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Abstract—This letter studies the problem of Direction of
Arrival (DoA) estimation from low-resolution few-bit quantized
data collected by Sparse Linear Array (SLA). In such cases,
contrary to the one-bit quantization case, the well known arcsine
law cannot be employed to estimate the covaraince matrix of
unquantized array data. Instead, we develop a novel optimization-
based framework for retrieving the covaraince matrix of unquan-
tized array data from low-resolution few-bit measurements. The
MUSIC algorithm is then applied to an augmented version of
the recovered covariance matrix to find the source DoAs. The
simulation results show that increasing the sampling resolution
to 2 or 4 bits per samples could significantly increase the
DoA estimation performance compared to the one-bit sampling
regime while the power consumption and implementation costs
is still much lower in comparison to the high-resolution sampling
implementations.

Index Terms—Direction of arrival (DoA) estimation, low-
resolution quantization, Sparse linear arrays, few-bit quantiza-
tion.

I. INTRODUCTION

Direction of Arrival (DoA) estimation from Uniform Linear
Array (ULA) measurements is extensively studied in the
literature [1H3]]. However, the number of identifiable sources
with ULAs is limited to the number of array elements minus
one [3 |4]. Deployment of Sparse Linear Arrays (SLAs), e.g.
Minimum Redundancy Arrays (MRAS) [5]], co-prime arrays [6]]
and nested arrays [7[], allows for transcending this limitation
under the assumption of uncorrelated source signals such that
the number of identifiable sources can go considerably beyond
the number array elements. A detailed study on the performance
of DoA estimation via SLAs has been conducted in [[8] through
an analysis of the Cramér-Rao Bound (CRB). Further, a variety
of algorithms for estimating DoAs from SLA data have been
presented in the literature [[7, [9-H15].

Most of the algorithms developed for estimating DoAs from
SLA measurements are based on the assumption that quantiza-
tion errors are negligible as a result of using high-resolution
Analog-to-Digital Converters (ADCs). However, employment

This work was partially supported by the Luxembourg National Research
Fund (FNR) under the ACCORDION project (Ref: 11228830), the European
Research Council (ERC) Grant AGNOSTIC (ID: 742648), U.S. National Sci-
ence Foundation (NSF) Grants 1704401, 1809225, and an Illinois Discovery
Partners Institute (DPI) Seed Award.

S. Sedighi, M. R. B. Shankar and B. Ottersten are with the Interdisciplinary
Centre for Security, Reliability and Trust (SnT), University of Luxembourg,
Luxembourg City L-1855, Luxembourg (e-mails: saeid.sedighi @uni.lu; bha-
vani.shankar@uni.lu; bjorn.ottersten@uni.lu). M. Soltanalian is with the
Department of Electrical and Computer Engineering, University of Illinois at
Chicago, Chicago, IL 60607 USA (e-mail: msol@uic.edu).

of high-resolution ADCs is typically expensive and power-
consuming [16]]. Hence, to reduce energy consumption and
production costs, DoA estimation with binary measurements
collected by one-bit ADCs has been recently proposed and
discussed in the literature [17H27]]. One-bit ADCs represent
each sample of the analog array observations with only a
single bit offering, an exceedingly high sampling rate at a
low production cost and very low power consumption [|16].
The analytical performance bounds for DoA estimation from
one-bit data have been studied in [28-30]. Further, a number
of one-bit DoA estimators have been provided in [23H25] [27],
which rest on retrieving the covariance matrix of unquantized
array observations using the well-known Bussgang’s Theorem
(31].

