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Abstract
We establish sharp asymptotically optimal strategies for the problem of online predic-
tion with history dependent experts. The prediction problem is played (in part) over a
discrete graph called the d dimensional de Bruijn graph, where d is the number of days
of history used by the experts. Previous work Drenska and Kohn (arXiv:2007.12732,
2020) established O(ε) optimal strategies for n = 2 experts and d ≤ 4 days of his-
tory, while Drenska and Kohn (J Nonlinear Sci 30. 30(1), 137–173, 2020) established
O(ε1/3) optimal strategies for all n ≥ 2 and all d ≥ 1, where the game is played for
N steps and ε = N−1/2. In this paper, we show that the optimality conditions over
the de Bruijn graph correspond to a graph Poisson equation, and we establish O(ε)

optimal strategies for all values of n and d.

Keywords Prediction with expert advice · Viscosity solutions · Partial differential
equations · Graph Laplacian · De Bruijn graph · Poisson equation

1 Introduction

Prediction with expert advice refers to problems in online machine learning [7] where
a player synthesizes advice from many experts to make predictions in real-time, often
against an adversarial environment. The seminal work in the field is due to Cover
[8] and Hannan [15], and since then, the field has grown substantially. We refer to
[6,7,14,16,22,26,27] for effective algorithms that work well in practice, but may not be
provably optimal, and to recent work [4,9–12,14,17,18,27] that has started to address
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asymptotic optimality in a rigorous way. Applications of prediction from expert advice
include algorithmboosting [13], stock price prediction and portfolio optimization [13],
self-driving car software [1], and many other problems.

In this paper, we study the problem of prediction of a binary sequence with history
dependent experts, which was studied recently in [10,11], and is a generalization
of Cover’s original work [8]. In this problem, we have a stream of binary data
b1, b2, b3, . . . with bi ∈ B := {−1, 1} and n experts making predictions about bi .
We view the problem as a stock prediction problem, with bi representing the increase
or decrease of the price of a stock each day. The n experts make their predictions using
the previous d days of market history

mi := (bi−d , bi−d+1, . . . , bi−1) ∈ Bd . (1.1)

We denote the expert predictions by

q1, . . . , qn : Bd → [−1, 1], (1.2)

where q j (m) represents the prediction of expert j given stock price history m ∈ Bd .
We write q(m) = (q1(m), q2(m), . . . , qn(m)) for convenience. The investor’s goal
is to combine the expert advice to make their own prediction fi ∈ [−1, 1], and the
investor gains bi fi on day i , while the j th expert would gain biq j (mi ) on day i , were
they to invest their prediction.

The investor’s performance is measured by their regret with respect to each expert,
which is the difference between the gains of the expert and those of the player. Thus,
on day i , the investor accumulates regret of bi (q j (mi ) − fi ) with respect to expert j .
After playing the game for N days, the investor’s final regret is evaluated with a payoff
function g : Rn → R, which is commonly taken as the regret with respect to the best
performing expert, i.e., g(x) = max{x1, . . . , xn}. We assume there is an adversarial
market controlling the binary data stream. The market observes the investor’s choice
fi before deciding on bi , and both players have full knowledge of the expert strategies.
The market’s goal is to maximize the payoff, while the investor’s goal is to minimize
the payoff, yielding a two-player zero-sum game.

The possible transitions for the stock history mi are described by a directed graph
with nodes Bd called the d-dimensional de Bruijn graph over 2 symbols. To describe
the graph, we introduce the notation m|b = (m2, . . . ,md , b) for concatenation of
symbols, and use the short form m+ = m|1 and m− = m| − 1. With this notation,
the stock history mi satisfies mi+1 = mi |bi . The de Bruijn graph has node set Bd ,
and directed edges from m to m+ and from m to m− for each m ∈ Bd . The graph
is depicted for d = 3 in Fig. 1 with 0 replacing −1 for convenience. The two-player
game is played (in part) over the discrete de Bruijn graph, and this must be accounted
for in the analysis of optimal strategies.

We are interested in asymptotically optimal strategies for the investor and market
when the game is played over a large number of turns N . In [11], the second author
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Fig. 1 The de Bruijn Graph, d = 3

and R.V. Kohn studied investor strategies of the form

f ∗
i = 〈∇u, q(m)〉

〈∇u,1〉 + ε f #i (m)

2〈∇u,1〉 , (1.3)

where u(x, t) is the solution of a continuum PDE (see Eq. (2.7)), 1 is the ones vector,
and ε = N−1/2. The first term in f ∗

i is a weighted average of the expert predictions,
and arises from standard arguments based on Taylor expansions. The second term
involving f #i (m) is more interesting, and accounts for the fluctuations in the strategy
and value function over the de Bruijn graph. The authors of [11] showed that f #i (m)

should be chosen by solving linear programs for the market and investor over the
de Bruijn graph. When the optimal values of the linear programs for the market and
investor agree, the strategy is provably O(ε) optimal. The authors of [11] solved these
linear programs explicitly for n = 2 experts and d ≤ 4 days of history, and showed
that their values agreed, leading to asymptotically optimal strategies in these cases.
For n = 2 and d > 4, the authors gave upper and lower bounds for the value function.
A recent follow-up paper [10] took a completely different approach, and established
O(ε1/3) asymptotically optimal strategies for all n ≥ 2 and all d ≥ 1. These strategies
have the form (1.3), except that the correctors f #i grow to ∞ as N → ∞, which is
connected to the worse O(ε1/3) optimality.

