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Abstract: Efficient provisioning of 5G network slices is a major challenge for 5G network slicing
technology. Previous slice provisioning methods have only considered network resource attributes
and ignored network topology attributes. These methods may result in a decrease in the slice
acceptance ratio and the slice provisioning revenue. To address these issues, we propose a two-stage
heuristic slice provisioning algorithm, called RT-CSP, for the 5G core network by jointly considering
network resource attributes and topology attributes in this paper. The first stage of our method is
called the slice node provisioning stage, in which we propose an approach to scoring and ranking
nodes using network resource attributes (i.e., CPU capacity and bandwidth) and topology attributes
(i.e., degree centrality and closeness centrality). Slice nodes are then provisioned according to the
node ranking results. In the second stage, called the slice link provisioning stage, the k-shortest path
algorithm is implemented to provision slice links. To further improve the performance of RT-CSP,
we propose RT-CSP+ which uses our designed strategy, called minMaxBWUtilHops, to select the
best physical path to host the slice link. The strategy minimizes the product of the maximum link
bandwidth utilization of the candidate physical path and the number of hops in it to avoid creating
bottlenecks in the physical path and reduce the bandwidth cost. Using extensive simulations, we
compare our results with those of the state-of-the-art algorithms. The experimental results show that
our algorithms increase slice acceptance ratio and improve the provisioning revenue-to-cost ratio.

Keywords: 5G core network slice; network slicing; resource attributes; slice provisioning; topology
attributes

1. Introduction

Information and communication technologies (ICTs) are infiltrating many fields, including
governance, economics, defense, media, social media, health care, industry, education, etc. [1–4]. These
fields are undergoing continuous digitalization and pervasive interconnection making communication
networks an indispensable infrastructure. The coming 5G networks will promote the further upgrade
of human interaction. More importantly, 5G will support a variety of vertical services, such as
self-driving cars, augmented reality, live video, telemedicine, and financial transactions [5]. While
5G will improve productivity and optimize business processes, it will inevitably bring new legal and
ethical issues that cannot be ignored [6,7].

The 5th generation (5G) mobile networks are expected to handle the tremendous growth of
data from diverse and heterogeneous services. Softwarization, virtualization, and cloud-based
5G architecture design [8,9] are considered to be promising technologies to address the challenges
introduced by the diversified service demands. Network slicing is one of the key concepts that can be
realized by these techniques to support the specific needs of vertical industries. End-to-end network
slicing enables multiple network services to share a single physical network infrastructure (also called
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the substrate network) including radio access networks (RAN) and core networks [10,11]. The big
idea behind network slicing is to allow the shared 5G physical network infrastructure to be sliced into
multiple logical networks, each of which is a collection of virtual computing and networking resources
capable of supporting a specific type of service. It is, therefore, believed that network slicing will
be an indispensable enabler of 5G network architecture to meet the diverse requirements of vertical
applications.

We can broadly divide network slicing into two categories: radio access network slicing and core
network slicing. In this paper, we focus on 5G core network slicing. A three-layer 5G core network
slicing system model proposed by us has been elaborated in [12] and illustrated in Figure 1. There are
three administrative roles in this model: 5G core infrastructure provider, 5G core slice provider, and
slice tenants. The Infrastructure Provider (InP) owns the 5G core infrastructure and can lease physical
resources such as computing and networking resources to the slice providers. A Slice Provider (SP) can
be regarded as a virtual telecommunications service provider (TSP). The SP controls the virtualization
of the resources to form network slices and provides services for users. Slice tenant is the consumer of
an application specific network slice. It informs the slice provider of the characteristics of the service
it needs. The slice provider requests physical resources from the infrastructure provider to create a
network slice to provide the service according to the tenant’s demands. The slice provisioning system
interacts with the three roles to orchestrate and manage physical resources.

Figure 1. Illustration of three-layer 5G core network slicing system model.

Although network slicing has attracted increasing attention from both academia and industry
[13], slice provisioning is a key issue to be addressed [14]. Slice provisioning is an approach to creating
separate virtual networks based on service requirements using common physical computing and
networking resources. Two sub-tasks in slice provisioning are slice node provisioning and slice link
provisioning. From the perspective of InP, since the computing and networking capacities of the
physical network are limited, increasing physical resource utilization to provision more slices is crucial
to raising its revenue. Therefore, in this article, we study how to efficiently provision 5G core network
slices to optimize resource utilization of the 5G physical network infrastructure, thus, increasing the
revenue of InP.
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The slice provisioning problem in 5G network slicing is essentially the same as the traditional
virtual network embedding (VNE) problem [15] in network virtualization (NV) 1. Most of previous
VNE methods have only considered the resource attributes of the network and ignored its topology
attributes to allocate physical resources to virtual network requests. Notwithstanding that several
approaches consider the resource and topology attributes, the local and global resource attributes as
well as the local and global topology attributes are not reasonably defined, which causes these methods
to be not effective.

Based on the above considerations, we have designed a heuristic 5G core network slice
provisioning strategy based on the local and global network resource attributes and topology attributes
including the product of the CPU of the node and all its adjacent links, i.e., local resource attribute, the
minimum bandwidth of the links in the shortest path of the node to all other nodes and the minimum
CPU of the nodes along the shortest path, i.e., global resource attribute, node degree centrality, and
node closeness centrality. When a 5G core slice request arrives at the slice provisioning system, the
system uses resource attributes and topology attributes to perform comprehensive node evaluation
and ranking, and then slice nodes are provisioned according to the ranking results. Next, slice links
are provisioned using the k-shortest path algorithm. Our contributions are summarized as follows:

• We propose a network node scoring and ranking method by jointly considering local and global
network resource and topology attributes. Specifically, we introduce a cooperative provisioning
coefficient for the physical node scoring to enhance the efficiency of provisioning slice links.

• We design a two-stage 5G core slice provisioning algorithm, called RT-CSP, which includes a
heuristic slice node provisioning algorithm and a k-shortest path based slice link provisioning
algorithm. In the first stage, slice nodes are provisioned in a heuristic manner in accordance with
the network node ranking results. In the second stage, the k-shortest path algorithm is used to
provision slice links.

• To further improve the performance of RT-CSP, we propose RT-CSP+ slice provisioning algorithm
based on our designed minMaxBWUtilHops strategy in the slice link provisioning stage. The
strategy selects the physical path which has the minimum product of the maximum link
bandwidth utilization and its hop count from the candidate physical paths obtained by the
k-shortest path algorithm to host the slice link.

• We verify the performance of our proposed algorithm through extensive simulations and prove
that our algorithm can increase the slice request acceptance ratio and, hence, the revenue of
physical network provider.

The remainder of the paper is organized as follows. Section 2 discusses the related work. In Section
3, we describe the 5G core slice provisioning problem and present the system model. The heuristic 5G
core slice provisioning algorithms based on network resource attributes and topology attributes are
presented in Section 4. In Section 5, we present simulation experiments and the experimental results.
Finally, the conclusions and future work are laid out in Section 6.

