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ABSTRACT
Planck data provide precise constraints on cosmological parameters when assuming the base !CDM model, including a
0.17 per cent measurement of the age of the Universe, t0 = 13.797 ± 0.023 Gyr. However, the persistence of the ‘Hubble
tension’ calls the base !CDM model’s completeness into question and has spurred interest in models such as early dark energy
(EDE) that modify the assumed expansion history of the Universe. We investigate the effect of EDE on the redshift–time
relation z↔t and find that it differs from the base !CDM model by at least ≈4 per cent at all t and z. As long as EDE remains
observationally viable, any inferred t ← z or z ← t quoted to a higher level of precision do not reflect the current status of our
understanding of cosmology. This uncertainty has important astrophysical implications: the reionization epoch – 10 > z > 6 –
corresponds to disjoint lookback time periods in the base !CDM and EDE models, and the EDE value of t0 = 13.25 ± 0.17 Gyr
is in tension with published ages of some stars, star clusters, and ultrafaint dwarf galaxies. However, most published stellar
ages do not include an uncertainty in accuracy (due to, e.g. uncertain distances and stellar physics) that is estimated to be
∼ 7–10 per cent, potentially reconciling stellar ages with t0,EDE. We discuss how the big data era for stars is providing extremely
precise ages (< 1 per cent) and how improved distances and treatment of stellar physics such as convection could result in ages
accurate to 4–5 per cent, comparable to the current accuracy of t↔z. Such precise and accurate stellar ages can provide detailed
insight into the high-redshift Universe independent of a cosmological model.

Key words: stars: fundamental parameters – cosmic background radiation – cosmological parameters – distance scale.

1 IN T RO D U C T I O N

The basis of observational cosmology is that the finite speed of light
means that observations of more distant objects reveal properties of
these objects at earlier times in the evolution of the Universe. And
yet, neither distance (d) nor time (t) is a cosmological observable:
it is the redshift (z) of a galaxy that is measured, and relating z to t
or d requires a cosmological model. In the context of the base dark
energy (!) plus cold dark matter (CDM) model (!CDM), where
it is assumed that dark energy is a cosmological constant and the
Universe is spatially flat, ages and cosmological distance measures
(or conformal times) at a given redshift depend only on H0 and
"m. The precision of age or distance determinations is therefore
fundamentally linked to the precision of H0 and "m measurements.

Fortunately – as untold papers, talks, and press releases remind
us – we live in the age of precision cosmology. The baseline
!CDM fit to Planck observations of the cosmic microwave back-
ground (CMB) measures H0 = 67.32 ± 0.54 km s−1 Mpc−1 and "m

= 0.3153 ± 0.0073 (Planck Collaboration VI 2020); these values,
in turn, establish the redshift–age relation precisely. A specific and
important example is the age of the Universe, t0, which is calculated
to be 13.797 ± 0.023 Gyr on the basis of !CDM-based fits to Planck
data. Upon seeing this number and associated error bar, indicating
that the age of the Universe is known to better than 0.2 per cent
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precision, a reader would be excused for thinking cosmological ages
are very well known and unworthy of further scrutiny.

And yet, there is certainly reason for skepticism about this conclu-
sion. The CMB does not provide a direct measurement of H0 (or H at
any redshift): H0 is a so-called derived quantity in CMB analyses that
is inferred by measuring other quantities directly. Riess et al. (2021,
hereafter R21) have measured H0 = 73.2 ± 1.3 km s−1 Mpc−1 using
the luminosity distances to Type Ia supernovae, calibrated by Cepheid
variable stars with a period–luminosity relationship that is anchored
in geometric distances to nearby (D < 10 Mpc) stars and galaxies.
This local value of H0 is formally 4.2 σ discrepant with the Planck
result. Fixing all other cosmological parameters – "m is the parame-
ter of primary importance, as discussed in Section 2.1 – the age of the
Universe scales inversely with the Hubble constant, t0H0 = constant,
indicating a possible 10 per cent systematic uncertainty in t0 and in
the age–redshift relation overall.1

Although Cepheid-based determinations are perhaps the most well
known way to measure H0 in the local Universe, several different
techniques are now being employed (for a recent compilation, see Di
Valentino 2021). It is important that the multiple ‘late-time’ probes of
the expansion rate are available, as systematic errors are different (or
even independent) for the different measurements. Even just within

1The local determination of H0 is not sensitive to "m, but changing H0 to the
R21 value while fixing "m to the base !CDM Planck value would result in
an atrocious fit to CMB data. See Section 2.2 for further discussion.
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the past year, measurements of H0 that rely on the tip of the red giant
branch (Freedman et al. 2020), Mira variables (Huang et al. 2020),
surface brightness fluctuations (Blakeslee et al. 2021; Khetan et al.
2021), the Tully–Fisher relation (Kourkchi et al. 2020; Schombert,
McGaugh & Lelli 2020), masers (Pesce et al. 2020), and gravitational
lenses (Birrer et al. 2020) have been published, with gravitational
wave measurements looming on the horizon as a potentially powerful
way to measure the expansion rate in the nearby Universe (Holz &
Hughes 2005; Abbott et al. 2017). The global picture based on late-
time measurements is somewhat murky and is evolving quickly, but
it is clear that these late-time determinations are all no lower than
early-time measurements, and that they are generally higher. For
example, by combining over twenty of these late-time measurements,
Di Valentino (2021) finds H0 = 72.7 ± 1.1 km s−1 Mpc−1.

At the same time, CMB observations from ground-based observa-
tories are obtaining H0 values that agree with the results of the Planck
satellite. The Atacama Cosmology Telescope (ACT) collaboration
finds H0 = 67.9 ± 1.5 km s−1 Mpc−1 from ACT data alone (Aiola
et al. 2020), while the SPT-3G collaboration recently reported
H0 = 68.8 ± 1.5 km s−1 Mpc−1 based solely on SPT-3G E-mode
polarization autocorrelation and temperature-E cross-correlation
functions (Dutcher et al. 2021). It is also possible to measure
the sound horizon rd at the end of the baryon drag epoch, zd ≈
1060, via the baryon acoustic oscillations (BAO) imprinted in the
distribution of low-redshift galaxies. The angular size of the BAO
feature, combined with additional data sets to break degeneracies
with the baryon and matter densities ωb and ωm, can then be used
to constrain H0 from large-scale structure with no dependence on
the CMB. Abbott et al. (2018) combined BAO, big bang nucleosyn-
thesis, and galaxy clustering + weak lensing data from the Dark
Energy Survey (Dark Energy Survey Collaboration 2016) and found
H0 = 67.4+1.1

−1.2 km s−1 Mpc−1, consistent with (and independent of)
CMB measurements and inconsistent with most local measurements.
An identical conclusion was reached using a similar analysis of
BAO from the Extended Baryon Oscillation Spectroscopic Survey
(H0 = 67.35 ± 0.97 km s−1 Mpc−1; eBOSS Collaboration 2020).

The strong possibility that the locally-measured value of H0 is
meaningfully different from the value inferred from analysis of CMB
and large-scale structure data is intriguing: this Hubble tension (see
Di Valentino et al. 2021 for a comprehensive review) points to the
prospect of missing physics that modifies the expansion history of the
Universe by adding new forms of energy or interactions to the base
!CDM model (see e.g. Knox & Millea 2020 for a recent overview
of classes of solutions). It is very difficult to modify only late-time
physics and remain consistent with cosmological data sets (see e.g.
Efstathiou 2021). A more promising route for resolving the Hubble
tension is to posit an expansion rate at early times, prior to the redshift
of CMB last scattering (z# = 1090), that is faster than in the standard
!CDM model. The sound horizon at z# in such models is smaller
than in !CDM, so the angular diameter distance between us and z#

must be reduced in order to maintain the precisely measured angular
size of the sound horizon. Such a reduction requires increasing H0.

A period of ‘early dark energy’ (EDE) that, at its peak (5000
! z ! 3500), contributes roughly 10 per cent of the total energy
density of the Universe before quickly decaying away (Karwal &
Kamionkowski 2016; Mörtsell & Dhawan 2018; Agrawal et al.
2019; Lin et al. 2019; Poulin et al. 2019; Sakstein & Trodden
2020; Smith, Poulin & Amin 2020, though see Hill et al. 2020 for
concerns about EDE’s consistency with a variety of data sets) is a
tantalizing mechanism for achieving a smaller sound horizon. In this
class of models, cosmological ages at z ' z# are only sensitive to the
change in the expansion history indirectly, through the accompanying

changes in inferred values of H0 and "m based on fits to the CMB.
Recently proposed EDE models have best-fitting values of t0 ≈
13.0 Gyr (e.g. Klypin et al. 2021), meaning the systematic error
on t0 is at least ∼0.7 Gyr (or ∼5 per cent). In fact, as we show
in this paper, the entire redshift–time relation is subject to this
level of uncertainty (∼5 per cent) as long as cosmological solutions
of the Hubble tension related to the pre-recombination expansion
rate remain viable. While smaller than the 10 per cent systematic
uncertainty that would predict if using the naive t0 ∝ H−1

0 scaling, a
5 per cent systematic uncertainty is 30 times larger than the error bar
quoted by Planck Collaboration VI (2020) on t0 in the base !CDM
model and is therefore important to study more closely.

A completely orthogonal handle on the redshift–time relation,
and the age of the Universe, comes from the ages of individual
stars, stellar remnants, and stellar populations [e.g. metal-poor stars,
white dwarfs (WDs), and globular clusters (GCs) and ultrafaint
dwarf (UFD) galaxies ] in the local Universe (e.g. Burbidge et al.
1957; Fowler & Hoyle 1960; Janes & Demarque 1983; Fowler 1987;
Winget et al. 1987; Cowan, Thielemann & Truran 1991a,b; Renzini
1991; Chaboyer 1995; Vandenberg, Bolte & Stetson 1996; Jimenez
1999; Krauss & Chaboyer 2003; Verde, Jimenez & Feeney 2013;
Jiménez et al. 2019; Verde, Treu & Riess 2019). Stellar ages are
independent of cosmological models and, for a known distance
and reddening, depend only on the physics of stellar evolution
(see Soderblom 2010 for a general review and further discussion
in Section 4). Historically, stellar ages were a competitive method to
cosmology when determining the age of the Universe (e.g. Chaboyer
1995, Vandenberg et al. 1996), but they have taken a back seat
in recent years because of the lack of sufficiently precise and
accurate distances and uncertainties in some of the underlying stellar
physics (e.g. convection, diffusion, opacity, nuclear reaction rates;
Salaris 2009; Arnett et al. 2015; Chaboyer et al. 2017; Dotter et al.
2017; Valcin et al. 2021) and the dramatic increase in precision in
cosmological parameter estimation over the past two decades.

However, as we have just discussed in the context of the Hubble
tension, precision cosmology does not necessarily lead to an equally
accurate understanding of our Universe and its contents (Peebles
2002). In this context, stellar ages have the potential to once again
be a useful tool for our understanding of cosmology. Fortuitously,
observations of stars in the Milky Way (MW) and Local Group in
the midst of a data revolution, and precise and accurate geometric
distances from Gaia (Gaia Collaboration 2016), coupled with time
domain insights into stellar interior physics (e.g. K2, TESS Howell
et al. 2014; Ricker et al. 2015) and precise abundance determinations
(e.g. LAMOST, GALAH, APOGEE; Cui et al. 2012; De Silva et al.
2015; Majewski et al. 2017), are providing a new foundation for
stellar astrophysics.

