
Lav Guptaa*, Tara Salmana, Maede Zolanvaria, Aiman Erbadb, Raj Jaina
a
Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, USA

b
Department of Computer Science and Engineering, Qatar University, Doha, Qatar

Abstract— Carriers find Network Function Virtualization (NFV) and multi-cloud computing a potent combination for deploying their
network services. The resulting virtual network services (VNS) offer great flexibility and cost advantages to them. However, vesting such
services with a level of performance and availability akin to traditional networks has proved to be a difficult problem for academics and
practitioners alike. There are a number of reasons for this complexity. The challenging nature of management of fault and performance
issues of NFV and multi-cloud based VNSs is an important reason. Rule-based techniques that are used in the traditional physical
networks do not work well in the virtual environments. Fortunately, machine and deep learning techniques of Artificial Intelligence (AI)
are proving to be effective in this scenario. The main objective of this tutorial is to understand how AI-based techniques can help in fault
detection and localization to take such services closer to the performance and availability of the traditional networks. A case study, based
on our work in this area, has been included for a better understanding of the concepts.

Key Words— Network Function Virtualization, Virtual Network Services, Service Function Chains, Virtual Network Functions, multi-
cloud, fault management, performance management, machine learning, deep learning

1. Introduction
Network Function Virtualization (NFV) is being regarded

as one of the most important developments of the last decade
for communication networks. The Gartner Hype Cycle 2018
describes NFV and network performance as the key
technologies, alongside the Internet of Things (IoT) and 5G
[1]. NFV allows telecommunications carriers 1 to instantiate
software-based network functions on commercial, off-the-shelf
hardware. Using these virtual network functions (VNFs) as the
building blocks for creating Virtual Network Services (VNSs),
carriers can change the way the network services are provided.
They are prepared to bear the pains of making this major
change in order to reap the benefits of the reduced cost of
deployment, agility in introducing new services, ease of
scaling, independence from proprietary equipment and vendor
lock-in [2]. The virtual resources (e.g., virtual machines and
virtual networking) for building these services can be obtained
from the in-house datacenter, carrier-cloud owned by carriers
themselves or public clouds owned by Cloud Service Providers

1 The term carrier refers to all communications service providers including
Internet Service Providers (ISPs)

(CSPs). Use of multiple clouds gives additional advantages
like more competitive prices, larger resource pool, better points
of presence and avoidance of single point of failure because of
a cloud blackout [3] [4].

1.1 Challenges of VNS Deployments
Despite many advantages, there are several challenges in

providing large-scale deployments of NFV-based VNSs. It is
important to identify these challenges so that they can be met
and this promising technology does not disappear into
oblivion. Some of the main challenges are listed here:

a) Performance and availability of VNSs are nowhere close to
the traditional networks. The traditional networks have five
nines availability (99.999%), which translates to 5.25
minutes of downtime in a year. Cloud information
technology applications have been working more on three
nines (99.9%) availability, which go up to 8.76 hours of
downtime in a year.

b) Traditional networks are built to the stringent quality of
service (QoS) norms defined by Fault, Configuration,
Accounting, Performance and Security (FCAPS) standards
like ISO Common Management Information Protocol
(CMIP) and ITU Telecommunications Management
Network (TMN) M.3010 and M.3400 recommendations [5]
[6] [7] [8]. Such norms are still to be fully defined and met
for the VNS deployments.

c) In NFV-based VNSs, faults may occur for many more
reasons compared to traditional physical networks. The
cloud infrastructure consists of virtual resources such as

Fault And Performance Management In Multi-
Cloud Virtual Network Services Using AI:

A Tutorial And A Case Study

———————————————
Corresponding Author Address: Dept. of CSE, Washington University in St
Louis, St Louis, MO 63130, USA, Tel: +1 314-825-0063
E-mails: lavgupta@wustl.edu (Lav Gupta), tara.salman@wustl.edu (Tara
Salman), maede.zolanvari@wustl.edu (Maede Zolanvari), jain@wustl.edu
(Raj Jain), aerbad@qu.edu.qa (Airman Erbad)

Eprint
Computer Networks, Pre-Proof published on 14 Oct 2019

mailto:lavgupta@wustl.edu
mailto:tara.salman@wustl.edu
mailto:maede.zolanvari@wustl.edu(
mailto:jain@wustl.edu
mailto:aerbad@qu.edu.qa

virtual machines, virtual storage, and virtual network links.
These virtual resources are created on shared physical
resources like server hardware, system software or network
links, using virtualization software (e.g., Hypervisors). One
reason why virtual resources may fail is because of the
failure of physical resources. Even if the physical resources
are operational, the virtual resources may themselves fail
[9]. Taking this argument a little further, even if both
physical and virtual resources are healthy, the VNFs, like
routers, instantiated on these virtual resources can develop
algorithmic problems causing VNSs to malfunction or
totally break down. The myriad levels of dysfunctions
make handling of fault and performance (FP) issues in NFV
over clouds more abstract and complex.

d) Internet Engineering Task Force (IETF) has recently
identified ensuring performance and guaranteeing the QoS
as open research areas and technology gaps in NFV [10].
Without a robust mechanism for handling these issues,
carriers would find it very difficult to meet the quality,
reliability and availability norms. This calls for vigorous
research efforts so that NFV deployments acquire carrier-
grade performance and availability [10] [11] [12]. ITU has
included the fault management of the cloud-based NFV in
their standardization agenda [13]. The National Science
Foundation (NSF) is supporting research work in this
important area, which can potentially change the way the
telecommunication services are delivered [14].

1.2 Objective and Goals of this Tutorial and the Related
Case Study

The primary objective of this tutorial is to take a deep and
incisive look at the complexities of detection and localization
of fault and performance issues in an NFV multi-cloud
environment and to examine how machine and deep learning
techniques can help to tackle them. We divide this objective
into the following goals:

a) Discuss the architecture, creation and management of
VNSs with a real-life example.

b) Elucidate clearly the fault and performance (FP)
management problem and its complexities.

c) Explain why the traditional methods do not perform well in
the cloud-based NFV environments and how AI techniques
like machine learning and deep learning can help.

d) Describe the AI based FP management framework that we
have evolved.

e) Give these discussions a more concrete and practical
footing, with a case study that describes in detail the use of
a hybrid shallow and a deep learning model to detect and
localize some important aspects of fault and performance
issues.

We believe that this tutorial would provide background and
motivation for other researchers to contribute to this important
area.

1.3 Structure of the Tutorial
The remaining paper has been organized as follows:

Section 2 provides the background information about VNSs
and their management. In Section 3, the fault and performance
management problem, its complexities, markers with details of
the proposed work are presented. Section 4 discusses different
methods for fault and performance management. Applicability
of AI-based approach to FP management is described in
Section 5. The concepts discussed so far in the tutorial have
been used to evolve a framework for VNS over multi-cloud is
described in detail, which is discussed in Section 6. To
demonstrate that such a frameworks provides a viable solution
to the complex FP problem in the cloud and NVF environment,
Section 7 presents the evaluation of the framework in the form
of a case study. Section 8 gives a summary and possible
research directions emanating from this work. A list of
acronyms used in this paper has been included in the annexure.

 Fig. 1. A carrier’s broadband service network

2. Background - VNSs and their Management

In this section, we explore the structure of a VNS, using
NFV over a multi-cloud system, with the help of an example
of a carrier network service. Additionally, we shall see the
complexities and deficiencies in its management setup, which
make a strong case for a predictive fault and performance
management framework. Fig. 1 illustrates a carrier’s
implementation of the broadband Internet service. The Access
Network consists of various technologies through which home
and business customers access the Internet and the related
services. The Aggregation Network collects various streams of
traffic and concentrates them on higher capacity links to the
core network. The Border Network Gateway (BNG) is situated
at the border of the core and provides Layer-2 and Layer-3
connectivity, policy injection, QoS and accounting of user
sessions and traffic flows. The Core Network contains core
routers that transport traffic and connect to the Internet and
other services like content delivery through the edge routers.
The core also connects to the Internet Exchange Points (IXPs)
for exchanging traffic with other local ISPs without using the
expensive international bandwidth.

2.1 Structure and Components of VNS
The broadband services, like other carrier services, are

currently provided through networks constructed from physical
appliances like routers, aggregation switches and Digital
Subscriber Line Access Multiplexers (DSLAMs) from various
Original Equipment Manufacturers (OEMs). In discussing the

virtualization of this network, we will take a top-down
approach, starting from VNS and go down to the infrastructure
level as shown in Fig. 2.

1) Virtual Network Service (VNS)
From the illustration of a complex network service in

Fig. 1, we abstract a subset to represent a VNS that we can use
as an example. Fig. 3 shows this VNS being composed of
virtual network functions (VNFs) realized as VNF1 to VNF8.

The figure also shows that the carrier has retained DSLAMs as
Physical Network Function (PNF) from their legacy network,
as these functions might not have reached their end-of-life.
VNFs of a service may belong to different vendors, owned by
different operators, managed by different platforms and even
unaware of each other. In such a case, the service is a multi-
domain VNS [16].

2) Service Function Chains (SFCs)
An SFC consists of an ordered set of interconnected VNFs

(and possibly PNFs), which perform pre-programmed
operations on the traffic routed through them. A carrier may
obtain resources from multiple cloud service providers to
avoid problems like vendor lock-in (when the carrier is forced
to buy resources from a particular cloud service provider) or a
service failure because of a single cloud blackout. VNFs are
instantiated on these cloud resources and linked using virtual
networking resources to form one or more SFCs [17] [18].

Fig. 4 shows an SFC with two paths, i.e., PNF1-VNF1-
VNF2-VNF3-VNF4-VNF6 for the Internet access and PNF1-
VNF1-VNF2-VNF3-VNF5-VNF8 for content services. As can
be seen in this figure, there are multiple paths through meshed
core routers through which traffic can be routed if the selected
link fails or if there is congestion on the selected link. VNFs of
an SFC are connected in the same manner as the physical

Fig. 2. The virtualization hierarchy

Fig. 3. Virtual broadband service

Fig. 4. SFC created on multiple clouds

appliances are connected in a traditional network [19]. Some
VNFs are dimensioned with multiple instances to handle the
volume of the expected traffic.

3) Virtual Network Functions (VNFs)
A VNF is the virtual counterpart of a network appliance or a

middlebox implemented by running software over commercial
off-the-shelf general purpose servers. The software to
implement a network function may run over a general-purpose
physical machine or over the virtual machine(s) created on
physical machines using virtualization software. VNFs can
also be instantiated on virtual resources obtained from one or
more cloud service providers. Each VNF has a well-defined
functional behavior and interfaces for interconnection with
other VNFs or PNFs. Fig. 5 shows a VNF with its Element
Management System (EMS) and interfaces to the rest of the
network [19] [20].

Some examples of pre-programmed VNFs are given in
Table 1.

Even though the concept of VNF is just about 7 years old,
there have been some major innovations proposed. For
instance, a VNF could be implemented using a set of
predefined and reusable microservices. Microservices are easy
to replace in case of a fault. However, management of
microservices-based VNS becomes complex. Similarly, the
concept of cloud-native VNFs (or CNFs) is also being
currently discussed [83]. CNFs are created on clouds using
containers. They are purported to be lightweight and more
agile compared to the traditional VNFs. However, these new
concepts are beyond the scope of this tutorial. We refer the
interested readers to [21] and other references on the subject.

Protocols for routing of traffic, through an SFC, are being
worked upon by the standards organizations. For example, two
protocols - Segment Routing (SR) and the Network Service
Header (NSH) - are under development in the IETF [84]. SR is
a modified version of source routing. In SR the IPv6 header is
extended to include the Segment Routing Header (SRH),
which decides the path of the traffic packets. A segment is a
path through a carrier network. The internals of the segment
may not be exposed to the users. For example, it may be a
Multi-Protocol Label Switching (MPLS) tunnel or may be a
sequence of IP routers. Each segment has an ID and may
contain information about the treatment of the traffic on that
segment. A Software Defined Networking (SDN) controller
may utilize the Path Computation Element Protocol (PCEP) to
find the most appropriate segments and instruct the classifier to
direct the traffic flow accordingly. NSH, on the other hand, can
work with IPv4, IPv6, and Ethernet. NSH is an 8-byte header
followed by a number of optional variable length context

headers containing some metadata to be used by NSH-aware
devices. Implementation of service function chains with NSH
capabilities requires NSH-aware virtual switches and a central
controller.

4) Virtual Machines (VMs) and Network Function
Virtualization Infrastructure (NFVI)

Network Function Virtualization Infrastructure (NFVI)
consists of all the hardware and software used to deploy

Fig. 5. A VNF implementation

Fig. 6. Network function virtualization infrastructure

TABLE 1
EXAMPLES OF COMMERCIALLY AVAILABLE VNFS

VNF Function OEM

ISRv Integrated Services
Router

Cisco Systems

vSphere Distributed Switch VMware

SRX Firewall Juniper Networks

440Vx Load Balancer Barracuda

SBC SWe Session Border
Controller

Ribbon
Communications

Vyatta vRouter Brocade

Steelhead CX 555V WAN Accelerator Riverbed Technology

SSR 800 Smart Service
Router

Ericsson

Liquid Core Mobile core
virtualization

Nokia Siemens
Networks

VNFs. This infrastructure-hosting site is referred to as NFVI
Point of Presence (PoP). The virtual compute and storage
resources, in an NFVI-PoP, are interconnected to form a
network of virtual resources that can host carrier services.
Fig. 6 shows an example of a system with three VNFs, their
EMSs, hosted on two NFVIs of two cloud service providers.
External connectivity may be possible through the designated
switching and routing devices [23].

