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Abstract

The problem of data-driven identification of coherent observables of
measure-preserving, ergodic dynamical systems is studied using kernel integral
operator techniques. An approach is proposed whereby complex-valued observables
with approximately cyclical behavior are constructed from a pair of eigenfunctions of
integral operators built from delay-coordinate mapped data. It is shown that these
observables are ε-approximate eigenfunctions of the Koopman evolution operator of
the system, with a bound ε controlled by the length of the delay-embedding window,
the evolution time, and appropriate spectral gap parameters. In particular, ε can be
made arbitrarily small as the embedding window increases so long as the
corresponding eigenvalues remain sufficiently isolated in the spectrum of the integral
operator. It is also shown that the time-autocorrelation functions of such observables
are ε-approximate Koopman eigenvalues, exhibiting a well-defined characteristic
oscillatory frequency (estimated using the Koopman generator) and a slowly decaying
modulating envelope. The results hold for measure-preserving, ergodic dynamical
systems of arbitrary spectral character, including mixing systems with continuous
spectrum and no non-constant Koopman eigenfunctions in L2. Numerical examples
reveal a coherent observable of the Lorenz 63 system whose autocorrelation function
remains above 0.5 in modulus over approximately 10 Lyapunov timescales.

Keywords: Kernel integral operators, Delay-coordinate maps, Koopman operators,
Feature extraction, Ergodic dynamical systems

1 Introduction
1.1 Background

In the papers [30,32,33], A. J. Majda and the author proposed a decomposition technique
for multivariate time series, called nonlinear Laplacian spectral analysis (NLSA), com-
bining aspects of delay-coordinate maps of dynamical systems with kernel methods for
machine learning. NLSA treats the sampled time series as an observable of a dynamical
system and embeds it into a higher-dimensional space using Takens’ method of delays
[50,53,59]. Nonlinear features (principal components) are then extracted as eigenvectors
of a normalized kernel matrix constructed from the delay-embedded data, adopting the
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perspective of geometrical learning techniques such as Laplacian eigenmaps [7] and diffu-
sion maps [16]. One of the principal empirical findings in [30,32,33] was that the leading
NLSA modes exhibit a coherent temporal evolution, capturing distinct timescales from
multiscale input data. Examples include systems of ordinary differential equations with
metastable regime behavior [32], as well as simulated and observed climate data [31,58].
Meanwhile, in independent work [8], Berry et al. developed an analysis technique called

diffusion-mappeddelay coordinates (DMDC)which is based on a related delay-coordinate
kernel construction, and gave a theoretical interpretation of the timescale separation
capability of the DMDC modes using the Oseledets multiplicative ergodic theorem and
Lyapunov metrics of dynamical systems. In particular, they showed that under smooth-
ness and hyperbolicity assumptions on the dynamics, and for an appropriately weighted
delay-embedding scheme, as the number of delays increases, the leading eigenfunctions
recovered through the diffusion maps algorithm vary predominantly along the Oseledets
subspace associated with the most stable Lyapunov exponent of the system. They then
argued that the evolution of these eigenfunctions, viewed as reduced coordinates for the
system state, can be well modeled as a gradient flow driven by a non-autonomous pertur-
bation from the remaining degrees of freedom. In this picture, diffusion maps captures
the leading eigenfunctions of the generator of a stochastic process, exhibiting distinct
timescales associated with the corresponding eigenvalues.
Besides DMDC and NLSA, several other feature extraction techniques utilizing delay-

coordinate maps have been proposed, including early methods such as singular spectrum
analysis (SSA) [11,63] and more recent techniques where connections with operator-
theoretic ergodic theory have been emphasized [2,12,49]. While NLSA and DMDC differ
from these methods in the use of nonlinear kernels (which allow recovery of nonlinear
features), the general consensus stemming from this body of the literature is that incor-
porating delays in feature extraction methodologies facilitates the recovery of dynam-
ically relevant, coherent patterns. Note that this property is distinct from topological
state space reconstruction from partial observations (which was the original purpose of
delay-coordinate maps [50]) and can be beneficial even under fully observed scenarios.
Techniques for coherent feature extraction blending aspects of geometrical integral oper-
ators and evolution operators have also received significant attention in the context of
non-autonomous dynamical systems [6,27,37].
In [19,29], an interpretation of the timescale separation seen in features recovered from

