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ABSTRACT
In any ranking system, the retrieval model outputs a single score for

a document based on its belief on how relevant it is to a given search

query. While retrieval models have continued to improve with the

introduction of increasingly complex architectures, few works have

investigated a retrieval model’s belief in the score beyond the scope

of a single value. We argue that capturing the model’s uncertainty

with respect to its own scoring of a document is a critical aspect of

retrieval that allows for greater use of current models across new

document distributions, collections, or even improving effective-

ness for down-stream tasks. In this paper, we address this problem

via an efficient Bayesian framework for retrieval models which cap-

tures the model’s belief in the relevance score through a stochastic

process while adding only negligible computational overhead. We

evaluate this belief via a ranking based calibration metric showing

that our approximate Bayesian framework significantly improves a

retrieval model’s ranking effectiveness through a risk aware rerank-

ing as well as its confidence calibration. Lastly, we demonstrate that

this additional uncertainty information is actionable and reliable

on down-stream tasks represented via cutoff prediction.

CCS CONCEPTS
• Information systems → Information retrievals; Retrieval
models and ranking; • Computer systems organization →
Neural networks.
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1 INTRODUCTION
Recentwork in neural information retrieval (IR)models have achieved

impressive performance on a variety of retrieval tasks whether the

models are based on pre-trained Transformer architectures [28, 40,

57, 58] or learned from scratch [11, 23, 35]. These state-of-the-art

models treat their estimates of a document’s relevance as a de-

terministic score. While effective, this deterministic perspective

obfuscates a large amount of critical information that a user could

use to determine whether their query is effective or when they have

gone so far down a ranked list that the model is no longer sure of its

scores. Ideally, an effective IR system should be able to gracefully

convey when it is no longer effective or confident in its rankings,

which is a substantial risk given neural models’ vulnerability to

out-of-distribution inputs from a different collection or even a new

first stage ranker [6, 26, 30].

In order to fulfill the above criteria, a retrieval model should

be capable of displaying this uncertainty over document relevance

prediction through a distribution of possible scores as demonstrated

in Figure 1. Furthermore, the retrieval model should be expressive

enough such that the mean score of the document should convey

the model’s belief in the actual relevance while its correspond-

ing variance captures the model’s uncertainty – a high variance

should indicate that the model is unsure of a document’s relevance

even if it is highly placed in a ranked list. Beyond this expression

of uncertainty, calibration is another desirable quality as a com-

paratively low relevance score with respect to another candidate

document should reflect a proportional likelihood that the lower

scoring document is less relevant.

These concepts of calibration and uncertainty have been touched

on in previous work in IR, most specifically query performance

prediction [49, 50, 56] and query cutoff prediction [3, 8, 31]. In

these settings, an external model attempts to capture a portion

of the model’s uncertainty as a function of the input data and

its deterministic output. These post-retrieval approaches rely on

scoring a large number of documents while simultaneously only

https://doi.org/10.1145/3404835.3462951
https://doi.org/10.1145/3404835.3462951


SIGIR ’21, July 11–15, 2021, Virtual Event, Canada Cohen et al.

Figure 1: A visual comparison of the conventional interpre-
tation of neural model rankings which provides a single
score for each document (represented by the dashed verti-
cal line), and a Bayesian perspective which captures the un-
certainty over each score. Highly relevant documents have
a narrow score distribution as the retrieval model is confi-
dent in itself. In the case of documents where it is uncertain,
the model is able to convey its uncertainty by means of a
wider distribution of possible relevance scores. The plot rep-
resents a single query and select candidate documents from
TREC Deep Learning Track 2019 with multiple raw score es-
timates per document produced by a Bayesian mini BERT.

representing uncertainty over the documents rather than the model

itself.

In contrast, ensemble methods such as models featuring on MS

MARCO leaderboards
1
capture both types of uncertainty – aleatoric

which is uncertainty over the input documents as mentioned above

and epistemic uncertainty which is uncertainty over the parameters

of a model. Unfortunately, ensemble methods become computation-

ally expensive as retrieval models grow in size and complexity,

and results in a substantial obstacle given the prevalence of BERT

and other large transformer architectures [26, 28, 40, 41]. As the

objective is to maximize performance while ranking as many top 𝑛

documents as possible, running𝑚 models simultaneously results in

𝑛
𝑚 fewer ranked documents. Lastly, in cases where these large mod-

els are used as pre-trained encoders, ensembles do not adequately

capture uncertainty over these shared parameters.

As such, we approach capturing uncertainty from a Bayesian per-

spective where leveraging a convenient property of dropout [51]

can be treated as a form of variational inference, referred to as

Monte Carlo dropout [15]. In this setting, dropout induces a sto-

chastic ranking model which creates a distribution of scores as the

dropout mechanism outputs different values each time it is run

over the same input candidate document. The characteristics of

this distribution then allow us to capture both aleatoric and epis-

temic uncertainty. While MC sampling still relies on an infeasible

1
https://microsoft.github.io/msmarco/

number𝑚 of forward passes over the ranking model, we expand

on this work with a theoretically motivated extension where only

the last layer needs to be Bayesian to capture both epistemic and

aleatoric uncertainty. By efficiently sampling from the last layers,

we are able to not only attain a distribution of scores on par with

standard deterministic models, but also leverage this uncertainty

information to improve both final rankings and a downstream task

of cut off prediction with a risk aware reranking.

Succinctly we summarize our research contributions as:

(1) An efficient approximate Bayesian framework for any neural

model trained with pairwise cross entropy or pairwise hinge

loss.

(2) A rank based calibration metric that facilitates uncertainty

comparison across retrieval models.

(3) A risk aware reranking method that significantly improves

reranking performance.

(4) Exposing the actionable information contained in uncer-

tainty for downstream tasks via cut off prediction.