In this paper, as opposed to the previous works which have
studied the problem of DoA estimation under two extreme
scenarios for analog-to-digital conversion, i.e., infinite-bit
quantization and one-bit quantization, we aim to investigate
the problem of estimating DoAs from low-resolution few-
bit SLA measurements. In such cases, contrary to the one-
bit quantization case, the Bussgang’s Theorem may not
directly be employed to retrieve the covaraince matrix of
array unquantized observations. Instead, we develop a novel
optimization-based framework for retrieving the covaraince
matrix of unquantized array observations from low-resolution
multi-bit measurements. Then, we apply the Co-Array-Based
MUSIC (CAB-MUSIC) [[7, |13]] to the recovered covariance
matrix to find the DoAs of interest. The simulation results
show that increasing the sampling resolution with a few bits
per samples could significantly increase the DoA estimation
performance compared to the one-bit sampling case while the
power consumption and implementation costs are still much
lower than the high-resolution sampling scenario.

Paper organization: The system model is described in
Section Section presents the proposed algorithm for
estimating DoAs from few-bit data. Simulation results are
shown and discussed in Section Finally, conclusions are
drawn in Section [V]

Notation: : Lightface, lower- and upper-case bold-face letters
denote scalars, vectors and matrices, respectively. The conju-
gate, transpose and Hermitian (conjugate transpose) operations
are referred to by the superscripts *, T', H, respectively. | Al »
and rank(A) stand for the Frobenius norm and the rank of
A, respectively. [a]; indicates the i*" entry of a. diag(a) is
a diagonal matrix made out of entries of a. I); denotes an
M x M identity matrix. #{a} and 3{a} stand for the real
and imaginary parts of a, respectively.



II. SYSTEM MODEL

We consider an SLA with M elements located at positions
mlg,mgg,~~ ,mM% with m; € IM. Here )\ denotes the
wavelength of the incoming signals and IM is a set of integers
with a cardinality of M. It is assumed that K narrowband
signals with distinct DoAs =01, 605, - ,0x]T impinge on
the SLA from far-field. The signal received at the array at time
instance ¢ can be modeled as

y(t) = A(@)s(t) + n(t) e CM*1 t=0,--- ,N—1, (1)

where s(t) € CK*1 denotes the vector of source sig-
nals, n(t) € CM*! is additive noise, and A(0) =
[a(61),a(6), - ,a(0x)] € CM*E represents the SLA
steering matrix with

a(ek):[ejﬂsinekml ejﬂ'sinekmz . ejﬂsinekmM]T (2)
) ) Y Y

being the SLA manifold vector for the i*® signal. Further, the

following assumptions are made on source signals and noise:

A1 n(t) follows a zero-mean circular complex Gaussian distri-
bution with the covariance matrix E{n(¢)n (t)} =02I,,.

A2 The source signals are modeled as zero-mean uncor-
related circular complex Gaussian random variables
with covariance matrix E{s(t)s(t)} = diag(p) where
p=[p1.p2,- k)" € RES! (e, pp >0, V).

A3 No temporal correlation is assumed between the snapshots,
i.e., E{n(t;)nl (t3)} = E{s(t;)s" (t2)} = 0 when t; #
t2 and O is an all-zero matrix of appropriate dimensions.

Based on the above assumptions, the covariance matrix of y(t)

is given by

R=E{y(t)y"(t)}=A(0)diag(p) AT (8)+ 021, e CM*M,
3)

It is readily verified that R is a structured matrix with only
2D —1 free parameters where D = |D| with D = {|m, —my]| :
My, Mg € IM}. The set D is called the difference co-array [8|
13| [15]]. Accordingly, R can be rewritten as follows

D—-1 D—-1
R(u) = uoLo + > unLy + > uiLl, (4)
n=1 n=1

K K s
where ug = 0 + 33, pry tn = Doy pre? ™SO and

Lol g = 1, if my, —mg =4y,
a0, otherwise,

with £, € D, mp,mg € M, 1 < p,g < M and 0 < n <
D — 1. A proper design of SLA allows for identifying more
uncorrelated source signals than the number of array elements
by exploiting the resulting structure of R efficiently [[6-8} |15].
Fig. [T illustrates an SLA along with its difference co-array.
We here assume that each array sensor is equipped with a
low-resolution multi-bit ADC converting the analog received
signal into digital data using ¢ bits per sample. A generic g-bit
ADC has 279 + 1 threshold levels where —oco = a1 < ag <
- <0< < age < ageg; = 00. The g-bit ADC at the
m'™ array element transforms the real and imaginary parts of
[¥(t)]s into one of the 29 4+ 1 prescribed qunatization levels
{71,72,"** ,V2a+1} through comparing them individually with