delay-coordinate-mapped data was given through a spectral analysis of kernel integral
operators and Koopman evolution operators of dynamical systems [5,26,38]. Specifi-
cally, it was shown that for a measure-preserving ergodic dynamical system, as the num-
ber of delays increases, the commutator between kernel integral operators constructed
from delay-embedded data (subject to mild requirements) and the Koopman operator
converges to zero in operator norm, meaning that these operators acquire common
eigenspaces in the infinite-delay limit. Since (i) kernel integral operators associated with
sufficiently regular (e.g., continuous) kernels are compact and thushavefinite-dimensional
eigenspaces corresponding to nonzero eigenvalues and (ii) the eigenspaces of Koopman
operators of ergodic dynamical systems are one-dimensional, it follows that in the infinite-
delay limit, the eigenspaces of the kernel integral operators employed for feature extraction
are finite unions of Koopman eigenspaces. The latter are each characterized by a distinct
timescale associated with the corresponding eigenvalue of the generator. In applications,
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it is oftentimes observed that the eigenspaces of kernel integral operators with large num-
bers of delays are numerically two-dimensional, meaning that they are associated with
a single pair of Koopman eigenfrequencies of equal modulus and different signs. Sam-
pled along orbits of the dynamics, such kernel eigenfunctions have the structure of pure
sinusoids, which can be thought of as exhibiting an “ideal” form of timescale separation.
A useful aspect of the results in [19,29] is that they hold for broad classes of measure-

preserving, ergodic systems (including systemswithnon-smooth attractors) andchoices of
kernel. Thus, they provide relevant information about the asymptotic behavior of a variety
of feature extraction techniques utilizing delays, including the methods [2,8,11,12,30,32,
33,63] outlined above. Importantly, the integral operators employed can be consistently
approximated in a spectral sense from time series data using well-developed theory [44,
60,61].

1.2 Motivation and contributions of this work

Despite their generally broad applicability, the results in [19,29] offer limited insight on the
behavior of kernel-based feature extraction techniques utilizing delay-coordinate maps
for an important class of dynamical systems, namely systems with mixing behavior (or so-
calledmixed-spectrum systemswith both quasiperiodic andmixing components). Indeed,
a necessary and sufficient condition for ameasure-preserving dynamical system to bemix-
ing is that the generator on the L2 space associatedwith the invariantmeasure has a simple
eigenvalue at zero, with a constant corresponding eigenfunction, and no other eigenval-
ues. As a prototypical example, consider the Lorenz 63 (L63) system [43] on R

3, which
is rigorously known to possess an ergodic invariant measure μ supported on the famous
“butterfly” attractor with mixing dynamics [45,62]. According to [19], for such a system
the kernel integral operator in the infinite-delay limit acquires an infinite-dimensional
nullspace containing all L2(μ) observables orthogonal to the constant, allowing features
with arbitrarily broad frequency spectra (i.e., no timescale separationor coherence).More-
over, data-driven spectral approximation results such as [44,60,61] do not hold for the
potentially infinite-dimensional nullspaces of compact operators.
Yet, as illustrated in Fig. 1, the eigenfunctions of integral operators based on a sufficiently

long delay-embedding window, T , exhibit a form of coherence, which can be thought
of as a relaxation of the periodic behavior of Koopman eigenfunctions. In particular,
for sufficiently large T , the time series associated with the kernel eigenfunctions near
the top of the spectrum have the structure of amplitude-modulated waves, with a well-
defined carrier frequency and a low-frequency modulating envelope. In effect, the pure
sinusoids generated byKoopman eigenfunctions can be thought of as special cases of these
patterns with constant modulating envelopes. A similar behavior was observed in [54],
who found that with increasing number of delays, NLSA provides increasingly coherent
representations of the El Niño Southern Oscillation of the climate system, as well as other
patterns of climate variability.
The main contribution of this work is to provide a characterization of the coher-

ence properties of eigenfunctions of integral operators constructed from delay-embedded
observables ofmeasure-preserving, ergodic dynamical systems of arbitrary (quasiperiodic,
mixing, or mixed-spectrum) spectral characteristics, underpinning the behavior in Fig. 1.
We will do so by studying a class of complex-valued observables z, whose real and imag-
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Fig. 1 Representative eigenfunctions φj,T of the integral operator KT for (a) no delays, T = 0, and (b) a
delay-embedding window T equal to 8 natural time units, numerically approximated from a dataset
consisting of N = 64,000 samples taken along an orbit of the L63 system at a sampling interval �t = 0.01. In
each set of panels, the first and second rows show the leading two non-constant eigenfunctions of KT , in
order of decreasing corresponding eigenvalue. The first column from the left shows a scatterplot of φj,T on
the dataset. The second and third panels show scatterplots of φj,T acted upon by the Koopman operator Ut

for time t = 1 and 2, which corresponds to approximately 1 and 2 Lyapunov characteristic times, respectively.
The rightmost column shows a time series of φj,T sampled along a portion of the training trajectory spanning
10 natural time units. The eigenfunctions in a exhibit limited dynamical coherence, in the sense that their
level sets mix together on times greater than � 1 Lyapunov times. Moreover, their corresponding time series
exhibit a broadband frequency spectrum with no apparent phase relationships. In contrast, the
eigenfunctions in b resist mixing over a period of time spanning multiple Lyapunov times, illustrated by the
qualitatively similar nature of the scatterplots of φj,T and Utφj,T for t ∈ {1, 2}. Furthermore, the time series in b
have the structure of amplitude-modulated waves with a well-defined carrier frequency and slowly varying
modulating envelope, while exhibiting a 90◦ phase difference to a good approximation