2. Related Work

In this section, we first summarize several classic methods to solve the VNE problem with special
regard to those methods considering network resource attributes or topology attributes. Then we
review the latest work related to the resource allocation in network slicing.

2.1. VNE Methods

Since VNE problem has been proven to be NP-hard by being reduced to multiway separator
problem[16], its solutions can be grouped into three categories: the exact solutions, meta-heuristic

1 We rename the virtual network embedding (VNE) problem to slice provisioning problem in network slicing.
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solutions and heuristic solutions. Houidi et al. [17] proposed and evaluated an exact algorithm for the
VNE problem using integer linear programming (ILP). They used the branch and bound method to
embed virtual network requests to multiple physical networks. The results showed that the proposed
exact algorithm was effective for solving small-scale problem instances. The VNE problem considered
in [18] was formalized as an ILP model. Due to the complexity of ILP, the authors proposed a discrete
particle swarm optimization (DPSO) method to solve the VNE problem. Simulation results showed
that the DPSO method could get a better convergence performance than existing PSO methods.

Some heuristic algorithms used network resource attributes or topology attributes to rank nodes
in the node mapping stage in VNE. Yu et al. [19] employed the product of the node CPU capacity and
its adjacent link bandwidth for node ranking. This method was used in many other research works.
However, it only considered the local resource attributes of the node. Cheng et al. [20] introduced
topology attributes for the first time to embed virtual networks. Referring to the Google PageRank
algorithm, they used Markov Random Walk method to rank nodes and performed node mapping in a
greedy manner according to the ranking results. Wang et al. [21] introduced the network centrality in
complex network theory into the VNE problem and ranked the nodes by calculating their closeness
centrality. However, the closeness centrality is only one of the topology properties of the network,
which measures the distance between a node and other nodes. A network topology attribute and
network resource-considered algorithm was proposed to embed virtual networks in [22]. However,
they only defined the local resource attributes. None of these algorithms considered the global network
resource attributes as well as reasonably combined the resource attributes and topology attributes to
comprehensively evaluate the importance of nodes.

2.2. Resource Allocation in Network Slicing

The authors in [23] specifically studied the problem of provisioning slice links with splittable
flows. Since this problem is NP-hard, using the idea of the multipartite graph, they proposed a
polynomial heuristic algorithm based on linear relaxation and randomized rounding. It was verified
by simulation that the algorithm could achieve good performance. However, this study did not solve
the slice node provisioning. The work in [24] used a mixed integer linear programming (MILP) model
for the dynamic slicing problem and proposed several heuristic algorithms for it considering temporal
variations of the virtual resource requirements. The simulation results showed that the dynamic
slice provisioning could increase the slice acceptance ratio and, thus, enabled the physical network
provider to increase their revenue. But dynamic slicing comes at a cost of service quality degradation.
Danish Sattar and Ashraf Matrawy [25] proposed an optimal slice allocation strategy for the 5G core
network concerning the intra-slice isolation and delay requirement of slices. They formulated the
problem as a MILP model and solved it with CPLEX. Their results showed that the resource utilization
of the physical network would improve if the slice isolation was not considered, and stricter delay
requirement also affected the slice acceptance ratio as well as resource utilization. In the very latest
study [26], authors presented a latency-optimal resource allocation method for 5G transport network
slices to support URLLC services. They introduced the network resource attributes and topology
attributes to resource allocation in network slicing, but they did not delve into the impact of network
resource attributes and topology attributes on slice provisioning.

3. Problem Description and System Model

In this section, we first describe the 5G core slice provisioning problem, and then present the
system model. A summary of used notations is presented in Table 1.

3.1. 5G Core Slice Provisioning Problem Description

The InP supplies 5G core physical infrastructure. It consists of physical nodes deployed in
different locations and physical links connecting physical nodes. Physical nodes have computing,
storage, and network forwarding capabilities. Virtual machine (VM) or container [27] technologies
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Table 1. System model notations.

Notation Description

GI 5G core infrastructure topological graph.
V I Set of physical nodes.
EI Set of physical links.

c0(vI) Initial total CPU capacity of physical node vI .
ca(vI) Available CPU capacity of physical node vI .
cu(vI) Total CPU capacity of physical node vI allocated to slice nodes.
loc(vI) Location of physical node vI .

φ(vI
i , vI

j ) Euclidean distance between physical nodes vI
i and vI

j .
b0(eI) Initial total bandwidth of physical link eI .
ba(eI) Available bandwidth of physical link eI .
bu(eI) Total bandwidth of physical link eI allocated to slice links.

PI(vI
i , vI

j ) Set of loop-free physical paths between vI
i and vI

j .
L(pI(vI

i , vI
j )) Set of links in pI(vI

i , vI
j ).

GS 5G core network slice request topological graph.
VS Set of slice nodes.
ES Set of slice links.

c(vS) CPU capability required by slice node vS.
loc(vS) Expected deployed location of slice node vS.
r(vS) Maximum deployed deviation allowed by slice node vS.
b(eS) Bandwidth required by slice link eS.

can be used to enable a physical node to host logically isolated virtual routers or VNFs (e.g., firewall,
proxy, etc.). High-speed fiber optic cables are deployed in 5G core networks as physical links which
have attributes such as bandwidth. Slice links are hosted on physical links or paths.

Slice tenants request 5G core network slices from the SP. A core network slice instance consists of
virtual network functions and virtual links. In this study, we assume that slice nodes offer the same
type of virtual network function which is virtual computing function. Slice nodes and links request
computing resources, storage resources, bandwidth resources, etc. from the slice provisioning system.
Without loss of generality, we only consider computing resources and bandwidth resources here. In
addition, a slice node may have a location constraint instead of being arbitrarily deployed.

The slice provisioning process includes mapping slice nodes to physical network nodes that
satisfy the resource and deployment location requirements and mapping slice links onto physical
paths that meet the bandwidth requests. The slice request is only accepted if the requirements of all
nodes and links of the slice are satisfied; otherwise, it is rejected. We make the following assumptions
for the slice provisioning problem:

• The topology of the slice remains unchanged during the life cycle of the slice, which means slice
reconfiguration is not considered here.

• Slice nodes from the same 5G core network slice request can only be mapped to different physical
nodes, that is, co-hosting is not allowed [28].

• Slice links cannot be split. They can only be hosted by one physical path [28].