2.2 Management of VNSs from an FP Management
Perspective

Fig. 7 shows the management set-up of a VNS. An
understanding of the functions of interacting platforms would
help the reader appreciate the FM management framework as
described in Section 6. As can be noticed, the figure shows
three different management platforms interacting to make
VNSs work. NFV Management and Orchestration (NFV-
MANO) and its subsystems use the virtual infrastructure
provided by the Multi-cloud Management and Control
Platform (MMCP) to create and manage VNFs, SFCs, and
VNSs [24]. MANO has the responsibility of performance
measurement, event reporting, correlation and assistance in
fault management of the VNSs and their constituents. The
MMCP creates virtual machines, virtual storage, and virtual
networking links. It also manages the placement and migration
of these virtual resources over the available clouds [20]. The
Operation Support System (OSS) of the carrier, with its
Network Management System (NMS), manages the deployment
and operation of the VNSs. The OSS carries out the network
management by providing support for the provisioning of
services, management of fault and performance and
maintaining an inventory of the resources used.

In view of what has been said above, the fault management
function becomes a shared responsibility. The relative
distribution of responsibilities among various platforms and

their interactions are yet to be fully defined. In order to
understand the fault and performance management of VNSs,
we need to discuss the sub-systems of MANO and their
interactions in some more detail [22].

1) Virtual Infrastructure Manager (VIM)
VIM manages all the virtual and physical resources in NFVI

to enable higher layers of MANO to do their jobs of creating
VNFs and SFCs. VIM manages the lifecycle of all the virtual
resources in one NFVI domain (one infrastructure provider’s
domain) and applies security policies on them. VIM collects
information about the performance events and measurements
from NFVI over the Nf-Vi reference point and forwards them
to NFV Orchestrator (NFVO) through its northbound reference
point (Or-Vi). In the cloud environment, VIM would interact
with the cloud management platform for obtaining virtual
resources. In a multi-cloud or a multi-carrier service, there may
be multiple VIMs managing the resources.

2) Virtual Network Function Manager (VNFM)
The VNFM instantiates and configures VNFs with resources

obtained through the VIM. During the lifetime of a network
service, VNFM manages the complete lifecycle of the VNFs
(scaling, descaling and eventually terminating when they are
no longer required). It is entrusted with the important functions
of FP management of VNFs. For this, VNFM interacts with
the EMSs of the VNFs to obtain fault and performance
markers. The EMS (not a part of the MANO) collects device
statistics, logs notifications, alarms and events, and
performance statistics [25]. As shown in Fig. 7, VNFM shares
this information with the NFVO over the Or-Vi reference
point. Since a VNS may have VNFs from multiple providers, it
is important that NFVO can interact with them through the
standard reference points.

3) NFV Orchestrator (NFVO)
NFVO is at the heart of the MANO architecture. It carries

out two of its main functions: resource orchestration and
service orchestration. Using its resource orchestration function,
NFVO coordinates the acquisition and release of the NFVI
resources by interfacing with the VIMs. NFVO instantiates the
VNF Manager, which in turn manages VNFs as explained
above. Service orchestration functionality deals with
onboarding new network services using the information from
descriptor files within various catalogs. For fault and
performance issues, NFVO has to coordinate with the carrier’s
OSS and multi-cloud management platform.

4) Catalogs and Repositories
MANO has several catalogs and repositories containing

descriptor files, which NFVO uses to carry out the
orchestration functions [26]. For example, there is a catalog for
service onboarding templates and another for requirements for
creation and operation of the VNFs. There is an NFV
repository for storing all instances of network services and yet
another for the available and used NVFI resources.

Fig. 7. Orchestration and management of VNS

5) MANO Reference Points – Interaction with Other
Functional Blocks.

All exchanges among the sub-systems of MANO and
between them and external entities, including those pertaining
to fault and performance status, take place through the defined

reference points. Table 2 contains a brief description of these
reference points and what fault and performance related
information they carry [27]. Interactions between MANO and
MMCP have not been defined in the NFV specifications. This
has to be taken into consideration in a VNS fault and
performance management solution.

2.3 Comparison of Competitive Network Service
Orchestration Offerings

It is evident from the discussion in Section 2.2 that the
components of MANO are important parts of the FP
management of VNSs. We present some of the well-known
MANO platforms in this section and compare their features
relating to the management of FP problems that threaten the
availability and reliability of these services. The most
important purpose of this comparison is to bring out the
necessity for carrying out research work in the area of FP
management in the NFV and multi-cloud environment. We
include multi-cloud and multi-carrier domain support and

interaction with the OSS, which are the important
considerations for our discussions. Most MANO
implementations are in initial releases and under active
development. The idea, therefore, is to be representative and
not comprehensive.

Table 3 gives a comparison of the Network Service
Orchestration platforms. The following criteria have been used
for classification [28][29]. It may be noted that a blank cell
indicates that sufficient information is not available to adjudge
the product on the corresponding criterion. Orchestration of
end-to-end service is important from the carrier’s point of
view. In the absence of this feature, manual configuration and
a large amount of scripting may be required to orchestrate
complete services. Handling of multiple VNFM and VIM
support allows management of SFCs across multiple carrier
domains. Three important criteria are whether the orchestrator
maintains the carrier-grade performance, whether it can
coordinate with the OSS for fault and management functions
and how sophisticated is the fault and performance
management. We see that many of the platforms are yet to
achieve the required level of sophistication of fault and
performance management.

3. Fault and Performance (FP) Problem Description
FP issues may range from simple single point failures to

complex faults with many devices involved. A fault may
appear because of some hardware or algorithmic error in the
system. If the error were due to a malfunction or a deviation of
the system from the accepted normal performance, then a fault
would result. Additionally, one faulty entity may affect other
neighboring entities and faults may propagate. In such a case,
the faulty or other connected devices may give out
notifications. The variety of FP issues that can affect the
carrier networks is large and difficult to detect, diagnose and
localize [30] [31][32]. When we add to this the virtualization
and the cloud computing layers, the number of ways faults can
affect the virtualized network far exceeds that of their physical
counterparts. In this setup, when faults traverse through the
physical and virtual layers they change their presentation and
produce a different set of markers in different layers, making it
even more difficult to correlate an observed system disorder
with the original fault [33].

Traditional failure detection mechanisms are ineffective or
inapplicable in NFV environments. Traditional methods
depend on probing or running tests on hardware, which are not
accessible to the carriers who deploy services on virtual
resources. Too much of probing or software testing may
overload the VMs that have been optimized for the network
function hosted on them. Attempts to apply other traditional
methods, like rule-based approaches involving direct
correlation of the markers with the faults, get mired in
complexity and prove to be inadequate. New methods would
be required to deal with faults in VMs or VNFs, which cause

TABLE 2
FAULT AND PERFORMANCE INFORMATION OVER NFV REFERENCE

POINTS
Reference

Point
Endpoints Functions

OS-Nfvo OSS and
NFVO

1. Carries information related to VNS
requirements from OSS to NFVO

2. NFVO creates VNS and applies carrier
policies

3. Carries usage, accounting, fault and
performance events for all VNS, VNF
and NFVI resources.

Or-Vnfm NFVO and
VNFM

1. VNF and NFVO exchange information
related to the creation and management
of VNFs.

2. Forwards events related to VNF to the
NFVO

Vnfm-Vi VNFM and
VIM

1. Carries information about NFVI
requests from VIM.

Or-Vi NFVO and
VIM

1. Reserve NFVI resources for VNS
2. Coordinating scaling and release

Nf-Vi VIM and
NFVI

1. Creating/Obtaining virtual resources for
creating VNS

2. Failure event, measurement results, and
configuration information to VIM

Vn-Nf VNF and
NFVI

1. Physical and virtual resource
information to VNFM for ensuring
creation scaling and performance
and portability of VNFs.

Ve-Vnfm-
Vnf

VNFM and
VNF

1. Event reporting by VNF to VNFM
2. Communication from VNFM to VNF

regarding configuration and events
3. VNF aliveness check

Ve-Vnfm-
em

VNFM and
EMS

1. Same functions as Ve-Vnfm-Vnf for
virtualization-aware EMS

the VNSs to behave abnormally, even if the underlying
hardware is fault-free. VMs are managed by cloud service
providers and VNFs by the network service providers making
it difficult for the traditional systems to deal with problems in
virtualized services. Consider a situation where the virtual
private networks (VPNs) of many customers do not work. In
this situation, FP detection and localization would require
investigation all the VMs, on which virtual core router is
hosted, the VNF that is working as the core router, the virtual
network interface controller (vNIC) with fast Ethernet or
Gigabit Ethernet ports and even the physical machines. Many
alarms and other markers would result, which have to be
correlated.

The fault detection mechanism should be able to separate
out the error conditions that do not constitute a fault from the
ones that do. The fault conditions have to be further classified
into manifested or impending so that further action can be
accordingly taken. As the name suggests, the manifested faults

are those that have already occurred and have affected the
system in some way. The impending problems may not have
manifested as faults yet, but may soon materialize with varying
degree of severity. We discuss in this section how faults are
classified according to their criticality, see in detail the sharing
of FP responsibilities among different platforms and enunciate
the FP problem that this work solves.

3.1 FP Issues and Their Criticality
As far as the virtual entities, VNFs, and their

interconnections, are concerned, faults would happen due to
algorithmic causes in the system software or in the application
software. Faults in the application software affect the network
functions or the links while those in the system software affect
the VMs on which the VNFs are implemented. In the multi-
domain scenario, besides the usual faults occurring in the
carriers’ networks, there would be issues due to the
interconnection of networks. For example, non-provision of a

TABLE 3
COMPARISON OF SOME COMPETITIVE NETWORK SERVICE ORCHESTRATION SOLUTIONS FROM FP PERSPECTIVE

Platform ETSI Linux
Foundation

Open
Networking
Foundation

Gigaspace Cisco Netcracker
(NEC)

Oracle

Criteria

NFVO solution
nomenclature

Open Source
MANO (OSM)

OPEN-
O/ONAP

XOS/CORD +
ONOS1

Cloudify Network Service
Orchestrator

RT MANO
Network
Orchestration

Network Service
Orchestration

Inception date Launched
2016,
Spearheaded
by Carriers

Launched
2016

Launched
2015

Launched
2014

 Launched
2015

Launched
2015

Current Release Rel 6, June
2019

Casablanca,
April 2019

Gambia 7.0,
Nov 2018

Rel 4.6, June
2018

Resease 4.7 June
2018

Rel 12 May
2017

Release 7.3.5
April 2017

Whether carrier-grade Planned Field Trials Yes Yes Yes

Open Solution Yes Yes Use case of
open source
ONOS

Yes, TOSCA
based

 Partly

End-to-End service Planned For defined
use cases

For carrier use Yes, may
require plug-
ins for
underlay

Yes Yes Yes

Fault/Performance
Management
Sophisticaton2

Level 1 Level 3 Level 1 Requires extension
with Crosswork
Network
Automation

Level 2

Support for Multiple
VNF /VIM

Yes OpenStack
VIM+
generic
VNFM

OpenStack
VIM+ VNFM
like functions

Yes Yes Yes Yes

Cloud platform
neutral/Multiple
Clouds

Yes Planned Multi-access
edge cloud

Yes

Integrates with
BSS/OSS

Yes Yes Yes OSS Yes
3

1 ONOS is under Linux Foundation. CORD is under Open Networking Foundation.
2 Level 1: e.g., log-based correlation; Level 2: includes a detection mechanism and root cause analysis; Level 3: predictive detection/localization
3 Proprietary APIs

sufficient number of inter-carrier interconnections at the Points
of Interconnect (POI) would lead to congestion and failure of
calls from one network to the other.

Some events that cause alarms may not always be errors.
For example, degradation in service can happen with some
devices underperforming or because of being
underprovisioned. Since, in such cases, the devices may still
not be faulty, there may be no alarm or just a minor alarm. The
degradation of a service can be detected through notifications,
counters or meters set up to count events at the virtual function
or the service level. Many of these markers would be routine
warnings. At the same time, some alarms may be automatically
taken care of by the network’s resilience features, i.e., by using
the redundant units instead of the one not performing properly.
Some of these alarms may be coded to indicate the severity of
the events. The confusion does not end here. There could also
be problems with the management platforms themselves –
multi-cloud platform, MANO, or the OSS/BSS. In this tutorial,
we confine ourselves to the faults of VNFs or of SFCs that
affect the performance of VNSs.

ITU recommendation X.733 classifies the alarm events into
the following four severity classes: Critical, Major, Minor, and
Warning [6]. Critical alarms are caused when service to one or
more users is totally stopped. If the service is highly degraded,
but not stopped, then a major alarm may result indicating a
condition that is preventing the service to be given as
contracted. A minor event does not indicate present
degradation, but if the condition is not corrected, it may cause
a major fault to develop. A warning may be the most benign,
but usually indicates an impending fault or performance issue

which could eventually turn into a major fault. In addition to
detection and localization functionalities, the predictive
capabilities of the fault and performance monitoring system
should be able to indicate what faults will develop and with
what severity levels. Impending faults are, thus, an important
source of concern. It would be very helpful to the carriers if
they can identify which performance deviations or impending
faults may potentially result in an FP problem that would
require personnel and material to resolve.