inary parts are eigenfunctions of an integral operator KT : L2(μ) → L2(μ) constructed
using a delay-embedding window of length T . These observables will be shown to lie
in the ε-approximate point spectrum of the Koopman operator Ut for a bound ε that
decreases at a rate O(T−1), but increases with the evolution time t at a linear rate, while
also being inversely proportional to the corresponding eigenvalues and the gap between
them and the rest of spectrum ofKT . Moreover, we give an explicit characterization of the
modulating envelope and carrier frequency through the time-autocorrelation function of
z and its derivative at 0, respectively.
For systems possessing non-constant Koopman eigenfunctions, these results imply that

at fixed t, ε can be made arbitrarily small by increasing T , so long as KT satisfies certain



D. Giannakis Res Math Sci             (2021) 8:8 Page 5 of 33     8 

positivity conditions that depend on the observation map and the form of the kernel,
consistent with the results of [19]. On the other hand, for systems with mixing dynamics,
the behavior of ε, and thus the coherence of z, is influenced by an interplay between the
delay-embedding window length (promoting coherence) and the decay of the eigenvalues
of KT with increasing T (inhibiting coherence). Nevertheless, it is possible that ε is made
small by increasing T , so long as the eigenvalues associated with z remain sufficiently
isolated in the spectrum of KT .
The plan of this paper is as follows. In Sect. 2, we describe the class of dynamical systems

under study and state our results, including Theorem 1 which is the main theoretical
contribution of this work. Section 3 contains a proof of Theorem 1, and Sect. 4 describes
the data-driven formulation of our framework. We illustrate our results with numerical
examples for the L63 system in Sect. 5 and state our conclusions in Sect. 6. Auxiliary
results and definitions on spectral approximation of integral operators are collected in
Appendix A.

2 Main results
2.1 Dynamical system under study

Consider a continuous-time, continuous dynamical flow �t : � → �, t ∈ R, on a metric
space � possessing an invariant, ergodic Borel probability measure μ, supported on a
compact set X ⊆ �. We assume that the support X of the invariant measure is contained
in a forward-invariant, C1 compact manifoldM such that �t |M is C1, but do not require
that X has differentiable structure. The system is observed through a continuous function
F : � → Y , where Y is a Banach space, and the restriction of F toM is C1.
This setup encompasses a large class of autonomous dynamical systems encountered in

applications. For instance, as a prototypical ODE example with quasiperiodic behavior,
one can consider an ergodic rotation �t : T2 → T

2 on the 2-torus, in which case � =
M = X = T

2 and μ is the Haar measure. The L63 system from Fig. 1 is an example of
a smooth dissipative flow on � = R

3, with a rigorously known mixing attractor X ⊂ �

[45,62] and compact absorbing ballsM ⊃ X [42]. The assumptions stated above also hold
for classes of dissipative PDE models possessing inertial manifolds [17].
Within this class of models, our goal is as follows: Given time-ordered data

y0, y1, . . . , yN−1 ∈ Y with yn = F (xn), sampled along adynamical trajectory xn = �n�t (x0)
at an interval �t > 0, identify a collection of functions ζj : � → C which evolve coher-
ently under the dynamics. Intuitively, by that we mean that the dynamically evolved
functions ζj ◦�t should be relatable to ζj in a natural way for t lying in a “large” interval
containing zero. From the perspective of learning theory, the functions ζj are principal
components/features, which are to be identified through an unsupervised learning prob-
lem that favors coherence. Note that this objective differs significantly from the classical
proper orthogonal decomposition (POD) [4,36,41], whose goal is to extract features on
the basis of explained variance. Once identified, such coherent features are useful in a
variety of contexts, including dimension reduction of high-dimensional time series and
predictive modeling [1,14]. In these approaches, a basic premise is that features related
to the spectrum of the underlying dynamical system should reveal physically meaningful
dynamical processes (e.g., fundamental oscillations of the climate system [54,58]), while
having favorable predictability properties.
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2.2 Pseudospectral criteria for coherence