3.2. System Model

3.2.1. 5G Core Infrastructure

The 5G core infrastructure topology is represented by a weighted undirected graph GI = (V I , EI),
where V I is the set of physical nodes and EI is the set of physical links. For each physical node
vI ∈ V I , its initial total and available computing capacities are represented as c0(vI) and ca(vI)

respectively. Its location is denoted by loc(vI), which is represented as Cartesian coordinates, i.e.,
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loc(vI) = (x(vI), y(vI)). The distance of the physical link with physical nodes vI
i and vI

j as endpoints

is the Euclidean distance between them, expressed as φ(vI
i , vI

j ). For each physical link eI ∈ EI , its initial

total and available bandwidth are represented as b0(eI) and ba(eI) respectively. The set of all loop-free
paths in the infrastructure is denoted as PI . PI(vI

i , vI
j ) represents the set of loop-free physical paths

between vI
i and vI

j . For each path pI(vI
i , vI

j ) ∈ PI(vI
i , vI

j ), L(pI(vI
i , vI

j )) is the set of links in pI(vI
i , vI

j ).

Then the bandwidth of pI(vI
i , vI

j ) is defined as b(pI(vI
i , vI

j )) = min
eI∈L(pI(vI

i ,vI
j ))

b(eI).

3.2.2. 5G Core Slice Request

5G core slice requests arrive dynamically at the resource provisioning system. The ith slice request
is represented by a triplet SRi = (GS

i , ta
i , tl

i), where GS
i , ta

i , and tl
i represent the topology of the ith

slice, its arrival time and its lifetime, respectively. The slice topology is represented by a weighted
undirected graph GS = (VS, ES). Here VS is the set of slice nodes, and ES is the set of slice links. For
each slice node vS ∈ VS, CPU capability required by it is c(vS). Its expected deployed location is
loc(vS) = (x(vS), y(vS)) and the maximum deployed deviation allowed is r(vS), that is, the slice node
can be deployed at the location within a circle whose center is the expected location loc(vS) and the
radius is r(vS). Each slice link eS ∈ ES is characterized by the amount of required bandwidth b(eS).

3.2.3. Slice Provisioning Process

The resource provisioning for 5G core slice task contains two sub-tasks: mapping slice nodes to
physical nodes and mapping slice links to physical paths. Slice nodes from one slice request cannot
be mapped to the same physical node. A slice link is mapped to a physical path with endpoints that
host two slice nodes connected by the slice link. Once the resource provisioning for a slice request is
successful, the allocated resource will be dedicated for the slice during its lifetime. When the lifetime
ends, the allocated resource is released.

The slice node mapping function is defined as follows:

M(V) : VS → V′, V′ ⊆ V I .

Slice nodes are mapped to V′ that is a subset of the physical node set V I . Since M(V) is an injective
function, ∀vS

k , vS
l ∈ VS, we have:

M(vS
k ) = M(vS

l ), if and only if vS
k = vS

l .

Slice link mapping function is defined as follows:

M(E) : ES → P′, P′ ⊆ PI .

Slice links are mapped to P′ that is a subset of all loop-free paths set PI in the infrastructure.
Thus, we define 5G core network slice mapping function as:

M(S) : (VS, ES)→ (V′, P′).

The calculations of resource updating during mapping process are as follows. We use cu(vI , t) to
indicate the total computing resources that the slice provisioning system assigns to all the mapped
slice nodes from different slice requests at time t. It is defined below:

cu(vI , t) = ∑
vS

c(vS).
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Then the available computing resources the physical node vI has at time t can be calculated as:

ca(vI , t) = c0(vI)− cu(vI , t).

Similarly, we use bu(eI , t) to represent the bandwidth resources the slice provisioning system has
allocated to all the slice links at time t.

bu(eI , t) = ∑
eS

c(eS).

Then the available bandwidth the physical link eI has at time t can be calculated as:

ba(eI , t) = b0(eI)− bu(eI , t).

In order to ensure a successful 5G core slice provisioning, all node and link constraints need to be
met. The corresponding constraints are defined as follows.

Slice node mapping: each slice node should be mapped to one physical node.

∑
vI

i

xk
i = 1, ∀vS

k ∈ VS. (1)

xk
i indicates whether the slice node vS

k is mapped to the physical node vI
i or not. If vS

k is mapped to vI
i ,

xk
i is 1. Otherwise, it is 0.

One-to-one node mapping: each physical node can only host one slice node from the same slice
request:

∑
vS

k

xk
i ≤ 1, ∀vI

i ∈ V I . (2)

CPU capacity: the allocated CPU capacity for slice nodes at a physical node cannot exceed the
available CPU capacity of that physical node:

∑
vS

k

xk
i · c(vS

k ) ≤ ca(vI
i ), ∀vI

i ∈ V I . (3)

Location constraint: the distance between the mapped location of a slice node and its expected
deployment location cannot exceed the maximum allowed deviation.

xk
i · dis(vS

k , vI
i ) ≤ r(vS). (4)

Where dis(vS
k , vI

i ) is calculated as:

dis(vS
k , vI

i ) =
√
(x(vS

k )− x(vI
i ))

2 + (y(vS
k )− y(vI

i ))
2. (5)

Bandwidth: the sum of bandwidth allocated to all the slice links that are mapped to one physical
link cannot exceed its available bandwidth:

∑
eS

kl

ykl
ij · b(eS

kl) ≤ ba(eI
ij), ∀eI

ij ∈ EI . (6)

If the physical link eI
ij hosts the slice link eS

kl , ykl
ij is 1. Otherwise, it is 0.



8 of 21

3.2.4. Performance Metrics

The 5G core network infrastructure provider, while providing physical resources to the tenants,
attempts to maximize its operating profit. As such, the main goal of the resource provisioning for slices
is to maximize resource provisioning revenue by provisioning as many slice requests as possible. In
this paper, we use slice acceptance ratio, long-term average provisioning revenue and provisioning
revenue-to-cost ratio as metrics to evaluate the performance of the provisioning algorithms. They are
defined below.

Slice acceptance ratio (λ): it is the ratio of the number of slices successfully provisioned to the
total number of slice requests that arrive over a period of time. Then,

λ = lim
T→+∞

T
∑

t=0
Sm(t)

T
∑

t=0
S(t)

. (7)

where S(t) is the total number of slice requests at time t and Sm(t) is the number of slice requests
provisioned successfully at time t.