In this paper, we fully resolve the problems raised in [11], and show in general that
the correctors f #i are given by

f #i (m) = H(m+) − H(m−), (1.4)

where H : Bd → R is the solution of a Poisson equation over the de Bruijn graph
(for precise details, we refer the reader to Sect. 2). The corrector (1.4) appears in [11,
Eq. (1.15)] as part of a far more complicated investor strategy, which is what led us to
this solution. We show in this paper that the strategy (1.3) with f #i given by (1.4) is
O(ε) optimal as N → ∞. The corresponding asymptotically optimal market strategy
simply penalizes the investor when they deviate from f ∗, that is, b∗

i = sign( f ∗
i − fi ).

In Sect. 3 we show that the correctors (1.4) solve the linear programs identified in [11],
and we show how to solve the linear programs on more general directed graphs. This
means that, in principle, we could invoke the proofs from [11] to establish our main
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result. However, our new insights connecting f #i to a graph Poisson equation lead to
much simpler proofs of optimality.

We briefly mention that there are many other cases in the PDE literature where
scaling limits of two-player games lead to elliptic or parabolic PDEs (see, e.g., [2,3,5,
19–21,23–25]). To our knowledge, this is the first case where the limiting equation is a
PDE in continuous variables (x, t) coupled to a PDE on a graph (the de Bruijn graph).
The ideas in our paper are simple andweexpect theymay apply to other straightforward
generalizations of this setup. We leave this to future work. We describe our results and
give the proofs in Sect. 2, and discuss the connections to the market and investor linear
programs from [11], and their generalizations to other directed graphs, in Sect. 3.

2 Asymptotically Optimal Strategies

Our main result concerns the asymptotic behavior of the value function VN (x, �;m),
which represents the optimal value of the two-player game over N steps, given the
game starts on day � ≥ 1 with regret x ∈ R

n and market history m ∈ Bd . The value
function is given by VN (x, N ;m) = g(x) and

VN (x, �;m) = min| f�|≤1
max
b�=±1

· · · min| fN−1|≤1
max

bN−1=±1
g

(
x +

N−1∑
i=�

bi (q(mi ) − fi1)

)
,

(2.1)
for 1 ≤ � ≤ N − 1, where m� = m and mi+1 = mi |bi for i = �, . . . , N − 1. We
assume g ∈ C4(Rn) with uniformly bounded derivatives of order up to 4 over Rn ,
there exists θ > 0 such that

∇g(x) · 1 ≥ θ for all x ∈ R
n, (2.2)

and that g is positively 1-homogeneous, that is

g(sx) = sg(x) for all x ∈ R
n, s > 0. (2.3)

We also assume the expert strategies q = (q1, . . . , qn) satisfy

q : Bd → [−μ,μ]n for some μ ∈ (0, 1). (2.4)

To understand the long time behavior of the value function, we define the parabolic
rescaled version

uN (x, t;m) := 1√
N
VN (

√
Nx, �Nt
;m), (2.5)

where �t
 denotes the smallest integer larger than or equal to t . We also set ε =
N−1/2 throughout the paper. The rescaled value function uN satisfies the dynamic
programming principle (see [10, Proposition 2.3])

uN (x, t;m) = min| f |≤1
max
b=±1

uN (x + εb(q(m) − 1 f ), t + ε2;m|b). (2.6)
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Under the assumptions above, it was shown in [10] that uN converges uniformly as
N → ∞ at a rate of O(ε1/3) to the linear growth solution of the diffusion equation

ut + 1
2d+1

∑
η∈Q(∇u)〈∇2u η, η〉 = 0, in Rn × (0, 1)

u = g, on R
n × {t = 1},

}
(2.7)

where

Q(∇u) =
{
q(m) − 〈∇u, q(m)〉

〈∇u,1〉 1 : m ∈ Bd
}

. (2.8)

The same convergence result was established earlier in [11] for n = 2 and d ≤ 4 with
the sharper O(ε) rate. The diffusion equation (2.7) describes the limiting behavior of
the rescaled value function uN and encodes information about asymptotically optimal
strategies.

The equation (2.7) is a degenerate diffusion equation, since Q(∇u) ⊂ ∇u⊥. Here
∇u⊥ is the set of vectors, whose inner product with ∇u is 0. Normally, solutions of
such equations are not classical and must be interpreted in the viscosity sense. In this
case, there is a hidden geometric structure in the equation that allows us to show (see
[10, Theorem 4.14]) that the solution u(x, t) is classical, and furthermore

{
All spatial derivatives of u up to order 4, and time derivatives
up to order 2 are uniformly bounded on R

n × [0, 1]. (2.9)

The solution u also has linear growth as |x | → ∞ and satisfies (see [10, Theorem
4.4])

∇u(x, t) · 1 ≥ θ for all (x, t) ∈ R
n × [0, 1]. (2.10)

To describe the optimal investor strategy, we define

ξ(x, t;m) = q(m) − 〈∇u(x, t), q(m)〉
〈∇u(x, t),1〉 1,

and

h(x, t;m) = 1

2
〈∇2u(x, t) ξ(x, t;m), ξ(x, t;m)〉. (2.11)

We define the function H(x, t;m) by

H(x, t;m) = h(x, t;m) +
d−1∑
�=1

1

2�

∑
s∈B�

h(x, t;m|s), (2.12)

where the notation m|s for m ∈ Bd and s ∈ B j refers to concatenation of symbols,
defined by

m|s = (m j+1,m j+2, . . . ,md , s1, s2, . . . , s j ),
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when j < d, and

m|s = (s j−d+1, s j−d+2, . . . , s j ).