In this paper, we explore the uncertainty in ages as derived
from cosmological redshifts and consider the role of stellar ages in
independently constraining cosmology-derived ages, both now and in
the context of projected improvements in near-field observations. We
first outline the current version of the !CDM and an extended version
that contains EDE (Section 2.1). We then discuss the translation
between redshift and age in cosmology and quantify the uncertainty
in this translation that comes from the allowed parameter space in
cosmological models, with a particular emphasis on the difference
in the redshift–time relation in !CDM versus EDE (Section 3).
We highlight specific examples of how this uncertainty affects our
understanding of galaxy formation and consider the role of stars as
cosmology-independent clocks (Section 4). Finally, we discuss the
age-old issue of accuracy and precision for stellar and cosmological
ages and highlight promising areas for improvement (Section 5).
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2 C O S M O L O G I C A L P R E L I M I NA R I E S

2.1 The base !CDM and EDE cosmologies

We adopt the base !CDM model of the Planck analysis (Planck
Collaboration VI 2020) as our cosmological standard model. This
model, which assumes no spatial curvature and initial conditions that
are Gaussian and adiabatic, is fully2 parametrized by six numbers:
the physical densities of CDM and baryons today, ωc = "ch2 and
ωb = "bh2, where h is the standard dimensionless representation of
the present-day Hubble constant, H0 = 100 h km s−1 Mpc−1, and "X

refers to the present-day ratio of the density in component X to the
critical density ρcrit = 3 H 2

0 /(8 π G); the amplitude As and slope ns

of the primordial power spectrum of density fluctuations; the angular
size of the sound horizon at the epoch of CMB last scattering, θ#;
and the electron scattering optical depth to reionization, τ (Planck
Collaboration VI 2020). We use best-fitting, marginalized mean,
and 68 per cent confidence intervals for each parameter based on
the Plik TT,TE,EE+lowE+lensing likelihood applied to the full-
mission data (hereafter, ‘Planck’).

In the base !CDM model, the expansion rate H at any redshift z

or scale factor a = (1 + z)−1 depends only on the current expansion
rate, H0, and the physical densities of each energy/matter component
– baryons, CDM, dark energy (!), photons (γ ), and neutrinos (ν) –
as a function of redshift:

H (a) = H0

√

("c + "b) a−3 + "! + "γ a−4 + ρν(a)
ρcrit(a = 1)

. (1)

Furthermore, the base !CDM model assumes: (1) the present-day
CMB temperature is TCMB = 2.7255 K (Fixsen 2009), which sets
the present-day photon energy density ργ ; (2) one massive (m =
0.06 eV) and two massless neutrino species, which establishes the
contribution of neutrinos to the present-day matter density; and (3)
the effective number of neutrino species3 is Neff = 3.046, which
provides the conversion from ργ to ρr at early times, when all three
neutrino species are relativistic: ρr(z ! 100) = 1.692 ργ (z ! 100).
The radiation density ωr is therefore fixed – "r = 4.1837 × 10−5 h−2

– and, to a good approximation, the expansion history depends only
on the parameters H0 and "m:

H (a) = H0

√
"m a−3 + (1 − "m) + "r a−4. (2)

Accordingly, we will frequently consider the "m − H0 plane in what
follows (see also Lin, Mack & Hou 2020).

As a fiducial model that is consistent with both the CMB and with
the SH0ES value of H0, we adopt the EDE model described in Poulin
et al. (2018, hereafter P18; see also Smith et al. 2020 and Murgia
et al. 2021), in which EDE is characterized by three quantities: the
fractional contribution of EDE to the energy density of the Universe
(fEDE) at the redshift (zc) where the EDE field becomes dynamical

2By ‘fully’, we mean partially. See the text below equation (2) for additional
assumptions that go into the base !CDM model.
3Neff differs from the (integer) number of neutrino species because neutrino
decoupling is not complete at the time of the electron-positron annihilation in
the early Universe. Since neutrinos have energy-dependent interactions with
the photon–baryon plasma before and during decoupling, with higher energy
neutrinos interacting more strongly, the energy spectrum of the neutrinos
is distorted slightly relative to the assumed Fermi-Dirac distribution. This
spectral distortion, and the accompanying slight decrease in the difference
between the neutrino and photon energy densities relative to the assumption
of a thermal neutrino spectrum, can be accounted for using Neff = 3.046
rather than 3 (Mangano et al. 2005).

and the initial value of the field (,i). In a more general model, the
power-law exponent n of the EDE potential – which is related to the
asymptotic equation-of-state parameter for EDE – can also vary; we
restrict our analysis to the n = 3 case, which is generally very close
to the best fit for the more general case.

Our EDE results are based on parameters derived from the
same Planck analysis of TT,TE,EE+lowE+lowL+lensing plus
BAO+SNIa+SH0ES+FS (see table 1 of Murgia et al. 2021 and
accompanying discussion). The SH0ES constraint used in Murgia
et al. (2021) is from Riess et al. (2019) and is slightly larger in terms of
both its central value and error – H0 = 74.03 ± 1.42 km s−1 Mpc−1

– than the more recent Riess et al. (2021) result of H0 = 73.2 ±
1.3 km s−1 Mpc−1 that we adopt as a representative local value in
this work. This difference does not affect our results qualitatively
and should have at most a very minor quantitative effect. Table 1
contains the mean and ±1 σ values, as well as the best fit value, for
each parameter in both models. We adopt EDE values taken directly
from the MCMC output, which differ slightly (but unimportantly,
for our purposes) from those obtained with a further minimization
algorithm, as was done for the best-fitting values presented in Murgia
et al. (2021). We also list the precision – the ratio of the 1 σ error
to the mean value – of the measurement for each parameter for both
Planck and EDE. Appendix A contains a brief exploration how EDE
affects the cosmological expansion history and derived value of H0.

Fig. 1 shows the basic Hubble tension (left-hand panel) and its
resolution via EDE (right-hand panel). In the base !CDM model,
Planck results provide a tight constraint in "m − H0 parameter space.
While local measurements of H0 do not provide information about
"m, the locally measured value of H0 is sufficiently large that no
value of "m provides consistency with Planck. By extending the
base model to include a different expansion history – in this case, a
period of EDE – agreement between CMB and local measurements
of H0 can be obtained (right-hand panel of Fig. 1), as EDE pushes the
preferred value of "m slightly lower and the value of H0 somewhat
higher (with a non-trivially larger error).

As is clear from Fig. 1, CMB observations impose a tight
connection between "m and H0 for the base !CDM model. A
heuristic explanation of this correlation is useful in understanding
the effects of EDE on cosmological quantities, including ages.

2.2 Parameter correlations in the base !CDM model

The best-constrained cosmological parameter is θ#, which sets
the acoustic scale for oscillations in the photon–baryon fluid and
therefore can be determined by the spacings of the peaks in the CMB
power spectrum. θ# is the ratio of the sound horizon at last scattering,
r#, to the angular diameter distance to the last scattering surface, d#.
Roughly speaking, then, r# is sensitive to pre-recombination physics
while d# is sensitive to post-recombination physics, and any change
in pre-z# physics relative to the base !CDM model must be balanced
by an accompanying post-z# change (and vice versa) to keep θ# fixed.

The comoving sound horizon at z# is

r# = rs(a#) =
∫ a#

0

cs(a)
a2 H (a)

da. (3)

The sound speed, cs(a) ≈ c/
√

3 it varies with redshift as

cs(a) = c√
3

1√
1 + R(a)

, (4)

where R(a) = 3
4 ρb(a)/ργ (a) = R0 a is the redshift-dependent ratio

of momenta in baryons to photons. Integrating equation (3), the sound
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Table 1. Cosmological parameters adopted in this paper for the Planck (Planck Collaboration VI 2020) and EDE (Murgia, Abellán & Poulin 2021) cosmologies.
Note that the Planck analysis adopts θMC, an approximation to the sound horizon at z#, as one of the six !CDM base parameters, and that is what we list in
this table. The full numerical solution is reported in Planck Collaboration VI (2020) as a derived parameter, 100 θ#. Murgia et al. (2021) use H0 rather than θMC
or θ# as a base parameter, so here we list the value of the derived parameter 100 θs(r#) for n = 3 EDE. For each model, we list the marginalized mean and
68 per cent confidence interval for each parameter, with the best-fitting value given in parentheses. The precision we quote is the ratio of the 1 σ error – one
half of the 68 per cent confidence interval – to the mean value. For As and zc, we quote the precision on the parameter itself as opposed to the precision on the
logarithm of the parameter.

Parameter !CDM Precision n = 3 EDE Precision

Base
100 θs(r#) 1.04092 (1.040909) ± 0.00031 0.030 % 1.04145 (1.04106) ± 0.00037 0.036 %
ns 0.9649 (0.96605) ± 0.0042 0.44 % 0.9859 (0.9844) ± 0.0069 0.70 %
ωb 0.02237 (0.022383) ± 0.00015 0.67 % 0.02281 (0.02273) ± 0.00021 0.94 %
ωc 0.1200 (0.12011) ± 0.0012 1.0 % 0.1290 (0.1300) ± 0.0038 3.0 %
ln(1010 As) 3.044 (3.0448) ± 0.014 1.4 % 3.065 (3.065) ± 0.015 1.5 %
τ 0.0544 (0.0543) ± 0.0073 13 % 0.0574 (0.0567) ± 0.0074 13 %

,i – – 2.553 (2.722) ± 0.56 22 %
log10zc – – 3.61 (3.559) ± 0.12 28 %
fEDE – – 0.097 (0.105) ± 0.032 33 %

Derived
t0 (Gyr) 13.797 (13.7971) ± 0.023 0.17 % 13.246 (13.210) ± 0.17 1.3 %
r# (Mpc) 144.43 (144.39) ± 0.26 0.18 % 139.43 (138.95) ± 1.79 1.3 %
H0 (km s−1 Mpc−1) 67.36 (67.32) ± 0.54 0.80 % 71.01 (71.15) ± 1.05 1.5 %
"m 0.3153 (0.3158) ± 0.0073 2.3 % 0.3022 (0.3029) ± 0.0052 1.7 %

Figure 1. The Hubble tension and its resolution via early dark energy (EDE). Left: Planck constraints on "m and H0 (the green contours; the darker contour
shows the 68 per cent confidence interval, while the lighter contour shows the 95 per cent confidence interval), along with the determination of H0 from R21
(SH0ES) as a representative local value. The Hubble tension is the significant difference in H0 measured locally versus derived from the CMB. Right: The
resolution of the Hubble tension via EDE. By slightly changing the early expansion history of the Universe relative to the base !CDM model, the Hubble
tension can be resolved (or at least reduced): the CMB-derived value of H0 increases, and "m decreases, relative to Planck. The "m − H0 degeneracy for the
base !CDM fit to Planck is defined by "m ∝ h−3; for EDE, it is "m ∝ h−0.7. These correlations are important for understanding behaviour in the t0 − H0
plane. See Fig. 2 and Sections 2.2 and 3.2 for further details.

horizon is equal to

r# = 2
c

H0

1√
3 "m R0

[
arcsinh

(√
a#/aeq + 1
1/Req − 1

)

− arcsinh

(√
1

1/Req − 1

)]
(5)

(see also Hu & Sugiyama 1995). This equation depends on "m

and h both explicitly and implicitly via the scale factor at matter–
radiation equality, aeq ∝ ("m h2)−1, and Req = R0 aeq. Dependence
on the baryon density ωb comes through R0 (and therefore Req). The
integral in equation (3) lies entirely in the epoch where the single
m > 0 Standard Model neutrino is relativistic (mν = 0.06 eV in the
base !CDM model, and 3.15 kTν(a#) = 0.58 eV), meaning that the
neutrino contribution must be removed from "m (both explicitly and
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in computing aeq) when evaluating equation (5) if high precision
is required. The dependence of r# on "m and H0 near ("m,Pl, hPl)
is

r#

r#,Pl
=

(
"m

"m,Pl

)−0.25 (
h

hPl

)−0.49

≈
(

ωm

ωm,Pl

)−1/4

. (6)

We fix the baryon density to the Planck value in deriving equation (6);
we find r# ∝ ω−0.096

b near the Planck fit to the base !CDM model at
fixed "m and h.