Long-term average provisioning revenue (µ): Here we assume the unit price of CPU capacity
and bandwidth is 1. Then the provisioning revenue of slice request GS at time t is defined as:

REV(GS, t) = ∑
vS∈VS

c(vS) + ∑
eS∈ES

b(eS). (8)

The long-term average provisioning revenue is represented as:

µ = lim
T→+∞

T
∑

t=0
∑

GS∈Sm(t)
REV(GS, t)

T
. (9)

Provisioning revenue-to-cost ratio (η): The provisioning cost of slice request GS at time t is

COST(GS, t) = ∑
vS∈VS

c(vS) + ∑
eS∈ES

|L(pI(eS))|b(eS). (10)

pI(eS) is the physical path hosting the slice link eS, and L(pI(eS)) denotes the set of physical links in
pI(eS). Hence, we define provisioning revenue-to-cost ratio η as:

η =
REV

COST
= lim

T→+∞

T
∑

t=0
∑

GS∈Sm(t)
REV(GS, t)

T
∑

t=0
∑

GS∈Sm(t)
COST(GS, t)

. (11)

4. Heuristic 5G Core Network Slice Provisioning Algorithm Design

In this section, we describe our heuristic 5G Core Slice Provisioning algorithm based on network
Resource and Topology attributes called RT-CSP in detail. Accordingly we first present a method
for ranking network nodes by using these attributes. Then we elaborate our two-stage algorithm
consisting of algorithms for heuristic slice node provisioning and k-shortest path based slice link
provisioning. Finally, we analyze the time complexity of the RT-CSP algorithm and prove that it can
run in polynomial time.
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4.1. Node Ranking Based on Network Resource Attributes and Topology Attributes

In the slice node provisioning phase, a physical node for hosting a slice node needs to be carefully
selected in order to meet its required CPU capacity and provisioned location requirement. Many
studies in the VNE research area have only considered the local resource attributes of a network
node such as its CPU capacity and its adjacent link bandwidth. These works map virtual network
nodes according to node ranking results based on the local resource. However, these studies do
not consider global resource attributes. Moreover, the topology properties of nodes also affect the
evaluation of the importance of nodes, such as degree centrality, betweenness centrality, and closeness
centrality [29]. Only considering local resource attributes cannot accurately rank nodes. Therefore,
we take into consideration both the local and the global resource attributes and topology attributes to
comprehensively evaluate the importance of nodes.

4.1.1. Local Resource Attributes

The local resource metric of a node is obtained by multiplying the CPU capacity of the node by
the sum of bandwidths of all its adjacent links.

LR(vi) = c(vi) ∑
e∈E(vi)

b(e), (12)

where E(vi) is the set of all the adjacent links of vi. The reason why we define this metric is that the
larger LR(vi) is, the more slice nodes can be hosted by the physical node.

4.1.2. Global Resource Attributes

Considering only the local resources of a node can cause load imbalance and resource
fragmentation in the physical network. To address this, we take the minimum bandwidth of the
links in the shortest path of the node to all other nodes and the minimum computing capacity of the
nodes along the shortest path as the global resource metric. The following formula is its normalized
definition.

GR(vi) =

∑
i 6=j

[b(p(vi, vj)) + c(p(vi, vj))]

|V| − 1
, (13)

where b(p(vi, vj)) is the minimum bandwidth of the links and c(p(vi, vj)) is the minimum CPU of the
nodes in the shortest path between vi and vj.

4.1.3. Degree Centrality

In an undirected graph, the degree centrality of a node indicates the ratio of the number of its
adjacent links to the total number of links in the graph, i.e., normalized degree centrality.

DC(vi) =

∑
vj

aij

|V| − 1
, (14)

where aij is 1 if the node vi and the node vj are connected by a link; otherwise it is 0. The degree
centrality measures the local topological importance of the node in the network. The greater it is, the
more connected the node is and is more likely to be selected.

4.1.4. Closeness Centrality

Closeness centrality is a method of measuring the importance of a node from a global topological
perspective.
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The closeness centrality of a node is obtained by first calculating the sum of the shortest paths
from the node to all other nodes in the graph and then taking the reciprocal of the sum. The normalized
closeness centrality is:

CC(vi) =
|V| − 1

∑
i 6=j

d(vi, vj)
, (15)

where d(vi, vj) is the length of the shortest path between node vi and node vj.
Thus, the nodes that are near the geometric center of the graph have higher closeness centrality.

4.1.5. Node Ranking Strategy

Our node ranking strategy combines all of the above four attributes. We rank the nodes as follows:

S(vi) = αLR(vi) · DC(vi) + βGR(vi) · CC(vi). (16)

In this strategy, we have integrated the local resources, global resources, local topology attributes,
and global topology attributes. It can systematically evaluate nodes in the physical network and slice
requests. α and β are used to weigh the relative importance of local attributes and global attributes of
the network.

4.2. Heuristic Slice Provisioning

The proposed two-stage slice provisioning algorithm is described in detail below.

4.2.1. Slice Node Provisioning

When a slice request arrives at the slice provisioning system, each slice node in the slice request
is scored according to the Eq. (17), and then the slice nodes are ranked according to the score from
high to low. The higher the score of the slice node is, the more preferentially it is provisioned. Here
α = β = 0.5.

S(vi) = αLR(vS
i ) · DC(vS

i ) + βGR(vS
i ) · CC(vS

i ). (17)

If physical network nodes are also scored according to the Eq. (17), the selected physical nodes
hosting slice nodes in the final provisioning result may be far apart. Long physical paths would have
to be provisioned under this circumstance, resulting in low utilization of physical network resources.
In order to overcome this issue, we use the following cooperative provisioning method. When the
current slice node is to be provisioned, the candidate physical node-set that can host the slice node
is attained. The sum of the hop counts of the shortest path between the physical nodes hosting all
the neighbor slice nodes of current slice node and the candidate physical node is calculated as the
cooperative provisioning coefficient. The candidate physical node having the smaller coefficient may
be a good hosting node. This cooperative way is beneficial to obtain a shorter physical path to host the
slice link in the slice link provisioning stage, thereby improving the utilization of network bandwidth.
Thus, we introduce cooperative provisioning coefficient for scoring the physical nodes.

H(vI
i ) = ∑

vI
j∈M(Adj(vS))

h(vI
i , vI

j ). (18)

S(vI
i ) =

αLR(vI
i ) · DC(vI

i ) + βGR(vI
i ) · CC(vI

i )

H(vI
i ) + ε

. (19)

H(vI
i ) is the cooperative provisioning coefficient. vI

i represents the candidate physical node that
satisfies the CPU and location requirements of slice node vS. M(Adj(vS)) represents a physical node
set hosting all the neighbor slice nodes of the slice node vS. h(vI

i , vI
j ) is the hop counts of the shortest
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path between the physical nodes vI
i and vI

j . ε is set to be 10−5 to prevent divisor from being 0. Here
α = β = 0.5. The slice node provisioning algorithm is described in Algorithm 1.

Algorithm 1 Slice Node Provisioning Based on Network Resource and Topology Attributes

Input: Infrastructure network GI and slice request GS

Output: Slice node provisioning solution
1: for each slice node vS ∈ VS do

2: S(vS) is calculated based on Equation (17).
3: end for
4: Rank all the slice nodes in descending order of S(vS) value.
5: Put the ranking results into sliceNodeRankList.
6: for each physical node vI ∈ V I do

7: RTScore based on resource and topology attributes is calculated based on Equation (16).
8: end for
9: for each slice node vS ∈ sliceNodeRankList do

10: Obtain the candidate physical nodes candidate(vS) for vS meeting its CPU capacity and

provisioned location demands.
11: if candidate(vS) is not empty then

12: Obtain the physical nodes M(Adj(vS)) hosting the neighbor slice nodes of vS.
13: for each physical node vI ∈ candidate(vS) do

14: Cooperative provisioning coefficient H(vI) is calculated based on Equation (18).
15: S(vI) is calculated based on Equation (19).
16: end for
17: Provision vS onto the candidate physical node which has the largest S.
18: Put the provisioning result of vS into sliceNodeProvisioningList.
19: else

20: return sliceNodeProvisioningFailed
21: end if
22: end for
23: return sliceNodeProvisioningList

4.2.2. Slice Link Provisioning

In the slice link provisioning stage, since the slice link with a larger amount of bandwidth resource
demand is more difficult to be provisioned, the slice links are first ranked according to the bandwidth
requirements from large to small. The k-shortest path algorithm [30] is then implemented to provision
slice links. Thus, our RT-CSP algorithm includes the heuristic slice node provisioning algorithm and
the basic k-shortest path-based slice link provisioning algorithm.