3.2 Shared FP Responsibilities
The fault and performance related responsibilities are jointly

exercised by the MANO, the MMCP, and the OSS. Their
interrelationship in the context of VNSs was illustrated in
Fig. 7. Table 4 summarizes the fault and performance related
responsibilities of these management systems. As can be seen
from the description, the functions of many systems overlap.
For example, OSS and NFVO may both obtain information
from the EMSs for knowing the status of VNFs. Similarly, the
marker collection functions of VNFM and EMS overlap. The
precise distribution of FP related functionalities would,
therefore, have to be done in the implementations.
Standardized reference points among the management systems
would help with interoperability of management functions of
different carrier networks. Some of the reference points have,
either not been defined, or not completely defined. These
issues make the fault detection and localization problems more
difficult to handle as complete information is not available
with any system. The framework that we have developed and
described in this paper uses information from various

TABLE 4
SHARED FP RESPONSIBILITIES OF DIFFERENT MANAGEMENT ENTITIES

Management
Block

Fault and Performance Functions

1. MANO
1.1 NFVO NFVO orchestrates services and monitors parameters required to meet SLAs. It manages the lifecycle of VNSs and

uses available resources or requests additional resources to maintain the required performance. For handling FP
issues, it gets VNF level alarms from VNFM and NFVI level alarms from VIM. It interacts with OSS to share
measurement results and notifications regarding network services. Its functions overlap carrier OSS function.

1.2 VNFM VNFM interacts with VNF instances to obtain VNF related FP information like software inter-module
communication failure. It also collects VNF-instance related NFVI information. It sends intelligence to NFVO for
fault detection and localization. VNFM functionality overlaps with EMS functionality as both collect network
function information.

1.3 VIM VIM collects alarms related to physical and virtual resources contained in NFVI. It forwards FP alarms to VNFM
and NFVO for broader correlation and root cause analysis. The fault information may include VM crashes, virtual
port malfunction, storage failure, resource unavailability, etc.

2. MMCP MMCP keeps an inventory of and monitors all virtual compute, storage and networking resources from different
CSPs. It logs analytics for VM related faults. It adjusts resources to changing workloads and maintains the required
performance level. The division of FP responsibilities among MMCP, OSS, and MANO is still to be finalized.

3. OSS OSS monitors network services and resources and detects anomalous conditions. It interacts with EMSs to obtain
the status of network elements. In the virtual network service environment, it may directly or through NFVO get
information about VNFs. It correlates alarms from various sources to localize faults and performance conditions.
Its functions spread from VNS down up to the VNF level.

4. EMS Each network function/device is monitored and managed by an EMS. They collect operational status and alarms
from VNSs and forward them to the OSS and VNFM.

management platforms to improve FP management.

3.3 FP Problem Statement
The FP problem of the carrier networks can be defined as

follows:
1) Detection of any condition that has already led to or could
lead to degraded performance or failure:

The reasons could be manifested faults, hidden faults or
inconspicuous deviations. The goal of FP issue detection is to
sense and notify impending or actual fault and performance
issues.
2) Identification and localization of manifested and impending
faults:

The goal of FP issue localization is to determine the root
cause of the problem by identifying the resources that are
malfunctioning or the severity with which they may
malfunction in the future.

4. Discussion of works related to FP Management
During their operation, carrier networks produce large

volumes of high dimensional data in the form of markers like
alarms, notifications, observed behavior, warnings, counter
values and measurement of performance indicators. These are
discussed in some more detail in Section 6.1. The markers
used by carriers are predominantly at the service and network
function level. Any FP management system should take into
account all the relevant markers to carry out the required
functions. Traditionally handling FP issues as part of FCAPS
has been considered a difficult problem as abnormal behavior
has to be interpreted from large amounts of high dimensional
and noisy data [34]. While the FP management has been well
studied in traditional networks, work on this problem in
virtualized network services in multi-cloud environment is
scant. To be reasonably exhaustive, we examine the recent
related work on FP management in four different categories: 1)
Surveys highlighting the need for FP management 2) NFVI
level diagnostics with or without active probing 3) Causality
inference based diagnostics, and 4) statistical methods
including those based on AI techniques. We’ll discuss each of
these briefly here and take up a more detailed study of the
selected method in the next section.

1) Surveys highlighting the need for FP management in
virtual environment.

The survey in [85] discusses research, development efforts
and open challenges (among other issues like standardization)
relating to Network Service Orchestration. The authors
mention fault tolerance and performance among important
orchestration functions. More specifically, in the next
generation mobile networks the concept of network slicing can
be used for fault and performance management. The authors
also state that fault and performance is essential part of the
effort of 3GPP directed towards standardization of the
management of 5G networks.

 In their related work in [86], the authors discuss fault
management in the Software-Defined Networking (SDN)
environment. Effect of various faults on network performance
can be controlled by techniques such as system state
monitoring, fault detection, localization and resolution, and
fault tolerance mechanisms. The authors are of the opinion that
most works handle fault from a partial perspective leading to
incomplete and flawed solutions. According to their
assessment, the design of suitable fault management solutions
is indispensable for achieving good reliability of the network.
There are many ways faults can arise in SDN. Most of these
faults can be categorized as logic and coding errors. Software
based data agents may contain functional defects that can
cause network failures. Also frequent are malfunctions due to
inconsistent rule installation because of hardware faults that
may flip bits or because of attacks or misconfigurations. Many
network troubleshooting tools like ‘tracroute’ and ‘tcpdump’
have proven to be inefficient for SDN environment. The
authors discuss techniques like data agent testing, probe testing
and interactive debugging as possible methods.

2) NFVI level diagnostics
We have seen previously that in VNSs, NFVI relates to the

totality of hardware resources and the virtual compute, storage
and networking resources created over these. The hardware
component of the NFVI is in the domain of the CSP and
generally inaccessible to the carriers. The methods in this
category would rely on VM level alarms and metrics such as
compute load or memory leak. These techniques thus rely on
the monitoring and diagnostic techniques for cloud computing
resources used for IT applications. An explicit or implicit
assumption would usually be that the higher level alarms and
other markers, e.g., those at network function and network
service level, would usually have corresponding host level
alarms which can be correlated to detect and possibly localize
network function and service level manifested and impending
issues. A correlation between telemetry information from the
CSP and the higher level alarms in the domain of the carrier
would have to be built up for diagnosing faults in the VNSs.
Correlation of metrics with anomalies at the virtual layer has
been applied by authors in [35]. The applicability of these
techniques in a large distributed network needs to be studied.

3) Causal inference based methods
These methods are also normally applied on VM level

alarms like high CPU load and insufficient memory
availability. The expectation here is that determining the causal
relationship among them would help to get to the root cause of
FP issues at the network function and service levels. The
process involves looking for anomalous behavior based on VM
level alarms, correlate alarms in pairs or clusters, determine
causality, i.e., the effect of one alarm on the others and attempt
to build causality templates that could be used for future
alarms. The complex architecture and dynamics of NFV pose
significant challenges from the point of view of causality

inference. For instance, in [36], the authors carry out analysis
of uncorrelated alarms in order to recover the pairwise causal
relationship between them. To take care of the fact that higher-
level faults (e.g., VNF or VNS levels) do not only depend on
the pairwise relationship among VM level alarms, the authors
propose clustering to infer multi-way causality templates. The
patent documentation at [37] goes a step further and uses alarm
data from different layers (e.g., NFVI and VNF). It takes into
account the temporal proximity and the order of the alarm
types in the clusters to make causality templates.

4) Statistical and AI-based methods
The large volume of operational data generated in an

operational telecommunications network could emanate from
within one layer or across multiple layers and possibly contain
many different types related and unrelated markers. In such a
complex environment, it would be difficult to analyze the
available data to produce information that can be used to
manage FP issues. This situation, thus, creates a perfect set up
for removing humans from the loop and resorting to machine
intelligence. In this category, there are methods based on
machine learning and deep learning that could be used for the
detection and localization of FP issues.

There has been extensive work on performance modeling
systems for distributed Internet applications of the pre-NFV
era, notably TIPME (2000) [38], Pinpoint (2002) [39] and
Magpie (2003) [40]. TIPME helps in identifying and
eliminating causes of long response times. Pinpoint uses data
mining to correlate the behavior of each active user request
with the past failures and successes to determine failed
components. Magpie works on individual user requests and
compares the observed behavior, with saved normal models, to
identify anomalous requests and malfunctioning components.
Recently, the ‘mPlane’ consortium of European telecom
companies and academic institutions, has worked on
developing a measurement plane for Internet and CDN (2013-
2016). The core of the project is ‘mpAD-Reasoner,’ which
uses machine learning to detect anomalies involving multiple
flows or users. It compares the current distribution with stored
average distributions [18]. In [88] the authors provide concepts
related to into cross stratum optimization to meet the QoS
requirement. The work in [89] extends the idea to multi-
dimensional resource optimization optimal networks in 5G
domain. The work, though does not directly focus on fault
detection and localization nevertheless provides insight multi-
stratum resources optimization (MSRO) in NFV in the cloud
environment.

It has been shown that learning methods give a way to
relatively easily learn structure in the data and draw inferences
[41]. Shallow machine learning algorithms, characterized by a
single convolution stage, are suitable for cases where a large
amount of labeled training data, including normal and fault
cases, are available. They can derive intelligence from data and

do not depend on experts to build complex interacting rules to
derive patterns or models. Even dependencies, which cannot
otherwise be explicitly modeled, can be learned. These
advantages make them attractive for handling FP problems. In
FP applications, machine learning methods can not only be
trained with historical fault and performance data but can also
be made to improve themselves as they operate and encounter
new situations. This makes the machine learning systems,
adaptive and intelligent and when they have been adequately
trained, as they can generalize well from the training
environment to the real-life situations. Use of different
algorithms has been reported for detection and localization.
We shall see more about this method in the next section.

5. AI-Based Handling of FP Issues
Researchers’ interest in AI-based machine intelligence for

the identification of FP issues dates back to the era of expert
systems [42] [43] [44] [45]. During the intervening decades,
the carrier networks have undergone changes in technology
and form, but the interest in intelligent fault handling has
persisted. We look at AI as a way to empower machines to
mimic and outperform human intelligence. Machine learning is
a subset of AI, chiefly consisting of statistical techniques that
allow machines to exhibit behavior that improves with
learning. Deep learning is a way to implement machine
learning using neural networks with more than one level of
non-linearity. When using neural networks for difficult tasks,
complex relationship among variables modeled with several
levels of non-linearity improves the generalization process [46]
[47] [48].

VNSs are a new development and their deployment over
multi-cloud is still to be explored fully. Many of the AI
methods developed for intrusion detection have been explored,
with varying degrees of success, for managing the FP issues.
Some researchers have applied AI methods directly to the fault
detection and, to a lesser extent, to fault localization. A very
important reason for exploring AI for the problem of FP
management for cloud-based NFV is the intractability
introduced by the known gaps in the NFV specifications.
Interaction among multiple domains, especially between the
legacy OSS and the MANO and the legacy OSS and the
MMCP [19]. ETSI supported proof of concepts (POC) have
also resulted in highlighting the gaps in the NFV framework
and carved out research work for the future. The present NFV
framework, rather simplistically, assumes that VNFM will be
primarily responsible for fault management actions. In real
implementations, there will be multiple layers of cooperating
fault managers. The OSS tackles customer fault reporting and
management, which interacts with the EMS and NFV-MANO
for the element level and VNFM level inputs, respectively.
Besides, state change events for fault management actions
have not been defined which are required for avoiding
conflicting multi-layer actions and also an escalation from

lower to higher layers. In this situation the learning methods of
AI make the best use of the features learned from the available
markers and can assist in FP management.

The authors in [49] use Artificial Neural Networks (ANN)
for one and two alarms simulated scenarios. They show that in
a simulated environment ANN provides better performance in
comparison with the other implemented methods. The
researchers in [50] propose a system for fault analysis and
prediction in the telecommunications access network for the
Rijeka area of Croatia. The Authors in [51] have used temporal
decision trees for fault prediction in telecommunications
networks. As per findings in [52], fuzzy cluster means can be
used to classify network faults. The current research indicates
the possibility of advancing the state-of-the-art in FP
management through deep learning structures.

In [53], the authors use the Random Forest machine learning
method to detect performance degradations in the VNFs.
However, these researchers have chosen to rely on virtual
resource layer level features data like CPU consumption, disk
I/O, and free memory based on their suitability to computing
systems. Evaluation has been carried out in a centralized IMS
system. Application of the proposed method to a highly
distributed multi-domain network has not been reported.

The authors in [54] have worked on the premise that
underlying all the VNF failures are the NFVI level failures like
disk I/O or memory usage. They propose Self Organizing Map
(SOM), a type of unsupervised learning neural network, for
clustering the statistical data and analyzing them to detect the
faults. In [55], the author mentions that machine learning
algorithms are expected to detect invisible failures and
anomalies. However, more work is required to validate them.