2 RELATEDWORK
Given the high prevalence of probabilistic ranking approaches in

IR, the formal concept of uncertainty for retrieval was first dis-

cussed by Zhu et al. [60]. In their work, they treat the variance

of a probabilistic language model [44] as a risk-based factor to

improve its performance for retrieval. However, relying on a gen-

erative model’s self reported uncertainty in modern models often

results in high calibration errors [38]. Furthermore, they assume all

document uncertainty to be normal in nature, whereas we demon-

strate that a significant distribution shift occurs across rank posi-

tions. A modern perspective on this is through exploiting neural

generative IR models. While the relevance estimation mechanism

in current neural/deep ranking models are rooted in text-to-text

matching principles, the probabilistic/generative paradigm views

relevance estimation as the probability of generating query given

document. This paradigm has a long history in IR research, initi-

ating from Ponte and Croft [44]. In this regard, few recent works

have provided a modern interpretation of generative IR models,

primarily through exploiting sequence-to-sequence neural genera-

tive models. For instance, dos Santos et al. [14] exploit large-scale

sequence-to-sequence Transformer-based models to rank answers

according to their generation probability for given a question, while

Nogueira et al. [42] use a sequence-to-sequence model to first gen-

erate queries conditioned on a document, and then use them to

expand the document. The probabilistic nature of generative models

makes them readily capable of estimating the aleatoric uncertainty.

A natural way of estimating uncertainty in generative models is

by exploiting the entropy of the next term prediction distributions,

defined over the vocabulary set, as proposed by Izacard and Grave

[24] in the context of abstractive summarization. In the light of

studying uncertainty in IR, we also investigate the characteristics

of this self-reported entropy-based uncertainty using a BERT-based

deep generative IR model for the downstream task of cutoff pre-

diction. Lastly, we highlight the simultaneous work of Penha and

Hauff [43], where they explore the impact of Bayesian and ensem-

ble uncertainty in the conversational response space under BERT.
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In contrast to our work, their approach requires a full forward pass

of BERT for every Monte Carlo sample.

In approaches that consider both probabilistic and discriminative

models, a close parallel in spirit are the tasks of query performance

prediction (QPP) and cutoff prediction. In QPP, the aim is to de-

termine how difficult a query is given a collection. Within QPP,

the concept of post-retrieval query prediction, which relies on the

output of one or more retrieval models, is closest to our work. A

variety of works have investigated this problem; however, no QPP

method has directly incorporated a retrieval model’s uncertainty.

For example, Cummins et al. [9] examine the concept of the

distribution of scores by modeling the standard deviation of all

candidate document scores to estimate the difficulty of the query.

Aslam and Pavlu [2] use an ensemble of multiple ranked lists to

predict the difficulty of a query by examining the diversity through

Jensen-Shannon divergence. In subsequent work, Roitman et al.

[48] attempt to achieve a mean document score for each query,

introducing the notion of calibrated scores for retrieval. An alter-

native perspective that attempts to capture this uncertainty is via

query perturbation approaches [59]. These methods inject noise

into the initially ranked documents to determine the robustness

of the ranked list which sheds some light on both aleatoric and

epistemic uncertainty.

In a similar vein to QPP, cutoff prediction attempts to identify the

optimal cutoff point to maximize some non-monotonic metric such

as 𝐹1 or to determine a set of candidate documents to pass on to

the next stage for cascade based retrieval [3, 8, 31]. The motivating

hypothesis is that retrieval models become increasingly volatile and

unstable as documents drift further from the training distribution.

As such, external models are trained to identify this instability and

determine when the model is no longer reliable while attempting

to learn the retrieval model’s uncertainty through deterministic

document scores.

Finally, in the context of classical IR models enhanced with word

embeddings, Rekabsaz et al. [46] showcase the benefits of exploit-

ing the uncertainty of word-to-word similarities for identifying a

reliable threshold to filtering highly similar terms. In their work, the

uncertainty is defined as the variance over the similarities achieved

from an ensemble of neural word embeddings, all trained under the

same learning configuration.

3 MEASURING RETRIEVAL UNCERTAINTY
In this section, we first define the problem and motivation prior to

introducing the efficient Bayesian framework. As this framework

relies on specific assumptions about the loss function used to train

a retrieval model, we extend this work to not only work on pairwise

cross entropy, but pairwise hinge loss to cover a wide spectrum of

model architectures.

Subsequently, we discuss the issue of traditional calibration met-

rics when considering the ranking problem and posit an alternative

metric. Finally, we discuss our risk aware reranking method that

leverages the uncertainty information produced from the approxi-

mate Bayesian framework.

3.1 Problem Statement and Motivation
Let Q = {𝑞1, . . . , 𝑞𝑛} be the set of queries, and C = {𝑑1, . . . , 𝑑𝑚} be
the collection of documents some retrieval model parameterized by

𝜃 ∈ R𝐺 is trained to retrieve over. Our dataset is then D = Q × C,
such that 𝑓𝜃 : Q×C → R produces a score for each query-document

pair evaluated. The task is then to find an ordering of scores that

maximizes an external metric such as user satisfaction or relevance

and is approximated via mean average precision, nDCG, or MRR

among other functions. The vast majority of retrieval models rely

on stochastic weight optimization to achieve a maximum likelihood

estimates (MLE) or maximum a posteriori (MAP) approximation

for 𝜃 configuration. While effective, this setting produces point

estimates for each candidate in D, removing all uncertainty and

confidence estimates, from the predictions. At this point, areas of

research such as QPP and cut off prediction try to determine these

quantities heuristically via score and document distributions [2, 8,

18, 31, 49, 50, 56]. This task has become increasingly challenging

with the changing nature of neural retrieval models as previously

established post-retrieval QPP methods are not as effective for

neural models [19].