when j ≥ d. Notice that m|s is the state on the de Bruijn graph that we arrive at by
starting from m ∈ Bd and following the edges defined by s1, . . . , s j . Thus, H can be
interpreted as a weighted average of h over a de Bruijn tree rooted at m. We note that
by (2.9), H is uniformly Lipschitz continuous on R

n × [0, 1], for any m ∈ Bd . That
is, there exists a constant C > 0, depending on u, θ , and n, but independent of d, such
that

|H(x, t;m) − H(y, s;m)| ≤ Cd(|x − y| + |s − t |) (2.13)

holds for all (x, t), (y, s) ∈ R
n × [0, 1].

Let us focus on the asymptotically optimal strategies for the investor and for the
market. The O(ε) asymptotically optimal investor strategy is given by

f ∗(x, t;m) = 〈∇u(x, t), q(m)〉
〈∇u(x, t),1〉 + ε

2

(H(x, t;m+) − H(x, t;m−)

〈∇u(x, t),1〉
)

, (2.14)

and the asymptotically optimal market strategy is given by

b∗(x, t;m, f ) =
{
1, if f ≤ f ∗(x, t;m)

−1, if f > f ∗(x, t;m).
(2.15)

That is, the market simply penalizes the player for deviating from f ∗.
Using the strategies f ∗ and b∗ defined above, we prove the following theorem.

Theorem 2.1 Let g ∈ C4(Rn) with uniformly bounded derivatives of order up to 4,
and assume (2.2), (2.3), and (2.4) hold. Let u be the solution of (2.7). Then there exists
C1,C2 > 0, depending on u, n and θ , such that

|uN (x, t;m) − u(x, t)| ≤ C1d(1 − t + ε)ε (2.16)

holds for all N ≥ C2d2/μ2, (x, t) ∈ R
n × [0, 1] and m ∈ Bd , where ε = N−1/2.

The proof of Theorem 2.1, which is given in Sect. 2.1, employs the strategy f ∗
for the investor, while allowing the market to play optimally to obtain one direction
of the rate. The other direction is obtained by playing the strategy b∗ for the market,
and allowing the player to play optimally. This establishes that both the market and
investor strategies b∗ and f ∗, respectively, are O(ε) asymptotically optimal as ε → 0.

Remark 2.2 The 1-homogeneity of g is only used to show that uN (x, 1) = g(x), and
can be omitted if uN is defined instead by the rescaled value function definition

uN (x, t;m)= min| f�Nt
|≤1
max

b�Nt
=±1
· · · min| fN−1|≤1

max
bN−1=±1

g

(
x+ε

N−1∑
i=�

bi (q(mi )− fi1)

)
.
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2.1 Proof of Theorem 2.1

The proof of Theorem 2.1 is based on recognizingH as the solution of a graph Poisson
equation over Bd . We define the graph Laplacian �Bd on the de Bruijn graph by

�Bdv(m) = v(m) − 1

2
(v(m+) + v(m−)) (2.17)

for any function v : Bd → R. We have taken the convention from graph theory that
�Bd is a positive definite operator, and hence has the opposite sign of the continuous
Laplacian �u. We also define the gradient ∇b

Bd on the de Bruijn graph by

∇b
Bdv(m) = v(m) − v(m|b). (2.18)

We write ∇±
Bd = ∇±1

Bd for convenience, and note that

�Bdv(m) = 1

2
(∇+

Bdv(m) + ∇−
Bdv(m)).

We also denote the average of v over the de Bruijn graph by

(v)Bd = 1

2d
∑
m∈Bd

v(m). (2.19)

In this notation, the PDE (2.7) is equivalent to ut + (h)Bd = 0, where we recall
h(x, t;m) is defined in (2.11). We will often drop the dependence on (x, t) and m,
when there is no confusion.

We now show that H solves a graph Poisson equation.

Lemma 2.3 For all (x, t) ∈ R
n × [0, 1] it holds that

�BdH = h − (h)Bd on Bd . (2.20)

Furthermore, H is the unique solution of (2.20), up to a constant.

Remark 2.4 The equation (2.20) is a Poisson equation over the de Bruijn graph. The
right hand side has mean value zero, which is a necessary and sufficient condition
for the existence and uniqueness of a solution (up to a constant). In this light, the
definition of H given in (2.12) is a representation formula for the solution of the
Poisson equation (2.20), and can be thought of as convolution against the fundamental
solution of Laplace’s equation on the de Bruijn graph. Since the investor’s strategy
(2.14) is the difference ofH atm+ andm−, it is independent of the choice of constant
in the solution of the Poisson equation (2.20).
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Proof We compute

�BdH(x, t;m) = 1

2

∑
b∈B

(H(x, t;m) − H(x, t;m|b))

= h(x, t;m) +
d−1∑
�=1

1

2�

∑
s∈B�

h(x, t;m|s)

− 1

2

∑
b∈B

h(x, t;m|b) − 1

2

∑
b∈B

d−1∑
�=1

1

2�

∑
s∈B�

h(x, t;m|b|s)

= h(x, t;m) +
d−1∑
�=1

1

2�

∑
s∈B�

h(x, t;m|s) − 1

2

d−1∑
�=0

1

2�

∑
s∈B�+1

h(x, t;m|s)

= h(x, t;m) +
d−1∑
�=1

1

2�

∑
s∈B�

h(x, t;m|s) −
d∑

�=1

1

2�

∑
s∈B�

h(x, t;m|s)

= h(x, t;m) − 1

2d
∑
s∈Bd

h(x, t;m|s).