To establish a mathematically precise notion of dynamical coherence of observables,
consider the evolution group of unitary Koopman operators Ut : L2(μ) → L2(μ), acting
on observables by composition with the flow, Utf = f ◦ �t [5,26,38,39]. By Stone’s
theorem on one-parameter unitary groups [57], the group {Ut}t∈R is generated by a skew-
adjoint operatorV : D(V )→ L2(μ)with a dense domainD(V ) ⊂ L2(μ). As anoperator,V
corresponds to an extension of the directional derivative on C1(M) functions associated
with the vector field 	V generating �t , namely V f := 	V · ∇f . In particular, for any
f ∈ D(V ), t �→ Utf is continuously differentiable in L2(μ) and

d
dt

Ut f = VUtf = UtVf. (1)

It is a standard result from ergodic theory [26] that whenever V possesses an eigen-
function z ∈ L∞(μ) with ‖z‖L2(μ) = 1 and corresponding eigenvalue iω (where the
eigenfrequency ω is real by skew-adjointness ofV ), then |z(x)| = 1 forμ-a.e. x ∈ �. Thus,
we have the periodic evolution

Utz = etV z = eiωt z, (2)

and at least measure theoretically,Utz can be considered to take values on the unit circle.
This means, in particular, that for μ-a.e. x ∈ �, the time series t �→ z(�t (x)) = eiωt z(x)
behaves as a Fourier function on R with frequency ω. Due to these facts, we think of
Koopman eigenfunctions of measure-preserving ergodic dynamical systems as exhibiting
an “ideal” form of coherence. Indeed, starting from work in the late 1990s on data-driven
spectral analysis of Koopman operators [47,48] and the related transfer operators [23,24]
spectral decomposition of evolution operators has emerged as a popular approach for
coherent feature extraction in dynamical systems.
Yet, despite their attractive properties, Koopman eigenfunctions in L2(μ) are not an

appropriate theoretical paradigm for coherent features of dynamical systemswith complex
(mixing) behavior. Indeed, a necessary and sufficient condition for a measure-preserving,
ergodic flow to be mixing is that the generator V on L2(μ) has a simple eigenvalue 0,
with a constant corresponding eigenfunction, and no other eigenvalues. Thus, in this case
Koopman eigenfunctions only yield the trivial (constant) feature.
Systems with so-calledmixed spectra exhibit an intermediate behavior, in the sense that

they do exhibit non-constant eigenfunctions satisfying (2), but these eigenfunctions span
only a strict subspace of L2(μ) and provide no information about the mixing component
of the dynamics. Specifically, it is a classical result [35] that L2(μ) admits an orthogonal
decomposition

L2(μ) = Hp ⊕Hc (3)

into closed,Ut-invariant subspacesHp andHc, such that every observable inHp is a linear
combination of Koopman eigenfunctions (and thus exhibits a quasiperiodic evolution
associated with the point spectrum of the generator), whereas Hc = H⊥

p is a subspace
orthogonal to every Koopman eigenfunction and thus associated with the continuous
spectrum of the generator. In particular, every observable g ∈ Hc exhibits a form of
mixing behavior (called weak-mixing) characterized by a loss of cross-correlation with
any observable f ∈ L2(μ), viz.

lim
t→∞Cfg (t) = 0, where Cfg (t) := 1

t

∫ t

0
|〈f, Usg〉| ds. (4)



D. Giannakis Res Math Sci             (2021) 8:8 Page 7 of 33     8 

Here, 〈·, ·〉 denotes the L2(μ) inner product, 〈f, g〉 = ∫
�
f ∗g dμ, taken conjugate linear in

the first argument. The issue with feature extraction by pure Koopman eigenfunctions is
that the recovered features cannot capture observables in Hc and their mixing behavior.
Here, as a natural relaxation of (2), we seek observables satisfying the Koopman

eigenvalue equation in an approximate sense. Specifically, we seek nonzero observables
z ∈ L2(μ) satisfying

‖Utz − eiωt z‖L2(μ) ≤ ε‖z‖L2(μ), (5)

for some ε > 0, ω ∈ R. Every such observable z is said to be an ε-approximate eigen-
function of Ut , and the complex number eiωt is said to lie in the ε-approximate point
spectrum of this operator [13]. In addition, we require that the same bound ε holds for all
t in an interval [0, τ ] with τ > 0. Observables satisfying these conditions with ε � 1 and
τ � 2π/ω then behave to a good approximation as Koopman eigenfunctions of measure-
preserving ergodic dynamical systems. Note, in particular, that the eigenfunctions φ1,T
and φ2,T depicted in Fig. 1b are strongly suggestive of this behavior if they are interpreted
as the real and imaginary parts of z, i.e., z = φ1,T + iφ2,T . In the sequel, we will refer to
(eiωt , z) satisfying (5) as an ε-approximate eigenpair ofUt . It can be shown that becauseUt

is a normal operator, (eiωt , z) is an eigenpair if and only if it is an ε-approximate eigenpair
for every ε > 0.