®)
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Figure 1.
difference co-array with D = {0, 1, - -

(@) An SLA with M = {1,2,3,4,8,12}; (b) corresponding
S 11}

the threshold levels. Particularly, the ¢-bit quantized output
signals at the m'" array element are expressed as

X()]m = Q(R{y (D) }m) +iQUS{y(®)}m),  (©)

where Q(.) denotes the ¢-bit quantization operation defined as

Qa) = if ap<a<apgr. (7)

We are interested in estimating source DoAs from g¢-
bit quantized output signals of the SLA, ie, X =
[X(O)7 X(l)a ) X(N_ 1)]

III. MULTI-BIT DOA ESTIMATION WITH SPARSE ARRAYS

In this section, we first formulate an optimization problem
whose solution provides us with an estimate of the covariance
matrix of y(¢), i.e., R, using ¢-bit quantized array measure-
ments, i.e., X. Then, we apply the CAB-MUSIC [7, [13]] to
obtain DoA estimates from the estimate of R.

It follows from that R is fully described by the complex
vector u = [ug,uy, - ,up_1]T. Hence, for a given Y =
[y(0), (1), -, y(N —1)], R can be obtained from
the solution of the following optimization problem:

minimize ||R(u) — YY#|?

8
subject to  R(u) > 0. ©

However, Y is unknown here, and instead, we only have access
to g-bit quantized values of it, i.e., X. It follows from @ and
that each element of the observation matrix X determines
a lower and an upper bound for the real and imaginary parts
of the corresponding element in Y. Putting all of these lower
and upper bound into the matrices I'; and I',,, an optimization
problem for joint estimation of u and Y can be cast as follows:

[R(w) - YYH|%

R(u) = 0,

vec(R{Y} — R{I';}) > 0,
vee(S{Y} — 3{Iy}) > 0,

= [vee(R{Y} — R{T',})] = 0,
= [vee(S{Y} — 3{T.})] = 0.

minimize
u7
subject to

©))

where the last four constraints in (9) aim to enforce the
consistency of Y with the g-bit measurements by ensuring
that the elements of Y lie in the regions determined by the
observation matrix X. The above optimization problem is non-
convex as its objective is a quartic function with respect to Y.
In what follows, we first present an equivalent reformulation for
(), which paves the way for iteratively solving this non-convex
optimization problem.



Theorem 1. Consider slack variables G € CM+N)xM W ¢
CM*M gnd ¢ € R. The optimization problem () is equivalent
to
minimize
u,Y,W,G,¢
subject to

IR(w) = W +ng

R(u) = 0,

vee(R{Y} — R{I;}) >0,
vec(S{Y} — ${T';}) > 0,

— [vec(R{Y} — ®{I',})] > 0,
— [vece(3{Y} - ${Tu}) > 0.
T = 0,

Ty — GHTG = 0,

GHG =1,,,

£=0,

(10)

Iy YH
Y W
regularization parameter.

where T = e CMANXMEN) and 7 is a

Proof. Consider the slack variables W such that W = YY .

Then it is readily clear that the optimization problem () is
equivalent to the following one:

minimize R (u) - W]z
subject to R(u) = 0,

vec(R{Y} — R{I}}) > 0,
vee(S{Y} — 3{I';}) > 0,

~ [vee(R{Y} — R{L,})] > 0,
~ [vec(3{Y} -~ 3{T.})] = 0,
W=YYH.