Since m|s = s for s ∈ Bd , we see that �BdH = h − (h)Bd , as desired.
To see that H is unique, up to a constant, we use a maximum principle argument.

Let H : Bd → R be any other solution of (2.20), where (x, t) is still fixed, and let
v = H − H. Then �Bdv(m) = 0 for all m ∈ Bd . It follows that v satisfies the mean
value property

v(m) = 1

2
(v(m+) + v(m−)) (2.21)

for allm ∈ Bd . Letm∗ ∈ Bd be any point where v attains its maximum over Bd . Then
the mean value property (2.21) implies that v(m∗) = v(m∗+) = v(m∗−). Applying the
same argument at m∗+ and m∗− we obtain that v(m∗) = v(m∗|s) for any s ∈ B2. We
can continue this way to show that v is constant on Bd , which completes the proof. ��

The proof of Theorem 2.1 also requires two lemmas showing how the solution u
of (2.7) changes when either player plays their optimal strategy.

Lemma 2.5 For (x, t) ∈ R
n × [0, 1 − ε2], m ∈ Bd , and any b ∈ B, we have

u(x + εb(q(m)−1 f ∗), t + ε2)−u(x, t) = ∇b
BdH(x, t + ε2;m)ε2 +O(ε3), (2.22)

where f ∗ = f ∗(x, t + ε2;m).

Proof Let A denote the left hand side of (2.22). By (2.9) we can Taylor expand to
obtain

A=ε2ut + εb〈∇u, q(m) − 1 f ∗〉 + ε2

2
〈∇2u (q(m) − 1 f ∗), q(m) − 1 f ∗〉+O(ε3),
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where ut , ∇u and ∇2u are evaluated at (x, t + ε2) above. We now check that

q(m) − 1 f ∗(x, t + ε2;m) = ξ(x, t + ε2;m) + O(ε),

and

〈∇u(x, t + ε2), q(m) − 1 f ∗(x, t + ε2;m)〉
= −ε

2

(
H(x, t + ε2;m+) − H(x, t + ε2;m−)

)
.

Therefore

A =
(
ut (x, t + ε2) + h(x, t + ε2;m) − b

2

(H(x, t + ε2;m+) − H(x, t + ε2;m−)
))

ε2

+O(ε3).

By Lemma 2.3 we have h = (h)Bd + �BdH. Inserting this above, and using the PDE
(2.7), which is equivalent to ut + (h)Bd = 0, we obtain

A =
(

�BdH(x, t + ε2;m) − b

2

(
H(x, t + ε2;m+) − H(x, t + ε2;m−)

))
ε2 + O(ε3)

=
(
H(x, t + ε2;m) − 1 + b

2
H(x, t + ε2;m+) − 1 − b

2
H(x, t + ε2;m−)

)
ε2 + O(ε3)

=
(
H(x, t + ε2;m) − H(x, t + ε2;m|b)

)
ε2 + O(ε3),

which completes the proof. ��
Lemma 2.6 For (x, t) ∈ R

n × (0, 1), m ∈ Bd , and any f ∈ [−1, 1], we have

u(x + εb∗(q(m) − 1 f ), t + ε2) − u(x, t) ≥ ∇b∗
BdH(x, t + ε;m)ε2 − Cε3, (2.23)

where b∗ = b∗(x, t + ε2;m, f ).

Proof We first note that for any f ∈ [−1, 1] we have

b∗(x, t + ε2;m, f )( f ∗(x, t + ε2;m) − f ) = | f ∗(x, t + ε2;m) − f |.

Therefore b∗( f ∗ − f ) ≥ 0. By (2.10) we have u(x + s1, t) ≥ u(x, t) for any s ≥ 0,
and so

u(x + εb∗(q(m) − 1 f ), t + ε2) = u(x + εb∗q(m) − ε1b∗ f ∗ + ε1b∗( f ∗ − f ), t + ε2)

≥ u(x + εb∗q(m) − ε1b∗ f ∗, t + ε2)

= u(x + εb∗(q(m) − 1 f ∗), t + ε2).

The proof is completed by applying Lemma 2.5. ��
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We now give the proof of Theorem 2.1.

Proof The proof is split into several steps.

1. Since q(m) ∈ [−μ,μ]n for all m ∈ Bd and u satisfies (2.10) we have

〈∇u(x, t), q(m)〉
〈∇u(x, t),1〉 ∈ [−μ,μ].

We combine (2.10) with the fact that the differenceH(x, t;m+)−H(x, t;m−) is
bounded by Cd (because H is a weighted average of the bounded function h) to
obtain

|H(x, t;m+) − H(x, t;m−)|
〈∇u(x, t),1〉 ≤ Cd

θ
,

and so the strategy f ∗(x, t;m) given in (2.14) is admissible, that is f ∗ ∈ [−1, 1],
provided Cdε

2θ ≤ μ. This is equivalent to N ≥ C2d2

4θ2μ2 since ε = N−1/2. For the

remainder of the proof, we assume N ≥ C2d2

4θ2μ2 so that f ∗ ∈ [−1, 1].
2. We claim there exists K > 0, depending only on u, n, and θ , such that for every

k ≥ 1 with 1 − kε2 ≥ 0 we have

uN (x, 1−kε2;m)−u(x, 1−kε2) ≤ (H(x, 1 + ε2 − kε2;m) − H−(x)
)
ε2+Kdkε3,

(2.24)
where H−(x) = minm∈Bd H(x, 1;m). The proof is by induction. For the base
case, we use (2.6) to write

uN (x, 1 − ε2;m) − u(x, 1 − ε2) = min| f |≤1
max
b=±1

{
u(x + εb(q(m) − 1 f ), 1) − u(x, 1 − ε2)

}
.