2.3 Integral operators induced by delay-coordinate maps

Motivated by the delay-embedding techniques described in Sect. 1, we seek observables
satisfying (5) through eigenfunctions of integral operators on L2(μ) based on delay-
coordinatemaps. To construct appropriate such operators, consider first the distance-like
function d : �×� → R+ induced by the norm of Y and the observable F ,

d(x, x′) = ‖F (x)− F (x′)‖Y ,
and for every T > 0 define dT : �×� → R with

d2T (x, x
′) = 1

T

∫ T

0
d2(�t (x),�t (x′)) dt. (6)

The function dT can be equivalently thought of as being induced from the norm of
YT := L2([0, T ];Y ) under the continuous-time delay-coordinate mapping FT : � → YT
with FT (x)(t) = F (�t (x)); that is,

d2T (x, x
′) = ‖FT (x)− FT (x′)‖2YT /T.

By convention, we set d0 = d.
Using dT and a positive, C1, bounded shape function h : R+ → R+ with bounded

derivative, we then consider the family of symmetric kernel functions kT : �×� → R+,
such that

kT (x, x′) = h(d2T (x, x
′)). (7)

As a concrete example, we will nominally work with the choice h(u) = e−u/σ 2 , where σ

is a positive bandwidth parameter. This leads to the radial Gaussian kernel kT (x, x′) =
e−d2T (x,x′)/σ 2 , which is a common starting point in manifold learning techniques [7,16]
approximating heat kernels on Riemannian manifolds as σ → 0. While here we do
not assume that X has manifold structure, which would allow us to use these results,
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it should be noted when Y = R
m, Gaussian kernels have an important property that

holds irrespective of the regularity of the support of the sampling distribution of the data;
namely, they are strictly positive-definite [56]. See [28] for additional examples of kernels
commonly employed in machine learning applications.
Every kernel from (7) induces an integral operator KT : L2(μ)→ L2(μ) such that

KT f =
∫

�

kT (·, x)f (x) dμ(x). (8)

By symmetry and continuity of kT and compactness of X , KT is a self-adjoint, Hilbert–
Schmidt integral operator with Hilbert–Schmidt norm equal to ‖kT‖L2(μ×μ). As a result,
there exists an orthonormal basis {φ0,T ,φ1,T , . . .} of L2(μ) consisting of eigenfunctions of
KT corresponding to the eigenvalues λ0,T ≥ λ1,T ≥ · · ·. The latter are all real and have
finite multiplicity whenever nonzero by compactness of KT . In addition, by continuous
differentiability of kT and compactness ofX , every element of in the range ofKT has a rep-
resentative in C1(M). In particular, every eigenfunction φj,T with nonzero corresponding
eigenvalue has the continuous representative

ϕj,T = 1
λj,T

∫
�

kT (·, x)φj,T (x) dμ(x), (9)

whose restriction on M is C1. Note that ϕj,T is an everywhere-defined function on �, as
opposed to the left-hand side of (8) which is an L2(μ)-element defined only up to sets of
μ-measure zero. We let σp(KT ) = {λ0,T , λ1,T , . . .} denote the point spectrum of KT .
In the following subsection, we will show that appropriate linear combinations of eigen-

functions φj,T are ε-approximate eigenfunctions of the Koopman operator, satisfying (5)
for a threshold ε that decreases as T increases, but increases as λj,T decreases. The con-
tinuous representatives of these eigenfunctions will then provide the coherent features
ζj .

Remark 1 In this section, we have opted to work with delay-coordinate maps in contin-
uous time as this will facilitate the derivation of ε-approximate spectral bounds valid for
continuous time intervals. We will later pass to the more common discrete-time formu-
lation based on the sampling interval �t, which will introduce quadrature errors in (6)
that vanish as�t → 0. In addition, aside from the class of radial kernels in (7), our results
hold with straightforward modifications to other classes of kernels with T → ∞ limits
in L2(μ × μ). Examples include the covariance kernels employed by SSA (which can be
obtained by polarization of (7) using a linear shape function), Markov-normalized kernels
[10,15,16], and variable-bandwidth kernels [9]. It is also possible to replace the kernel
family kT in (7), which is obtained by a application of a fixed shape function to the T -
dependent functions d2T , by a family k̃T obtained by averaging a fixed continuous kernel
function k : � × � �→ R, i.e., k̃T (x, x′) =

∫ t
0 k(�

t (x),�t (x′)) dt/T . See [19] for further
details.

2.4 Dynamically coherent eigenfunctions

According to the theory of delay-coordinate maps, e.g., [25,51,53], for a sufficiently long
window, the delay-coordinate map FT becomes homeomorphic on the compact support
X of the invariantmeasure for a large class of dynamical systems and observation functions
F , even if F |X is not injective. This property has been widely employed in techniques for
state space reconstruction [50] and forecasting [52]. Our interest here, however, is not so
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much on topological reconstruction, but rather on the effect of delay-coordinate maps on
the spectral properties of kernel integral operators on L2(μ), irrespective of the injectivity
properties of F . To that end, we begin with a proposition that summarizes some of the
results on the limiting behavior of operators in the family KT from (8), reported in [19].