(1)

It is readily confirmed that W = YY® if and only if
rank(W — YY) = 0. Further, rank(W —YY#) = 0 can be

equivalently expressed as rank(Iy) +rank(W - YY) = N,

Since I is positive definite, it follows from the Guttman rank
additivity formula [32] that rank(Ix) + rank(W — YY) =
rank(T). Moreover, it follows from W — YY# = 0 and
Iy > 0 that T has to be positive semi-definite. These imply
that the equality constraint in (TI)) can be replaced with a rank
constraint on a semi-definite matrix. Hence, the optimization
problem (TI)), and equivalently (9)), can be recast as follows:

minimize |R(u) — W||?
uY W
subject to  R(u) = 0,

vee(R{Y} — R{T;}) > 0,
vee(S{Y} — &{I';}) > 0,

~ [vec(R{Y} — R{T,})] > 0,
— [vec(3{Y} - S{T,})] > 0.
T - 0,

rank(T) = N.

(12)

Now, we show that the optimization problem (I0) is equivalent
to(I2). Let p1 < po < - <pyynyvand vy <vp <--- <y
denote the eigenvalues of T and G TG, respectively. From
the constraint I, — GHTG » 0, we have v; < &1 =

1,2,---,M for any G and T in the feasible set of (I0).

Additionally, it follows from [33, Corollary 4.3.16] that

0<p; <v;,i=1,2,---, M for any G and T in the feasible
set of (I0). Hence, we observe that

0= diag([plvp% o apM]T) = diag([V17 V2, 7VZW]T)
= &L, (13)

for any G and T in the feasible set of (T0). It is easily observed
from (T0) and (T3) that, by properly selecting 7, the optimum
value of G will be equal to the eigenvectors of T corresponding
to its M smallest eigenvalues and the optimum values of
& p1,-r Py, 1, -, v Wll be equal to zero. This implies
that the optimum value of T in (I3) possesses N nonzero and
M zero eigenvalues. This completes the proof. O

The optimization problem can be solved iteratively by
alternating between G and the other parameters, i.e., u, Y,
W and £ Let G, u®, Y*) W) and £*) be the values
of the parameters G, u, Y, W and ¢ at the k-th iteration,
respectively. Given G(*~1) the optimization problem with
respect to u, Y, W and e at the k-th iteration becomes

inimi (k)Y _ (k)12 (k)
u(k),IYr'l(llrcl)lf\I){}(Zlgé(k) ”R(u ) w ”F + Tlf
subject to R(u®) - 0,

vec(R{Y®)1 — R{T;}) >0,
vece(S{Y®} — 3{1}) >0,

— [vec(R{Y®} — R{T',})] >0, (14)
— [vee(S{Y®} - 3{T.})] >0,
T®*) = 0,
¢, — GEDIPR GH-1) = g,
¢® >0,
Iy vk H

v wik)
be obtained from eigenvalue decomposition of T(*). Indeed,
at each iteration of the proposed algorithm, we need to
solve a Semi-Definite Program (SDP), which can be solved
efficiently, followed by an Eigenvalue Decomposition (ED). The
alternating optimization procedure is repeated until either the
objective or the optimization variables converge to a constant
value. Algorithm |l summarizes the steps of the aforementioned
iterative approach to solving (9). Further, to initialize the
algorithm, G(©) can be found through the ED of T(?) obtained
from solving (I2)) without considering the rank constraint. We
note that the proposed algorithm, which is based on alternating
optimization method, is guaranteed to converge to at least
a local minimum of [34]]. Once R is retrieved from
Algorithm[I} the CAB-MUSIC [7,[13]] is applied to the retrieved
R to estimate DoAs.

where T*) = { } Once T®) is found, G*) can

IV. SIMULATION RESULTS

In this section, numerical results are provided for assessing
the performance of the proposed algorithm for estimating DoAs
from low-resolution few-bit SLA output. In all experiments,
each simulated point has been computed by 1000 Monte Carlo
repetitions. In addition, the K independent sources with an
equal power p are equally spaced in the angular domain
[—60°,60°] with respect to a 8-sensor nested array with the
following configuration:

M:{1,2,3,4,5,10,15,20} . (15)