We therefore propose capturing this uncertainty information

directly from the model by enforcing a Bayesian view on a portion

of 𝜃 . In doing so, the distribution over our weights induces a distri-

bution over our candidate scores, allowing for downstream uncer-

tainty and confidence estimates for each document. The remainder

of this section covers our efficient Bayesian retrieval framework,

uncertainty calibration algorithm, and risk aware reranking.

3.2 Efficient Bayesian Neural Retrieval
We first introduce Bayesian inference, and then an efficient in-

terpretation that allows for measuring uncertainty in real world

environments. As discussed, the conventional process of training a

retrieval model 𝑓𝜃 is through a form of stochastic gradient descent

to achieve an estimate of the MLE over some dataset D, 𝑃 (D|𝜃 ),
or MAP if regularized, 𝑃 (D|𝜃 )𝑃 (𝜃 ), which minimizes some loss

function,

𝜃 = argmin𝜃L(D, 𝑓 , 𝜃 ) .

This representation of 𝑓𝜃 unfortunately discards all other parametriza-

tions of 𝜃 which are potentially just as capable of determining the

relevance of a document. The hypothesis is that some parameteri-

zations will be better for scoring some subset of query-document

pairs while other parameterizations will excel on other areas of

the dataset. The disparity between scores across the space of 𝜃

allows one to then capture the uncertainty of the model given a

query-document pair [15, 27, 36, 54].

We therefore propose using a Bayesian approach to retain this

uncertainty over our model by modeling the full posterior, 𝑃 (𝜃 |D)
with

𝑃 (𝜃 |D) = 𝑃 (D|𝜃 )𝑃 (𝜃 )
𝑃 (D) =

𝑃 (D|𝜃 )𝑃 (𝜃 )∫
𝜃
𝑃 (D|𝜃 )𝑃 (𝜃 )𝑑𝜃

. (1)

The advantage of modeling the full posterior is that we are then

able to consider different parameterizations of the model weighted

by how well the data supports such a weight configuration. At pre-

diction, our posterior allows us to account for the likelihood of each

paramaterization of our retrieval model through the marginalized

predictive distribution:

𝑃 (𝑦 |𝑥,D) =
∫
𝜃

𝑃 (𝑦 |𝑥, 𝜃 )𝑃 (𝜃 |D)𝑑𝜃 . (2)
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We then exploit this to capture the retrieval model’s uncertainty at

retrieval time.

Computing the posterior, specifically

∫
𝜃
𝑃 (D|𝜃 )𝑃 (𝜃 )𝑑𝜃 , in neu-

ral architectures is intractable, and so we use an approximation

scheme 𝑞(𝜃 ) ≈ 𝑃 (𝜃 |D), called variational inference [21]. The objec-
tive of variational inference is to find some 𝑞(𝜃 ) that sufficiently fits

the data while minimizing the KL divergence to the true posterior

𝑃 (𝜃 |D) through the evidence lower bound (ELBO),

ELBO(𝑞) = E[log 𝑃 (D|𝜃 )] − 𝐾𝐿(𝑞(𝜃 ) | |𝑃 (𝜃 )) . (3)

3.2.1 Monte Carlo Dropout. We approximate the posterior dis-

tribution via Monte Carlo (MC) sampling based on dropout (MC-

Dropout) which is a stochastic regularization technique [15]. We

then leverage a recent result by Kristiadi et al. [30] which bounds

the confidence of the model in ReLU networks [37] while simulta-

neously reducing the computation cost of conventional Bayesian

uncertainty estimation.

MC-Dropout approximates the posterior by inducing a distri-

bution for each weight as a mixture of two simpler distributions.

Letting 𝜃 = Wi
𝐿
1
, W𝑖 ∈ R𝐾𝑖−1×𝐾𝑖

for an 𝐿 layer neural architecture,

MC-Dropout models the variational distribution 𝑞 via

𝑜𝑖, 𝑗 ∼ Bernoulli(𝑝𝑖 ) for 𝑖 = 1, . . . , 𝐿, 𝑗 = 1, . . . 𝐾𝑖 (4)

W𝑖 = M𝑖 · 𝑑𝑖𝑎𝑔( [𝑜𝑖, 𝑗 ])𝐾𝑖

𝑗=1
. (5)

Here, 𝑜𝑖, 𝑗 are Bernoulli random variables governed by 𝑝𝑖 , andM𝑖

are variational parameters to be optimized. M can be thought of as

the mean of 𝜃 under a Gaussian with almost 0 variance (essentially

delta peaks). The combination of the Bernoulli dropout creates a

Gaussian distribution with non-zero variance to form on W and

allows us to model a non trivial approximate posterior probability.

We further adopt a concrete perspective on MC-Dropout [16], and

include p = 𝑝𝑖
𝐿
1
as another variational parameter to allow the

dropout rate to be a learnable parameter.

At this point, Monte Carlo sampling is used to approximate

Equation 3 to get an unbiased estimate over 𝑁 draws of 𝜃 from our

variational distribution:∫
𝜃

𝑝 (𝑦 |𝑥, 𝜃, 𝑓 )𝑞(𝜃 )𝑑𝜃 ≈ 1

𝑁

𝑁∑
𝑡=1

𝑝 (𝑦 |𝑥, ˆ𝜃𝑡 , 𝑓 ) . (6)

The real strength of MC-dropout is the minimal change to standard

training procedures. If we assume a standard neural network loss

for regression and compare it to the ELBO used for variational

inference, we observe a close parallel to standard MLE training

with regularization [52]:

1

2

| |𝑦 − 𝑓𝜃 (𝑥) | |2 + ||𝜃 | |2 ≈ −1

𝜏
𝑝 (𝑦 |𝑓𝜃 , 𝑥) + KL(𝑞(𝜃 ) | |𝑝 (𝜃 )) . (7)

As the variational parameters are a delta distribution with the

mean at 𝜃 , we have the property that𝑊𝑀𝐿𝐸 = M as long as we

constrain 𝐿2 regularization to equal the KL divergence. Therefore

training a standard neural network with dropout is often equivalent

to performing variational inference over the weights of the retrieval

model. This feature has been used with success in a variety of

computer vision tasks to capture model uncertainty, but the unique

nature of pairwise loss functions used in IR, specifically the popular

pairwise hinge loss, prevents the direct use of MC-dropout for

ranking.