Machine learning can be used for root cause analysis and
failure localization in optical networks [87]. The authors of
this work discuss fault management including detection of
degradation and localization of faults. According to them,
restoration procedure can be initiated in cases where traffic has
been affected by a fault. However, early detection of
degradation allows remedial action to be taken to prevent
network downtime. The paper does not delve into specific
techniques for detection and localization and none of the
techniques have been evaluated.

We now discuss in more detail the architecture and design
of an AI-based FP management framework for NFV
deployment in the multi-cloud scenario.

6. Description of the Proposed FP Management
Framework

FP management in the cloud-based VNS has to be a
collaborative process among the elements constituting the
VNS and the management systems involved in creating and
managing the service. VNSs impose new requirements on the

FP management system. Some of these requirements include
mining of large volumes of high dimensional, multi-source and
multi-layered data. This is, in some parts, imposed by the
necessity of making up for the gaps in the ‘NFV on clouds’
specifications in relation to the FP management and prediction
of impending problems. The proposed framework takes care of
these requirements.

The data generated by an operational system is large and
high dimensional. In such a case, it would be very difficult to
capture the intricate relationships among the features (e.g., the
location of the fault, resources involved, markers produced,
etc.) and the corresponding labels (faulty, non-faulty,
impending fault, manifested, fault-severity, etc.) through
traditional methods. It is being increasingly realized by
researchers and echoed by standards bodies as well that a
predictive approach to fault detection and localization, based
on methods that learn the structure of and relationship among
features from the data itself are more likely to succeed [9][41]
[56] [57].

As a case study, we will also discuss the work that we have
carried out, to tackle the problem described above, using deep
learning and shallow learning methods [15] [58]. It has been
found that a hybrid framework consisting of a combination of
shallow and deep learning models could be used for detection
and localization of FP issues as well as predicting severity
levels of impending faults with a high level of accuracy.

6.1 Markers and Metrics for Fault Detection and
Localization

We have introduced markers before as indicators produced
by an operational network and measurements taken by the
operations staff. There are a large number of markers that are
directly or indirectly related to the occurrence of an FP issue.
These markers become important features in our datasets.
Events, that produce these markers, relate to communication,
QoS, processing, equipment, and environment. Of course, not
only each FP issue would usually have multiple markers, but
also many of the markers would appear in more than one type
of issue. Also, at any given time the markers produced may be
a result of more than one FP issue. Thus, there is a complex
relationship between the markers and the FP issues. This
would usually mean that when using machine learning for fault
detection and localization, feature engineering, i.e., selection of
appropriate markers would be required to get better results.
However, deep-learning models, are able to extract relevant
features automatically, without human intervention. Some of
the markers related to mobile, fixed and broadband networks
are given in Table 5.

TABLE 5
LIST OF MARKERS FOR DIFFERENT CARRIER SERVICES

Broadband Mobile Network Fixed Network
Intermittent connection Handoff alarm Earth on a limb
Low data rate BTS power alarm No dial tone

NPOT Packet loss
counter Loop resistance

Repeated training Backhaul
congestion Line card port faulty

LAN lamp off RX noise floor Permanent ground
alarm

Line noisy Frequency error Distribution cable fault
Port mismatch Antenna tilt DP fault

No ping C/I ratio Insulation
measurement

ADSL lamp flashes Signal strength MDF fuse blown
No line sync Radio link failure Handset fault
Browsing issues Cell site failure Dis on one limb
Micro-Filter Faulty Interference level No incoming calls
No Communication CQ indicator Drop wire fault

Dropouts Virtual eNB
capacity Ringtone fault

No authentication Hypervisor alarm Message fault

vRouter failure Registration
failure Delayed dial tone

BTS: Base Transceiver Station, C/I: Carrier to Interference, CSSR: Call
Set-up Success Rate, MDF: Main Distribution Frame, MU: Multi-User,
eNB: eNodeB, NPOT: No Power in Optical Network Terminal, XCOA:
Contact with AC, CQ Indicator: Channel Quality Indicator

The metrics used by carriers to measure the health of the
network provide important information about the FP problems
at the macro level. Use of these as features in the dataset would
help learning algorithms to narrow down the scope of
localization effort. According to ITU Recommendation
regarding the QoS criteria and parameters, a number of basic
aspects have to be considered while identifying measurable
metrics of service availability [59]. ETSI documents on service
availability [56] and on service quality [60] mention metrics
that need to be collected and analyzed. The ETSI group
specification on service quality metrics [61] recognizes that it
is important to have an objective and quantitative metrics to
assist in identifying problems when they arise and provide
good service to the consumers. Examples of metrics, and their
realistic values (where applicable), from an actual network
[62] are given in Table 6. We will see how these markers and
metrics are used in our framework in later sections.

TABLE 6
METRIC FOR NETWORK AVAILABILITY AND RESILIENCY
Metric Typical

Value
Metric Typical

Value
Broadband
Network POI congestion <0 .5%

Packet loss < 1% Assistance
response > 95%

Customer PoP to
Internet exchange
latency

<120ms Mobile Network

Peak international
bandwidth
utilization

< 90% BTS total
downtime ≤ 2%

Connection data rate
availability > 80% Traffic Channel

Congestion (TCH) ≤ 2%
Average throughput
for packet data > 90% Call Drop Rate

(CDR) ≤ 2%

Latency (audio) <150ms Call Set up Success
Rate (CSSR) ≥95%

Fixed Network Paging channel
congestion ≤ 1%

 Fault incidences < 5% Signal strength in
vehicle ≥ 85dbms

Call completion rate > 55%
PoP: Point of Presence, BTS: Base Transceiver Station, POI: Point of
Interconnection

6.2 Potentially Applicable AI Techniques
There are quite a few AI techniques, involving machine

learning and deep learning that are potentially applicable to the
problem of detection and localization of FP anomalies.
Following the practice of applied machine learning
researchers, we designate models with a single layer of non-
linearity, e.g., Support Vector Machine (SVM) and neural
network (NN) with one hidden layer, as shallow structures or
shallow machine learning architectures and the models with
more than one layer of non-linearity, e.g., stacked
autoencoders are referred to as deep structures or deep learning
architectures [63] [64] [65]. It is common for shallow models
with a linear hypothesis to have O(n) prediction time
complexity and the training time complexity of O(l2+n3) where
l denotes the size and n is the number of features in the dataset
used. However, with such models, approximation errors are
large for the high dimensional and large volume of data that
are usually associated with the FP problem. Thus, if the data is
not linearly separable then kernels could be used to map data
into a higher dimension where it shows linear properties. This
implies that linear models like SVM could be applied to the
new space. This kernel trick reduces the approximation errors
at the cost of higher complexity of the training time which is
O(l3 + l2n) and prediction speed of O(ln). Of the prevalent
shallow machine learning architectures, supervised methods
(where each training example consists of the feature vector as
well as a label) such as SVM and Random Forest (RF) are
considered useful for diagnostic applications [66]. Another
supervised learning technique, Bayesian Network (BN), has
been applied to FP management in the industrial settings. Our
preliminary exploration of these methods with small datasets
has shown that SVM and Alternating Decision Tree (ADT)
produce comparable and encouraging results for the detection
problem. We will discuss the evaluation results in the next
section.

In deep learning, increasingly improved features are learned
as the hidden layers are traversed. Learning of complex
features and structure in the data can be broken down into
simpler tasks performed at many levels. This way, deep
learning can achieve low generalization errors, even for
functions otherwise difficult to represent [67]. Lately, better
results than SVM have been achieved with deep neural
networks in a number of important applications [68] [69]. A
key advantage of deep learning over shallow learning is the
automatic extraction of high-level features. Each algorithm that
we have used is briefly described here. For more details,
readers may consult the references mentioned.

1) Support Vector Machine (SVM): Geographically
dispersed elements of the network may generate similar or

different markers at different locations, for example, at the
carrier’s OSS location or the NFV provider’s MANO location.
The information contained in these markers is non-unique
across the domain of faults and performance issues. The SVM
classifier can analyze the data and learn inherent patterns,
which are otherwise not evident to the human senses. It works
by finding optimal hyperplanes that separate different classes
in a given labeled dataset. Once trained, it can classify unseen
data. References at [70] [71] give a more detailed description
of SVM. As we have use SVM in our framework, we mention
some more details of parameter C, ϒ and ϵ that require careful
selection to minimize prediction errors. As the exact solution is
impractical, precision ϵ is used to indicate the error insensitive
tube around the decision boundary in which the errors are
ignored. The aim is to minimize ||ω||2 which is equivalent to
maximization of the margin between the classes. The constant
C determines the tradeoff between the flatness of function
learned and the amount of error allowed above ϵ. A low C
makes the decision surface smooth; a high C aims at
classifying all training examples correctly by giving the model
freedom to select more samples as support vectors. We choose
how significantly the misclassifications should be treated and
how large the insensitive loss region should be, by selecting
suitable values for the parameters C and ϵ. The data X is
projected to a higher dimension using function ϕ(X). Poor
generalization and computational complexity that may result
from projecting data to higher dimensions can be avoided by
the use of a kernel function that maps the input feature space of
dimension d to a higher dimensional space in which the
relationship becomes linear. In our studies, we have found that
the performance of the Radial Basis Function (RBF) kernel
performs better than others. The RBF kernel has the form
given below. Here, xi and xj are two sample feature vectors,
and ϒ is the parameter that sets the spread of the kernel.

 K(xi, xj)=exp(-ϒ||xi-xj||)
In all cases where SVM had been used, these parameters had

been arrived at by a grid search.
 2) Alternating Decision Trees (ADT): This method

combines Decision Trees with Boosting. The ADT is different
from normal decision trees as it has predictor and test nodes
alternately, while the normal decision tree has just test nodes
with each branch representing an outcome of the test. Another
difference is that while each leaf can only be split once into
two, in ADT each part can be split multiple times. This
increases the accuracy of classification/regression. The
splitting criterion could be impurity based like information
gain or Gini index or based on a statistical test like chi-square.
Boosting, on the other hand, brings in performance-enhancing
capabilities. However, it adds more test and predictor nodes.
The complexity is quadratic in boosting iterations, but can be
reduced by using a suitable heuristic [72].

3) Random Forest: Among supervised learning algorithms
of its class, the Random Forest (RF) is a classifier that is likely

to give more accurate results. It proves to be efficient and
robust in many use cases with large databases. It can help in
feature selection by estimating the relative importance of the
predictor variables. This is done by selecting an impurity
measure like entropy and measuring the contribution of each
feature. Another very useful feature is that it does not need
separate test data or any cross-validation. The Out-of-bag error
(OOB-error) gives an unbiased estimate of test or classification
error [73].

4) Deep Learning using Stacked Sparse Autoencoder: An
autoencoder is a neural network, which has an input layer, an
output layer, and one or more hidden layers. It learns the
feature of a dataset in an unsupervised manner (i.e., the
training examples are just feature vectors with no labels). Such
a model reconstructs the input values at the output with
accuracy depending on how well the features are represented
by the hidden layer(s). A sparse autoencoder (SAE) contains a
hidden layer with a smaller number of neurons than the inputs.
Thus, the high dimensional inputs are mapped to a lower
dimension forcing them to learn the best representations of the
given features. Extraction of features takes place according to
their relative importance. More than one sparse autoencoders
can be put in tandem to construct a stacked sparse autoencoder
(SSAE). Training of the stacked autoencoder is done in a
layerwise greedy manner. The first layer is trained with the
input data x to obtain weights ω and bias b for the hidden units
such that the output k(f(x)) is as close to the input as possible,
i.e., minimizes the loss function Ø(x, k(f(x)) [74]. The L2
norm (mean square error) is often used as the loss function.
The primary feature activations of the first hidden layer are
then used as input to the second hidden layer and so on. Since
the L2 norm may not reduce the error to zero, a sparsity
penalty term is added to constrain the neurons to be mostly
close to zero. The training criterion can be written as
Ø(x, k(f(x))) + Ω(h), where Ω(h) is the sparsity penalty.

If we consider an SSAE with n layers then the weight and
bias parameters for the mth autoencoder can be written as
ω(m, 1), ω(m, 2), b(m, 1), b(m, 2). The encoding step in the feed-
forward direction for each layer k of the stacked autoencoder is
given by:

h(k) = f(x(k)) (1)
x(k+1) = ω(k,1)h(k) + b(k,1) (2)
The decoding stack of each autoencoder is run in the reverse

order
h(n+m) = f(x(n+m)) (3)
x(n+m+1) = ω(n-m, 2)h(n+m) + b(n-m, 2) (4)

Then, as the layer-wise training proceeds, each successive
layer learns increasingly more and more useful features with
the innermost layer h(n) giving a representation of the input in
terms of the most compressed and useful features for the input
of higher dimension. With appropriate settings of the
parameters, the compressed layer reconstructs the original

input with good accuracy. Good reconstruction performance
helps in achieving good prediction. For prediction of fault
classes or severity of impending faults, a layer of Softmax
classifier replaces the decoder layers with h(n) forming the

input to this layer. Softmax regression can be used for multi-
class classification as it gives probabilities of output being
close to the target value in the range 0 to 1 with the sum of
probabilities being 1.