Proposition 1 As T →∞, the following hold:

(i) The distance-like functions dT converge in L2(μ×μ) norm to a function d∞, which
is invariant under the Koopman operator Ut ⊗Ut of the product dynamical system
on � × � for any t ∈ R. Correspondingly, the kernel functions kT also converge in
L2(μ× μ) to a Ut ⊗Ut-invariant kernel k∞.

(ii) The sequence of operators KT converges in L2(μ) operator norm to the Hilbert–
Schmidt integral operator K∞ associated with k∞.

(iii) For every t ∈ R, K∞ and the Koopman operator Ut commute.
(iv) The continuous spectrum subspace Hc lies in the nullspace of K∞.

While we refer the reader to [19] for a proof of this proposition, we note here that
Claim (i) follows from the fact that with the definition in (6), d2T corresponds to a
continuous-time Birkhoff average of the continuous function d2 ∈ C(� × �) under
the product dynamical flow�t ×�t . The existence andUt ⊗Ut-invariance of d∞ is then
a consequence of the pointwise ergodic theorem. The remaining claims of Proposition 1
can be deduced by the Ut ⊗ Ut-invariance of k∞. It is also worthwhile noting that, since
�t is mixing with respect to μ if and only if �t ×�t is ergodic with respect to μ × μ, it
follows that d∞ is constant in L2(μ×μ) sense if and only if the dynamics �t is μ-mixing.
In that case, d∞ is μ × μ-a.e. constant by ergodicity, and thus, K∞ is a kernel integral
operator with constant kernel. This implies that the nullspace of K∞ consists of all L2(μ)
functions orthogonal to the constant. The latter comprise precisely the subspaceHc under
mixing dynamics, and we conclude that kerK∞ = Hc. This last relationship is a special
case of Proposition 1(iv) for mixing systems.
For our purposes, the main corollaries of Proposition 1, which follow from Claims (iii)

and (ii), respectively, in conjunction with compactness of KT and K∞ are:

Corollary 1 Every eigenspace E of K∞ corresponding to a nonzero eigenvalue is a finite
union of Koopman eigenspaces, and the restriction V |E of the generator is unitarily diago-
nalizable. It further follows from skew-adjointness of the generator and ergodicity that E is
even-dimensional if and only if it is orthogonal to constant functions (i.e., the nullspace of
V ).

Corollary 2 For every nonzero eigenvalue λj of K∞, the sequence of eigenvalues λj,T of KT
satisfies limT→∞ λj,T = λj . Moreover, the orthogonal projections onto the corresponding
eigenspaces converge in operator norm. Conversely, if a sequence λT of eigenvalues of KT
has a T →∞ nonzero limit λ∞, then λ∞ is necessarily an eigenvalue of K∞.

Suppose now that E is a two-dimensional eigenspace ofK∞ corresponding to a nonzero
eigenvalue λ, where we have suppressed the j subscript for simplicity of notation. Then, by
Corollary 1, E is a union of two Koopman eigenspaces orthogonal to kerV . Let also {φ,ψ}
be an orthonormal basis of E, where the eigenfunctions φ and ψ are real (such a basis can
always be found since the kernel k∞ is real) and L2(μ)-orthogonal to the constants. Then,
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it follows by skew-adjointness and reality of V that

〈φ, Vφ〉 = 〈ψ , Vψ〉 = 0,

whereas

ω := 〈ψ , Vφ〉 = −〈φ, Vψ〉
is real. In addition, ω is nonzero since E is a V -invariant subspace of L2(μ) orthogonal to
kerV . Defining z = (φ + iψ)/

√
2, we get

Vz = 〈φ, Vz〉φ + 〈ψ , Vz〉 = −iωφ + ωψ = iωz,

so we conclude that z is a Koopman eigenfunction corresponding to eigenfrequency ω.
By construction, this eigenfunction has unit L2(μ) norm, so for any t ∈ R we have

αt := 〈z, Utz〉 = eiωt ,

and if we interpret αt as an instantaneous autocorrelation function for z (cf. the time-
averaged cross-correlation in (4)), it follows that we can recover Koopman eigenvalues
from the time-autocorrelation functions of the corresponding eigenfunctions. It also fol-
lows from the generator equation (1) that ω can be determined from the derivative of the
autocorrelation function at 0, iω = α̇t |t=0.
Our main result, stated in the form of the following theorem, is essentially a generaliza-

tion of these basic observations to ε-approximate eigenfunctions of Ut constructed from
eigenfunctions of KT with finite delay-embedding window T :