The comoving angular diameter distance to a# is equal to

d# =
∫ 1

a#

c

a2 H (a)
da (7)

= c

H0

∫ 1

a#

[
"m a + "! a4 + "r

]−1/2
da. (8)

Although there is no analytic expression for d# even in the base
!CDM model, we can obtain an analytic approximation that is
accurate to essentially arbitrary precision by splitting the integral
in equation (7) into one portion where "! is negligible and another
where "r is negligible:

d# = c

H0

(∫ ai

a#

["m a + "r]−1/2 da

+
∫ 1

ai

[
"m a + "! a4]−1/2

da

)
. (9)

The first integral in equation (9) is straightforward, while the second
can be expressed in terms of Gauss’ hypergeometric function 2F1(1/2,
1/6, 7/6; Z), with Z = a3 ("m − 1)/"m. A natural choice for ai

in equation (9) is the scale factor of !-radiation equality, a!eq =
("r/"!)1/4 ≈ 0.1, giving

d# = 2 c

H0 "
1/2
m

(
√

a + aeq

∣∣∣∣
a!eq

a#

+
√

a 2F1(1/2, 1/6, 7/6; Z)
∣∣∣∣

1

a!eq

)
.

(10)

The cosmological parameter dependence of d# is

d#

d#,pl
=

(
"m

"m,Pl

)−0.4 (
h

hPl

)−1

(11)

(see also Vittorio & Silk 1985).
The sound horizon at last scattering, θ# = r#/d#, obtained using

equations (5) and (10) is identical to the derived Planck value to
0.002 per cent (the quoted error on the Planck value is 0.03 per cent).
Combining equations (6) and (11), we find that

θ#

θ#,pl
=

(
"m

"m,Pl

)0.15 (
h

hPl

)0.51

. (12)

It is therefore this combination of cosmological parameters in the
base !CDM model – "0.15

m h0.51, or "m h3.4 – that is well constrained
by the highly precise measurement of θ# and is the origin the very
narrow Planck confidence contours in Fig. 1. The orientation of the
degeneracy in "m − H0 space is actually slightly different from a
curve of constant θ#, as the measured values of "m and H0 depend
on information from the heights of the peaks (which are mostly
sensitive to "m h2) in addition to their spacings. In practice, this shift
relative to the "m h3.4 degeneracy is relatively small, to "m h3 ≈
constant (Percival et al. 2002; Kable, Addison & Bennett 2019;
Planck Collaboration VI 2020).

EDE contributes non-negligibly to the energy density, and there-
fore to the expansion rate H(a), at early times but not late times;

accordingly, the expressions above for r# (and the parameter de-
pendence of θ#) need to be modified in the presence of EDE but
those for d# do not. Appendix A discusses H(a) for the EDE model
considered here. The global effect of these changes is to modify
the EDE confidence contour in "m − H0 space: the contour is much
shallower (less change in "m as H0 is varied) – approximately defined
by a constant value of "m h0.7 – and much broader than the contour
defined by the Planck fit to the base !CDM model.

3 C O S M O L O G I C A L AG E S A N D T I M E S

3.1 From scale factor to time and back again

This age of the Universe in the base !CDM model at any scale factor
a is calculated via a straightforward integral:

t(a) =
∫ a

0

1
a H (a)

da (13)

= 1
H0

∫ a

0

[
"m a−1 + (1 − "m) a2 + "r a

−2]−1/2
da. (14)

For scale factors well into the matter-dominated era, a + "r/"m

≈ 2.9 × 10−4, the radiation density term can be safely ignored
for calculations requiring per cent level accuracy and the resulting
integral is analytic defining

t̃ ≡ 2
3

1
H0

√
1 − "m

= 6.519
1√

1 − "m
h−1 Gyr, (15)

the time-scale factor relation is

t(a) = t̃ arcsinh

(√
1

"m
− 1 a3/2

)
, (16)

while the inverse relation is

a(t) =
[√

"m

1 − "m
sinh

(
t

t̃

)]2/3

. (17)

The age of the Universe is then

t0 ≡ t(a = 1) = t̃ arcsinh

(√
1

"m
− 1

)
(18)

= t̃ ln

(√
1

"m
− 1 +

√
1

"m

)
(19)

and is equal to 13.80 Gyr when adopting the Planck parameters.
The cosmological parameter dependence of equation (18) near the
Planck values can be approximated as

t0

tPl
=

(
"m

"m,Pl

)−0.28 (
h

hPl

)−1

(20)

or t0 ∝ "−0.28
m h−1 ∝ ω−0.28

m h−0.44; This relationship holds for EDE
models (constrained by Planck data) as well and reinforces that
the age of the Universe is sensitive to both "m and H0 in flat
!CDM-like cosmological models. Comparing equation (20) with
equation (12), we see that the cosmological dependence of θ# and
t0 are closely related: holding all parameters except "m and h fixed,
Planck requires

t0 ∝ θ−2
# (21)

for the base !CDM model. Marginalizing over the additional
parameters – of which ωb is the most important, given its role in
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Uncertainty in the redshift–time relation 2769

Figure 2. Left: The Hubble tension using age rather than "m as a secondary parameter (compare with Fig. 1). The portion of EDE parameter space that is
consistent with the R21 value of H0 results in a value of t0 ∼ 13.0–13.2 Gyr that is significantly smaller than in the base Planck model (13.8 Gyr). Because of
the parameter correlations in the base !CDM model enforced by the CMB acoustic peaks, "m h3 ∝ constant, the Planck confidence contours in the t0 − h plane
are t0 ∝ h−0.2. This differs substantially from the naive scaling of t0 ∝ h−1. The EDE contours, on the other hand, are defined by t0 ∝ h−0.9, nearly the same as
the naive scaling, because the parameter combination "m h0.7 is best constrained in EDE. See Section 3.2 for details. Right: The dependence of t0 on "m in the
base Planck model (green) and EDE (black and grey). While t0 is precisely determined and only depends very weakly on "m in the base !CDM model, t0 is
much less well determined in EDE (though "m is better constrained to a slightly lower value than in base !CDM).

setting r# – modifies equation (21) to t0 ∝ θ−5.5
# . This accidental

correlation between t0 and θ# explains why the Planck constraint on
t0 is so good (0.17 per cent) – more precise than all of the primary
parameters except θ# – using the base !CDM fit even though t0

depends on the much less precisely determined parameters "m and
H0 (see also Hu et al. 2001; Knox, Christensen & Skordis 2001). EDE
does not have the same θ#−t0 correlation: although θ# is precisely
determined, it is not tightly connected to t0 in EDE, which is reflected
in the much larger error bar on t0 for EDE than for Planck in Table 1.

At early times, equation (16) can be expressed as

t(a) ∼=
2
3
ω−1/2

m a3/2 (aeq ' a " 0.25), (22)

which makes it clear that t(a) is only sensitive to the physical matter
density of the Universe ωm(a) for both the base !CDM model and
EDE in the heart of the matter-dominated era (100 ! z ! 3). Near
the present day, equation (16) is approximately

t(a) ∼= t0 − 1 − a

H0
= t0 − 1

H0

z

1 + z
(a ≈ 1). (23)

It is useful in many astrophysical settings to consider times relative
to the present day rather than the beginning of the Universe. This
lookback time (tlb) is simply

tlb(a) ≡ t0 − t(a). (24)

The lookback time as a function of scale factor is

tlb(a) = t̃

[
arcsinh

(√
1

"m
− 1

)
− arcsinh

(√
1

"m
− 1 a3/2

)]
.

(25)

Equation (25) can be inverted to give the scale factor as a function
of lookback time:

a(tlb) =
[

cosh
(

tlb

t̃

)
−

√
1

1 − "m
sinh

(
tlb

t̃

)]2/3

. (26)

The expressions for t(a), t0, and tlb(a) derived in this section apply
for both the base !CDM model and EDE for a ! 10 a# (i.e. z !
100): for this range of scale factors, the integral in equation (13) is
dominated by epochs where the contributions of EDE are negligible.
At earlier times (a " 10 a#), calculations of t(a) must be modified
to directly include the effects of EDE on the expansion rate; see
Appendix A for the appropriate functional form of H(a) for the EDE
model considered in this paper.

3.2 Ages in Planck and EDE cosmologies

With these calculations of cosmological ages in hand, we can revisit
the Hubble tension in t0 − H0 space. The left-hand panel of Fig. 2
shows that Planck gives a very precise value of t0 and that local
measurements of H0 are agnostic as to the age of the Universe
because they are not directly sensitive to "m. Resolving the Hubble
tension by introducing EDE results in a Universe that is non-
trivially younger than the Planck cosmology. Since EDE changes
the orientation of the best-fitting confidence contours in "m − H0

space relative to the base !CDM contour (see Fig. 1 and discussion
in Section 2.2), the contours also align differently in t0 − H0 space.
Using equation (20) and the fact that the degeneracy in "m − H0

space is approximately defined by a constant value of θ# for the base
!CDM model, we find that t0 ∝ h−0.2 for Planck (because "m ∝ h−3).
The "m − H0 degeneracy in EDE is much broader and shallower
("m ∝ h−0.7; cf. the black/grey contours in the right-hand panel of
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2770 M. Boylan-Kolchin and D. R. Weisz

Figure 3. Left: Contours of constant age (in Gyr) in ("m, H0) parameter space. As in Figs. 1 and 2, the 1 σ and 2 σ 2D confidence contours for Planck fits
to the base !CDM model are shown in dark and light green, with the green-dashed line showing the age of the Universe – t0 = 13.80 Gyr – for this model.
Equivalent 2D constraints for a representative EDE model (Murgia et al. 2021) are plotted in black and grey, with the grey-dashed line showing the corresponding
age of the Universe, t0 = 13.21 Gyr. The SH0ES measurement of H0 (R21) is shown as a blue shaded vertical band with width that encompasses the ± 1 σ

error. Right: Same as left, with grey-scale filled contours that show how d# and r# change, in intervals of 5 per cent, if θ# is fixed to the Planck value (with
darker shading indicating increasing values of r#) Models that resolve the Hubble tension by reducing r# by ∼4 per cent, such as EDE, require lower values of
"m, higher values of H0, and lower values of t0 than the base !CDM fit to Planck data. Note that the Planck age contour aligns well with the 2D confidence
contours for Planck, which is a result of θ# and t0 having nearly the same scaling for the base !CDM model. The same is not true for EDE. See Section 2.2 for
details.

Fig. 1), which results in t0 ∝ h−0.9, close to the naive scaling of
t0 ∝ H−1

0 .
The right-hand panel of Fig. 2 shows t0 − "m parameter space.

While Planck constrains t0 much better than "m (0.17 per cent
versus 2.3 per cent precision), constraints on the EDE model result in
roughly similar precision for the two parameters (1.3 per cent versus
1.7 per cent). The age of the Universe covers a much wider portion
of the EDE parameter space, and "m covers a somewhat narrower
portion, compared to Planck. As noted above, this difference has
its origins in the high-precision, and nearly cosmological-model-
independent, determination of θ# from Planck data and the depen-
dence of θ# (and the acoustic peak heights) on ("m, H0) in the two
models.

One way to encompass all of the relevant information is to consider
("m, H0) parameter space once again. Since t0 depends only on these
two parameters, it is possible to draw contours of constant t0 in this
space. The left-hand panel of Fig. 3 shows this parameter space, with
contours of constant t0 (in Gyr) labelled. Cosmological constraints on
the parameters are shown for Planck (green) and EDE (black/grey),
and the local value of H0 is shown in light blue, as before. The figure
shows the tight correlation between the "m − H0 degeneracy and the
contour of constant age for the Planck cosmology. The degeneracy
for the EDE cosmology is both broader and less well aligned with
the age contours. We can also use this parameter space to get an
intuition about the effects of EDE by fixing θ# to the Planck value
and varying d#, which depends only on "m and H0, by intervals of
5 per cent; to keep θ# fixed, this also requires changing r# by 5 per cent
intervals. This effect is shown as the grey-scale contours in the right-
hand panel of Fig 3. To resolve the Hubble tension, EDE reduces
r# by ∼4 per cent relative to Planck, which requires a higher value
of H0 and a slightly lower value of "m and results in a lower value
of t0.