In order to apply MC-Dropout without violating Equation 7, we

relax the conventional pairwise hinge loss to facilitate a Gaussian

interpretation. In the case of IR, we can view pairwise hinge loss

as minimizing the Euclidean distance between the regression goal

and a random point within our collection D conditioned on some

initial ranking 𝑟 (BM25 sampling, random, kNN, etc):

E[| |1 − 𝑓𝜃 (𝑥+) + 𝑓𝜃 (𝑥−) | |2] = E[| |𝑦 − 𝑓𝜃 (𝑥+) + 𝑓𝜃 (𝑋 ) | |2] (8)

s.t. 𝑋 ∼ 𝑝 (D|𝑟 ). (9)

If we fix𝑋 = 𝑥− and define a new function 𝑔𝜃 (𝑥+, 𝑥−) = 𝑓𝜃 (𝑥+) +
𝑓𝜃 (𝑥−), we can treat pairwise hinge loss as a standard regression

optimization over 𝑔. This allows us to still optimize the negative log

likelihood of a Gaussian, satisfying the distribution requirements

for MC-Dropout:

1

2

| |𝑦 − 𝑔𝜃 (𝑥+, 𝑥−) | |2 = −1

𝜏
𝑝 (𝑦 |𝑓𝜃 , 𝑥−, 𝑥+) + 𝑐. (10)

At evaluation time, setting 𝑔𝜃 (𝑥, 0) where we have a deterministic

output of 0 for 𝑥−, we can uncover the uncertainty of 𝑓𝜃 (𝑥+). We

also consider pairwise cross entropy loss where the direct parallel

to its probabilistic interpretation allows for a standard application

of MC-Dropout.

3.3 Efficient Ranking Uncertainty
As retrieval models have become increasingly computationally

demanding [12, 32, 58], themultiple passes required forMC-dropout

are not always feasible. In order to retain the effective uncertainty

information, we leverage a recent theorem from Kristiadi et al. [30]

which demonstrates that in the case of binary classification, only

the last layer of a model needs to be Bayesian to capture uncertainty

information and correct overconfidence. When this occurs, as the

test data becomes increasingly distant from the well fit training

data, the estimates approach a distribution determined only by the

mean and largest eigenvalue of 𝜃 :

Theorem 3.1. Let 𝑔 : R𝑑 → R be a binary linear classifier defined
by 𝑔(𝜙 (𝑥)) := 𝜃T𝜙 (𝑥), where 𝜙 : R𝑛 → R𝑑 is a fixed ReLU network
and letN(𝜃 |𝜇,Σ) be the Gaussian approximation over the last layer’s
weights with eigenvalues of Σ as 𝜆1 ≤ . . . ≤ 𝜆𝑟 . Then for any input
x ∈ R𝑛and 𝛿 > 0,

lim

𝛿→∞
𝜎 ( |𝑧 (𝛿x) |) ≤ 𝜎

( | |𝜃𝜇 | |√
𝜋/8𝜆1

)
While the theoretical result is proven only for the binary classifi-

cation case, the authors demonstrate its application to softmax with

multiple classes. In this work, we demonstrate its empirical validity

to the case of ranking with pointwise evaluation where we are able

to capture uncertainty information with minimal computation cost.

3.4 Ranked List Uncertainty Calibration
Having introduced an approximate Bayesian retrieval framework

using only two dropout layers, the usefulness of this uncertainty

information partially depends on how well calibrated these docu-

ment score estimates are with respect to the actual accuracy [17].

Referred to as expected calibration error (ECE), a neural model’s

calibration is often modeled via binning estimates from [0,1] into

𝑀 equally distributed buckets, 𝐵𝑚 , and measuring how much the
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model’s confidence in this estimate deviates from the accuracy. I.e.

all predictions with a confidence of 𝑝 = 0.3 should have a mean

accuracy of 30%. This evaluation is represented as

𝐸𝐶𝐸 =

𝑀∑
𝑚=1

|𝐵𝑚 |
𝑛

����� 1

𝐵𝑚

∑
𝑖∈𝐵𝑚

1(𝑦𝑖 = 𝑦𝑖 ) −
1

𝐵𝑚

∑
𝑖∈𝐵𝑚

𝑝𝑖

����� (11)

for 𝑛 samples. However, ECE does not effectively measure a rank-

ing model’s calibration for a number of reasons. Neural relevance

scores are not calibrated across queries, so document relevance is

not distributed on a scale from 0 to 1 where each interval within this

range is just as important. This is partially why pairwise or listwise

training is substantially more effective than pointwise relevance

classification as it is the relative comparison across documents that

is most effective, which ECE does not capture. A possible remedy to

this issue is to take the softmax over all document scores to force a

distribution in [0, 1]. However, this is again inconsistent as one can

reduce the confidence in any individual document by increasing

the total number of documents when taking the softmax. We there-

fore model uncertainty in a pairwise fashion, where calibration is

measured between scored documents from the same query via our

proposed expected ranking calibration error (ERCE):