Theorem 1 With the assumptions and notation of Sects. 2.1–2.3, let φ andψ be mutually
orthogonal, unit-norm, real eigenfunctions of KT corresponding to eigenvalues λT and νT ,
respectively, with 0 < λT ≤ νT . Assume that λT , νT are simple if distinct and twofold-
degenerate if equal. Define

z = 1√
2
(φ + iψ), αt = 〈z, Utz〉, ω = 〈ψ , Vφ〉 ≡ 1

i
〈z, Vz〉 ≡ 1

i
α̇t |t=0,

where ω is real, and set

γT = min
u∈σp(KT )\{λT ,νT }

{min{|λT − u|, |νT − u|}} ,

δT = 1√
2
(νT − λT ), δ̃T = δT

νT
.

Then, the following hold for every t ≥ 0:

(i) The autocorrelation function αt lies in the ε̃t -approximate point spectrum of Ut ,
and z is a corresponding ε̃t -approximate eigenfunction for the bound

ε̃t = st +
√
St ,

where

st = 1
γT

(
C1t
T

+ 3δT
)
, St = C2‖V ‖(1+ δ̃T )

λT

∫ t

0
su du.

Here,‖V ‖ is thenormof thedynamical vector field, viewedasaboundedoperatorV :
C1(M)→ C(M), and C1 and C2 are constants that depend only on the observation
map F. Explicitly, we have

C1 = 2‖h‖C1(R+)‖d2‖C(X×X), C2 = 2‖h‖C1(R+)‖d2‖C1(M×M).
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(ii) Themodulus |ω| is independent of the choice of real orthonormal basis {φ,ψ} for the
eigenspace(s) corresponding to λT and νT . Moreover, the phase factor eiωt is related
to the autocorrelation function according to the bound

|αt − eiωt | ≤ 2
√
St .

Note that st and St in Theorem 1 are increasing functions of t ≥ 0. This, in conjunction
with the fact that ‖Utz − eiωt z‖L2(μ) ≤ ‖Utz − αt z‖L2(μ) + |αt − eiωt |, leads to the
following corollary, which shows how to attain the bound in (5) uniformly over a bounded
time interval.

Corollary 3 The phase factor eiωt lies in the εt -approximate point spectrum of Ut , and z
is a corresponding εt -approximate eigenfunction for the bound

εt = st + 3
√
St .

Moreover, for every τ ≥ 0, (eiωt , z) is an ετ -approximate eigenpair of Ut for all t ∈ [0, τ ].
This eigenpair has the continuous representative ζ ∈ C(�) given by

ζ = 1√
2

∫
�

kT (·, x)
(

φ(x)
λT

+ i
ψ(x)
νT

)
dμ(x),

which acts as an everywhere-defined, continuous coherent feature on the state space �.

Theorem 1 will be proved in Sect. 3. We now discuss some of the intuitive aspects of
the results. First, it should be noted that the bounds established are not sharp, as there
are systems for which one can readily construct integral operators KT with finite embed-
ding windowsT and common eigenspaces with the Koopman operator. Examples include
operators derived from translation-invariant kernels on tori under quasiperiodic dynam-
ics [20,29], e.g., the heat kernel associated with the flat metric. For such kernels, there
exist eigenfunctions z which are also Koopman eigenfunctions, and the corresponding
autocorrelation coefficients αt lie in the ε-approximate point spectra of Ut for any ε > 0
and t ∈ R. Still, even without sharp bounds, Theorem 1 provides useful information on
the spectral properties of integral operators utilizing delay-coordinate maps that promote
or inhibit dynamical coherence, as follows.

1. As one might expect, the bounds in Theorem 1 become weaker as the regularity
of the observation map F and kernel shape function h decreases, in the sense that
ε̃t and εt are increasing functions of the C1 norms of d2 and h. It should be noted
that many commonly used kernels for feature extraction [7,9,10,16,28], including
the kernels employed in this work, are parameterized by bandwidth parameters
controlling the concentration of the kernel about the diagonal (e.g., the parameter σ

in (35) ahead). For such kernels, the C1 norm of h typically increases without bound
as the bandwidth parameter decreases.

2. For fixed t, the strength of the bounds is an interplay between the length T of
the embedding window, the eigenvalue λT , the gap γT (measuring the isolation of
the eigenspaces corresponding to λT and νT from the rest of the point spectrum
of KT ), and the gaps δT , δ̃T (measuring the extent at which λT and νT fail to be
twofold-degenerate). Inspecting the dependence of the functions st and St on these
terms indicates that, in general, the bounds become stronger as the window length
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T increases and/or the gaps δT , δ̃T decrease, whereas they weaken as λT and/or the
gap γT decreases. Of course, these terms cannot be independently controlled as T
varies, and the expected coherence of z on the basis of Theorem 1 will depend on
their combined effect. It should be noted that Theorem 1 does not make an assertion
about existence ofT →∞ limits for the ε-approximate eigenpairs (eiωt , z), although
as we discuss below, there are particular cases for which such limits exist.