3.3 The redshift–age relation

The relationship between scale factor (or redshift) and cosmic time
for a flat baseline model is given in equation (16), with equation
(25) giving corresponding relationship for lookback time. For z '
z#, these relationships also hold at the sub-per cent level for EDE
models. Since equation (20) depends on ("m, h), the redshift–age
relation differs in the two models. This is generally appreciated in
the context of t0, but it is important to note that ("m, h) affects the z

− t (or z − tlb) connection affected at all redshifts and times.
Fig. 4 compares the redshift that corresponds to a given lookback

time in the Planck cosmology (x-axis) and the EDE cosmology (y-
axis). The colour of the line shows the lookback time at each redshift,
and selected fixed lookback times are shown on the plot to enable
direct comparison. For 0 < z ! 1, the lookback time corresponding
to a given redshift is similar in each model. As the lookback time gets
larger, however, a systematic difference emerges, with fixed lookback
time corresponding to a lower redshift in the Planck cosmology
relative to EDE (because t0, Pl > t0, EDE): for example, a lookback
time of 12.5 Gyr falls at z ≈ 4.6 for Planck and z ≈ 7.2 for EDE.
The difference increases quickly, and dramatically, at even larger
lookback times, with zPl = 6 giving the same lookback time – tlb =
12.87 Gyr – as zEDE = 12.4.

An alternate way to look at the difference in the z − t relationship
in the two cosmologies is to plot the time difference as a function of
redshift. Fig. 5 shows - tlb (loobkack time; the black solid curve) and
- t (cosmic time; the grey-dashed curve) as a function of redshift,
while the top y-axis give the lookback time in the Planck cosmology
corresponding to the redshift on the main x-axis. The difference in
lookback times increases with increasing redshift, reaching -tlb ≈
0.4 Gyr by z = 1 (and asymptoting to -tlb = t0, Pl − t0, EDE as z →
∞). The difference in cosmic time decreases with increasing redshift
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Uncertainty in the redshift–time relation 2771

Figure 4. The redshift corresponding to a given lookback time in the Planck
(x-axis) and EDE (y-axis) cosmologies. Since the cosmological parameters
differ in the two models, the redshift corresponding to a fixed tlb differs as well.
The difference in z(tlb) is minimal for tlb " 8 Gyr but becomes substantial
for larger values of tlb: zEDE = 8 corresponds to the same lookback time
(12.60 Gyr) as zPl = 4.89, while a lookback time of 12.87 Gyr occurs at zEDE
= 12.35 versus zPl = 6. The age of the Universe in the EDE model, 13.21 Gyr,
corresponds to zPl = 8.5.

Figure 5. The difference in age as a function of redshift between the Planck
and EDE models in terms of cosmic time (grey) and lookback time (black).
The difference between cosmic times in the two models is lowest (in absolute
terms) at high redshift, while the difference between lookback times is lowest
at low redshift. The difference is bounded by the difference in the age of the
Universe in the two models, t0,Pl − t0,EDE ≈ 0.6 Gyr.

and is -t ≈ 0.2 Gyr at z = 1; it also asymptotes to -tlb = t0, Pl −
t0, EDE, at z = 0.

As a complement to the absolute time difference, it is also useful
to consider the fractional difference in time at a given redshift, δt(z),
which we define as

δt (z) ≡ tPl(z) − tEDE(z)
[tPl(z) + tEDE(z)]/2

(27)

for either lookback time or cosmic time. This is the quantity that
can be used in assessing the accuracy of time measurements at a
given redshift. The left-hand panel of Fig. 6 shows δt for both cosmic
time (grey) and lookback time (black) as a function of redshift, with
the upper x-axis giving tlb, Pl(z). Unlike the absolute time difference,
the fractional difference in times at fixed z increases monotonically
towards low redshift in both models, reaching 5.5 per cent for tlb and
4.4 per cent for t. Importantly, the fractional difference has a mini-
mum, non-zero value in both cases: at all redshifts,4 δt > 4.4 per cent
for lookback time and δt > 3.4 per cent for cosmic time. These limits
can be derived directly in terms of ωm and H0 based on equations (22)
and (23): δt = δ(t0) as z → ∞ (for tlb) and z → 0 (for t), while δt

= δ(1/H0) as z → 0 (for tlb) and δt = δ(1/
√

ωm) as z → ∞ (for t).
The fractional difference in redshift at fixed lookback time, δz(tlb) is
shown in the right-hand panel of Fig. 6. It has a minimum value of
δ(1/H0) (∼5.5 per cent for the models considered here) as tlb → 0. By
a lookback time of 8 Gyr, the fractional difference in redshift between
the two models is 10 per cent, and δz(tlb = 13 Gyr) = 100 per cent.
As we describe in Section 4 and Table 2, the large difference in
redshift at tlb ! 12 Gyr has implications for using stellar ages to place
constraints on cosmology or to reliably situate objects in specific
cosmological epochs (e.g. the reionization era).

The takeaway from this subsection generally and Fig. 6 specifically
is that the uncertainty in converting from a known redshift to time
is at least 4.5 per cent for lookback time and 3.5 per cent for cosmic
time. Any times obtained from converting from a known redshift to
tlb or t – including the age of the Universe – that are quoted to a
higher level of precision do not reflect the current uncertainty in our
understanding of cosmology. The uncertainty is actually somewhat
larger, at least 5.5 per cent, when going from tlb → z. The redshift–
time relationship, and our knowledge of the age of the Universe,
will have an irreducible uncertainty of at least ≈4 per cent owing to
uncertainties in the underlying cosmological model so long as effects
such as those in the EDE example studied here cannot be ruled out
by observations.

4 EX A M P L E S

In this section, we consider examples of recently published stellar
ages as directly reported in the original sources in order to illustrate
both the promise and challenges of employing stellar ages as con-
straints on cosmology and galaxy formation. We then discuss caveats,
systematics, obstacles, and opportunities with various approaches to
stellar age determination, a field that is the subject of a vast body of
literature (e.g. Vandenberg et al. 1996; Gallart, Zoccali & Aparicio
2005; Sneden, Cowan & Gallino 2008; Soderblom 2010; Cassisi,
Salaris & Pietrinferni 2016; Catelan 2018).

The purpose of the discussion here is not to provide a compre-
hensive review of these topics, but rather to illustrate the potential,

4We note that at z ! 0.1 z#, equations (16) and (25) no longer hold in EDE,
and a full calculation using the appropriate H(a) (see Appendix A) is required.
Statements in this section should be taken to apply to z " 0.1 z# ≈ 100, which
covers all directly measured astrophysical redshifts.
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2772 M. Boylan-Kolchin and D. R. Weisz

Figure 6. Left: The fractional difference δt(z) in time as a function of redshift in EDE relative to Planck. The fractional difference in lookback time (black)
and cosmic time (grey) between the two models is lowest at high redshift and increases at low redshift. The fractional difference in cosmic time always exceeds
3.4 per cent and reaches 4.4 per cent at z = 0, while the fractional difference in lookback time is always larger than 4.4 per cent and reaches 5.5 per cent at z

= 0. Right: The fractional difference in redshift as a function of lookback time, δz(tlb), over the range 8 Gyr ≤ tlb ≤ t0,EDE. The minimum value of δz(tlb)
is 5.5 per cent at low redshift, and it rises dramatically towards large values of tlb, reaching 10 per cent at 8 Gyr and 100 per cent at 13 Gyr. The very large
redshift ranges of many entries in Table 2 have their origin in the large values of δz(tlb) for tlb ! 12 − 12.5 Gyr. The redshift–time relationship has a current
uncertainty of at least ∼4 per cent at all z and t.

challenges, and confusion that the current generation of stellar ages
poses, particularly in light of recent advances in cosmology. In
Section 5, we provide a broader discussion of precision versus
accuracy in stellar ages, prospects for improvement, and how stellar
ages interface with current tensions between cosmological models.
In some cases, taking reported age error bars at face value results
in seemingly implausible redshifts given any viable cosmological
model and tensions with the cosmological age of the Universe.
However, it is important to recall that the physics that determines
a star’s age is unrelated to the framework of cosmological models.
This independence provides strong motivation for improvements in
stellar age precision and accuracy, as well as scrupulous reporting of
both.

4.1 The reionization era

We will use the epoch of reionization – the period in the early
Universe when the neutral fraction of the intergalactic medium
transitioned from unity (i.e. fully neutral) to <10−3 (i.e. almost
fully ionized), roughly corresponding to 10 ! z ! 6 (e.g. Stark
2016; Greig & Mesinger 2017; Madau 2017) – as one important
reference point for comparing ages and redshifts. Fig. 7 illustrates
how the timing of reionization in terms of lookback time depends
on the adopted cosmology. In the Planck cosmology, it took place
from 12.87–13.33 Gyr ago; in the EDE cosmology, the same redshift
range corresponds to 12.32–12.76 Gyr ago.

One takeaway of Fig. 7 is that an object (e.g. a star or GC) with
a well defined and precisely known age cannot generically be a
‘reionization-era’ object. That is, because the EDE and Planck cos-
mologies are equally well fit by available cosmological data and

have disjoint lookback times for the reionization era (Fig. 7), it is
not possible to conclude with certainty that an object’s age places its
time of formation within the reionization era.

Fig. 7 also illustrates the effect that varying the cosmological
expansion history has on determining ages for objects (e.g. high-
redshift galaxies) with well-measured redshifts. For example, an ob-
ject with a precisely known redshift in the middle of the reionization
era has an uncertainty of ∼550 Myr in lookback time.

To explore this point further, consider the reported detection of
emission lines corresponding to redshift z = 10.957 ± 0.001 in GN-
z11 (Jiang et al. 2021), a source originally detected photometrically
with the Hubble Space Telescope (HST). This would make GN-
z11 the highest redshift galaxy detected to date, and it is a pre-
reionization-era object according to the definition adopted here.
The redshift of GN-z11 (plotted as a grey line in the left-hand
panel of Fig. 7) corresponds to tlb = 13.39 Gyr (cosmic time of
416 Myr, and a radial comoving distance of d = 9.83 Gpc) in the
Planck cosmology as opposed to tlb = 12.81 Gyr (cosmic time of
402 Myr, radial comoving distance of d = 9.44 Gpc) in the EDE
cosmology. The same ∼4 per cent uncertainty in lookback time is
also present in the distance of high-redshift objects.

4.2 The ages of ultrafaint galaxies

In galaxy formation theory, reionization plays the crucial role of
setting the low-mass threshold of galaxy formation. The ionizing UV
background heats the intergalactic medium to (1 − 2) × 104 K; this
is sufficient to prevent gas accretion on to haloes below Mvir(z∼8) =
108 M0, curtailing the supply of cold gas and inhibiting the formation
of stars (e.g. Babul & Rees 1992; Efstathiou 1992; Thoul & Weinberg
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Uncertainty in the redshift–time relation 2773

Table 2. Precision Ages for Select Near-Field Objects. (1), (2) Name and type of the object. (3) Age of the object with uncertainties reported in the literature by
(6); typically, these uncertainties reflect only the precision, and absolute uncertainties (i.e. accuracy) are either roughly estimated or not given (see Section 4).
(4), (5) The corresponding redshifts in the Planck and EDE cosmologies. In some cases, the reported ages and redshifts may appear unrealistically high or the
associated uncertainties may appear unreasonably small. We have elected to take the reported ages and uncertainties at face value and discuss the caveats in
Sections 4 and 5.