𝐸𝑅𝐶𝐸 =

𝑀∑
𝑚=1

|𝐵𝑚 |
𝑛

����� 1

|𝐵𝑚 |
∑

(𝐷𝑖 ,𝐷 𝑗 ) ∈𝐵𝑚
𝑃 (𝐷𝑖 > 𝐷 𝑗 )

− 1

|𝐵𝑚 |
∑

(𝐷𝑖 ,𝐷 𝑗 ) ∈𝐵𝑚
1(𝐷𝑖 > 𝐷 𝑗 )

�����.
(12)

This allows for a consistent calibration error while still accounting

for relevance score distributions being conditioned on queries. The

indicator function is defined as

1(𝐷𝑖 > 𝐷 𝑗 ) =
{
1 if ranking 𝐷𝑖 above 𝐷 𝑗 increases MAP

0 if ranking 𝐷𝑖 above 𝐷 𝑗 decreases MAP,

where MAP is mean average precision. This formulation removes

all comparisons between pairs of relevant documents, pairs of non-

relevant documents, and documents scored from different queries,

which allows for measuring only the calibration between relevant

and non-relevant pairs conditioned in the same query. In the case of

deterministic models which do not have a probabilistic perspective

on relevance, we use the pairwise softmax function to calculate

𝑃 (𝐷𝑖 > 𝐷 𝑗 ).

3.5 Risk Aware Rerankings
As each document now has a predictive distribution, we are able

to rerank a set of candidates based on a user defined allotted risk.

One difficulty of this task is that variance can substantially dif-

fer across queries which leaves a linear combination of the type

𝜆𝜇 + (1 − 𝜆)𝜎2, 𝜆 ∈ [0, 1] ill-suited for robust probabilistic rank-

ings. In order to normalize across all query types and outputs, we

approach this problem using the cumulative distribution function

(CDF) over scores 𝑠 , 𝐹𝑆 : R → [0, 1], which maps a score 𝑠 to the

probability of the document achieving a score less than or equal to

𝑠 , i.e., 𝐹𝑆 (𝑠) = 𝑃 (𝑆 ≤ 𝑠). This representation has the advantage of

normalizing scales to a range of [0, 1] across multiple queries and

facilitates query agnostic measures of uncertainty [25]. We then

Table 1: Training, validation, and test statistics for the col-
lections used. No training, fine-tuning, or validation is per-
formed for any retrieval models on Robust04 thus use no
validation set is used.

Collection Documents Validation Test
MS MARCO 9M 6,980 48,598

TREC 2019 DLT 9M 6,980 43

Robust04 0.5M - 250

rank candidate documents using Conditional Value at Risk (CVaR),

CVaR𝛼 (𝑆) = E[𝑆 |𝑆 ≥ 𝐹−1𝑆 (𝛼)],

where 𝐹−1
𝑆

is the inverse CDF of sampled scores. This takes the

expected score of a document from the top or bottom (1 − 𝛼)% of

samples for an optimistic or pessimistic view of outcomes and is

often used for risk aware planning or decision making [4, 47]. As

CVaR is a coherent risk measure, it satisfies monotonicity and sub-

additivity properties and allows us to extend individual document

risk to bound total risk for the entire ranked list:

CVaR𝛼 (𝑆1, . . . , 𝑆𝑛) ≤ CVaR𝛼 (𝑆1) + . . . + CVaR𝛼 (𝑆𝑛) .

4 EXPERIMENTS
We examine four attributes with respect to efficient Bayesian re-

trieval. First, we examine the hypothesis that themeanweight of the

dropout model is equivalent to its deterministic variant. Second, we

study the ranking calibration error in the same manner. Third, we

investigate the impact of CVaR𝛼 in both optimistic and pessimistic

settings for risk-aware rankings. And finally, we evaluate the use-

fulness of this uncertainty information under the downstream task

of cutoff prediction [3, 31].

4.1 Data
We utilize three collections for our experiments. Evaluating re-

trieval and cutoff performance, we use the MSMARCO [39] passage

dataset, the TREC 2019 Deep Learning Track (DLT) [7] based on

the original MS MARCO dataset, and Robust04 with its correspond-

ing title queries. While MS MARCO is commonly used to evaluate

performance of retrieval models, the one hot relevance judgements

limit the investigation of uncertainty in ranking. We therefore use

this dataset as a general training collection and use both the TREC

2019 Deep Learning Track and Robust04 collections with their more

fine grained relevance judgements to examine uncertainty proper-

ties with risk-aware re-rankings, calibration analysis, and cutoff

prediction.

With respect to training, validation, and test splits, in the case of

MS MARCO, we evaluate with the same validation and test splits

as Hofstätter et al. [22]. We do not fine tune or validate on TREC

2019 DLT nor Robust04, and therefore all queries are used to test the

models. As demonstrated by Yilmaz et al. [1], anMSMARCO trained

BERT architecture is an effective retrieval model for Robust04which

results in a non-trivial evaluation. We transform each full document

into the first 512 tokens as its representative passage in a similar

fashion to Dai and Callan [10]. Statistics of the collections are

provided in Table 1.
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4.2 Models
We examine two representative retrieval architectures using our

uncertainty framework: BERT [40] and Conv-KNRM [11]. BERT

represents the current trend towards large pre-trained transformer

architectures, and Conv-KNRM provides insight into how well

last layer MC-Dropout works on retrieval models which rely on

hand crafted similarity functions as input into the Bayesian layer.

Given hardware constraints, we evaluate on tiny and mini BERT

(BERT-L2, BERT-L4) versions which achieve close to full BERT

performance [53].