To further improve the performance of RT-CSP, we propose a novel strategy, called
minMaxBWUtilHops, in the slice link provisioning stage. After the k-shortest path algorithm obtains
k candidate physical paths for each slice link satisfying its bandwidth demand, minMaxBWUtilHops
evaluates each candidate physical path as follows:

ΓpI = (1− ba(eI)

b0(eI)
)max · |L(pI)|. (20)

ΓpI is the product of the maximum link bandwidth utilization of the candidate physical path pI and its
hop counts. The candidate physical path with the smallest ΓpI is selected to host the slice link. The
reason why we propose this strategy is that the physical link with large bandwidth utilization in the
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physical path becomes the bottleneck of the path, which causes the provisioning of the other slice links
to fail easily, resulting in a decrease in the slice acceptance ratio. In addition, selecting the physical
path with fewer hops can reduce the provisioning cost. The slice link provisioning algorithm based on
the minMaxBWUtilHops is described in Algorithm 2. The slice provisioning algorithm with heuristic
slice node provisioning algorithm and the minMaxBWUtilHops based slice link provisioning algorithm
is named as RT-CSP+.

Algorithm 2 Slice Link Provisioning Based on minMaxBWUtilHops

Input: Infrastructure network GI , slice request GS, and slice node provisioning results

sliceNodeProvisioningList
Output: Slice link provisioning solution

1: Rank all the slice links in ES based on bandwidth requirements from large to small.
2: Put the ranking results into sliceLinkRankList.
3: for each slice link eS ∈ sliceLinkRankList do

4: k shortest path algorithm is implemented to obtain the candidate substrate paths subPathList

for eS meeting its bandwidth demand.
5: if subPathList is not empty then

6: for each substrate path subPath ∈ subPathList do

7: Calculate ΓpI based on Equation (20).
8: end for
9: Provision eS onto the candidate substrate path with the minimum ΓpI .

10: else

11: return sliceLinkProvisioningFailed
12: end if
13: end for
14: return sliceLinkProvisioningList

4.2.3. Slice Provisioning

When the ith slice request SRi = (GS
i , ta

i , tl
i) arrives at the slice provisioning system, the system

first checks the already provisioned slices whose lifetime ends at time ta
i and releases the physical

resources they occupied. Then slice nodes and slice links of GS
i are respectively provisioned according

to the above heuristic node provisioning and the link provisioning algorithms. The slice is only
accepted by the slice provisioning system if the nodes and the links are both provisioned successfully.
The slice provisioning algorithm RT-CSP+ is described in Algorithm 3. The only difference between
the RT-CSP and the RT-CSP+ is that RT-CSP uses the basic k-shortest path-based slice link provisioning
while RT-CSP+ uses the minMaxBWUtilHops based slice link provisioning.

4.2.4. Time Complexity of RT-CSP+ Algorithm

In this section, we analyze the time complexity of the RT-CSP algorithm. Its time complexity
is the sum of time complexities of slice node provisioning algorithm (i.e., Algorithm 1) and
the slice link provisioning algorithm (i.e., Algorithm 2). The complexity of Algorithm 1 is
dominated by the calculation of closeness centrality, whose complexity is O(|V I ||EI |+ |V I |2). Yen
k-shortest path algorithm [30] is implemented in the slice link provisioning stage. Its complexity
is O(k|V I |(|EI |+ |V I |log|V I |)). Therefore, the time complexity of RT-CSP algorithm is O(|V I ||EI |+
|V I |2) + O(k|V I |(|EI |+ |V I |log|V I |)). It can run in polynomial time.
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Algorithm 3 Slice Provisioning Algorithm RT-CSP

Input: Infrastructure network GI and the ith slice request SRi = (GS
i , ta

i , tl
i)

Output: Slice provisioning result
1: Check slice requests whose lifetime ends at ta

i , release physical resources they occupied and update

physical resources.
2: Provision slice nodes of GS

i using Algorithm 1.
3: if Slice nodes of GS

i provisioning failed then

4: return sliceProvisioningFailed
5: else

6: Provision links of slice GS
i using Algorithm 2.

7: if Links of slice GS
i provisioning failed then

8: return sliceProvisioningFailed
9: else

10: Provision slice request GS
i , allocate physical resources and update physical resources.

11: return sliceProvisioningSucceeded
12: end if
13: end if

5. Performance Evaluation

In this section, we evaluate the performance of the proposed heuristic 5G core slice provisioning
algorithms RT-CSP+ and RT-CSP. First, we describe the experimental settings for implementing our
algorithms. Then we present the results obtained from extensive evaluation experiments and analyze
the results by comparing them with the state-of-the-art algorithms.

5.1. Evaluation Settings

We have developed a discrete event simulator using Java to evaluate our algorithms and run all
the experiments on a Windows 10 laptop with Intel Core i7-6820HQ CPU and 24G RAM. The topology
generation package “Brite” [31] is integrated with our simulator to generate the 5G core infrastructure
topology and the 5G core slice requests based on the Waxman topology model [32].

In order to compare our results with those of existing research, the simulation parameters are set
according to the parameter settings widely used in previous research [19,28,33]. They are described as
follows and summarized in Table 2.

The physical network nodes are randomly deployed in a rectangular area of 500 by 500. The
initial total available CPU capacity of the nodes are real numbers uniformly distributed between 50
and 100. Adjacent nodes are connected by a probability of 0.5 to form physical links, whose initial total
available bandwidth are real numbers uniformly distributed between 50 and 100.

The 5G core slice requests arrive following a Poisson process. The number of nodes in the slice
request is a uniformly distributed integer between 2 and 10. For each slice request, the slice nodes
allow the provisioned position to have a deviation of less than 80. The CPU demands of the slice nodes
are real numbers uniformly distributed between 1 and 20. Slice nodes are connected by a probability
to form slice links. The bandwidth requirement of each slice link takes a uniformly distributed real
number in the range [1, 20]. The lifetime of the slice request follows the exponential distribution with a
mean of 500 time units. We have 2000 slice requests in total in the experiments.