Object Type Age (Gyr) zPl zEDE Ref
(1) (2) (3) (4) (5) (6)

Sun Star 4.567 ± 0.0016 0.4164 ± 0.00074 0.4537 ± 0.00082 Connelly et al. (2012)
J1312-4728 Star 13.53 ± 0.002 14.88+0.08

−0.08 – Schlaufman, Thompson & Casey (2018)

12.747 ± 0.553 5.43+4.13
−1.58 9.83+∞

−4.40 Schlaufman et al. (2018)

11.12 ± 0.07 2.44+0.06
−0.06 2.97+0.09

−0.09 Schlaufman et al. (2018)
CS 29497-004 Star 16.5 ± 6.6 >1.66 >1.90 Hill et al. (2017)

13.7 ± 4.4 29.51+∞
−28.10 >1.59 Hill et al. (2017)

RAVE J203843.2-002333 Star 13.0 ± 1.1 6.72+∞
−3.39 17.22+∞

−12.79 Placco et al. (2017)

WD 0346+246 WD 11.49 ± 1.51 2.80+3.92
−1.10 3.52+13.70

−1.57 Kilic et al. (2012)

J1312-4728 WD 12.41 ± 0.22 4.34+0.65
−0.50 6.54+1.79

−1.12 Torres et al. (2021)
8945908078561782540 WD 13.949 ± 0.845 >7.47 >27.38 Fouesneau et al. (2019)

M92 GC 12.75 ± 0.25 5.44+1.28
−0.86 9.87+7.34

−2.72 VandenBerg et al. (2013)

13.06 ± 0.18 7.13+1.66
−1.10 21.68+∞

−9.14 Marı́n-Franch et al. (2009)

13.25 ± 1.0 8.91+∞
−4.94 >5.67 Dotter et al. (2010)

13.2 8.35 110.86 Brown et al. (2014)

Bootes I UFD 13.3 ± 0.3 9.56+8.81
−2.83 >17.22 Brown et al. (2014)

CVn II UFD 13.6 ± 0.3 18.36+∞
−8.81 – Brown et al. (2014)

Coma Ber UFD 13.9 ± 0.3 >18.36 – Brown et al. (2014)
Hercules UFD 13.1 ± 0.3 7.44+3.80

−1.78 26.72+∞
−15.98 Brown et al. (2014)

Leo IV UFD 13.1 ± 0.4 7.44+6.37
−2.19 26.72+∞

−17.56 Brown et al. (2014)

Ursa Major I UFD 12.7 ± 0.3 5.25+1.48
−0.93 9.16+8.06

−2.68 Brown et al. (2014)

Figure 7. The relationship between lookback time (x-axis) and redshift (y-axis) for the Planck (the black curve) and EDE (dark orange curve) cosmologies.
The left-hand panel shows lookback times corresponding to a fixed redshift range, while the right-hand panel shows redshifts corresponding to a fixed lookback
time interval. Left: the times in each cosmology corresponding to the reionization epoch (10 > z > 6). The reionization era has essentially the same duration in
the two cosmologies but range of lookback times that reionization spans is disjoint in the two models, 13.33 > tlb/Gyr > 12.79 (Planck) versus 12.76 > tlb/Gyr
> 12.32 (EDE). Right: the redshifts in each cosmology corresponding to the formation time of a typical globular cluster, taken to be 12.7 ± 0.25 Gyr (which
is a very optimistic uncertainty range). This formation epoch corresponds to zPl = 5.44+1.28

−0.86 versus zEDE = 9.87+7.34
−2.72, i.e. it is the difference between globular

clusters forming at the tail end of, or after, the reionization epoch (for Planck) and in the early phases of, or even previous to, reionization (for EDE).
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2774 M. Boylan-Kolchin and D. R. Weisz

1996; Gnedin 2000; Hoeft et al. 2006; Okamoto, Gao & Theuns 2008;
McQuinn 2016; Oñorbe, Hennawi & Lukić 2017). Observations of
nearby UFD galaxies show strong evidence for nearly exclusively
ancient stellar populations (Brown et al. 2014; Weisz et al. 2014a,b),
supporting this theoretical picture of a reionization-induced floor
of galaxy formation that also helps reconcile the ‘missing satellites
problem’ (Klypin et al. 1999; Moore et al. 1999) in !CDM (Bullock,
Kravtsov & Weinberg 2000; Benson et al. 2002; Somerville 2002;
Ricotti & Gnedin 2005; Bovill & Ricotti 2009; Dooley et al. 2017;
Rodriguez Wimberly et al. 2019; Wheeler et al. 2019).

The deep HST-based colour–magnitude diagrams of six UFDs
acquired and analysed by Brown et al. (2014) are among the best
evidence that UFDs are fossils of the reionization era. The star
formation histories of these systems indicate that all six systems
formed the majority of their stars prior to reionization and stopped
forming stars within ∼1 Gyr of each other after reionization ended.
Table 2 lists the mean ages of these systems as listed in Brown et al.
(2014). The reported errors on the mean ages of these UFDs reflect
the 1 σ uncertainties measured from isochrone fitting and suggest that
the mean age of UFDs can be measured to a few per cent precision.
As an empirical check, Brown et al. (2014) show that these UFDs
appear to be as old as metal-poor Galactic GC M92, for which they
report an age of 13.2 Gyr. However, they note that in addition to
their formal uncertainties, the ages of M92 and the UFDs may be
uncertain in absolute age (i.e. accuracy) by up to ∼1 Gyr owing to
uncertainties in quantities such as distances, reddening, and stellar
chemical abundance patterns.

For our purposes, the mean ages of UFDs serve two important
purposes. First, they are a clear point of comparison between reion-
ization and stellar ages, if current !CDM galaxy formation theory
is correct (i.e. if reionization quenches very low-mass galaxies).
Second, they also provide a lower limit on the age of the Universe.
In the Planck cosmology, the ages of all six UFDs are consistent
with a formation epoch that is no later than the reionization era,
and five of the six galaxies are consistent with having formed
before reionization. Ursa Major I stands out as the sole exception:
it has a mean formation redshift indicating that it formed during,
or even slightly after, reionization. In comparison, UFDs formed at
systematically higher redshift in the EDE cosmology, with all but
Ursa Major I consistent with being pre-reionization fossils.

Perhaps the most striking characteristic for UFDs in Table 2 is that
several have mean ages that are uncomfortably close to, or greater
than, the age of the Universe. The best-fitting age of Coma Berenices
is 0.1 Gyr older than t0,Pl = 13.8 Gyr, and the best-fitting age of
CVn II is a mere 0.2 Gyr younger than t0,Pl. This tension is more
pronounced in the EDE cosmology with t0,EDE = 13.2 Gyr: CVn II
and Coma Berenices are formally inconsistent with the age of an
EDE Universe even when considering the quoted uncertainties.

One obvious solution is to include the additional ∼1 Gyr
(∼7 per cent) error suggested by Brown et al. (2014) to account
for uncertainties in quantities such as distance, reddening, and stellar
abundance patterns. Taking the extreme limit of this error – shifting
all mean ages younger by 1 Gyr – places all UFD mean formation
epochs within the age of the Universe for both cosmological models.
However, such a shift complicates the interpretation of the expected
connection between UFDs and reionization. For example, if all
mean ages of UFDs are shifted to be ∼1 Gyr younger than listed
in Table 2, then only Coma Ber and CVn II are consistent with
forming during or before reionization within the Planck cosmology,
while the remaining four systems are all post-reionization fossils.
Applying a similar shift to the mean ages in the EDE cosmology
results in somewhat better agreement with expectations from galaxy

formation theory, as only Ursa Major I is inconsistent with forming
at z ! 6.

In reality, shifting all ages by a uniform value of ∼1 Gyr is an
oversimplification and represents the extreme case. The amplitude of
the systematic uncertainties likely varies from object to object (e.g.
as knowledge of their distances may be different). The takeaway
from this exercise is that current data on UFDs may capture the
link between galaxy formation and reionization, but the current
observational basis for this link is closer to suggestive than iron
clad. Shoring up the observational case for UFDs as fossils of
the reionization era will require an investment in quantifying and
reducing systematic uncertainties in age determinations. We discuss
areas for improvement in these uncertainties in the context of GC
and stellar ages later in this section.

4.3 The ages of globular clusters

Unlike UFDs, which have broad metallicity distributions and ex-
tended star formation histories (Simon 2019), GCs are thought to
have stellar populations that are essentially single age and show little
spread in [Fe/H] (e.g. Nardiello et al. 2015). In theory, the age of a GC
is well defined, and a precise measurement of such an age can be used
to set a lower limit on the age of the Universe and to help understand
when, cosmologically, GCs formed. The cosmological utility of GCs
has long been appreciated, first in terms of the historical H0 debate
(e.g. Tayler 1986; Chaboyer 1996; Chaboyer et al. 1996; Vandenberg
et al. 1996) and more recently in the context of GCs as tracers
of galaxy and structure formation (Carlberg 2002; Boylan-Kolchin
2017; Renzini 2017; Forbes et al. 2018; Pfeffer et al. 2018; El-Badry
et al. 2019; Adamo et al. 2020) and as potential contributors of
ionizing photons during the reionization-era (Ricotti 2002; Schaerer
& Charbonnel 2011; Katz & Ricotti 2014; Boylan-Kolchin 2018).

The MW contains many GCs that appear to be 12–14 Gyr old (e.g.
Vandenberg et al. 1996). In the interest of brevity, we use a single and
well-studied example, M92, to illustrate the current state of GC age
determinations. Table 2 lists ages from several widely-cited papers on
GC ages (Marı́n-Franch et al. 2009; Dotter et al. 2010; VandenBerg
et al. 2013), as well the age of M92 used to benchmark UFD ages
(Brown et al. 2014). In general, the ages agree quite well, with a value
of 13.00 ± 0.25 Gyr (∼2 per cent precision) encapsulating the range
of ages from these publications. Taking the reported ages at age at
face value, M92 is consistent with being a relic of the reionization-
era and forms comfortably within the age of the Universe in the
Planck cosmology. In an EDE framework, M92 is a pre-reionization
relic and forms uncomfortably close to the beginning of the Universe
(∼200 Myr after the big bang, on average). We illustrate this point in
the right-hand panel of Fig. 7 with an M92-like cluster with an age
of 12.75 ± 0.25 Gyr (the VandenBerg et al. 2013 age and associated
error for M92, and very close to the mean age of 12.7 ± 1 Gyr for
nine old, metal-poor GCs found in Chaboyer et al. 2017).

The above discussion of M92 only considers precision in age.
Similarly, the authors of all GC papers we consider in Table 2
caution that their ages and errors do not include the much harder-to-
measure uncertainty in accuracy. The most comprehensive study of
age accuracy comes from a series of pioneering papers in which
uncertainties in distance and extinction are formally considered
in addition to our uncertain knowledge of stellar physics such as
convection, opacities, and nuclear reaction rates (Chaboyer 1995).

Continuing in this tradition, Chaboyer et al. (2017, hereafter, C17)
determine the age of M92 by first calibrating the physics of stellar
models to a set of metal-poor stars in the MW that have geometric
parallaxes measured to ∼1 per cent from the HST fine guidance
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sensor. These models are then used to measure the distances, ages,
and ages of select GCs including M92. C17 report the age of M92 to
be 13.2 ± 1.1 Gyr; this error bar includes formal fitting uncertainties
(precision) as well as uncertainties in the distance, reddening,
and ∼15 parameters that describe stellar interiors (accuracy). C17
repeat this exercise for several metal-poor clusters and report total
uncertainties (combined precision and accuracy) of 7–10 per cent.
C17 do not explicitly report error components (e.g. how much
is due to nuclear reaction rates), but they do note that distance,
reddening, chemical abundance, and convection (characterized by
mixing length) are the main contributors to the age accuracy, followed
by select nuclear reaction rates.

The absolute age of M92, 13.2 ± 1.1 Gyr, is therefore not
sufficiently well known to determine if it formed pre- or post-
reionization or if it is in serious tension with t0, EDE. We discuss
the issue of absolute ages, and associated areas for improvement, in
Section 5.

4.4 The Sun

The age of the Sun is determined by analysing the decay of long-lived
radioactive elements found in Solar system meteorites. Connelly et al.
(2012) report the age of the Sun to be 4.567 ± 0.001 Gyr based ‘Pb-
Pb age dating’, which is shorthand for the decay of 238U and 235U
into 207Pb and 206Pb. This corresponds to a formation redshift of z0, Pl

= 0.4169 ± 0.00074 or z0,EDE = 0.4464 ± 0.00080 Gyr. This is the
rare (singular?) example of an object for which we know the age to
much higher accuracy than we know the redshift.5

As detailed in Connelly, Bollard & Bizzarro (2017), the uncer-
tainty in the age of the Sun depends on the fidelity of the ‘Pb-Pb’
age dating technique, which is not agreed upon within terrestrial
laboratories to the level of ∼0.005 Gyr. Beyond uncertainties in the
age dating itself, there is some timeline ambiguity in the formation
of the meteorites versus when the Sun begin its life on the main
sequence. This uncertainty may be as large as ∼0.05 Gyr (e.g.
Sackmann, Boothroyd & Kraemer 1993).