(2.25)
Set f = f ∗(x, 1;m) and apply Lemma 2.5 to obtain

uN (x, 1 − ε2;m) − u(x, 1 − ε2) ≤ max
b=±1

∇b
BdH(x, 1;m)ε2 + Cε3

≤ (H(x, 1;m) − H−(x))ε2 + Cε3.

This establishes the base case, since d ≥ 1. For the inductive step, assume (2.24)
holds for some k ≥ 1, and use the dynamic programming principle (2.6) and the
inductive hypothesis to obtain

uN (x, 1 − (k + 1)ε2;m) − u(x, 1 − (k + 1)ε2)

= min| f |≤1
max
b=±1

{
uN (x + εb(q(m) − 1 f ), 1 − kε2;m|b) − u(x, 1 − (k + 1)ε2)

}
= min| f |≤1

max
b=±1{

uN (x + εb(q(m) − 1 f ), 1 − kε2;m|b) − u(x + εb(q(m) − 1 f ), 1 − kε2)
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+ u(x + εb(q(m) − 1 f ), 1 − kε2) − u(x, 1 − (k + 1)ε2)
}

≤ min| f |≤1
max
b=±1{ (H(x + εb(q(m) − 1 f ), 1 + ε2 − kε2;m|b) − H−(x + εb(q(m) − 1 f ))

)
ε2

+ u(x + εb(q(m) − 1 f ), 1 − kε2) − u(x, 1 − (k + 1)ε2)
}

+ Kdkε3

≤ min| f |≤1
max
b=±1

{ (H(x, 1 − kε2;m|b) − H−(x)
)
ε2

+ u(x + εb(q(m) − 1 f ), 1 − kε2) − u(x, 1 − (k + 1)ε2)
}

+ Kdkε3 + Cdε3,

where we used the Lipschitzness ofH in the final step. We now set f = f ∗(x, 1−
kε2;m) and apply Lemma 2.5 to find that

uN (x, 1 − (k + 1)ε2;m) − u(x, 1 − (k + 1)ε2)

≤ max
b=±1

{
H(x, 1 − kε2;m|b) − H−(x) + ∇b

BdH(x, 1 − kε2;m)
}
ε2 + Kdkε3 + Cdε3

= (H(x, 1 − kε2;m) − H−(x)
)
ε2 + Kdkε3 + Cdε3.

Choosing K ≥ C completes the proof by induction.
3. The proof is similar to part 2, so we sketch the important parts. We will show by

induction that

uN (x, 1−kε2;m)−u(x, 1−kε2) ≥ (H(x, 1 + ε2 − kε2;m) − H+(x)
)
ε2−Kdkε3,

(2.26)
where H+(x) = maxm∈Bd H(x, 1;m). We set b = b∗(x, 1;m, f ) in (2.25) and
apply Lemma 2.6 to obtain

uN (x, 1 − ε2;m) − u(x, 1 − ε2) ≥ ∇b∗
BdH(x, 1;m)ε2 − Cε3,

which establishes the base case. For the inductive step, we follow the argument
from part 2 to deduce

uN (x, 1 − (k + 1)ε2;m) − u(x, 1 − (k + 1)ε2)

≥ min| f |≤1
max
b=±1

{ (
H(x, 1 − kε2;m|b) − H−(x)

)
ε2

+ u(x + εb(q(m) − 1 f ), 1 − kε2)−u(x, 1 − (k + 1)ε2)
}
−Kdkε3−Cdε3.

We now set b = b∗(x, 1 − kε2;m, f ) and apply Lemma 2.6 to find that

uN (x, 1 − (k + 1)ε2;m) − u(x, 1 − (k + 1)ε2)

≥
(
H(x, 1 − kε2;m|b∗) − H−(x) + ∇b∗

BdH(x, 1 − kε2;m)
)

ε2 − Kdkε3 − Cdε3
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= (H(x, 1 − kε2;m) − H−(x)
)
ε2 − Kdkε3 − Cdε3,

which establishes the claim.
4. For any t ∈ [0, 1), we choose k ≥ 1 so that

1 − kε2 ≤ t < 1 + ε2 − kε2

and apply the results of parts 1 and 2. Since kε2 < 1− t + ε2, |H(x, t;m)| ≤ Cd,
uN (x, 1 − kε2;m) = u(x, t;m) and |u(x, 1 − kε2) − u(x, t)| ≤ Cε2, we obtain

|uN (x, t;m) − u(x, t)| ≤ Cdε2 + Cd(1 − t)ε,

which completes the proof.