Table 7 summarizes the machine learning and deep learning
techniques useful for NFV-Cloud FP problems.

6.3 Framework for FP Detection and Localization
We propose learning models that have predictive and

deductive properties to meet the FP requirements of virtual
network services. All the markers available from the
management platforms, i.e., the runtime monitoring and
measurements, alarms, notifications and warnings,
configuration changes, and environmental factors are used
along with machine learning models trained with historical
data to draw inferences about the manifested performance and
fault issues. Additionally, the capability of deep learning to
map the intricate relationship among the features has been used
to predict the impending faults. The framework shown in
Fig. 8 consists of three main sub-systems: Data pre-processing,
Detection and Localization. Data pre-processing involves
collation and normalization of the dataset to remove biases.
The pre-processing policy may also involve the reduction of
features based on some criterion like correlation with the
labels. In the training mode, the available dataset is split into
training and test datasets, which are used to train and test all
the models. During operation, the marker data is run through
the framework to detect and localize problems.

 The first part of the FP problem, i.e., detection is essentially
a two-stage binary classification problem that first classifies
the outcome as ‘normal performance’ or ‘abnormal
performance’ or alternatively as ‘fault’ or ‘no fault’ classes.
Then for the ‘fault’ or ‘abnormal performance’ cases, it
decides whether the problem is manifested, i.e., it has already
occurred somewhere in the network in some form, or
impending, i.e., it might happen in the near future. We shall
see in the next section why a two-stage model is better in this
case. It is important for the detection models to have good
accuracy as manpower and material resources are committed
for rectification of detected faults. This is particularly
important, as the presence of alarms does not always indicate a

TABLE 7
MACHINE/DEEP LEARNING ALGORITHMS FOR THE FP PROBLEM

Algorithm Advantages Watch out for
Support
Vector
Machine

• Works well for the detection
problem.

• Works with linearly
separable as well as non-
linear feature space (with
RBF kernel).

• Select kernel
function and fine-
tuning of
parameters.

• Select the cross-
validation method
carefully.

• Long training time
with the big dataset.

Random
Forest

• Works well for the detection
problem and localization of
manifested faults.

• Works for binary as well as
multi-class classification.

• Less prone to overfitting.
• Handles non-linearity.
• Handles categorical features.
• Handles high dimensional

spaces and a large number
of examples.

• Fine tuning of
parameters like the
number of features
in any tree, number
of trees in the
ensemble and leaf
size.

• Watch out for
classification time
and complexity of
the model.

ADT • Works well for the detection
problem.

• It has the speed of a decision
tree and is robust to noise
and missing values.

• It can be used for mixed
categorical and numerical
data.

• It helps in finding
significant features.

• Must be used
carefully to avoid
overfitting.

• Keep control of
parameters like
depth and number of
features to split on.

Autoencoder
/Stacked
sparse
autoencoder

• Useful for localization of
impending problems.

• It gives better control over
quality.

• With the appropriate
number of layers and
neurons, it performs better
than the shallow algorithms

• Sensitive to number
and size of layers.

• Careful fine-tuning
of sparsity and
regularization
parameters is
required.

SoftMax • Used as the last stage of
stacked autoencoder in the
localization problem.

• Trained in a supervised
manner.

• It can do binary as well as
multi-class classification.

• It can be used for prediction
of faults, severity, etc.

• Watch for bias due
to the distribution of
data.

• If sufficient labeled
data are available
fine-tuning by
backpropagation
may improve
results.

Fig. 8. The FP management framework

Fig. 9 The detection subsystem

fault.

The second part of the FP problem is the localization of the
detected faults. Localization of manifested faults is taken up on
priority while for the impending faults it is elective,
nevertheless important. For the manifested faults, the model

uses a multi-layered localization strategy using machine-
learning classification models. At Localization Layer 1, the
broad category of the manifested fault is determined, e.g.,
network performance problem. At Localization Layer 2, the
system makes a finer identification of the problem to assist in
the identification of the root cause of the problem, i.e.,
malfunctioning resources or resources suffering from
performance degradation. In the case of the network
performance class of problems at Layer 1, the model at
Layer 2 may narrow down the classification to a high bit error
rate as the cause (Table 8). For the impending faults, a deep
learning strategy uses the markers to predict the severity and
location of faults.

The massive amount of observations generated by the
operational system can also be used for trend analysis to
indicate abnormal behavior and degenerating devices.

6.4 The FP Detection Subsystem

 The detection sub-system of the FP management framework
is shown again in Fig. 9. In the two-stage implementation for
detections, both levels use the shallow machine-learning
models. As mentioned before, these models are trained on
historical data consisting of FP events, resulting markers
including the severity levels and the fault clearance description
that the maintenance staff has entered after rectifying the fault.
The cases, where no action is required or the fault is transient
and corrects itself, are labeled as ‘no-fault.’ In the case of an
actual fault, the nature of the fault and its actual clearance is
indicated. The trained model can then take markers resulting
from new events as inputs to decide at Level I whether the
conglomeration of markers constitutes a fault. If it does, then
the model at Level II uses the available information to decide
whether the fault is impending or manifested. The use of

markers from many management platforms may introduce

redundancies, as a good amount of similar information may be
available from OSS and MANO. However, making use of
redundant data makes up for the gaps in communication
among various management platforms.

 However, the occurrence of multiple faults, the overlap of
markers among faults and conflicting markers may render the
task of detection difficult. If our detection sub-system is
effective and can correctly segregate the conditions, then
localization has better chances of succeeding. A two-level
model for detection helps in filtering out a large number of
‘no-fault’ cases at level 1 so that level 2 is largely applied to
the ‘fault cases.’ This makes classification better and faster.

 Algorithm 1 describes the process succinctly. X is the
vector of predictor variables. Hyper-parameters {pd} and {pd'}
pertain to detection models at the two layers, {ps} and {pn} are
for models at the Localization Layers 1 and 2 and {pi} are for
deep learning model for impending faults.

 The procedure detect_level1 at line 1 takes the feature
vector of a new event and populates the hyper-parameters (line
3). The trained machine learning model is used to predict
labels. If it is ‘fault’ condition then detect_level2 is invoked
(line 8) which uses another trained model to classify the fault as
‘manifested’ or ‘impending’. Thereafter, the appropriate
localization module is called (line 13 or line 15) to handle the
manfiested fault localization or the impending fault
localization. Use of X' and X" indicates the possibility of
curating the feature vector used with the corresponding model.
This algorithm also outputs the detection report, which includes
fault cases as well as the type of faults.

6.5 The FP Localization Subsystem
The 'Manifested Fault' are those that have made themselves

evident and many of them could be major or critical,
threatening to seriously cripple the network service from which
they originate. These faults cannot be allowed to persist and
need to be handled on urgent basis. Since many faults may

TABLE 8
COARSE (LAYER1) AND FINE (LAYER 2) CATEGORIZATION OF FAULTS

Layer 1 Fault Layer 2 Fault Markers
Network
Performance

Traffic and Beacon Channel plan Bad receive
quality, Call drop
at the cell
boundary, Link
degradation

Handoff parameters setting
Bit error rate
High paging discard rate

Security Denial of Service attack Client
Authentication
failure, Call
initiation failure

Home Subscriber Server Failure

Virtual
Resource

VM Fault Network function
failure alarm

Hypervisor fault

Algorithm 1: Detection Levels 1 & 2
 1: procedure detect_level1 (X)
 2: #fault/no-fault classification
 3: {pd}  values of hyper-parameters for the chosen model
 4: use trained model for detect_level1 with X, {pd})
 5: if ‘fault’ is true
 6: call detect_level2 (X')
 7: produce detection report
 8: procedure detect_level2 (X')
 9: # classify as manifested/impending and call localization
10: {pd'}  values of hyper-parameters for the chosen model
11: use trained model for detect_level2 with X,Y, {pd'}
12: if manifested is true
13: call manifested_localization (X") #defined in Algorithm2
14: elseif impending is true
15: call impending_localization (X") #defined in Algorithm2

propagate and show up elsewhere in the network, the
localization process has to cut across layers and domains to
identify the faulty devices, links, or software correctly. The
‘Manifested’ faults are localized by a multi-class, two-layered
model shown in Fig. 10. In cases of impending faults, the
localization functionality requires prediction of the severity of
the developing faults. A deep learning model consisting of
stacked autoencoders has been used for this part. The stacked
autoencoder was introduced in Section 6.2.

 Algorithm 2 explains the localization function. X, Y and the
set of hyper-parameters {p} have the same meaning as before
(sparsity parameters have been explained in Subsection 7.4).
Details of the models and strategies for the manifested and the
impending fault classes are explained below.

 The procedure manifested_localization (line 1) uses
procedure localize_layer1 (line 4) to determine the broad
category of manifested fault. Depending on the category
determined, it calls the localize_layer2 with corresponding
parameters. For each category at Layer 1, the Layer 2 may have
a specifically trained model. For Impending fault localization
the procedure impending_localization (line 17) calls the deep
learning model with the required parameters. Let us discuss a
little more about the manifested and impending faults.

6.5.1 Manifested Faults

 During operation, all the FP issues classified as
‘Manifested’ pass through the two layers. At Layer-1, the
model works as a multi-class classification model that classifies
the faults into one of the several broad categories of FP issues.
Table 8 gives examples of three such categories, ‘Network
Performance,’ ‘Security’ and ‘Virtual Resource.’ The model at
Layer-2 is also a multi-class classification algorithm that
localizes the FP issue at a finer granularity (e.g., a device,
interface, or link) within the broad category predicted at
Layer 1. The localization sub-system produces localization
reports that can be used by the maintenance staff to carry out
the rectification work. For the multi-class classification with
SVM, we chose to work with simple models like One vs. One
(OvO) and One vs. All (OvA) [24]. We eventually selected
OvA since it provided more accuracy and was comparable to
OvO in training and actual operations. In the OvA approach, for
the ith classifier fi, the examples can be classified with
f(x) = arg maxi fi(x), i.e., choose the class that classifies the
example with the maximum margin

6.5.2 Impending Faults

In traditional systems, in the absence of predictive
analysis, preventive maintenance is relied on to catch issues
early. In the proposed framework, localization of impending
faults consists of predicting the severity and location of the
fault. An operational network produces data continuously. In a
stable operational network, most of the examples would

constitute normal data with markers indicating anomalous
conditions interspersed sporadically. While our data has more
than 800 features, any anomalous condition would present
<5% of these! In other words, the data are quite sparse.
Impending faults may also contain previously unseen faults.

Thus, while manifested faults are manageable with shallow
models, impending faults have been tackled with deep

learning. We have used Stacked Sparse Autoencoder (SSAE)
(a type of deep neural network). A single SAE contains an
input, an output, and a hidden layer. With an under complete
hidden layer, the autoencoder learns the most useful individual
features as well as creates composite features. The advantage
can be accentuated with stacking a number of autoencoders
and carefully designing the hidden layers [75].

 Fig. 11 shows the stack of three sparse autoencoders used
in this work: the input layer (x), an output layer (p) and three
hidden layers consisting of paired encoders and decoders. The
colored neurons show three corresponding pairs of encoders
and decoders. By reducing the size of hidden layers, the output
is made reliant on increasingly lesser but richer features. Such
a network can be trained in an unsupervised mode to
reconstruct input data at the output with good accuracy. These

Fig. 10. The localization process

Algorithm 2: Localization Layers 1 & 2
 1: procedure manifested_localization (X)
 2: # Coarse grain localization
 3: {ps}  values of hyper-parameters for the chosen model
 4: call localize_layer1(X,{ps})
 5: # fine grain localization with the appropriate model
 6: if class_category ==1
 7: {p1}  hyper-parameters class_category 1
 8: call localize_layer2(X",{p1})

…
 9: if class_category==7
10: {p7}  hyper-parameters class_category 7
11: call localize_layer2(X",{p7})
12: produce localization report

13: procedure localize_layer1(X,{ps})
14: use trained model localize_layer1 with (X,{ps})
15: procedure localize_layer2(X'',{pn})
16: use trained model localize_layer2 with (X, {pn})
17: procedure impending_localization (X)
18:{pi}  parameters neurons, sparsity parameters
19: use deep_learning_model (X,{pd})
20: produce impending fault report

networks can be tuned well for sparse data by using parameters
like sparsity regularization and sparsity proportion as discussed
in the evaluation section.

Fig. 11. Stacked sparse autoencoders

 We train our model to have a good reconstruction of the
input at the output (decided by the L2-norm), with
unsupervised data, in a layer-wise greedy method (one hidden
layer at a time). A model that reconstructs well also gives good
predictions [28]. During training, features (z) learned by each
hidden layer are input to the next layer. Pairs of {weights,
biases}, viz., (ω1, b1), (ω2, b2) and (ω3, b3), are learned in
achieving good reconstruction.

 argmin{L2_norm(x, x'), k=1
{ωk, bk, ωk', bk’} =
 argmin{L2_norm(zk-l, zk-l'}, k> 1 (1)

z1 = f(ω1, x) (2)

 zk = f(ωk, zk-1), k>1 (3)

 After achieving good reconstruction of the input, the
decoders are removed, and a prediction layer is added in
tandem with the encoded representation layer (Fig. 12).
Softmax assigns decimal probabilities to each class in a binary
or multi-class problem. These decimal probabilities must add
up to 1. This additional constraint helps training converge more
quickly than it otherwise would. In simple terms, the Softmax
function can be written as

F(yi) = exp(yi)/∑j=1, k exp(yj), i=1, 2, …, k (4)

 Softmax uses the rich features from the encoded layer of the
stacked autoencoder to learn its weights ω4 and biases b4.
Training of Softmax is done in a supervised manner using the
labeled examples available. ω4 are the weights for minimum
prediction mean square error (MSE). It produces predictions y'
for the given labels y. Thus, for labels y and its prediction y' we
have,

 {ω1, ω2, ω3, ω4}=argmin{L2_norm(y, y')} (4)

After the Softmax classifier has been trained in a
supervised manner, the whole model is fine-tuned using back-
propagation and simultaneous adjustment of weights of all the
layers to minimize the mean square error in the labeled test
datasets [20].