4.5 Ancient stars and stellar remnants in the Milky Way

4.5.1 Isochrone fitting of individual stars

A common approach to stellar age dating is comparison of observed
data to stellar isochrones. As an example of how isochrone fitting
is commonly used in the literature, we consider the analysis of
Schlaufman et al. (2018), who report the age of an ultra metal-poor
(J1312-4728; [Fe/H] =−4.1; Meléndez et al. 2016) MW star residing
in a binary system to be 13.535 ± 0.002 Gyr. This age is determined
from exquisite data (i.e. high precision ∼15 band photometry), a
strong prior on the distance and chemical composition, and a broad
knowledge of the mass (or mass ratio) from time series spectroscopy.
Essentially, these data are about as good as it gets when trying to
measure the age of a typical star in the MW. Schlaufman et al. (2018)
fit for age, distance, extinction, and metallicity using the Dartmouth
(Dotter et al. 2008) isochrones with [α/Fe] = +0.4 and report a
best-fitting age of 13.53 ± 0.002 Gyr, where the error bars reflect the
formal fitting uncertainty (0.01 per cent precision) marginalized over
all free parameters.

5In this case, we mean the redshift of formation. The Sun’s cosmological
redshift is known to high accuracy and precision (e.g. Aristarchus ca. 250
BCE, unpublished).

This result suggests that J1312-4728 is among the oldest objects
in the MW and sets a stringent limit on t0. In the Planck cosmology,
J1312-4728 would have formed at zPl∼=14.9, clearly prior to the
epoch of reionization. In contrast, J1312-4728 does not fit within the
framework of an EDE cosmology. Its very precise age of ∼=13.53 Gyr
is in >100 σ tension with the best-fitting age of an EDE Universe,
t0, EDE = 13.2 Gyr. While the 1 σ uncertainty on t0, EDE is just at the
edge of consistency with 13.53 Gyr, we note that this set of EDE
parameters does not resolve the Hubble tension, as it would require
H0 < 70 km s−1 Mpc−1.

As a way to gauge the sensitivity of their fit to choice in stellar
model, Schlaufman et al. (2018) also fit this star’s SED using solar-
scaled PARSEC and MIST isochrones (Bressan et al. 2012; Choi
et al. 2016) and find ages of 12.747 ± 0.553 and 11.12 ± 0.07 Gyr,
respectively. These findings place J1312-4728 well within the age of
both a Planck and EDE Universe and suggest it may have formed
post-reionization.

More broadly, this case study illustrates a challenge that will be
come increasing common in the era of precision data for stars. There
is a wealth of data on J1312-4728: high precision photometry, secure
knowledge of the chemical abundance patterns, minimal extinction,
good constraints on the distances, and suitable fitting technique.
Moreover, Schlaufman et al. (2018) compared the fit qualities (e.g.
by evaluating the Bayesian evidence) among fits to different stellar
models and concluding that the Dartmouth fit was far superior,
formally speaking. And yet, given the variation in ages between
the different model, it is challenging to know if the age derived from
Dartmouth-only fit can be taken literally for cosmological purposes.

Several analyses for the ages of ancient stars (e.g. Bond et al. 2013;
VandenBerg et al. 2014; Chaboyer et al. 2017; O’Malley, Gilligan
& Chaboyer 2017) suggest that stellar ages derived by the very
reasonable methods in Schlaufman et al. (2018) cannot be taken at
face value. For instance, using an HST-based parallax, Bond et al.
(2013) and VandenBerg et al. (2014) find the age of metal-poor
subgiant HD 140283 to be 14.27 ± 0.38 Gyr (2.6 per cent) with an
additional uncertainty in the absolute age of ∼0.8 Gyr (5.6 per cent)
owing to bolometic corrections, abundances uncertainties, etc. These
papers do not, however, varying mixing length, which, as pointed
out by VandenBerg et al. (2014) and Chaboyer et al. (2017; among
others), will affect the absolute age determination. O’Malley et al.
(2017) and C17 conduct a more comprehensive fitting (i.e. including
varying mixing length, nuclear reaction rates, etc.) of nearby metal-
poor stars with HST-based parallax measurements and find typical
absolute uncertainties of 1–1.5 Gyr on the ages of individual stars
(7–10 per cent). Though computationally demanding, these types
of studies provide a template for how to measure absolute stellar
ages. We discuss prospects for doing so on a larger scale in
Section 5.

4.5.2 Nucleocosmochronometers

It is possible to measure ages for metal-poor stars that are enhanced
in r-process elements using abundances of radioactive elements with
half-life decay times of several Gyr or longer (e.g. U, Th), a technique
known as ‘nucleocosmochronology’ that is long-established in the
literature (Fowler & Hoyle 1960; Butcher 1987; Cowan et al.
1991a,b; Cayrel et al. 2001; Sneden et al. 2008). Table 2 lists two
illustrative examples of stars with ages measured from radioactive
decay.

One example is CS 29497-004: using R ∼ 75000 optical spec-
troscopy, Hill et al. (2017) measured 46 elements in total and 31 r-
process elements that include U and Th, which serve as age indicators
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when compared to one another and to more stable elements. Using
U/Th alone, Hill et al. (2017) find an age of 16.5 ± 6.6 Gyr for
CS 29497-004, which translates into lower redshift bound of zPl

> 1.66 and zEDE > 1.90. The old age and large uncertainties are
primarily driven by the low S/N of U absorption in the spectrum.
Hill et al. (2017) also report an age of 13.7 ± 4.4 Gyr for CS 29497-
004, which is the result of averaging over several abundance ratios
(i.e. Th/X and U/X). Placco et al. (2017) provide another radioactive
age determination of metal-poor star RAVE J2038-0023. With R ∼
66 000 optical spectroscopy, they measure 24 r-process elements,
including U at S/N > 100 and report a U/Th age of 13.4 Gyr
and a mean age of 13.0 ± 1.1 Gyr from averaging over various
abundance ratios (i.e. Th/X, U/X), which translates into redshifts of
zPl = 6.72+∞

−3.39 and zEDE = 17.22+∞
−12.79.

The strength of nucleocosmochronolgy is that the radioactive
decay times of isotopes, particularly for U, are extremely well known
and are largely invariant to underlying physics assumptions (e.g. Hill
et al. 2002). However, U is extremely challenging to measure in all
but a small fraction of stars, and even in those cases exceedingly
good data is required (e.g. SNR ! 100 and R ! 50 000).

4.5.3 Ancient white dwarfs

As the remnants of low-to-intermediate mass stars, WDs span a
range of ages that can date back to the very early Universe. The
relatively simple physics of WDs makes it possible to determine
their cooling age to good accuracy and precision. When combined
with knowledge of their progenitor’s stellar mass, and hence lifetime,
WDs have the potential to determine ages independent of cosmology
and certain aspects of stellar physics (e.g. various quantities that set
the luminosity of the main sequence turn-off) that are relevant for
some of the methods discussed earlier in this section (e.g. Schmidt
1959; Winget et al. 1987; Fontaine, Brassard & Bergeron 2001).

The cooling of a WD depends on its mass (or radius), temperature,
and atmospheric composition (D’Antona & Mazzitelli 1990), and
cooling ages are usually inferred by modelling the luminosity func-
tion and/or colour–magnitude diagram, or through spectral energy
distribution fitting (Hansen & Liebert 2003). Historical limitations
in WD age estimates include uncertainties in WD distances, and
hence luminosities, and in incompleteness due to how faint they
are, which meant that the faintest (and usually oldest) WDs could
be missing. Modern facilities and surveys (e.g. SDSS, HST, Gaia)
have largely mitigated these challenges, and now large populations
of WDs are found in a number of GCs and in the field (e.g. Kleinman
et al. 2013; Gentile Fusillo et al. 2019) enabling detailed analyses of
their masses, compositions, and ultimately ages (e.g. Bergeron et al.
2019).

Historically, ages of WDs have been measured in GCs, as they
provided good estimates for distances and an independent compari-
son point for age. The progenitors of the WD cooling sequence in a
given GC should all have the same age, meaning that if it is possible
to detect the faintest WDs on the cooling sequence, it is possible to
measure the age of the GC. HST has enabled such detections (e.g.
Hansen et al. 2007; Bedin et al. 2009; Hansen et al. 2013; Campos
et al. 2016). The resulting ages derived from fitting the WD cooling
sequence have precision of ∼4–5 per cent, but systematic errors are
at least a factor of 2 larger owing to uncertainties in distances,
reddening, and chemical composition (Campos et al. 2016).

Outside clusters, Table 2 provides a few examples of ages for
individual ancient WDs. For must of the past decade, WD 0346+246
was one of the oldest known WDs in the Galactic disc. Kilic et al.
(2012) find a total age of 11.49 ± 1.51 Gyr, which places its formation

broadly during the cosmic noon epoch in both Planck and EDE
cosmologies. More recently, Torres et al. (2021) report and age of
12.41 ± 0.22 Gyr for J1321-4728, which is located in the MW’s halo.
In a Planck cosmology, it formed between reionization and cosmic
noon, whereas in an EDE cosmology, it formed during the epoch of
reionization (cf. Fig. 7).

Fouesneau et al. (2019) determined the ages of ∼100 WDs in
wide binaries with main sequence companions using a combination
of Gaia DR1 parallaxes with optical and near-infrared photome-
try. Several of their WDs have ages that are near or exceed the
cosmological age of the Universe. For example, they report that
8945908078561782540 has a mean age of 13.939 ± 0.845 Gyr.
This age is within 1 σ of the Planck age of the Universe but
is uncomfortably close to t0, EDE. In both cases, this WD is a
reionization-era relic (or even older), and by extension, its main
sequence companion star would also be among the oldest stars in the
Galaxy.

Fouesneau et al. (2019) emphasise that they only report rela-
tive ages and that their ages, in an absolute sense, are uncertain
at the 5–10 per cent level. In the example above, an additional
5–10 per cent error translates to ∼ 0.7–1.4 Gyr in lookback time and
would make this WD (and its main sequence companion) younger
than the age of the Universe, and possibly a post-reionization object,
in both Planck and EDE cosmologies. Fouesneau et al. (2019) note
that the predominant random error is parallax uncertainties. Given
the vast improvement in parallax provided by Gaia DR3 over DR1,
it is possible that the precision on the age this WD can now be
determined to 1–2 per cent. While they provide an estimate of the
absolute age uncertainty, Fouesneau et al. (2019) do not attempt to
quantify it.

In general, WDs have vast potential as chronometers in a cos-
mological context. Owing largely to Gaia, we now have large
collections of WDs in the field with well-determined parallaxes
and luminosities. Because distance has been the main limitation
to date, it will soon be routine to measure cooling ages of WDs
to " 1 per cent precision. The accuracy of WD cooling ages will
ultimately depend on the underlying physical models of WDs. This
is promising, as WDs are in many ways much simpler systems than
stars. Non-trivial uncertainties do remain, particularly with regards to
how sedimentation, atmospheric properties, neutrino emission, and
crystallization affect WD cooling rates (van Horn 1968; Mochkovitch
1983; Segretain et al. 1994; Bildsten & Hall 2001; Cheng, Cummings
& Ménard 2019; Blouin et al. 2020). However, the aforementioned
Gaia observations are providing data with significant constraining
power (e.g. Tremblay et al. 2019; Bauer et al. 2020), and some
uncertainties may be mitigated by focusing on the most metal-
poor clusters (e.g. crystallization uncertainties are larger for higher
22Ne abundance). Encouragingly, differences in the theoretical model
predictions for WD cooling curves for a given set of physical
assumptions appear to be at the few per cent level (e.g. Salaris,
Althaus & Garcı́a-Berro 2013). While uncertainties in the underlying
physics are significantly larger, there is reason for cautious optimism
that significant improvements are possible: for example, Caplan &
Freeman (2021) discuss updated diffusion coefficients applicable to
WDs that are accurate to 1 per cent, a substantial advance relative to
the 10 per cent uncertainty of previous calculations.