5.2. Evaluation Results and Analysis

In order to evaluate the experimental results, we compare the state-of-the-art algorithms as listed
in Table 3. The RT-CSP+ and RT-CSP algorithms are our proposed algorithms. First, we evaluate



14 of 21

Table 2. Notations of system model.

Parameter Description

Number of substrate nodes 50/100/150
Probability of connecting substrate nodes 0.5

Substrate node CPU U[50, 100]
Substrate link bandwidth U[50, 100]

Lifetime of slice requests obeying
Exponential distribution

500 time units in average

Number of slice requests 2000
Number of slice nodes in each slice U[2, 10]

Probability of connecting slice nodes 0.2/0.5/0.8
Slice node CPU demand U[1, 20]

Slice link bandwidth demand U[1, 20]

the performances of these algorithms in the scenario where the slice request arrival rate is 4 requests
per 100 time units. Next, we change the slice link connected probability to study its effects on the
performance of the algorithms. Then, in order to verify the scalability of our algorithms, we examine
simulation scenarios with different slice arrival rates and different sizes of the substrate network. We
run each experiment for 10 times to analyze experimental results.

Table 3. Algorithms for comparison.

Notation Description

RT-CSP+ The provisioning algorithm considering resource and topology
attributes with the minMaxBWUtilHops based slice link
provisioning

RT-CSP The provisioning algorithm considering resource and topology
attributes with the basic k-shortest path-based slice link
provisioning

VNE-DCC The algorithm considering local resource and topology attributes
in [33]

NRM-VNE The algorithm only considering local resource attributes in [28]
CC The provisioning algorithm in [21] considering classic closeness

centrality

5.2.1. Experiments in The Scenario Where The Slice Request Arrival Rate Is 4 Requests Per 100 Time
Units

In this scenario, there are 100 substrate nodes in the substrate network and the slice nodes are
connected by a probability of 0.5. The results of slice acceptance ratio, long-term average revenue and
the revenue-to-cost ratio of the algorithms are shown in Figure 2, 3(a), and Figure 3(b) respectively.

Figure 2 shows our algorithm RT-CSP+ has the best slice acceptance performance over the entire
simulation time. The acceptance ratio of all algorithms is relatively high at the beginning of the
simulation because the CPU and bandwidth of the physical network are sufficient. As the simulation
progresses, the available resources of the physical network gradually reduce due to the occupation
of the active slice requests in the provisioning system, resulting in a gradual decrease in the slice
reception ratio. After 10,000 time units, the slice acceptance ratio tends to stabilize. The reason is that
the arrival and departure of the slices reach a relatively balanced state, and thus the available resources
of the physical network are relatively stable. When the simulation time reaches 40,000 time units,
the slice acceptance ratio of RT-CSP+ is 91.52%, which is 15.06%, 17.93%, and 51.25% higher than the
VNE-DCC, NRM-VNE, and CC, respectively. Our algorithm can comprehensively evaluates nodes
from the perspective of local and global resource and topology attributes, making node provisioning
more optimized. Thus, our algorithm can increase the slice acceptance ratio. The slice acceptance
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Figure 2. Slice acceptance ratio.
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Figure 3. (a) Long-term average slice provisioning revenue (b) Slice provisioning revenue-to-cost ratio.

ratio of RT-CSP+ is higher than RT-CSP, which shows that our minMaxBWUtilHops strategy in the link
provisioning stage can further enchance the performance of RT-CSP.

As shown in Figure 3(a), the RT-CSP+ algorithm has the largest long-term average slice
provisioning revenue. In the early stage of the simulation, the long-term average revenue decreases
rapidly. The reason is that as the slice arrives, the physical resources are consumed. The subsequent
arriving slices are easy to be rejected, which decreases the provisioning revenue. When the simulation
time reaches 10,000 time units, it tends to be stable because the arrival and departure of the slices
reach a relatively balanced state. In the final steady state, the long-term average revenue of RT-CSP+
algorithm is 20.01%, 23.86% and 69.88% higher than the VNE-DCC, NRM-VNE, and CC, respectively.
Similar to the slice acceptance ratio and the long-term average revenue, the revenue-to-cost ratio
also tends to be stable after 10,000 time units. Therefore, we show the average revenue-to-cost ratio
histogram during the steady stage in Figure 3(b). The RT-CSP+ and RT-CSP algorithms have better
performance than others in terms of this metric. This is consistent with the long-term average revenue
performance. Furthermore, since the revenue-to-cost ratio depends on the revenue and cost, the larger
revenue-to-cost ratio is not only because our algorithms can achieve higher revenue, but also because
it can reduce the provisioning cost.

5.2.2. Experiments in The Different Slice Link Connected Probability Scenario

We experiment in the different slice link connected probability scenario, in which the slice link
connected probability is 0.2, 0.5, and 0.8 respectively, to investigate its impact on the performance
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of the algorithms. Figure 4 and Figure 5 present the results of the slice acceptance ratio and slice
provisioning revenue performance.
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Figure 4. Slice acceptance ratio in the different slice link connected probability scenario.
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Figure 5. (a) Long-term average slice provisioning revenue in the different slice link connected
probability scenario (b) Slice provisioning revenue-to-cost ratio in the different slice link connected
probability scenario.

Figure 4 shows that the slice acceptance ratio decreases as the slice link connection probability
increases. This is because slice requests with more slice links demand more bandwidth resources,
which makes the physical network difficult to satisfy bandwidth demands, resulting in more rejected
slice requests. On the other hand, RT-CSP+ always has the highest slice acceptance ratio because of
its efficiency. Figure 5(a) shows that as the slice link connection probability increases, the long-term
average revenue of all algorithms increases except CC. For algorithms except CC, although the slice
acceptance ratio is smaller at larger slice link connection probability, more slice links are provisioned
in this case, which brings more provisioning revenue. For CC, because when the slice link connection
probability is 0.2, CC can obtain much better slice acceptance ratio compared with 0.5 and 0.8, which
contributes a lot to provisioning revenue. The long-term average revenue of CC has a similar trend
like other algorithms when the slice link connection probability gets larger. With regard to the
long-term average provisioning revenue, RT-CSP+ still outperforms others. Figure 5(b) shows that the
revenue-to-cost ratio decreases as the slice link connection probability increases. The reason why more
revenue cannot result in larger revenue-to-cost ratio is that more slice links should be provisioned
when the slice link connection probability is larger, in which case slice links are easier to be provisioned
to a longer physical path, resulting in more provisioning bandwidth cost.
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5.2.3. Experiments in The Different Slice Request Arrival Rates Scenario

We further validate the performance of our proposed algorithm by experimenting with different
slice arrival rates. There are 100 substrate nodes in the substrate network and the slice nodes are
connected by a probability of 0.5 in this scenario. Figure 6 and Figure 7 show the results of the slice
acceptance ratio and slice provisioning revenue performance with mean slice arrival rates of 0.02, 0.04,
0.06, 0.08, and 0.1.
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Figure 6. Slice acceptance ratio in the different arrival rates scenario.
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Figure 7. (a) Long-term average slice provisioning revenue in the different arrival rates scenario (b)
Slice provisioning revenue-to-cost ratio in the different arrival rates scenario.