4.3 Baselines
For each Bayesian model, we evaluate with respect to the deter-

ministic version of the architecture denoted by subscript 𝐷 . While

the work by Zhu et al. [60] discusses the concept of risk aware

reranking by the variance of a language model, this view does not

directly apply to the case of modern deep retrieval architectures. In

the case cutoff prediction, we include a modern interpretation of

their work with a generative BERT-to-Transformer architecture to

provide context

For the application task of cutoff prediction, we use the archi-

tecture proposed by Liu and Lapata [34], where the document is

encoded by the mini/tiny BERT and the query is decoded term-by-

term through a 4-layer Transformer decoder conditioned on the

encoded document. We train the model following the same proce-

dure as in Nogueira et al. [42], and similar to Izacard and Grave

[24] consider relevance as log 𝑃 (𝑄 |𝐷), namely the sum of the log-

arithms of the next term generation probabilities. An uncertainty

interpretation for these generative architectures produces entropy

values over 𝑃 (𝑄 |𝐷), and provides useful information as we can

compare self reported aleatoric uncertainty to both aleatoric and

epistemic uncertainty from our Bayesian approximation.

4.4 Evaluation
4.4.1 Retrieval and Reranking: We evaluate each model using

mean reciprocal rank (MRR) and normalized discounted cumu-

lative gain (nDCG@n). MRR was selected due to the single judged

relevant passage per query in MS MARCO, while nDCG@20 was

used for Robust04 and nDCG@200 for TREC 2019 DLT. We use a

large cutoff for TREC to better capture less confident document rele-

vance judgements, and use the traditional lower cutoff for Robust04

as it is already out of distribution.

4.5 Calibration:
We use an adaptive binning scheme to dynamically create 10 equally

filled buckets 𝐵.

4.5.1 Cutoff Prediction: Weuse a state-of-the-art transformer based

prediction model, Choppy, to determine where to cut a ranked list

to maximize 𝐹1 [3]. As the performance is a function of the oracle,

we report

𝐹1𝐶ℎ𝑜𝑝𝑝𝑦

𝐹1𝑂𝑟𝑎𝑐𝑙𝑒

where 𝐹1𝐶ℎ𝑜𝑝𝑝𝑦 and 𝐹1𝑂𝑟𝑎𝑐𝑙𝑒 are the 𝐹1 scores produced by the

cutoff identified by Choppy and the oracle cutoff, respectively. We

report our results using a ranked list of the top 200 documents

for each model. In case of the Bayesian models, each document is

represented as < 𝜇, 𝜎, 𝛿, 𝐻 (𝑆) >, with 𝛿 as the skew and 𝐻 (𝑆) as
the entropy over the score distribution 𝑆 .

4.6 Hyperparameters and Training
For each model architecture, we use the same hyperparameters

used for the deterministic variant. BERT models were trained with

a learning rate of 1 × 10
−4

while the Conv-KNRM used 1 × 10
−3

using Adam optimization [29]. We use two additional feed-forward

layers after the main model to facilitate last layer MC-Dropout of

sizes [𝐾,𝐾], [𝐾, 𝑓 ] where 𝐾 is the output size of the kernel features

in Conv-KNRM or the hidden dimension of BERT, and 𝑓 is the

final output dimension of the architecture. In case of the stochastic

models, a single sample was used during training and 150 samples

were used at inference time for each query-document pair.

5 RESULTS
In this section, we first compare our Bayesian interpretation against

baseline deterministic models to ensure the stochastic nature does

not significantly degrade actual retrieval performance. We then

study the behaviour of uncertainty across relevance scores and

evaluate risk aware re-ranking. We further report ERCE measures

prior to discussing downstream usefulness with cutoff prediction.

5.1 Comparison to Deterministic Models
While we have discussed the many benefits of well calibrated mea-

sures of uncertainty, the introduction of stochastic scoring should

not harm actual retrieval performance. As such, we address our first

hypothesis: Does efficient MC-Dropout at inference time result in the
same mean performance as a deterministic retrieval model? As Ta-
ble 2 demonstrates, mean MC-Dropout document scoring achieves

parity with its deterministic variants across collections and architec-

ture types. While there is some discrepancy with BERT-L2𝐵 slightly

under performing and Conv-KNRM𝐵 and BERT-L4𝐵 outperforming

the deterministic versions, the small differences paired with the

nature of stochastic gradient update demonstrates that this frame-

work is a safe way to include uncertainty information into a variety

of architectures without the risk of deteriorating performance. This

parity also confirms that using MC-Dropout empirically satisfies

Equation 7.

On Robust04, we observe the largest difference in performance

of approximately -2.6% for BERT-L4. This result highlights that

uncertainty aware models do not inherently perform better on out-

of-distribution data; however, we discuss how the models are able

to convey their uncertainty and how to leverage this information

to improve performance.

5.2 Risk-Aware Ranking
Incorporating the CVaR based ranking (Table 3) allows us to lever-

age the model’s reported uncertainty, consistently improving per-

formance across all collections. After accounting for the variance

and skew of each document’s score distribution, MC-Dropout based

models significantly improve performance bothwith respect to their

mean performance, but also their deterministic baseline models by

3-5%. This performance increase is present in both the optimistic

(CVaR+) and pessimistic (CVaR−) setup, suggesting that focusing
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Table 2: Comparison ofMRR and nDCG@nperformance between deterministic (𝐷 ) andmean BayesianMC-Dropout (𝐵) model
performance. Document scores were calculated as mean performance over 150 samples for the stochastic models. 𝑛 was 200
for TREC 2019 DLT and 20 for Robust04. ∗ represents statistical significance of 𝑝 < 0.05 using paired t test.