��

2.2 Lipschitz Payoffs

Our assumption that the payoff g is C4 in Theorem 2.1 precludes the commonly used
payoff g(x) = max{x1, . . . , xn}, which measures the regret with respect to the best
performing expert, and is only a Lipschitz continuous payoff. Theorem 2.1 can be
extended to Lipschitz payoffs, in a similar way as in [10,11,28], provided we place
some additional assumptions on the payoff and expert strategies.We assume the payoff
also satisfies the translation property

g(x + s 1) = g(x) + s for all x ∈ R
n and s ∈ R. (2.27)

We also make an assumption on diversity of expert strategies. We define r : Bd →
R
n−1 by

r(m) = (q1(m) − qn(m), . . . , qn−1(m) − qn(m)), (2.28)

and we assume

1

2d+1

∑
m∈Bd

r(m) ⊗ r(m) ≥ λI for some 0 < λ ≤ 1, (2.29)

where I is the (n−1)× (n−1) identity matrix. We recall that for symmetric matrices
A and B, the notation A ≥ B means that A − B is positive semi-definite.

Under these assumptions, the PDE (2.7) exhibits parabolic smoothing, and even
for Lipschitz payoffs g, the solution u of (2.7) is smooth. The condition (2.29) can
be interpreted exactly as the uniform ellipticity condition. We refer the reader to [10,
Theorem 4.12]. While the smoothing is immediate when t < 1, we lose the uniform
estimates on the derivatives of u as t → 1. It was shown in [10, Theorem 4.12] that
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the derivatives of u satisfy the estimates

|uξξ (x, t)| ≤ CLip(g)√
(1−t)λ

, |uξξξ (x, t)| ≤ CLip(g)
(1−t)λ ,

|ut (x, t)| ≤ CLip(g)√
1−t

, and |utt (x, t)| ≤ CLip(g)
(1−t)3/2

,

⎫⎬
⎭ (2.30)

for all ξ ∈ R
n with |ξ | = 1 and all (x, t) ∈ R

n × [0, 1). Here, Lip(g) denotes
the Lipschitz constant of g and we use the notation uξξ = 〈∇2uξ, ξ 〉 and uξξξ =∑n

i, j,k=1 uxi x j xk ξiξ jξk .

Using this parabolic smoothing, we can prove the following result.

Theorem 2.7 Let g be Lipschitz continuous, and assume (2.2), (2.3), (2.4), (2.27), and
(2.29) hold. Let u be the solution of (2.7). Then there exists C > 0, depending on u,
n, θ , and λ, such that for N � 1 we have that

|uN (x, t;m) − u(x, t)| ≤ Cdε log |ε| (2.31)

holds for all (x, t) ∈ R
n × [0, 1] and m ∈ Bd , where ε = N−1/2.

The proof of Theorem 2.7 follows closely that of Theorem 2.1, except that we must
keep track of how the error terms change due to the blow-up of the derivative estimates
(2.30) as t → 1. The proof is very similar to several results that were established in
previous work (see [28, Theorem 2], [11, Theorem 3.3], [10, Theorem 1.2]), so we
omit the details.

3 TheMarket and Investor Linear Programs

We now make the connection between the optimal investor strategy f ∗ defined in
(2.14) and the linear programs identified in [11]. Let us first recall from [11] how to
arrive at the market and investor linear programs. We replace uN (x, t;m) by a smooth
function u(x, t) in the dynamic programming principle (2.6) to obtain

min| f |≤1
max
b=±1

{
u(x + εb(q(m) − 1 f ), t + ε2) − u(x, t)

}
= 0. (3.1)

We use the ansatz (1.3) for the investor’s choice f , which sets

〈∇u, q(m) − f 1〉 = −ε

2
f #.

Then we Taylor expand u in (3.1), as in the proof of Lemma 2.5, and use the ansatz
for f to obtain

ut + min
f #

max
b=±1

{
h(m) − b

2
f #(m)

}
= O(ε), (3.2)

where h is defined in (2.11), and we are suppressing the dependence on (x, t)
everywhere. Of course, these computations are not rigorous, and not even approx-
imately correct, since as written in (3.2), the optimal choice for the market would
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be b = −sign( f #(m)) and so the optimal investor’s optimal choice would appear to
be f # = 0. This indicates that one step of the dynamic programming principle is
insufficient, and the players will be choosing their strategies with more than one step
of the game in mind. This idea was explored in [10] where the authors used a k-step
dynamic programming principle and took k → ∞ as N → ∞.

In contrast, the approach used in [11] considersmultiple steps of (3.2), which results
in accumulated regret of

k∑
i=1

(
h(mi ) − bi

2
f #(mi )

)
(3.3)

over k steps, where m1,m2, . . . ,mk ∈ Bd is the path taken on the de Bruijn graph,
which is determined by the market’s choices of bi asmi+1 = mi |bi . Since the investor
and market must be looking over multiple steps to choose their strategies, a reasonable
approach for the investor is to choose f # : Bd → R so as to minimize (3.3) over the
worst case path m1,m2, . . . ,mk , which is what the market should select if they are
playing optimally. To eliminate the market’s choices bi from the problem, [11] used
the fact that any closed walk on the de Bruijn graph can be decomposed into simple
cycles, and instead minimized (3.3) over all cycles on the de Bruijn graph. This leads
to the investor’s linear program, which is to find Minvestor ∈ R and f # : Bd → R so
as to minimize Minvestor subject to

1

|C |
∑
m∈C

(
h(m) − b(m)

2
f #(m)

)
≤ Minvestor (3.4)

for all simple cycles C on the de Bruijn graph, where b(m) ∈ B = {−1, 1} denotes
the outgoing edge from m in the cycle. The corresponding market linear program is
to maximize Mmarket subject to