As can be seen from Figure 6, RT-CSP+ algorithm always has the highest slice acceptance ratio
when slices arrive at different rates. For example, when the slice request arrival rate is 0.06, the slice
acceptance ratio of RT-CSP+ is 85.82%, which is 14.43%, 17.59%, 22.65%, and 56.15% higher than the
RT-CSP, VNE-DCC, NRM-VNE, and CC, respectively. This is because RT-CSP+ can comprehensively
optimize node provisioning using the resource and topology attributes and the minMaxBWUtilHops
strategy increases the probability of successfully provisioning slice links. In addition, slice acceptance
ratio of all algorithms decreases as the slice arrival rate increases. The reason is that the larger the
slice arrival rate, the more slices enter the slice provisioning system per unit time. Due to the limited
physical resources, the probability of slice provisioning failure increases when more slices compete for
limited physical resources, resulting in low slice acceptance ratio.

Figure 7(a) shows that the RT-CSP+ and RT-CSP algorithm always have better long-term average
slice provisioning revenue with different slice arrival rates. This is because RT-CSP+ and RT-CSP can
reasonably evaluate nodes in the node provisioning stage, resulting in more slices to be received. For
each algorithm, the reason why the long-term average revenue grows as the arrival rate increases is
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that more slice requests arrive per time unit under higher arrival rate scenario. Thus, more revenue
can be obtained per time unit. Figure 7(b) presents that the average slice provisioning revenue-to-cost
ratio during the steady stage is relatively stable with different slice arrival rates because the arrival
and departure of the slices can reach a relatively balanced state. Our algorithms still have higher
revenue-to-cost ratio.

5.2.4. Experiments in The Different Sizes of Substrate Network Scenario

50 100 150
Number of Substrate Nodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
S

li
ce

 A
cc

ep
ta

nc
e 

R
at

io

RT-CSP+
RT-CSP
VNE-DCC
NRM-VNE
CC

Figure 8. Slice acceptance ratio in the different sizes of substrate network scenario.
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Figure 9. (a) Long-term average slice provisioning revenue in the different sizes of substrate network
scenario (b) Slice provisioning revenue-to-cost ratio in the different sizes of substrate network scenario.

The slice nodes are connected by a probability of 0.5 in this scenario. Figure 8 and Figure 9 show
the results of the slice acceptance ratio and slice provisioning revenue performance when the number
of substrate network nodes is 50, 100, and 150, which represent small-, medium-, and large-sized
physical network, respectively.

Figure 8 shows that when the size of the physical network gets larger, all the algorithms have
higher slice acceptance ratio. This is because the physical network with larger size has sufficient
resources to host slice requests, which makes it easier to accept more slice requests. In the scenario
with different sizes of substrate network, RT-CSP+ always has best slice acceptance ratio. For instance,
when the substrate network has 150 nodes, the slice acceptance ratio of RT-CSP+ is 98.30%, which is
6.02%, 6.58%, 7.92%, and 17.44% higher than the RT-CSP, VNE-DCC, NRM-VNE, and CC, respectively.
The reason is that RT-CSP+ can efficiently provision slice requests based on the resource and topology
attributes. In accordance with better slice acceptance ratio, our algorithms can produce better revenue
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performance as shown in Figure 9. From another aspect, the better performance of our algorithm in
this scenario verifies its the scalability.

6. Conclusion

5G will be a disruptive technology in many ways. It has the potential to shakeup the
telecommunications industry but would require significant investments. Consumers, both business
and individual, expect new opportunities from massive, ultra low latency and high density Internet of
Things, as a run up to ambitious use cases like smart cities and autonomous vehicles. The potential of
5G can only be truly realized if telecommunications service providers build in economies in the new
deployments. Network slicing would be a key factor in achieving increased efficiencies and revenues
through service specific offerings.

We have worked on the slice-provisioning problem by taking into account both the slice node
provisioning and the slice link provisioning aspects. Accordingly, we have proposed a two-stage
slice-provisioning algorithm called RT-CSP. As far as provisioning of slice nodes is concerned,
our method takes into account the compute capacities, link bandwidths, degree centrality, and
closeness centrality for comprehensive evaluation and ranking of nodes. These amount to jointly
considering the local and global network resource attributes along with the topology attributes.
Along with the heuristic slice node provisioning algorithm, RT-CSP uses the k-shortest path based
slice link provisioning algorithm. An enhancement developed by us called RT-CSP+, based on
minMaxBWUtilHops strategy designed by us, improves the performance further by selecting the
physical path that has the minimum product of the maximum link bandwidth utilization and its hop
count from the candidate physical paths obtained by the k-shortest path algorithm.

Extensive evaluations have been carried out to compare both of our algorithms with other state of
the art algorithms and prove that the proposed algorithm does increase the slice request acceptance
ratio and consequently the revenue of the network infrastructure provider. As far as acceptance
ratio is concerned, both RT-CSP and RT-CSP+ perform better than other algorithms with the latter
consistently giving the best performance. As the slice request arrival rate increases, the acceptance
ratio of all the algorithms goes down but RT-CSP+ still retains its supremacy. In terms of provisioning
revenue, RT-CSP+ excels in long-term average slice provisioning revenue and revenue-to-cost ratio.
Both RT-CSP and RT-CSP exhibit better revenue performance than other algorithms as the arrival rate
increases. These results verify that our algorithms can comprehensively optimize node provisioning
using the resource and topology attributes.

We are enthused with the good performance of our algorithms and, in the future, we plan
to propose an efficient provisioning solution for latency-sensitive slices to satisfy low-latency 5G
applications.

Author Contributions: Conceptualization, X.L. and R.J.; Methodology, X.L., R.J. and C.G.; Software, X.L.;
Validation, X.L.; Writing-Original Draft Preparation, X.L. and L.G.; Writing-Review and Editing, all authors;
Supervision, C.G. and R.J.

Funding: This work has been supported by the NPRP grant #NPRP 8-634-1-131 from the Qatar National
Research Fund (a member of The Qatar Foundation), NSF grant #CNS-1718929, Huawei Technologies, and
China Scholarship Council (No. 201506270075).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Amendola, C.; Calabrese, M.; Caputo, F.; others. Fashion companies and customer satisfaction: A relation
mediated by Information and Communication Technologies. Journal of Retailing and Consumer Services 2018,
43, 251–257.

2. Del Giudice, M.; Caputo, F.; Evangelista, F. How are decision systems changing? The contribution of social
media to the management of decisional liquefaction. Journal of Decision systems 2016, 25, 214–226.



20 of 21

3. Stone, D.L.; Deadrick, D.L.; Lukaszewski, K.M.; Johnson, R. The influence of technology on the future of
human resource management. Human Resource Management Review 2015, 25, 216–231.