Fig. 12. The stacked encoder used for prediction

7. Evaluation of the model
In this section, we will discuss how the FP detection and

localization framework, proposed in Section 6, has been
evaluated. More specifically, we will see the training dataset
used, curation of data, and the performance of the trained
models for the unseen events. Curating may involve one or
more of the following activities to improve the outcomes:
feature pre-selection using some kind of technique to correlate
features with the labels, cleansing of data, pruning or
integration, synthesis or analysis of features.

7.1 Training Datasets
Having access to good quality datasets is important for

proper training of the learning models and their predictive
performances [75]. Records like fault dockets, switch room
logs, outdoors logs, personal records of maintenance staff and
fault closure reports contain a vast amount of information
about complaints, faults, test results and restoration details of
telecommunication networks. However, assembling a useful
dataset from these primary data is not an easy task. Since
network fault and performance datasets are not easily
available, researchers commonly resort to either proprietary
datasets that are not publicly available or generate synthetic
datasets [50] [52]. We have used in our studies the real
network FP dataset pertaining to faults and disruptions in
telecommunication carrier Telstra’s network [77]. The dataset,
as available, is split into a number of sub-datasets, each
containing different information derived from the logs. These
sub-datasets give event_type, log_feature, resource_type and
severity_type. They are related through the “id” column that
acts as the key field and also conveys the timing information.
It can be used in innovative ways to improve predictions based
on the dataset. The event_type is the type of fault or
performance incident. Any anomalous situation may have up
to 5 different events associated with it. The resource_type
gives the affected virtual resources. The feature fault_severity

TABLE 9A
TRAINING DATASET

TABLE 9B
TEST DATASET

id location fault_severity id location
4757 location 508 0 13484 location 922
1635

location 257 1 12392 location 184
1181

location 116 0 2322 location 1019
7274 location 830 1 567 location 734
4311 location 704 2 4436 location 236
1226

location 1089 2 12156 location 124
1475

location 653 0 7508 location 858
3304 location 1099 1 6184 location 707
9012 location 975 0 12213 location 763
9928 location 1019 2 6458 location 1100
1001

location 696 0 13967 location 155

is given in terms of the number of faults: many faults (2), a
few faults (1) and no faults (0). The ‘log-feature’ file identifies
features or markers like alarms and notifications by their
numbers. There can be up to 386 features associated with an
anomalous event. The severity_type rates the warning
conditions in terms of their seriousness (on a scale 1 to 5 with
5 being the most serious).

 The training dataset contains “id,” the location of the
incidence and the severity of the fault. The rest of the fields
can be extracted from the other sub-datasets to make a
complete dataset for training detection models. In the case of
localization, the available sub-datasets as collated with the
training dataset such that the localization model gives a good
prediction of severity of faults. An extract from the training
and test datasets are given in Table 9A and 9B respectively.
The test dataset has “id” and the location for which severity
has to be predicted.

The Telstra log_feature sub-dataset contains 58,672
examples, with events displaying the presence of different
features. The event_type sub-dataset has 31,170 examples, the
resource_type sub-dataset has 21,076 and severity_type sub-
dataset has 18,552 examples. The test and the training files
have 11,171 and 7381 records respectively. They have not
been split from a common dataset so the standard 80:20 or a
similar ratio is not maintained. A dataset prepared by the
consolidation of all sub-datasets has more than 800 features as
shown in Table 10. Each fault (with a unique id) is associated
with a location, up to 6 features and corresponding volumes,
up to three affected resources, up to 5 events, and up to 5
severity types indicating the intensity of the warning and

fault_severity ranging from 0-2 as explained before.

A part of the consolidated Telstra dataset is shown in Table
11. Only feature1 (out of the complete set of features from
feature1 to feature386) is shown for compactness. As part of
preprocessing of the dataset, selection of features was carried
out based on the degree of correlation of each feature with the
labels using the Weka tool [78]. With the dataset used in this
study, a correlation threshold of 23% was found to improve
accuracy.

TABLE 11
CONSOLIDATED TRAINING DATASET

id location fault_
severity resource1 resource

2 event1 event2 event3 event4 severity_type feature1 volume1

8 location 243 0 resource_type 2 event_type 34 event_type 35 severity_type 2 232 3

13 location 418 0 resource_type 2 event_type 35 event_type 34 severity_type 2 232 1

19 location 644 1 resource_type 2 event_type 42 event_type 44 severity_type 1 368 2

20 location 79 0 resource_type 2 event_type 54 event_type 11 severity_type 2 55 1

23 location 257 0 resource_type 8 resource_
_type 2 event_type 35 event_type 34 event_type 10 severity_type 2 307 1

24 location 367 0 resource_type 2 event_type 35 severity_type 4 312 2

26 location 238 0 resource_type 2 event_type 35 severity_type 4 312 1

27 location 793 0 resource_type 8 event_type 11 severity_type 1 73 3

28 location 889 0 resource_type 8 event_type 11 severity_type 2 68 2

7.2 Evaluation of the detection subsystem
To prepare the data for Level-1 detection, the fault_severity

has been curated to have binary values with 0 indicating ‘no-

fault’ and 1 indicating ‘fault.’ The detection classification of
‘fault’/‘no-fault’ was implemented with a number of supervised
learning techniques of which SVM, ADT, and RF have been

TABLE 10
LIST OF FEATURES FROM NETWORK FAULT DATASET

No of
Features

Feature Name Explanation

1 id Unique id for an anomaly situation. It
contains a time-stamp.

2 location Location of the event

3-12 resource_type Up to 10 resources may be involved

13-398 feature There are 386 types of markers of
which usually a few will be present

399-797 volume There is volume information for each
feature present

798-802 event_type Up to 5 event_types may be
associated with an anomalous
situation

803 severity_type Indicates severity of warning for the
situation. The scale is 1-5 with 5
being the most severe

804 fault_severity 0 indicates no fault, 1 indicates a few
faults and 2 indicates many faults

shown in Table 12. On the basis of accuracy, SVM and ADT
perform comparatively better than RF. In each case, 10% cross-
validation was used.

With this dataset, SVM, on the whole, performs better than
ADT and RF giving ≥ 95.4% accuracy. Considering the
definitions in Table 13, the true positive (TP) rate for ‘fault’
cases were the highest for SVM showing that these were
correctly classified as ‘fault’ cases. Considering the nature of
the dataset, this result indicates a good result. There were no
faults and system said fault in 5.7% cases, while there were
faults and system said no faults in 2.4% cases. The false
positive and negative rates were the lowest in SVM and the
highest in Random Forest. A desirable outcome is that besides
classifying faults and faults and no faults as no faults with high
accuracy, it classifies a very low percentage of faults as no-
faults, thus, helping to do what is intended to do – detect
performance and fault issues. SVM and RF also gave high
precision indicating that ‘no-fault’ cases were correctly
classified by them.

To get a sense of the performance of our detection model,
using SVM with RBF Kernel, we compared the results with
baseline results obtained by Zero-R model. The Zero-R model
predicts the majority class. Running on our datasets, the
baseline result was about 63%, which indicates that our chosen
model gives a substantial improvement over the naïve baseline.

At Level-2, the detection module classifies the fault cases as
‘manifested’ or ‘impending.’ For the Level-2 classification into
manifested/impending classes again a tuned SVM with RBF
Kernel works well as can be seen from Table 14.

TABLE 14

LEVEL-2 DELTECTION MODEL PERFORMANCE
Metric Value

Correctly detected manifested faults 89.7%
Correctly detected impending faults 95.1%
Impending fault classified as a manifested fault 4.9%
Manifested fault classified as an impending fault 10.3%

For Level-2 detection, we have chosen One-R as the
baseline algorithm. One-R is a simple but accurate
classification algorithm, which generates one rule for each
predictor and then selects the one with the smallest error. The
accuracy of our framework is 13.03% better for ‘impending’
faults and 5.97% better for ‘manifested’ faults, which is a
significant improvement (Fig. 13.)

 Fig. 13. Detection Level 2 effectiveness compared to baseline

7.3 Evaluation of Localization Subsystem

As discussed in Subsection 6.5, for handling manifested FP
issues, the localization subsystem was implemented in two
layers with multi-level classification carried out at both the

levels. For the multi-class classification with SVM, we chose to
work with One vs. One (OvO) [47]. In the OvO approach, for
the ith classifier fi, the examples can be classified with
f(x) = arg maxi fi(x), i.e., choose the class that classifies the
example with the maximum margin.

TABLE 12
STAGE-1 DETECTION RESULTS

Benchmark Algorithm SVM ADT Random
Forest

Time taken 0.01
seconds

< 0.01
seconds

0.1
seconds

Correctly classified
instances

95.42% 95.00% 86.67%

Precision (Average) 95.7% 95.2% 86.9%
Mean absolute error 0.0458 0.0859 0.2509
Root mean squared error 0.2141 0.2092 0.3261
True positive for class 0 94.3% 94.3% 95.5%
False positive for class 0 2.4% 3.6% 30.1%
True positive for class 1 97.6% 96.4% 69.9%
False positive for class 1 5.7% 5.7% 4.5%

TABLE 13
METRIC USED

Metric Interpretation
Accuracy (TP+TN)/(TP+TN+FP+FN)
Precision TP/(TP+FP)
Recall TP/(TP+FN)
TP=True Positive, TN=True Negative, FP=False Positive,
FN=False Negative TABLE 15

LOCALIZATION LAYER 1 BASELINE PERFORMANCE
=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances 86.14%
Root Mean Squared Error 0.26
=== Detailed Accuracy By Class ===
Weighted
Average of
all classes

TP
Rate

FP
Rate

Precision Recall PRC Area

0.861 0.048 0.947 0.861 0.806

At Layer-1, the model classifies the faults into one of
several broad categories of FP issues as was shown in Table 8.
We set up the baseline performance with OneR as shown in
Table 15.

At Layer-1, we chose the sequential minimal optimization
(SMO) multi-class support vector classifier. With SMO and
RBF Kernel and parameters C = 12, gamma = 0.01
epsilon = 1×10-12, the accuracy of Layer-1 localization is 97%,
which is a substantial improvement over the baseline
performance of 86.14%. The performance of the model is
given in Table 16.

TABLE 16
LOCALIZATION LAYER 1 MODEL PERFORMANCE

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 97.03%

Root Mean Squared Error 0.32

=== Detailed Accuracy By Class ===

Weighted
Average of
all classes

TP
Rate

FP
Rate

Precision Recall PRC Area

0.970 0.029 0.971 0.970 0.967

Fig. 14 gives a comparison of the performance of our Multi-
Class Multi-Layer (MCML) model with the baseline. It can be
seen that the accuracy of the classification of MCML is
97.03% against the baseline accuracy of 86.14%. A useful
metric for comparison of classifiers is Precision-Recall Area
(PRC Area), which gives the tradeoff between precision and
recall. A high value indicates high precision (i.e., low false
positives) and high recall (i.e., low false negatives). We can
see that MCML Level 1 gives a high PRC Area of 0.967
compared to 0.806 of the baseline.

Once a broad category has been identified, the Layer 2
model does fine grain localization for each category of
manifested fault. In a dataset containing Network Performance
Faults at Layer 1 and 5 different faults at layer 2, we have the
results in Table 17:

A seen from Table 18, when compared with the baseline
algorithm result, we see that multi-class classification with
SMO and OvO has a much superior performance, indicating
the efficacy of the model. The localization accuracy of the
model is 96.04% compared to 90.1% of baseline. The PRC
Area of the MCML Level 2 classification is 0.955 against
0.846 of the baseline.

TABLE 18
LOCALIZATION LAYER 2 BASELINE PERFORMANCE

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 90.099%

Root Mean Squared Error 0.1573

=== Detailed Accuracy By Class ===

Weighted
Average of
all sub-
classes

TP
Rate

FP Rate Precision Recall PRC
Area

0.901 0.008 0.935 0.901 0.846

Fig. 15 gives the graphical comparison of Level 2
performance of the implemented model (MCML: Multi-class,
Multi-layer, in our case SMO) and the baseline. It is seen that
the implemented model gives a higher percentage of correctly
classified and lower percentage of wrongly classified

examples.