1

|C |
∑
m∈C

(
h(m) − b(m)

2
f #(m)

)
≥ Mmarket (3.5)

for all cyclesC . The market and investor linear programs are not dual linear programs,
though the setup has a similar flavor. It was shown in [11] (see Lemma 4.1 and 4.2)
that the linear programs have solutions and

Mmarket ≤ (h)Bd ≤ Minvestor . (3.6)

The proof of this uses the fact that the de Bruijn graph is Eulerian, and so there is a
closed walk on the graph visiting each edge exactly once. By explicitly solving the
linear programs by hand, it was shown in [11] that Mmarket = (h)Bd = Minvestor for
n = 2 and d ≤ 4, which the authors called achieving indifference. We note that the
linear programs also depend on (x, t) and thus their solutions are changing (slowly)
over the course of the game.When n = 2, the dependence on (x, t) can be factored out
of linear program to simplify the situation (see [11]), though this seems to be possible
only for n = 2 experts.
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We now show that the corrector f #(m) = H(m+) − H(m−) used in this paper,
solves both the market and investor linear programs and achieves indifference. Indeed,
using that H solves the Poisson equation �BdH = h − (h)Bd we simply compute

h(m) − b(m)

2
f #(m) = h(m) − b(m)

2
(H(m+) − H(m−))

= (h)Bd + �BdH(m) − b(m)

2
(H(m+) − H(m−))

= (h)Bd + H(m) − 1

2
(H(m+) + H(m−)) − b(m)

2
(H(m+) − H(m−))

= (h)Bd + H(m) −
(
1 + b(m)

2

)
H(m+) −

(
1 − b(m)

2

)
H(m−)

= (h)Bd + H(m) − H(m|b(m)).

Notice the computation above is essentially the same as the main part of the proof of
Lemma 2.5. When the quantity above is summed over a cycle on the de Bruijn graph,
the termsH(m)−H(m|b(m)) contribute to a telescoping sum and exactly cancel out,
yielding

∑
m∈C

(
h(m) − b(m)

2
f #(m)

)
= |C |(h)Bd

for any cycle C . We can use the choice f #(m) = H(m+)−H(m−) in both the market
and investor linear programs to show that Mmarket ≥ (h)Bd and Minvestor ≤ (h)Bd .
Combining this with (3.6) we find that Mmarket = Minvestor and so indifference is
always achieved.

Given that we have found solutions of the linear programs from [11] achieving
indifference, we could have used the same proof strategy as in [11], or quoted their
proofs directly. However, the observation that the solutions to the linear program
produce a telescoping sum, as above, leads to substantial simplifications in the proofs.
In particular, in the proof of Theorem 2.1 we have no need to consider cycles on the
de Bruijn graph, and our market strategy is simpler than the one presented in [11],
which is split into several cases.

3.1 General Directed Graphs

The solution f # = H(m+) − H(m−) of the market and investor linear programs has
a general form, depending on the solution of a Poisson equation over the de Bruijn
graph. It is natural to ask whether these linear programs can be formulated and solved
over more general directed graphs, or whether there is some structure in the de Bruijn
graph that was essentially used in some way. In this section, we show that the ideas
generalize quite naturally to other directed graphs, with the key requirements being
that the graph admits an Eulerian cycle and the outgoing degree of each node is 2.

Let G = (V , E) be a directed graph with vertex set V consisting of |V | nodes
and edge set E ⊂ V 2. The edge set describes the set of directed edges, so each
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e = (e1, e2) ∈ E defines a directed edge from e1 ∈ V to e2 ∈ V . For each x ∈ V we
define the sets of incoming edges Ix and outgoing edges Ox by

Ix = {e ∈ E : e2 = x} and Ox = {e ∈ E : e1 = x}.

We denote by |Ix | and |Ox | the cardinality of these sets. A path P is a sequence of
edges e1, e2, . . . , em such that ei2 = ei+1

1 for i = 1, . . . ,m − 1. The path connects
x ∈ V to y ∈ V if e11 = x and em2 = y. We say the graph is strongly connected if
there is a path connecting every x, y ∈ V . A cycle C is a path for which em2 = e11.
We denote by |C | the number of edges in the cycle. An Eulerian cycle is a cycle C
that traverses every edge e ∈ E exactly once. If G admits an Eulerian cycle, then it is
strongly connected.

Let us denote by �2(V ) the set of functions u : V → R. For a function u ∈ �2(V )

we define the gradient
∇V u(e) = u(e1) − u(e2) (3.7)

and the graph Laplacian

�V u(x) = 1

|Ox |
∑
e∈Ox

∇V u(e). (3.8)

We also write the average of u over V as

(u)V = 1

|V |
∑
x∈V

u(x).