4. Susskind, R.E.; Susskind, D. The future of the professions: How technology will transform the work of human
experts; Oxford University Press, USA, 2015.

5. Papagiannis, H. Augmented human: How technology is shaping the new reality; " O’Reilly Media, Inc.", 2017.
6. Selin, C. The Ethics of Invention Technology and the Human Future. Science 2016, 353, 756–756.
7. Johnson, D.G. Technology with no human responsibility? Journal of Business Ethics 2015, 127, 707–715.
8. Rost, P.; Banchs, A.; Berberana, I.; Breitbach, M.; Doll, M.; Droste, H.; Mannweiler, C.; Puente, M.A.;

Samdanis, K.; Sayadi, B. Mobile network architecture evolution toward 5G. IEEE Communications Magazine
2016, 54, 84–91.

9. Jain, R.; Paul, S. Network virtualization and software defined networking for cloud computing: a survey.
IEEE Communications Magazine 2013, 51, 24–31.

10. NGMN. Description of network slicing concept. https://www.ngmn.org/fileadmin/user_upload/
160113_Network_Slicing_v1_0.pdf. Accessed May 2, 2019.

11. 3GPP. Study on management and orchestration of network slicing for next generation network (Release
15). Technical Specification (TS) 28.801, 3rd Generation Partnership Project (3GPP), 2018.

12. Li, X.; Samaka, M.; Chan, H.A.; Bhamare, D.; Gupta, L.; Guo, C.; Jain, R. Network slicing for 5G: challenges
and opportunities. IEEE Internet Computing 2017, 21, 20–27.

13. Afolabi, I.; Taleb, T.; Samdanis, K.; Ksentini, A.; Flinck, H. Network slicing and softwarization: A
survey on principles, enabling technologies, and solutions. IEEE Communications Surveys & Tutorials 2018,
20, 2429–2453.

14. Kim, Y.; Kim, S.; Lim, H. Reinforcement Learning Based Resource Management for Network Slicing.
Applied Sciences 2019, 9, 2361.

15. Fischer, A.; Botero, J.F.; Beck, M.T.; De Meer, H.; Hesselbach, X. Virtual network embedding: A survey.
IEEE Communications Surveys & Tutorials 2013, 15, 1888–1906.

16. Andersen, D.G. Theoretical approaches to node assignment 2002.
17. Houidi, I.; Louati, W.; Ameur, W.B.; Zeghlache, D. Virtual network provisioning across multiple substrate

networks. Computer Networks 2011, 55, 1011–1023.
18. Wang, L.; Qu, H.; Zhao, J.; Guo, Y. Virtual network embedding with discrete particle swarm optimisation.

Electronics Letters 2014, 50, 285–286.
19. Yu, M.; Yi, Y.; Rexford, J.; Chiang, M. Rethinking virtual network embedding: substrate support for path

splitting and migration. ACM SIGCOMM Computer Communication Review 2008, 38, 17–29.
20. Cheng, X.; Su, S.; Zhang, Z.; Wang, H.; Yang, F.; Luo, Y.; Wang, J. Virtual network embedding through

topology-aware node ranking. ACM SIGCOMM Computer Communication Review 2011, 41, 38–47.
21. Wang, Z.; Han, Y.; Lin, T.; Tang, H.; Ci, S. Virtual network embedding by exploiting topological information.

2012 IEEE Global Communications Conference (GLOBECOM). IEEE, 2012, pp. 2603–2608.
22. Cao, H.; Yang, L.; Zhu, H. Novel node-ranking approach and multiple topology attributes-based

embedding algorithm for single-domain virtual network embedding. IEEE Internet of Things Journal
2017, 5, 108–120.

23. Paschos, G.S.; Abdullah, M.A.; Vassilaras, S. Network Slicing with Splittable Flows is Hard. 2018 IEEE
29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC).
IEEE, 2018, pp. 1788–1793.

24. Raza, M.R.; Fiorani, M.; Rostami, A.; Öhlen, P.; Wosinska, L.; Monti, P. Dynamic slicing approach for
multi-tenant 5G transport networks. Journal of Optical Communications and Networking 2018, 10, A77–A90.

25. Sattar, D.; Matrawy, A. Optimal Slice Allocation in 5G Core Networks. CoRR 2018, abs/1802.04655.
26. Li, W.; Zi, Y.; Feng, L.; Zhou, F.; Yu, P.; Qiu, X. Latency-Optimal Virtual Network Functions Resource

Allocation for 5G Backhaul Transport Network Slicing. Applied Sciences 2019, 9, 701.
27. Bernstein, D. Containers and cloud: From lxc to docker to kubernetes. IEEE Cloud Computing 2014, pp.

81–84.
28. Zhang, P.; Yao, H.; Liu, Y. Virtual network embedding based on computing, network, and storage resource

constraints. IEEE Internet of Things Journal 2017, 5, 3298–3304.
29. Newman, M. Networks; Oxford university press, 2018.
30. Yen, J.Y. Finding the k shortest loopless paths in a network. management Science 1971, 17, 712–716.

https://www.ngmn.org/fileadmin/user_upload/160113_Network_Slicing_v1_0.pdf
https://www.ngmn.org/fileadmin/user_upload/160113_Network_Slicing_v1_0.pdf


21 of 21

31. Medina, A.; Lakhina, A.; Matta, I.; Byers, J. BRITE: Universal topology generation from a user’s perspective.
Technical report, Boston University Computer Science Department, 2001.

32. Waxman, B.M. Routing of multipoint connections. IEEE journal on selected areas in communications 1988,
6, 1617–1622.

33. Zhang, P.; Yao, H.; Liu, Y. Virtual network embedding based on the degree and clustering coefficient
information. IEEE Access 2016, 4, 8572–8580.


	Introduction
	Related Work
	VNE Methods
	Resource Allocation in Network Slicing

	Problem Description and System Model
	5G Core Slice Provisioning Problem Description
	System Model
	5G Core Infrastructure
	5G Core Slice Request
	Slice Provisioning Process
	Performance Metrics


	Heuristic 5G Core Network Slice Provisioning Algorithm Design
	Node Ranking Based on Network Resource Attributes and Topology Attributes
	Local Resource Attributes
	Global Resource Attributes
	Degree Centrality
	Closeness Centrality
	Node Ranking Strategy

	Heuristic Slice Provisioning
	Slice Node Provisioning
	Slice Link Provisioning
	Slice Provisioning
	Time Complexity of RT-CSP+ Algorithm


	Performance Evaluation
	Evaluation Settings
	Evaluation Results and Analysis
	Experiments in The Scenario Where The Slice Request Arrival Rate Is 4 Requests Per 100 Time Units
	Experiments in The Different Slice Link Connected Probability Scenario
	Experiments in The Different Slice Request Arrival Rates Scenario
	Experiments in The Different Sizes of Substrate Network Scenario


	Conclusion
	References



