with at least one additional non-overlapping LCD were sorted into each co-occurring 
LCD secondary class. Each secondary class was then evaluated for significantly enriched functional 
associations. The resulting proportions of GO terms retained, lost, and new for multi-LCD proteins are 
indicated as stacked bars. (D) Complete GO term retention, loss, and new network for yeast G-rich multi-
LCD proteins. (E) The complete GO network for yeast Q-rich multi-LCD proteins demonstrates reciprocal 
de novo appearance of the new GO terms associated with G-rich multi-LCD proteins. Q-rich multi-LCD 
proteins also exhibit additional class-specific retention, loss, and gain of GO terms. Full results for all 
multi-LCD proteins across all model organisms are available in Tables S11 and S12. 
 
 
 