Collection Models
MRR

BERT-L2𝐷 BERT-L2𝐵 BERT-L4𝐷 BERT-L4𝐵 Conv-KNRM𝐷 Conv-KNRM𝐵

MS MARCO 0.305 0.301 (-1.3%) 0.308 0.308 (+0.1%) 0.279 0.280 (+0.4%)

TREC 2019 DLT 0.912 0.916 (+0.5%) 0.929 0.936 (+0.8%) 0.900 0.901 (0.0%)

MS MARCO → Robust04 0.617 0.628
∗
(+1.8%) 0.657 0.640

∗
(-2.6%) 0.591 0.598 (+1.2%)

nDCG@200,20
BERT-L2𝐷 BERT-L2𝐵 BERT-L4𝐷 BERT-L4𝐵 Conv-KNRM𝐷 Conv-KNRM𝐵

MS MARCO 0.398 0.395 (-0.8%) 0.401 0.401 (-0.1%) 0.380 0.377 (-0.8%)

TREC 2019 DLT 0.582 0.576 (-1.0%) 0.582 0.581 (-0.2%) 0.565 0.567 (+0.4%)

MS MARCO → Robust04 0.431 0.433 (+0.7%) 0.434 0.431 (-0.7%) 0.425 0.426 (+0.2%)

Table 3: Risk-aware rerankings of the top 200 candidate doc-
uments for each query using CVaR. CVaR1 indicates stan-
dard mean score, CVaR+ and CVaR− represents taking the
optimistic and pessimistic perspectives above and below
𝛼 accordingly. We report nDCG@200 for TREC DLT and
nDCG@20 for Robust04. * denotes statistical significance
with respect to baselines with 𝑝 < 0.05 using paired t test.

Collection Model CVaR+ CVaR− CVaR1

TREC 2019 DL

BERT-L2𝐷 0.582 0.582 0.582

BERT-L2𝐵 0.597* 0.598* 0.576

BERT-L4𝐷 0.582 0.582 0.582

BERT-L4𝐵 0.606* 0.605* 0.581

Conv-KNRM𝐷 0.565 0.565 0.565

Conv-KNRM𝐵 0.584* 0.585* 0.567

Robust04

BERT-L2𝐷 0.398 0.398 0.398

BERT-L2𝐵 0.411* 0.412* 0.402

BERT-L4𝐷 0.400 0.400 0.400

BERT-L4𝐵 0.407* 0.407* 0.395

Conv-KNRM𝐷 0.382 0.382 0.382

Conv-KNRM𝐵 0.404* 0.403* 0.386

on the tails of either end of the distributions provides pertinent

uncertainty information with respect to the model outputs. Inter-

estingly, we see a similar change in performance for the Robust04

collection, suggesting that MC-Dropout models are equally capable

of expressing risk on the data used to train the model in addition

to collections where all documents are out of distribution.

To provide additional insight into how this risk aware re-ranking

functions over different candidate ranking positions, we plot the

relationship between 𝜇 to 𝜎2 and 𝜇 to skew 𝛿 in Figure 2. It is in

these figures that we notice the impact that the neural architecture

has on the uncertainty of the documents. Both BERTs have a direct

relationship with predicted relevance such that the model is most

certain about highly relevant documents, and a non-linear increase

in uncertainty as documents move further away from the query.

With this increase we also see the scores converge to a normal

distribution. The top most relevant documents are highly skewed

with low variance within the range of 0 to -0.1 relevance score with

the majority of its mass on the right of the distribution as indicated

in Figure 3. As the variance increases and relevance scores drop, the

score distribution follows Theorem 3.1 and approaches a normal

distribution.

With respect to Conv-KNRM𝐵 , the same pattern is present but

not as salient. The upper bound of variance continues to grow

while a large portion of non-relevant documents still have very

low relevance. However, the asymmetric nature across 𝑡𝑎𝑛ℎ used in

ConvKNRM demonstrates that uncertainty is still being expressed

over both the handmade kernel features and the condensing nature

of 𝑡𝑎𝑛ℎ. This same asymmetry is found in the skew plot, with a

greater number of documents expressing high positive skew than

the fewer highly relevant documents with large negative skew.

We hypothesize that the polarizing skew values is due to the high

gradient of 𝑡𝑎𝑛ℎ.

The variance and skewness trends are reinforced as the risk-

aware CVaR consistently increases metric performance as we in-

crease the 𝑛 cutoff for nDCG@n, suggesting that risk based re-

ranking can be most utilized for high recall tasks or where effective

performance is required outside of the top few documents. This

result is unsurprising when considering the inverse CDF plots in

Figure 3. The highly ranked documents have an almost point dis-

tribution while the lower ranked documents exhibit significant

uncertainty.

5.3 Calibration
We now inspect the expressiveness of a stochastic retrieval model’s

uncertainty to answer Does efficient MC-Dropout improve uncer-
tainty calibration for IR models? We record ERCE in Table 4 for

all model and collection permutations and observe a substantial

decrease in calibration error resulting in approximate Bayesianmod-

els being 3̃0% more calibrated. This confirms our hypothesis that

Bayesian retrieval models will have better expressiveness of their

confidence. It follows from recent results in computer vision [17],
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Figure 2: The mean to variance and mean to skew relationship for each document scored by Conv-KNRM𝐵 (top), BERT-L2𝐵
(middle), and BERT-L4𝐵 on TREC 2019 DLT.

Table 4: Expected ranking calibration error (ERCE) for BERT models with respect to their deterministic variants (lower is
better).

Collection Models
BERT-L2𝐷 BERT-L2𝐵 BERT-L4𝐷 BERT-L4𝐵 Conv-KNRM𝐷 Conv-KNRM𝐵

TREC 2019 DLT 0.703 0.465 0.700 0.507 0.519 0.452
MS MARCO → Robust04 0.493 0.396 0.477 0.395 0.256 0.264

where non Bayesian models are poorly calibrated. These results

explain the natural separation of mean document scores in Figure 3

as the highly relevant documents are clustered together while the

lower ranked documents show a greater spread. One perspective

on this is that the increased spread of scores across the range of

relevance expressed by the model can be viewed as the relative

confidence that they are ranked in the right order.