7.4 Localization of Impending FP Issues

One of the main concerns handled in the framework is to
localize impending faults and predict their severity levels. We

TABLE 17
LOCALIZATION LAYER 2 MODEL PERFORMANCE

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 96.04%

Root Mean Squared Error 0.294

=== Detailed Accuracy By Class ===

Weighted
Average of
all sub-
classes

TP
Rate

FP
Rate

Precision Recall PRC Area

0.960 0.002 0.976 0.96 0.955

 Fig. 14. Localization Layer 1 effectiveness compared to baseline

 Fig. 15. Localization Layer 2 effectiveness compared to baseline

OSS/BSS, and MMCP) that play important roles in fault and
performance management of VNSs and their interactions have
been discussed. MANO is the main component of NFV life
cycle and fault management. Our tutorial appropriately
discusses its constitution and functions in detail.
Responsibilities of each of the sub-systems of the MANO
towards monitoring and management of fault and performance
issues have been described. Interfaces that have been defined
between the MANO and the multi-cloud manager (MMCP)
and between the MANO and the OSS have been discussed. All
these aspects cover goal a). Towards achieving goal b), a full
section has been devoted to the description of the fault and
performance issues wherein we also discuss the criticality of
faults and the shared FP responsibilities of the management
platforms. To meet goal c), explanation has been given for the
importance of considering AI for achieving the goals of the FP
problem. Towards achieving goal d), a generic framework for
detection and localization of the FP issues has been proposed
and described in detail. It has been brought out how the AI
based framework would be able to go beyond the traditional
models in predicting impending failures and their severity.
Markers and metrics are important ingredients of any FP
management system and have been given a fitting treatment.
To accomplish goal e), we have discussed the results of a case
study involving the implementation and evaluation of the
detection and localization functionalities using the machine
and deep learning respectively. Using an actual network fault
data, we have shown how manifested and impending FP issues
can be effectively handled by the detection and localization
sub-systems of the FP management framework based on
machine and deep learning models.

Acknowledgment

This publication was made possible by NPRP grant #8-634-
1-131 from the Qatar National Research Fund (a member of
Qatar Foundation), NSF grants CNS-1718929 and CNS-
1547380. The statements made herein are solely the
responsibility of the authors. This paper draws from earlier
works of the authors including ‘HYPER-VINES: A Hybrid
Learning Fault and Performance Issues Eradicator for Virtual
Network Services over Multi-Cloud Systems’ presented at the
IEEE ICNC 2019 Conference in February 2019, and from the
other references listed in the reference section.

REFERENCES
[1] D. Young, M. Toussaint “Hype Cycle for Enterprise Networking and

Communications,” Gartner Report #G00338722, 13 July 2018, 69 pp.
[2] ETSI Whitepaper, “Network Functions Virtualisation: An Introduction,

Benefits, Enablers, Challenges & Call for Action,” SDN and OpenFlow
World Congress, 2012, 16 pp.

[3] ETSI Report, “ETSI Plugtests demonstrate high interoperability levels
and increased feature support,” http://www.etsi.org/index.php/news-
events/news/1276-2018-02-news-2nd-etsi-nfv-plugtests-demonstrate-
high-interoperability-levels-and-increased-feature-support, February
2018.

[4] ETSI GR NFV-IFA 015 V2.1.1, Group Report, “Network Functions
Virtualisation (NFV) Release 2; Management and Orchestration; Report
on NFV Information Model,” 2017.

[5] ITU-T Recommendation M.3400 Series M: “TMN AND Network
Maintenance: International Transmission Systems, Telephone Circuits,
Telegraphy, Facsimile and Leased Circuits TMN Management
Functions,” 2002.

[6] ITU Recommendation X.733, “Information Technology-Open System
Interconnection- Systems Management-Alarm Reporting Function,”
1992.

[7] ISO 9595, “Information Processing Systems - Open Systems
Interconnection, Management Information Service Definition – Part 2:
Common Management Information Service,” 22 December 1988.

[8] ISO 9596, “Information Processing Systems - Open Systems
Interconnection, Management Information Protocol Specification - Part
2: Common Management Information Protocol,” 22 December 1988.

[9] Byung Yun Lee, Bhum Cheol Lee, “Fault Localization in NFV
Framework,” ICACT, 2016, pp. 352-355.

[10] C. J. Bernardas, A Rahman, JC Zunjia, L. M. Contreras, P. Aranda, P.
Lynch “Network Virtualization Research Challenges,” IETF internet
draft, 2018.

[11] R. Glitho, “Cloudifying the 3GPP IP Multimedia Subsystem: Why and
How?” 6th International Conference on New Technologies, Mobility and
Security (NTMS), 2014, pp. 1-5.

[12] D. Lopez, “Network Functions Virtualization: Beyond Carrier-Grade
Clouds,” Optical Fiber Communications Conference and Exhibition
(OFC),” 2014, pp. 1-18.

[13] ITU-T SG13 Q19 “Potential New Work For Q19/13”
https://www.itu.int/md/T17-SG13-171106-TD-WP2-0139/en, 2017,
accessed September 2018.

[14] R. Jain, “Fault and Performance Management in Carrier-grade Virtual
Networks Over Multiple Clouds,” NSF Proposal, NETS, 2017.

[15] L. Gupta, M. Samaka, R. Jain, A. Erbad, D. Bhamare, H. A. Chan, “Fault
and Performance Management in Multi-cloud based NFV using Shallow
and Deep Predictive Structures,” J. Reliable Intell Environ, 2017, pp. 1-8.

[16] Multi-domain Network Virtualization draft-bernardos-nvvrg-
multidomain-04 C.J. Bernardos, Ed., et. al. Informational Internet-Draft ,
expires March 2019. https://tools.ietf.org/html/draft-bernardos-nfvrg-
multidomain-05 Accessed 4 December 2018.

[17] ETSI GS NFV 002, General Specification, “Network Functional
Virtualization; Architectural Framework,” 2013

[18] J. Halpern, C. Pignataro, “Service Function Chaining (SFC)
Architecture,” IETF RFC 7665, 2015

[19] C. J. Bernardos, A. Rahman, J. C. Zuniga, L. M. Contreras, P. Aranda, P.
Lynch, “Network Virtualization Research Challenges,” IRTF draft draft-
irtf-nfvrg-gaps-network-virtualization-10, September 2018, 40 pp.

[20] L. Gupta, M. Samaka, R. Jain, A. Erbad, D. Bhamare, C. Metz,
“COLAP: A Predictive Framework for Service Function Chain
Placement in a Multi-cloud Environment,” The 7th IEEE Annual
Computing and Communication Workshop and Conference (CCWC),
2017, pp. 1-9.

[21] Y. Chen, A. Bernstein, “Bridging the Gap Between ETSI-NFV and
Cloud-Native Architecture,” SCTE/ISBE, Fall Technical Forum, 2017

[22] R Mijumbi, J Serrat, J-L Gorricho, S. Latre, M. Charalambides and D
Lopez, “Management and Orchestration Challenges in Network Function
Virtualization,” IEEE Communications Magazine, 2016, pp. 98-105

[23] ETSI GS NFV 002 V1.2.1, General Specification, “Network Functions
Virtualisation (NFV); Architectural Framework,” 2014.

[24] ETSI GS NFVMAN001 V1.1.1, General Specification, “Network
Functions Virtualization (NFV); Management and Orchestration,” 2014.

[25] F. Khan, “A Beginner’s Guide to NFV Management & Orchestration
(MANO), http://www.telcocloudbridge.com/a-beginners-guide-to-nfv-
management-orchestration-mano, 2015.

[26] “A note on descriptor files - ETSI NFV “Management and Orchestration
- An Overview,” Mehmet Ersue, ETSI NFV MANO WG Co-chair IETF
#88, 2013

[27] ONF-XOS, https://www.opennetworking.org/xos/. Accessed November
2018

http://www.etsi.org/index.php/news-events/news/1276-2018-02-news-2nd-etsi-nfv-plugtests-demonstrate-high-interoperability-levels-and-increased-feature-support
http://www.etsi.org/index.php/news-events/news/1276-2018-02-news-2nd-etsi-nfv-plugtests-demonstrate-high-interoperability-levels-and-increased-feature-support
http://www.etsi.org/index.php/news-events/news/1276-2018-02-news-2nd-etsi-nfv-plugtests-demonstrate-high-interoperability-levels-and-increased-feature-support
https://www.itu.int/md/T17-SG13-171106-TD-WP2-0139/en
https://tools.ietf.org/html/draft-bernardos-nfvrg-multidomain-05
https://tools.ietf.org/html/draft-bernardos-nfvrg-multidomain-05
http://www.telcocloudbridge.com/a-beginners-guide-to-nfv-management-orchestration-mano
http://www.telcocloudbridge.com/a-beginners-guide-to-nfv-management-orchestration-mano
https://www.opennetworking.org/xos/

[28] Dmitriy Andrushko, Gregory Elkinbard, “What is the best NFV
Orchestration platform? A review of OSM, Open-O, CORD, and
Cloudify,” https://cloudify.co/2017/03/15/what-best-nfv-orchestration-
platform-review-osm-openo-cord-cloudify.html, 2017, accessed October
2018

[29] P. Reynolds, C. Killian, J. L. Wiener, “Pip: Detecting the Unexpected in
Distributed Systems,” 3rd Symposium on Networked Systems Design &
Implementation, 2006, pp. 115-128.

[30] D. Gruer, I. Khan, R. Ogier, R. Keffer, “An Artificial Intelligence
Approach to Network Fault Management,” SRI International, 2015

[31] P. Reynolds, C. Killian, J. L. Wiener, “Pip: Detecting the Unexpected in
Distributed Systems,” 3rd Symposium on Networked Systems Design &
Implementation, 2006, pp. 115-128.

[32] R. R. Kompella, J. Yates, A. G. Greenberg, A. C. Snoeren, “Fault
Localization via Risk Modeling,” IEEE Trans. Dependable Sec.
Computing, 2010, pp. 396-409.

[33] M Boucadair, C. Jaquenet, “Handbook of research on redesigning the
future of Internet architectures,” IGI Global, 2015, 621 pp

[34] A. Lakhina, M. Crovella, C. Diot, “Diagnosing network-wide traffic
anomalies,” SIGCOMM, 2004, 12 pp.

[35] A. Lakhina, M. Crovella, C. Diot, “Diagnosing network-wide traffic
anomalies,” SIGCOMM, 2004, 12 pp.

[36] D. Kushnir, M. Goldstein, “Causality Inference for Failures in NFV,”
IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS): SWFAN 16: International Workshop on
Software-Driven Flexible and Agile Networking, 2016

[37] Cisco Content Hub, "Causality correlation,"
https://content.cisco.com/chapter.sjs?uri=%2Fsearchable%2Fchapter%2F
www.cisco.com%2Fcontent%2Fen%2Fus%2Ftd%2Fdocs%2Fnet_mgmt
%2Factive_network_abstraction%2F3-7-
2%2Ftheory%2Foperations%2FTheoryofOperations%2Fcaus-
theory.html.xml&platform=Cisco%20Active%20Network%20Abstractio
n, 2018. Accessed 20th September 2018.

[38] Y. Endo and M. Seltzer, “Improving interactive performance using
TIPME,” Proc. ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, Volume 28, Issue 1,
2000, pp. 240-251.

[39] M. Chen, E. Kiciman, E. Fratkin, E. Brewer, and A. Fox, “Pinpoint:
problem determination in large, dynamic, internet services,” Proc.
International Conference on Dependable Systems and Networks (IPDS
Track), 2002, pp. 595-604.

[40] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan, “ Magpie: online
modeling and performance-aware systems,” Proc of the 9th conference
on Hot Topics in Operating Systems, 2003, pp. 15-15.

[41] V. Dhar, “Data Science and Prediction,” Communications of the ACM,
2013, pp. 64-73.

[42] L. Lewis, “A case-based reasoning approach to the management of faults
in communication networks,” Infocom, 1993, 1422-1429.

[43] S. Jiang, D. Siboni, A. A. Rhissa, G. Beuchot, “An intelligent and
integrated system of network fault management: artificial intelligence
technologies and hybrid architectures,” IEEE Networks, 1995, pp. 265-
268.

[44] D. W. Gürer, I. Khan, R. Ogier, R. Keffer, “An Artificial Intelligence
Approach to Network Fault Management,” SRI International, Citeseer
1996, pp. 1-10.

[45] R. D. Gardner, D. A. Harle, “Alarm correlation and network fault
resolution using the Kohonen self-organizing map,” Globecom 1997, pp.
1398-1402.

[46] J. McClelland, A. Rumelhart, “Distributed model of human learning and
memory,” Parallel distributed processing: Explorations in the
microstructure of cognition (Vol. II). Cambridge, MA: MIT Press, 1986,
550 pp.

[47] G.E. Hinton, “Connectionist learning procedures. Artificial Intelligence,”
1989, pp. 185-234.

[48] P. E. Utgoff , D. J. Stracuzzi, “Many-layered learning,” Neural
Computation, 2002, pp. 2497-2529.

[49] A. Yilmaz, “Comparative study for identification of multiple alarms in
telecommunication networks,” Turkish Journal of Electrical Engineering
& Computer Sciences, 2016, pp. 677-688.

[50] E. Rozaki, “Network Fault Diagnosis Using Data Mining Classifiers,”
Eleni Rozaki International Journal of Data Mining & Knowledge
Management Process, 2015, pp. 29-40.