Other systematics include the requisite assumption of an initial
mass–final mass relationship (e.g. Catalán et al. 2008; Kalirai et al.
2008; Salaris 2009; El-Badry, Rix & Weisz 2018), which may be the
single largest source of error, and knowledge of the main-sequence
lifetime of the progenitor star. The latter is somewhat sensitive to
stellar physics, but not as much as quantities such as the luminosity
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of the main sequence turn-off. Simultaneously fitting the WD cooling
sequence and the main sequence is possible in some GCs, which can
provide provide a valuable cross-check on the two methods and might
help to break degeneracies in models. In particular, while distance
and reddening are still required parameters, they cannot differ for the
WDs and main-sequence stars in the same GC, which may provide
tighter constraints on model fits.

5 D ISCUSSION

A central theme to this paper is the age-old issue of precision versus
accuracy. Precision provides for constraints on the particulars of a
given model, while accuracy is a statement about how well a given
model approximates nature. A prime example of precision science
is cosmology from Planck, which provides better than per cent-level
precision on most base parameters of the !CDM model. However,
the Hubble tension and its potential resolution via EDE indicate that
!CDM may not be an accurate (or at least not complete) description
of reality. Importantly, it is only because cosmology has become
such a precise science that we can begin to ask and answer plausible
questions about the accuracy of cosmological models. We are poised
to enter a comparable era of precision stellar astrophysics, which
we believe will eventually lead to improvements in the accuracy of
stellar theory and ages.

5.1 Towards an accurate cosmology

It is tempting to draw an exact parallel between the current Hubble
tension and the famed 50 versus 100 debate of the 20th century
(Rowan-Robinson 1985). While similarities exist, the fundamental
difference is that !CDM is firmly entrenched as the default model
at present and the Hubble tension directly challenges the model’s
completeness, whereas no such baseline model existed in, e.g. 1985.
A precise determination of h = 0.5 or h = 1.0 in the 1980s would have
pointed towards specific physics needed for establishing a standard
cosmological model. Having an established and well-tested model
allows us to probe for cracks in that model, and small deviations
from a theory’s predictions are only meaningful if that theory is
able to make precise predictions. Although cosmology is not at the
level of the Standard Model of particle physics, where predictions
are so precise that deviations at the level of 0.1 part per million can
indicate the need for new physics, it is exactly because we have sub-
per cent-level measurements of various cosmological quantities that
seemingly small deviations can be momentous.

Our current lack of understanding, at a fundamental rather than
phenomenological level, of dark matter and dark energy leaves plenty
of room for physics not encapsulated by the base !CDM model
(Peebles 2002). And yet, those deviations are surprisingly strongly
constrained in many cases (see e.g. Knox & Millea 2020; Balkenhol
et al. 2021), with data providing broad consistency with base
!CDM across a range of scales and redshifts. The unquestionable
success of the base !CDM model in explaining the large-scale
(k " 0.2 Mpc−1) distribution of matter and energy in the Universe
from the epoch of last scattering to the present day means that any
ultimate cosmological model must look very similar to !CDM on
those scales and at those redshifts.

However ‘very similar to’ is not ‘the same as’. The Hubble tension
is one possible indication of the incompleteness of cosmology’s stan-
dard model, (base) !CDM. And apparently very minor deviations
from !CDM – in this case, an always-subdominant component of
dark energy that is less than 1 per cent of the critical density for all of
cosmological history except for 1 decade in scale factor, 1.5 × 104 !

z ! 2 × 103, can lead to the measurable effect of shifting the sound
horizon by 4 per cent. An attendant effect, as we have discussed in
detail, is a shift in the redshift–time relation of the same magnitude.
Given this perhaps surprisingly large effect from a seemingly small
change to the expansion history, other potential revisions to the base
!CDM model are intriguing to consider.

Perhaps the simplest example of a revision to the base
!CDM model is to relax the assumption of flatness (adding "k

as a parameter). In this extension, the same analysis of Planck
data as we consider for the base !CDM model results in (1) an
overall fit that is not appreciably better than the base !CDM model;
(2) a slight negative curvature, "k = −0.0106 (−0.0092) ± 0.0065;
and (3) a shift in the inferred value of the Hubble constant to
H0 = 63.6 (64.03) ± 2.2 km s−1 Mpc−1 (Planck Collaboration VI
2020). The precision of this H0 measurement is a factor of ∼4
worse than in the base !CDM model, which underscores the model-
dependence of precision. The coming era of large galaxy surveys
and CMB experiments (DESI Collaboration 2016; Amendola et al.
2018; Ivezić et al. 2019; Spergel et al. 2015; Abazajian et al. 2019)
will likely place us firmly in the realm of assessing the accuracy of
the !CDM model and hopefully revealing the underlying physics of
the components that are currently known only phenomenologically
(or perhaps even overturning the entire !CDM paradigm).

5.2 Towards accurate stellar ages

In the context of stellar age measurements, the difference between
precision (also known as relative ages) and accuracy (absolute ages)
is a well-studied, decades-old issue. The excellent review articles by
Stetson, Vandenberg & Bolte (1996) and Vandenberg et al. (1996)
recount the storied history of relative and absolute ages of GCs,
respectively. Stetson et al. (1996) succinctly captures the essence
of relative ages and why they are more commonly reported in the
literature: ‘Relative age determinations [can] use stellar evolution
theory in a strictly differential sense, removing most of the effects
of theoretical uncertainties in absolute chemical-abundance ratios,
opacities, convection formalism, temperature–colour relations, and
the like. Differential comparisons can also be devised that reduce the
effects of observational uncertainties in the absolute distance scale,
overall metal abundance, and individual cluster reddenings.’ Relative
ages can therefore address issues such as the formation chronology
of MW GCs, whereas absolute ages are required to use GCs (or any
stellar object) in a cosmological context (e.g. at what redshift did a
GC form? or, how old is the Universe?).

While relative ages establish a set of ages for differential com-
parisons given a fixed set of assumptions about stellar physics and
observational uncertainties, changes in these underlying assumptions
result in a new set of ages that could have different relative values.
In contract, absolute ages and their associated uncertainties should
naturally encompass allowable changes in the underlying parameters.
For example, if the absolute age of a GC is 12 ± 1 Gyr, any reasonable
variations in the distance, reddening, and/or stellar physics should be
captured by the stated uncertainty. Absolute ages are therefore more
challenging to compute, have larger uncertainties, and are not always
needed for a particular science goal; accordingly, relative ages are
more commonly reported in the literature, though they are not always
explicitly labelled as such.

The measured age of a star depends on knowledge of its distance,
line-of-sight extinction, chemical composition, and the adoption of a
stellar model (which, for simplicity, includes stellar interiors and at-
mospheres). Many ages in the literature choose a fixed stellar model,
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and vary some permutation of the first three quantities. We classify
the results of this approach as a relative age, i.e. a measure of pre-
cision. This is because in many cases, distance/reddening/chemical
composition affect the fundamental properties of a star (e.g. lumi-
nosity) in ways that are not entirely orthogonal to the underlying
stellar physics. For example, Dotter et al. (2017) demonstrate that
the inclusion of heavy element diffusion affects the shape, colour, and
temperature of the MSTO, and hence age, for stars of all ages. Fitting
data with stellar models that do not include diffusion result in stellar
ages and/or metallicites that vary by up to 20 per cent compared to
when diffusion is included. Convection is another example. Most
stellar models tune their treatment of convection, usually via mixing
length theory (e.g. Böhm-Vitense 1958), to the Solar value. But
several recent studies suggest that mixing length may vary with stellar
parameters (e.g. surface gravity, chemical composition; Trampedach
& Stein 2011; Bonaca et al. 2012; Tayar et al. 2017), ultimately
changing the temperature, luminosity, and/or size of a star and hence
its inferred age and composition (C17, Valcin et al. 2021).

The Schlaufman et al. (2018) example in Section 4 illustrates the
conundrum of modern stellar age determination and reporting. They
have exquisite data, place a strong Gaia parallax prior on distance,
and employ sound statistical techniques. Yet, they find three ages
that are each very precise to " 4 per cent, but are entirely disjoint.
Their (highly reasonable) solution is to report a best age estimate by
comparing Bayesian evidence among the fits and asserting that only
the Dartmouth models had an α-enhancement that is similar to what
is known from spectroscopy. This process results in preferred age
of 13.53 ± 0.002 Gyr, which is in tension with t0, EDE = 13.2 Gyr.
One could go a step further and use the spread in ages among the
three fits as a proxy for the absolute age uncertainty (e.g. Dolphin
2012), which would be ∼1.5 Gyr in this case. But this also is not
very satisfying, as the other models considered are clearly not as
well-matched to the data, e.g. they use Solar-scaled rather than
α-enhanced abundances, making this an overly conservative age
uncertainty. It is even more complicated when attempting to compare
ages, and their uncertainties, across the literature due to the adoption
of varying fitting techniques, model choices, what gets reported as
an uncertainty, and even how an uncertainty is described (i.e. there
is some confusion between what qualifies as an absolute age).

Fortunately, the stellar data revolution is making the path for
improving relative and absolute ages very promising. Beyond the
wealth of well-calibrated multiband stellar photometry and a plethora
of spectroscopy, our knowledge of distances (e.g. Bailer-Jones et al.
2018; Brown et al. 2018; Chen et al. 2018; Neeley et al. 2019; Maı́z
Apellániz, Pantaleoni González & Barbá 2021; Soltis, Casertano
& Riess 2021), extinctions (e.g. Schlafly et al. 2016; Green et al.
2018, 2019), and abundance patterns (see Jofré, Heiter & Soubiran
2019 and references therein) for large samples of stars, clusters, and
remnants is improving such that relative ages can (will) be routinely
measured to the per cent/sub-per cent level.

Much like how precision cosmology has enabled stress tests of
!CDM, the era of stellar precision will yield vast improvement
in absolute stellar age determinations. The approach pioneered by
Chaboyer (1995), in which stellar age/parameter determinations
include varying the underlying stellar physics, provides guidance for
moving forward. It is becoming computational tractable to generate
large sets of stellar models that include variations in the (uncertain)
underlying physics and to then fit these large sets of models to data.
This process becomes invaluable if it can be done in the context of
sampling posterior distributions (e.g. via Markov chain Monte Carlo
approaches), as it will not only yield absolute stellar ages, it will
also provide quantitative constraints on – and correlations among –

parameters of the underlying underlying stellar physics, conditioned
on exquisite data.

Based on the results of C17, in which absolute age uncertainties
are estimated to be 7–10 per cent, it is likely that current and
upcoming data, distances, and modelling techniques will soon enable
measurement of the ages of stars, stellar remnants, and GCs to
sub-per cent level precision and ∼4–5 per cent accuracy, which is
comparable to the current levels of cosmological age accuracy. With
such good accuracy, stellar ages will be able to place important
constraints on the history of our Universe at z " 15 independent
of an assumed cosmology. Moving beyond this level of accuracy
for stars will likely require a re-examination in the fundamental
ingredients of current generations of stellar models (e.g. Arnett et al.
2015) and moving towards fully 3D simulations of main sequence
turn-off and sub-giant stars. The prospect of highly accurate ages
is perhaps even more promising for WDs owing to simpler physics
and a good level of agreement in ages among newer generations of
models. A full analysis that considers variations in all parameters of
current WD models, along the lines of C17’s work on main sequence
turn-off fitting for GCs, would be highly valuable in establishing the
state of the art in WD age accuracy.