We assume each node in the graph has two outgoing edges, so

|Ox | = 2 for all x ∈ V . (3.9)

If the graph has an Eulerian cycle, then |Ix | = |Ox | and so |Ix | = 2 as well. In fact,
by Euler’s theorem, if |Ix | = |Ox | for all x ∈ V and G is strongly connected, then
G has an Eulerian cycle. We also assume the two outgoing edges of each node are
assigned +1 and −1 weights, as in the case of the de Bruijn graph. This defines a
function b : E → B that satisfies

∑
e∈Ox

b(e) = 0 for all x ∈ V . (3.10)

We also assume we are given a function h : V → R, which can be interpreted as some
base cost of traversing each node in the graph. The linear program generalizing the
investor’s linear program (3.4) is to find f1 : V → R and M1 to minimize M1 subject
to

1

|C |
∑
e∈C

(h(e1) + b(e) f1(e1)) ≤ M1 for all cycles C . (3.11)
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The linear program generalizing the market’s linear program (3.5) is to find f2 : V →
R and M2 to maximize M2 subject to

1

|C |
∑
e∈C

(h(e1) + b(e) f2(e1)) ≥ M2 for all cycles C . (3.12)

In this section, we show that whenG admits an Eulerian cycle, the solutions to both
linear programs (3.11) and (3.12) are given by

f (x) = 1

2

∑
e∈Ox

b(e)∇VH(e), (3.13)

where H : V → R is the solution of the Poisson equation

�VH = h − (h)V on V . (3.14)

The proof of this is straightforward, once we establish the existence of H.

Lemma 3.1 Assume G admits an Eulerian cycle and (3.9) holds. Then there exists
H : V → R solving (3.14), and H is unique up to a constant.

Proof First, we claim that the kernel of �V is exactly the constant functions on V ,
that is

ker(�V ) = {u ∈ �2(V ) : u(x) = u(y) for all x, y ∈ V }. (3.15)

To see this, let u ∈ �2(V ) with �V u = 0. Then we have

∑
e∈Ex

∇V u(e) = 0 (3.16)

for all x ∈ V . Let x0 ∈ V be a node where u attains its maximum value over V . Then
∇V u(e) ≥ 0 for all e ∈ Ex . Combining this with (3.16) we have that ∇V u(e) = 0
for all e ∈ Ex , and therefore u also attains its maximum at all nodes y ∈ V that are
forward adjacent to x ; that is all y ∈ V such that (x, y) ∈ Ex . Since the graph G is
connected, we find that u is constant on V , which establishes (3.15).

We now claim that

range(�V ) = {u ∈ �2(V ) : (u)V = 0}. (3.17)

To see this, we first note that by the rank-nullity theorem the dimension of range(�V )

is |V | − 1, since the kernel of �V is one-dimensional. Therefore, we only need to
show that

range(�V ) ⊂ {u ∈ �2(V ) : (u)V = 0}.
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to establish the claim, since the right hand side has dimension |V | − 1. To prove this
inclusion, let u ∈ �2(V ) and compute

(�V u)V = 1

|V |
∑
x∈V

�V u(x)

= 1

2|V |
∑
x∈V

∑
e∈Ex

∇V u(e)

= 1

2|V |
∑
e∈E

(u(e1) − u(e2))

= 1

2|V |
∑
e∈E

u(e1) − 1

2|V |
∑
e∈E

u(e2)

= 1

2|V |
∑
x∈V

|Ox |u(x) − 1

2|V |
∑
x∈V

|Ix |u(x)

= 1

2|V |
∑
x∈V

(|Ox | − |Ix |)u(x).

Since G has an Eulerian cycle we have |Ix | = |Ox | = 2, and so (�vu)V = 0, which
establishes the claim.

Since h − (h)V belongs to range(�V ), there existsH such that �VH = h − (h)V .
By the characterization of the kernel (3.15), the solution is unique up to a constant.

��

We now establish that the values of the linear programs agree and (3.13) is the
solution to both linear programs.

Theorem 3.2 Assume G admits an Eulerian cycle, and that (3.9) holds. Then (3.13)
solves both linear programs (3.11) and (3.12), and

M1 = (h)V = M2. (3.18)

Proof Let f be given by (3.13) and note that

h(e1) + b(e) f (e) = (h)V + �VH(e1) + b(e)

2

∑
e′∈Ox

b(e′)∇VH(e′)

= (h)V + 1

2

∑
e∈Ox

∇VH(e) + 1

2

∑
e′∈Ox

b(e)b(e′)∇VH(e′)

= (h)V + 1

2

∑
e′∈Ox

(1 + b(e)b(e′))∇H(e′)

= (h)V + ∇VH(e).
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Therefore, for any cycle C we have

∑
e∈C

(h(e1) + b(e) f (e)) = |C |(h)V +
∑
e∈C

∇VH(e) = |C |(h)V .

It follows that M1 ≤ (h)V ≤ M2.
To prove equality, let C be an Eulerian cycle. Then for any f : V → R we have

∑
e∈C

(h(e1) + b(e) f (e1)) =
∑
x∈V

∑
e∈Ox

(h(x) + b(e) f (x))

= 2
∑
x∈V

h(e1) +
∑
x∈V

( f (x) − f (x)) = 2|V |(h)V .

Since |C | = 2|V | we see that
1

|C |
∑
e∈C

(h(e1) + b(e) f1(e1)) = (h)V .

It follows that M1 ≥ (h)V and M2 ≤ (h)V , which completes the proof. ��
Remark 3.3 It seems non-trivial to generalize these ideas to more than a dichotomy of
choices at each node. That is, the ideas in this section do not immediately generalize
to |Ox | ≥ 3, even if the outgoing and incoming degrees are the same at all nodes. We
leave this as an interesting problem for future work.

4 Conclusion

We established O(ε) optimal strategies for online prediction with history dependent
experts. The optimal strategies involve solving a Poisson equation over the de Bruijn
graph, which should be interpreted as the corresponding Bellman (or Isaacs) equation
in the discrete setting. We also checked that our optimal strategies solve the market
and investor linear programs from [11], which resolves the open problems from that
paper, and we generalized the linear programs and their solutions to other directed
graphs.
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