Algorithm 1 Covarinace Matrix Estimatiton from Low-
Resolution Few-Bit Data
Input: The problem information T';, Ty, 7, €1, €2, e3 and eq4.
Output: The estimate of the covariance matrix of the full-
precision data.
1: initialization: Set £ =0 and obtain G(® by dropping the
rank constraint.
2: while |[u(®) —u* =D |5 > ¢, [WFE) —WED||p > e, [YR) —
Y(k_l)”F > €3 and §(k> > €4 do
Increase & by one.
Find u®, W®), Y*) and ¢*) by solving (T4).
Find G by computing the ED of T®*),
end while

AN

The SNR is also defined as 10log % .

—00-bit
— 4-bit
—2-bit
—1-bit l
1-bit (Bussgang-aided)

S
=}
T

RMSE (degree)

IS
[
T

!

.JJ\;

—
(=)
I
W
=)
o)
—_
=)
—
9]
[N}
(=}

SNR (dB)
(a)

;m—bit
— 4-bit
—2-bit
—1-bit
1-bit (Bussgang-aided)

RMSE (degree)

Figure 2. RMSE in degree for 62 versus SNR for a nested array with M = 8
elements and configuration given in @), N =300, and: (a) K =4 < M,;
(b) K =10 > M.

Fig. 2] depicts the Root-Mean-Squares-Error (RMSE) for 6,
in degree versus SNR for different bit-width when N = 300,
M = 8 and: (a) K =4 < M; (b) K =10 > M. Fig. [2]
demonstrates that increasing the number of quantization bits
from one to two and then to four leads to a considerable
performance improvement. Further, it is observed that the
RMSE of 4-bit DoA estimation is very close to that of DoA
estimates obtained from the unquantized array observations. For
instance, when K = 4, the performance loss arising from quan-
tization, defined as 10 log(RMSEguantized/RMSEunquantized )
at SNR = 5 dB are about 3.33 and 1.39 dB in case of 1-bit
and 2-bit quantization, respectively, while it is almost zero
in case of 4-bit quantization. However, the implementation

costs and power consumption of 4-bit and 2-bit ADCs are still
much lower compared to high-resolution ADCs. For example,
at sampling frequency of 10 MHz, the power consumption of
4-bit and 2-bit are 1 mW and < 1 mW, respectively, while a 14-
bit ADC consumes 1 W at the same sampling frequency [35].
Further, it is relatively easy to implement 4-bit and 2-bit ADCs
with sampling frequency of 10 MHz while it is not practically
feasible to build a 14-bit ADC at the same frequency [35].

1
10 —00-bit
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= 1n0LF Y
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=
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Figure 3. RMSE in degree for 62 versus the number of snapshots for a nested
array with M = 8 elements and configuration given in @, SNR = 0 dB,
and: (a) K =4 < M; (b) K =10> M.

Fig. 3] plots the RMSE for 65 in degree versus the number
of snapshots for SNR = 0 dB and: (a) K =4 < M, and (b)
K =10 > M. Fig. El shows that, to achieve an RMSE of 0.1
for example, infinite-bit, 4-bit, 2-bit and one-bit cases need
300, 300, 500 and 800 samples when K = 4, respectively.
This indicates that the total number of bits required to achieve
an RMSE of 0.1 is, respectively, 1200, 1000 and 800 bits for
4-bit, 2-bit and one-bit sampling scenarios.

V. CONCLUSION

The problem of DoA estimation from low-resolution few-
bit SLA data was investigated. Firstly, the covariance ma-
trix of unquantized array observations was retrieved from
low-resolution few-bit SLA data by employing an iterative
optimization-based algorithm. Then, DoAs were estimated by
applying CAB-MUSIC to the recovered covariance matrix
of unquantized array observations. The simulation results
showed that increasing the sampling resolution to 2 or 4 bits
per samples could significantly increase the DoA estimation
performance compared to the one-bit sampling case while the



power consumption and implementation costs are still much
lower than the high-resolution sampling scenario.
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