5.4 Downstream Application: Cutoff Prediction
Having discussed the improved calibration and risk based re-ranking,

we now address our question Is uncertainty information actionable
in the context of downstream tasks? To do so, we use the cutoff pre-

diction task where the objective is to find a cutoff point in a ranked

list that maximizes some non-monotonic metric. The motivation,

discussed by Lien et al. [31], is that at some point, a neural model

loses effectiveness as documents move further away from the query.

Using the Choppy cutoff predictor from Bahri et al. [3], we com-

pare the cutoff performance between the information contained in

a deterministic model, a modern version of Zhu et al. [60]’s risk

based language model, and our Bayesian model’s score distribution

in Table 5. As shown, we observe a significant improvement to the

upper performance bound (oracle) under the Bayesian framework

when compared to the deterministic models. As indicated in Sec-

tion 3.2.1, the mean weights of the MC-Dropout models closely

approximates those of their deterministic cousins. This suggests,

combined with the visual inspection of Figure 1, that the key de-

termining factors are the variance, entropy, and skew values as a

function of document relevance.

Examining the cutoff performance across TREC DLT 2019, we

note an approximate 9% increase in cutoff accuracy when including

the additional uncertainty information, confirming our hypothesis

that the uncertainty information displayed by the MC-Dropout

models can be used in downstream decision making. Moving to the

Robust04 results, we see a greater increase in comparative perfor-

mance. As the retrieval models are now out of distribution, there

exists significant variance across all ranking positions which in-

troduces noise into the additional dimensions. Following the same

trends discussed in risk-aware re-ranking, we see the greatest im-

provement using an initial ranked list of the top 200 documents. As

we decrease the set of candidate documents to be re-ranked, the



Not All Relevance Scores are Equal: Efficient Uncertainty and Calibration Modeling for Deep Retrieval Models SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

Table 5: Choppy [3] performance as a percentage of oracle cutoff under the F1 metric.𝐺 is the generative baseline using BERT-
L2 and BERT-L4, and ∗ denotes 𝑝 < .05 significance using t test with respect to baseline variants of the same architecture.

Collection Models
BERT-L2𝐷 BERT-L2𝐵 BERT-L2𝐺 BERT-L4𝐷 BERT-L4𝐵 BERT-L4𝐺 Conv-KNRM𝐷 Conv-KNRM𝐵

TREC 2019 DLT 77.3% 80.6%∗
74.5% 73.6% 79.9%∗

73.8% 75.3% 86.4%∗

Robust04 74.1% 78.9%∗
62.4% 75.4% 78.1%∗

63.3% 66.2% 77.7%∗

Figure 3: Empirical CDFs of a subset of documents for a sin-
gle query on BERT-L4𝐵 (top), Conv-KNRM𝐵 (bottom) for the
TREC 2019 DLT dataset. Documents were selected for every
10th rank position (0, 10, 20, 30 . . . , 200).

performance difference between deterministic and Bayesian vari-

ants closes. At the top 50 candidates we record only a 2% difference

in performance across model frameworks.

Remarking on the related work of capturing uncertainty through

generative retrieval models, we further highlight the performance

gap between the generative BERT and the Bayesian BERT mod-

els [24, 60]. Using the generative framework introduced by Liu and

Lapata [34] where the BERT component uses BERT-L2 or BERT-

L4, its scores and entropy values representing uncertainty over

relevance fail to achieve the same level of calibrated uncertainty

as the approximate Bayesian approach. This highlights the find-

ing by Nalisnick et al. [38] that generative models, while capable

of expressing uncertainty, are often overconfident in their own

self-estimates, resulting in uncertainty measures which are not as

robust when compared to those made by Bayesian models. Further,

the uncertainty values self-reported by the model are substantially

worse when out of distribution on Robust04 with close to a 15%

degradation in cutoff performance, which demonstrates the robust

uncertainty present in the Bayesian distributions.

5.5 Efficiency
As one of the primary contributions of this work is the efficient mod-

eling of uncertainty, one of the most significant obstacles to be ad-

dressed is the computational cost of scoring each query-document

pair𝑛 times.We benchmark the additional compute cost for our last-

layer MC-Dropout on a GTX 1080ti. While not completely free, the

additional cost of running 100 additional samples is 0.326± 0.012 𝜇𝑠

for Conv-KNRM4𝐵 and 0.368 ± 0.016 𝜇𝑠 for BERT-L4𝐵 , L2𝐵 , or for

any other large transformer architecture as the additional cost is a

function of the final output dimension, not of the retrieval model

itself.

6 CONCLUSION
In this paper, we introduced an efficient Bayesian framework to

estimate epistemic and aleatoric uncertainty in retrieval models.

We demonstrated that query-document uncertainty can be modeled

using only the last two layers of a neural model, allowing for its

use in state-of-the-art retrieval models relying on BERT – be it

pre-trained or as part of the actual retrieval architecture. The per-

formance of these stochastic models stays reasonably close to their

deterministic versions while offering substantially more informa-

tion per document score. Furthermore, the actual scores themselves

are better calibrated with each other allowing for a more accurate

comparison between documents. These properties enable improved

performance on ranking via risk-aware reranking in addition to

the downstream task of cutoff prediction when compared to the

deterministic versions.

As this approximate Bayesian inference is efficient and conveys

useful information for both fully distributed and handcrafted mod-

els, there exists a promising body of future work incorporating

stochastic models for fairness [13, 33], diversity [5], transparent

search [45], dialogue agents [20] and improved sample efficiency

when training neural retrieval models [55]. Lastly, we hope to ex-

plore the impact of uncertainty modeling in situations where the

retrieval model acts as an information gathering agent in larger

systems.
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