[51] M. Jaudet, N. Iqbal, A. Hussain, and K. Sharif, (2005) “Temporal
classification for fault-prediction in a real-world telecommunications
network,” International Conference on Emerging Technologies, 2005,
pp. 209-214.

[52] K. Qadar, M. Adda, “Network Faults Classification Using FCM”
International Journal of Advanced Research in Computer and
Communication Engineering, 2013.

[53] C. Sauvanaud, K. Lazri, M. Kaniche, K. Kanoun, “Anomaly Detection
and Root Cause Localization in Virtual Network Functions,” IEEE 27th
International Symposium on Software Reliability Engineering, 2016.

[54] M. Miyazawa and M. Hayashi, R. Stadler, “vNMF: Distributed Fault
Detection using Clustering Approach for Network Function
Virtualization,” IFIP/IEEE International Symposium on Integrated
Network Management (IM2015), 2015.

[55] M. Hayashi, “Machine Learning-assisted Management of a Virtualized
Network,” Optical Fiber Communication Conference, Optical Society of
America, 2018.

[56] ETSI GS NFV-REL 001 V1.1.1, General Specification, “Network
Functions Virtualisation (NFV); Resiliency Requirements,” 2015.

[57] B.P. Majumder, A. Sengupta, S. Jain, P. Bhaduri., “Fault Detection
Engine in Intelligent Predictive Analytics Platform for DCIM,”
(publication unknown), https://arxiv.org/pdf/1610.04872, 2016, 15 pp.

[58] L. Gupta, T. Salman, R. Das, A. Erbad, R. Jain, M. Samaka, “HYPER-
VINES: A Hybrid Learning Fault and Performance Issues Eradicator for
Virtual Network Services over Multi-Cloud Systems,” IEEE ICNC 2019

[59] ITU-T E.800 [i.10]: Recommendations, “Definitions of terms related to
quality of service,” 2008.

[60] ETSI GS NFV-INF 010 V1.1.1, General Specification, “Network
Functions Virtualisation (NFV); Service Quality Metrics,” 2014.

[61] ETSI GS NFV-INF 010 V1.1.1, General Specification, “Network
Functions Virtualisation (NFV): Service Quality Metrics,” 2014.

[62] TRAI Report, “Performance Indicator Reports,”
http://www.trai.gov.in/release-publication/reports/performance-
indicators-reports, 2018

[63] H. N. Mhaskar and T. Poggio, “Deep vs. Shallow Networks: an
Approximation Theory Perspective,” Center for Brains, Minds, and
Machines (CBMM), CBMM Memo No. 054, 2016

[64] Vikas Sindhwani, “Shallow vs. deep: the great watershed in learning,”
Princeton University Lectures, 2017

[65] G. Ososkova, and P. Goncharov, “Shallow and Deep Learning for Image
Classification,” Optical Memory and Neural Networks 26(4):221-248,
October 2017

[66] M. J. Kearns, “The computational complexity of machine learning,” MIT
Press, 1990, 176 pp.

[67] Y. Bengio, “Learning Deep Architectures,” Bengio Foundations and
Trends in Machine Learning, 2009, 127 pp.

[68] H. N. Mhaskar, T. Poggio, “Deep vs. Shallow Networks: an
Approximation Theory Perspective,” arXiv:1608.03287v1 [cs.LG], 2016,
16 pp.

[69] J. Schmidhuber, “Deep Learning in Neural Networks: An Overview,”
Neural Networks, Elsevier, 2014, pp. 85-117.

[70] A. J. Smola and B. Scholkopf, “A tutorial on support vector regression,”
Statistics and Computing, 2004, pp. 199-222.

[71] T. Hastie, R. Tibshirani, J. Friedman, “The Elements of Statistical
Learning,” Springer Science & Business Media, 2009, 745 pp.

[72] M. A. Jabber, B. L. Deekshatulu, P. Chandra, “Alternating decision trees
for early diagnosis of heart disease,” Proceedings of International
Conference on Circuits, Communication, Control and Computing, 2014,
pp. 322-328

https://cloudify.co/2017/03/15/what-best-nfv-orchestration-platform-review-osm-openo-cord-cloudify.html
https://cloudify.co/2017/03/15/what-best-nfv-orchestration-platform-review-osm-openo-cord-cloudify.html

[73] G. Louppe, “Understanding Random Forests – From Theory to Practice,”
Ph.D. Dissertation, University of Liege, France, 2014.

[74] “Stacked autoencoder (Unsupervised Feature Learning and Deep
Learning),”
http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders,
Accessed December 29, 2018.

[75] D. Bhamare, T. Salman, M. Samaka, A. Erbad, R. Jain, "Feasibility of
Supervised Machine Learning for Cloud Security," 3rd International
Conference on Information Science and Security (ICISS2016), 2016, pp.
1-5.

[76] B-E Laure , B. Angela, M. Tova, " Machine Learning to Data
Management: A Round Trip," IEEE 34th International Conference on
Data Engineering (ICDE), 2018, pp. 1735-1738.

[77] Kaggle datasets, available at https://www.kaggle.com/c/telstra-recruiting-
network/data. Accessed October 2018.

[78] E. Frank, M. A. Hall, I. H. Witten, “The WEKA Workbench. Online
Appendix for Data Mining: Practical Machine Learning Tools and
Techniques,” Morgan Kaufmann, Fourth Edition, 2016.

[79] G. Albuquerque, T. Lowe, and M. Magnor, “Synthetic Generation of
High-Dimensional Datasets,” IEEE Transactions on Visualization and
Computer Graphics,” 2011, pp. 2317-2324.

[80] E. Torlak, “Scalable Test Data Generation from Multidimensional
Models,” SIGSOFT/FSE’12, 2012, pp. 1-11.

[81] J.S. Simonoff, “Smoothing Methods in Statistics,” Springer, 1996, 340
pp.

[82] Z. Botev, “Fast multivariate kernel density estimation for high
dimensions,” Mathworks, 2016.

[83] Cloud-Native Network Functions (CNFs) White Paper, Cisco, updated
June 2018,
https://www.cisco.com/c/en/us/products/collateral/routers/cloud-native-
broadband-router/white-paper-c11-740841.html. Accessed Nov. 2018.

[84] J Guichard et al., "NSH and Segment Routing Integration for Service
Function Chaining," IETF draft-guichard-SFC-nsh-sr-00, June 2018.

[85] N. F. S. de Sousaa, D. A. L. Pereza, R. V. Rosaa, M. A. S. Santosb, C. E.
Rothenberg, “Network Service Orchestration: A Survey,”
arXiv:1803.06596v4 [cs.NI], May 2019.

[86] Y. Yu et al, “Fault Management in Software-Defined Networking: A
Survey,” IEEE Communications and Survey1s Sept 2018

[87] L. Velasco, D. Rafique, “Fault Management Based on Machine Learning
[Invited],” OFC 2019.

[88] H. Yang, Y. He, J. Zhang, Ji Y, W. Bai, Y. Lee, “Performance evaluation
of multi-stratum resources optimization with network functions
virtualization for cloud-based radio over optical fiber networks,” Optical
Express, 2016, Pp. 8666-78.

[89] H. Yang, J. Zhang, Y. Ji, R. Tian, J. Han, Y Lee, “Performance
evaluation of multi-stratum resources integration based on network
function virtualization in software defined elastic data center optical
interconnect,” Optics Express, 2015, Pp. 31192-31205.

Lav Gupta is a senior member of
IEEE. He received BS degree from
Indian Institute of Technology, Roorkee,
India in 1978 and MS degree from Indian
Institute of Technology, Kanpur, India in
1980 and a PhD in Computer Science &
Engineering from Washington University
in St Louis, Missouri, USA.

He has worked for about 15 years in the area of
telecommunications planning, deployment and regulation.
With the sector regulatory authority he worked on technology
and regulation of next generation networks. He has also
worked as senior teaching faculty of Computer Science and
Access Network Planning for a number of years in

telecommunications academies. He is the author of one book,
10 papers and has been a speaker at many international
seminars. His current research interests include application of
machine and deep learning to management of NFV
deployments in multi-cloud.

He was recipient of best software award from Computer
Society of India in 1982 and best faculty award at Etisalat
Academy, UAE in 1998.

Tara Salman is a student member of

IEEE. She received her BS and MS from
Qatar University Doha, Qatar at 2012 and
2015, respectively. Her BS was in
computer engineering while her MS was
in computing-networking field. She is
currently pursuing a PhD at Computer
Science & Engineering at Washington
University in St Louis, Missouri, USA.

From 2012 -2015, She has worked as a research assistant
with Qatar University on a NPRP (NATIONAL PRIORITIES
RESEARCH PROGRAM) funded project targeting physical
layer security. From 2015, she is working as a Graduate
Research assistant at Washington University in St. Louis. Her
research interest spans network security, distributed systems,
Internet of things and financial technology. She is an author of
1 book chapter, 6 research articles and has been a presenter at
many international conferences.

Salman is a recipient of Cisco Certified Network Associate
(CCNA) certification in 2012 and the priory completed all four
level of CCNA at Cisco academy-Qatar university branch.

Maede Zolanvari is an IEEE student

member. She received both her B.S. and
M.S. degree in Electrical and Computer
Engineering, in 2012 and 2015 respectively.
She’s currently a Ph.D. candidate in
Computer Science and Engineering at

Washington University, St. Louis, MO, USA. During 2012
through 2015, her research was on performance improvement
of communication networks, with a focus on OFDM systems.
Since 2015, she has been working as a graduate research
assistant at Washington University, St. Louis. Her current
research focus is on utilizing machine learning and deep
learning for network security of the Industrial Internet of
Things. Her research interests include Internet of Things,
machine learning, cyber-security, secure computer networks
and wireless communications.

Aiman Erbad is an Assistant Professor
at the Computer Science and Engineering
(CSE) Department at Qatar University.
Dr. Erbad obtained a PhD in Computer
Science from the University of British
Columbia (Canada) in 2012, a Master of
Computer Science in Embedded Systems

http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders
https://www.kaggle.com/c/telstra-recruiting-network/data
https://www.kaggle.com/c/telstra-recruiting-network/data
https://www.cisco.com/c/en/us/products/collateral/routers/cloud-native-broadband-router/white-paper-c11-740841.html
https://www.cisco.com/c/en/us/products/collateral/routers/cloud-native-broadband-router/white-paper-c11-740841.html

and Robotics from the University of Essex (UK), and a
Bachelor of Science in Computer Engineering from the
University of Washington (USA). Since September 2016, Dr.
Erbad was the Director of Research Support, responsible for
all research grants and contracts. Prior to that Dr. Erbad was
the Coordinator of the Computer Engineering program and the
Chair of the Curriculum and Quality Assurance committee
leading ABET accreditation and curriculum enhancement
efforts at the CSE department.

Dr. Erbad received the Platinum award from H.H. The Emir
Sheikh Tamim bin Hamad Al Thani at the Education
Excellence Day 2013 (PhD category) and graduated
from Qatar Leadership Center, which trains rising leaders in
different sectors. Dr. Erbad research interests span cloud
computing, multimedia systems and networking, and security.
Dr. Erbad research received funding from Qatar National
Research Fund and his research is published in reputed
international conferences and journals. Dr. Erbad is a member
of various University committees (Policy, Ranking,
Institutional Effective, Intellectual Property, Appeal and Re-
instatement) and the Chair of the University Research Support
Committee. He serves as an Editor in the European Alliance
for Innovation (EAI) Endorsed Transactions on Collaborative
Computing, and as a technical program committee member in
various IEEE and ACM international conferences. Dr. Erbad
acts as an expert in information technology strategy and
research techniques for various national entities.

Raj Jain is a Fellow of IEEE, a Fellow

of ACM, a Fellow of AAAS. He received
BS degree in Electrical Engineering from
APS University in Rewa, India in 1972 and
MS in Computer Science & Controls from
IISc, Bangalore, India in 1974 and the
Ph.D. degree in Applied Math/Computer
Science from Harvard University in 1978.

Dr. Jain is currently a Professor of
Computer Science & Engineering at Washington University in
St. Louis. Previously, he was one of the Co-founders of Nayna
Networks, Inc - a next generation telecommunications systems
company in San Jose, CA. He was a Senior Consulting
Engineer at Digital Equipment Corporation in Littleton, Mass
and then a professor of Computer and Information Sciences at
Ohio State University in Columbus, Ohio. He has 14 patents
and has written or edited 12 books, 16 book chapters, 65+
journal and magazine papers, and 10e5+ conference papers.

He is a winner of ACM SIGCOMM Test of Time award,
CDAC-ACCS Foundation Award 2009, and ranks among the
top 100 in CiteseerX's list of Most Cited Authors in Computer
Science.

	1. Introduction
	2. Background - VNSs and their Management
	1) Virtual Infrastructure Manager (VIM)
	2) Virtual Network Function Manager (VNFM)
	3) NFV Orchestrator (NFVO)
	4) Catalogs and Repositories
	5) MANO Reference Points – Interaction with Other Functional Blocks.

	3. Fault and Performance (FP) Problem Description
	4. Discussion of works related to FP Management
	5. AI-Based Handling of FP Issues
	6. Description of the Proposed FP Management Framework
	7. Evaluation of the model
	8. Summary
	References