5.3 Interpretation

The cosmological age of the Universe has long been an important
benchmark when measuring the ages (and associated uncertainties)
of ancient stars (e.g. Vandenberg et al. 1996). Taken at face value,
cosmological age of the Universe is known to ∼0.2 per cent from
Planck data, whereas stellar ages are known to 7–10 per cent, a
factor of ∼20 worse. This suggests that the ages of ancient stars are
relatively poorly known and that it would take dramatic – and perhaps
even impossible – levels of improvement in our understanding of
stellar physics and distances to stars for stellar ages to be competitive
with cosmological ages.

The situation is more complicated, however. The 7–10 per cent
uncertainty in stellar ages are a reflection of accuracy, whereas a
0.2 per cent uncertainty in the Planck-based age of the Universe
is a measure of precision. Another point of comparison could be
between the measures of precision for stellar and cosmological
ages. For example, compare the preferred age for J1312-4728
(13.53 ± 0.002 Gyr; 0.01 per cent) from Schlaufman et al. (2018)
to either t0, Pl = 13.797 ± 0.023 Gyr and t0, EDE = 13.246 ± 0.17 Gyr.
This indicates roughly comparable precision for ages of ancient stars
– in the presence of comprehensive data – and the age of the Universe
from cosmology.

Yet, this is still an inapt comparison: changing a component of
the underlying stellar model, e.g. the mixing length or chemical
abundance patter, will change the age of J1312-4728 by more than
0.1 per cent, as is shown in Schlaufman et al. (2018), when different
stellar models are used in the fitting. At this point, any comparison
between precision stellar ages (or between stellar and cosmological
ages) requires significant context.

The EDE solution to the Hubble tension illustrates one plausible
path for comparing stellar and cosmological ages, including un-
certainty estimates. EDE effectively introduces a set of additional
parameters that go beyond the conventional base !CDM model. In
stellar modelling, one could modify the modelling of convection to
vary the mixing length parameter (or introduce additional parameters
to more fully capture the effects of convective mixing). This is
not standard practice in stellar age dating, but there is a common
understanding in the literature that such parameters, especially
convection and/or mixing length, do affect the determination of
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other parameters, including age (e.g. Chaboyer 1995; Vandenberg
et al. 1996; VandenBerg et al. 2013; Chaboyer et al. 2017; Kupka
& Muthsam 2017). Invoking EDE or other effects that affect the
expansion history or interactions of matter and energy in the Universe
has not been standard practice either (though cosmological analyses
often search for indications of specific modifications to the base
!CDM model), yet it affects parameter estimation at a level that is
larger than the quoted precision.

Perhaps the fairest age comparison, then, is between the accu-
racy of stellar ages when including variations in stellar evolution
parameters and distance/reddening to the accuracy of cosmological
ages when considering allowed extensions to the base !CDM model
such as EDE or non-zero curvature. In this view, stellar ages can
be constraining in the context of cosmological models if stellar age
accuracy reaches the level of 4–5 per cent, which, as we have argued
in Section 5, appears plausible in the foreseeable future.

6 C O N C L U S I O N S

Cosmological ages and distances are only defined in the context of
a cosmological model that allows us to link the expansion history
of the Universe to its energy constituents. In the context of the six-
parameter base !CDM cosmological model, Planck data provide
sub-per cent precision on most cosmological parameters, including
the z↔t correspondence. However, the completeness (accuracy) of
the base !CDM model is called into question by the Hubble tension.
In this paper, we quantify the existing cosmological uncertainties
in the redshift–time relation, using EDE as representative possible
resolution of the Hubble tension, and explore the possibility of using
stellar ages as an alternate constraint on cosmological models. Our
main conclusions include the following:

(i) The redshift–time relation is known to no better than
3.5 per cent for cosmic time and 4.5 per cent for lookback time
(the relevant quantity for comparing to stellar ages) at all times and
redshifts (Fig. 6).

(ii) This uncertainty affects astrophysical interpretations of age
determinations of nearby systems: for example, a star, GC, or UFD
with a very precisely known age cannot generically be considered a
reionization-era relic, as the reionization era spans disjoint lookback
periods in the two cosmologies (Fig. 7). This complicates galaxy for-
mation theory interpretations of these objects and their relationship
to reionization.

(iii) The age of the Universe is very precisely determined in the
base !CDM model because of a tight correlation between the angular
size of the sound horizon at last scattering and t0; EDE does not have
this same tight correlation, and the resulting uncertainty in t0 is a
factor of 8 larger.

(iv) The best-fitting age of the Universe for the EDE model
considered here is uncomfortably low relative to the reported ages
of stars, GCs, and UFD galaxies. High-age EDE models are in less
tension with stellar ages, but these also require low H0, meaning such
models would not resolve the Hubble tension (Fig. 2).

(v) The existence of a ∼5 per cent uncertainty in the cosmological
z↔t relation argues that measurements of stellar ages should not
adopt the cosmological age of the Universe as a strong prior for
stellar models.

(vi) The era of large, well-calibrated stellar data (e.g. precise and
accurate distances, photometry, abundances) and related modelling
approaches have the potential to improve accuracy on stellar ages
from the current ∼7–10 per cent to ∼5 per cent, making them com-
petitive with cosmology.

The central point emphasised here – that the redshift–age relation
from cosmology is uncertain at the ∼4 per cent level – is only
possible to identify because of the level of precision of modern
cosmological measurements. It can actually be seen as a remarkable
success of the base !CDM model that EDE is so well constrained.
Similarly, it is because we are now in the era of per cent-level
precision for stellar parameters that it is possible to closely examine
the issue of accuracy of stellar ages. An exciting prospect is that in
the coming era where large galaxy surveys and CMB experiments
promise to provide even stronger cosmological constraints, accurate
stellar models will serve as orthogonal tests of the physics of the
Universe.
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A P P E N D I X A : C H A N G E S TO C O S M O L O G I C A L
QUA N T I T I E S I N E D E

While the results of this paper are not focused on a specific EDE
model (or even EDE itself) but rather the effects of a modified
expansion history on the redshift–time relation, it is none the
less useful to understand how a short period of early accelerated
expansion changes the sound horizon at last scattering and related
quantities.

The results of Sections 2.1 and 3 are mostly derived under the
assumption of the base !CDM model. In a model with additional
energy content in some component X, the calculations of ages
and distances need to be modified because the expansion history
is modified. For models that modify only the early-time (z >

z#) expansion history, only ages and times in the early Universe
(z ! 0.1 z#) are affected. This change simply requires replacing
equation (2) with a modified version,

H(a) = H0

√
"m a−3 + (1 − "m) + "r a−4 + "X g(a), (A1)

which takes into account the present-day density in component X
(encapsulated in the density today relative to the critical density
today, "ede) and its evolution with scale factor, g(a) = ρX(a)/ρX(a
= 1).

Equation (A1) is general; different types of energy will have
different versions of g(a), often with g(a) ∝ a−3(1+wX) for equation
of state (EOS) parameter wX(a) = PX(a)/ρX(a) encapsulating the
ratio of the pressure to the density in component X at scale factor a.
The density evolution with time for the EDE model considered here
can be approximated by

g(a) =
[

1 + (1/ac)3(1+wn)ξ

1 + (a/ac)3(1+wn)ξ

]1/ξ

, (A2)

with ac = (1 + zc)−1 and wn = (n − 1)/(n + 1); for the n = 3 model
considered here, wn = 1/2. Equation (A2) is identical to the fit to
density evolution given in P18 (their equation 15]) for ξ = 1. Larger
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Figure A1. The effects of EDE on cosmological evolution of energy densities. Left: density parameters for cold dark matter plus baryons (black), photons and
neutrinos (magenta; the thin lines ignore neutrino mass), and dark energy (cyan) in !CDM (the solid curves) and EDE (the dashed curves). EDE peaks at a
∼10 per cent contribution at zc (see Klypin et al. 2021 for a version of this plot using the full Boltzmann code calculation for "EDE(a), which introduces small
features at a > ac, rather than equation (A2)). Right: The effective equation of state parameter weff(a), defined as via dln H(a)/dln a = −3[1 + weff(a)]/2, which
governs the instantaneous change of the critical density ρcrit(a). EDE follows the Planck curve for weff(a) at early and late times, but near zc, it falls significantly
below owing to the effects of the EDE component.

values of the empirical factor ξ correspond to a faster transition
between the EDE phase and the decay of EDE (see fig. 2 of P18);
we adopt ξ = 10, which provides a closer approximation to the full
numerical calculation for n = 3 from P18 than their equation (15).
For a + ac, ρ ∝ a−3(1+wn) = a−9/2 for n = 3, while for a ' ac, g(a)
≈ constant. The value of "EDE(a = 1) can be computed in terms of
"EDE(ac) = fEDE (one of the primary parameters of the EDE model)
from equation (A2) and is equal to

"EDE = fEDE

1 − fEDE

1
g(ac)

(
"m a−3

c + "r a
−4
c + "!

)
. (A3)

Fig. A1 shows the evolution of "i(a) = ρ i(a)/ρcrit(a) [left] and the
effective EOS weff(a) [right], defined via

H (a) = H0 a−3(1+weff )/2, (A4)

for Planck (the solid curves) and EDE (the dashed curves). The
left-hand panel shows the usual periods of dark energy, matter, and
radiation domination remain mostly unchanged when moving from
Planck to EDE. The notable difference is that at zc, EDE contributes
approximately 10 per cent of the critical energy density; at lower and
higher redshift, it contributes less. This small contribution from EDE
– which coincides with zeq – pushes zeq to a slightly higher redshift
and changes the expansion rate as a function of scale factor. Notably,
the Hubble expansion rate as a function of time in EDE remains
nearly identical to the base !CDM model. The effective EOS (right-
hand panel of Fig. A1), which encapsulates how ρcrit(a) is changing
with scale factor, is identical in the two models for a ' ac and a

+ ac. Near zc, however, the EDE weff drops sharply, reflecting the
increase in importance of EDE, followed by an abrupt jump back
to a larger value owing to the decay of EDE. Since EDE dilutes as
ρ ∝ a−9/2 – wEDE = 1/2 – for a > ac, the effective EOS in EDE
is slightly larger than for Planck until the EDE energy density has
become completely negligible compared to radiation.

Fig. A2 demonstrates how EDE modifies the cosmological re-
lationship between distance, time, and scale factor in the early
Universe. The effect of EDE on the relationship between scale factor
and time is that the EDE universe reaches a fixed scale factor at an
earlier time because of the component of accelerated expansion –
note that the ratio tEDE/tPl starts at unity in the period before EDE
becomes dynamically significant. At a# – which, crucially, does not
change between the two models for the relatively low values of fEDE

being considered – the EDE universe is 4.7 per cent younger than
the Planck universe. A sound wave with a given velocity cs(t) will
therefore not travel as far in EDE as in Planck, reducing r# in EDE by
4.1 per cent relative to Planck. (The sound speed differs very slightly
between the two models, but this is only a 0.3 per cent effect at a#; this
difference declines at smaller scale factors and is therefore always
subdominant to the change in a(t) between the two models.) While
the physical sound horizon is slightly larger at a given time in EDE
than in Planck – as one might expect for a Universe that is has a
component that is acting as dark energy – this is overwhelmed by
the change in a(t), meaning the comoving sound horizon is larger in
Planck at fixed time. The change in t(a#) between the two models
further increases the difference in the comoving sound horizon.
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Figure A2. The relationship between time and scale factor (upper left-hand panel), sound horizon and scale factor (upper right-hand panel), and sound horizon
and time (lower panel) for Planck and EDE. The small component of EDE leads the Universe to reach a fixed scale factor at an earlier time. Combined with
the very nearly identical sound speed in the photon–baryon plasma for the two models, this means that the sound horizon at a given scale factor is smaller in
EDE than in Planck. The sound horizon as a function of time (lower panel) shows that the physical sound horizon (the solid curves) is slightly larger at fixed t in
EDE, as expected from the existence of an extra dark energy component. Note, however, that the comoving sound horizon – shown in dashed curves, scaled by
a# – is smaller in EDE at a fixed time. The change in the expansion history for EDE means that a# occurs earlier, making the sound horizon 4 per cent smaller
in EDE than in Planck.
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