3. Suppose that the eigenvalue sequence λT has a nonzero T →∞ limit λ∞. Then, by
Proposition 1, λ∞ is a nonzero eigenvalue of the compact operator K∞. By the same
proposition, if the eigenspace E corresponding to λ∞ does not contain constant
functions it is even-dimensional, so the gap coefficients δT and δ̃T converge to 0.
If, further, E is two-dimensional, the gap γT converges to a nonzero value. In such
cases, Theorem 1 and Corollary 3 imply that for any τ ≥ 0 and ε > 0, there exists
T∗ > 0 such that for all T > T∗, (5) holds for all t ∈ [0, τ ]. This implies in turn that
for such a sequence λT , there is a subsequence of frequencies ω converging to an
eigenfrequency of the generator (where we consider a subsequence to account for
possible sign flips due the choice of functions φ and ψ at each T ). Moreover, the
corresponding observables z similarly approximate Koopman eigenfunctions.

4. Suppose now that the dynamics is mixing with respect to the invariant measure μ.
Then, all eigenvalues λT with non-constant corresponding eigenfunctions converge
to 0 as T → ∞, and therefore, the gaps γT , δT , and δ̃T also converge to 0. In that
case, the asymptotic behavior of εt as T →∞ depends on the behavior of

ηT := γTλTT, (10)

as well as the ratios δT /γT and δ̃T ≡ δT /νT , on the chosen eigenvalue sequences λT
and νT . If ηT converges to 0 as T →∞, then εt diverges in that limit for any t > 0,
failing to provide a useful bound. However, the possibility still remains that the rate
of decay of γT and λT is slow enough such that ηT attains large values over a suitable
range of T , allowing εt to remain small on a large interval [0, τ ] � t (so long as γT /δT
and δ̃T are also small). In Fig. 2, numerical ηT values for the L63 system are found to
lie above the value corresponding to the T = 8 results in Fig. 1 out to at least � 70
Lyapunov times, before eventually decaying. In addition, δT /γT and δ̃T are also small
after initial transients have died out. Together, these results demonstrate that the
bounds fromTheorem 1 are practically relevant for a wide range of delay-embedding
windows for the L63 system. An intriguing question (lying outside the scope of this
work) is whether there are mixing dynamical systems and integral operators for
which ηT actually diverges as T →∞.

3 Proof of Theorem 1
3.1 Proof of Claim (i)

Noting that z and z∗ aremutually orthogonal unit vectors in L2(μ), andU0 = Id, we begin
by writing down the expansion

Utz = αt z + βt z∗ + rt , (11)
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Fig. 2 a Eigenvalue λT ≡ λ2,T , b spectral gap γT , c degeneracy coefficient δT , d, e ratios δT /γT and
δ̃T = δT /νT with νT ≡ λ1,T , and d coefficient ηT = γTλT T from (10) as a function of the delay-embedding
window T for the L63 system. Blue and red markers indicate numerical experiments with
T ∈ {0, 1, 2, 4, 6, 8, 16, 32, 48, 64} using datasets of N = 64,000 samples taken at an interval �t = 0.01. Red
markers highlight the T = 8 experiment shown in Figs. 1 and 3–6 ahead. The integral operators KT employ a
variable-bandwidth Gaussian kernel with bistochastic (symmetric) Markov normalization, as described in
Sect. 4

where αt = 〈z, Utz〉 (as in the statement of the theorem), βt = 〈z∗, Utz〉, rt is a residual
orthogonal to both z and z∗, and

|αt | ≤ 1, |βt | ≤ 1, ‖rt‖L2(μ) ≤ 1,

α0 = 1, β0 = ‖r0‖L2(μ) = 0.
(12)

It then follows that

‖Utz − αt z‖L2(μ) ≤ |βt | + ‖rt‖L2(μ), (13)

and we will prove the first claim of the theorem by bounding |βt | and ‖rt‖L2(μ).
To that end, note first that by skew-symmetry and reality of V , and by definition of the

L2(μ) inner product,

〈z∗, Vz〉 = −〈Vz∗, z〉 = −〈(Vz)∗, z〉 = −〈Vz, z∗〉∗ = −〈z∗, Vz〉,
so 〈z∗, Vz〉 = 0. Moreover,

〈z, Vz〉∗ = 〈z∗, (Vz)∗〉 = 〈z∗, Vz∗〉 = −〈Vz∗, z∗〉 = −〈z∗, Vz∗〉∗ = −〈z, Vz〉,
so 〈z, Vz〉 and 〈z∗, Vz∗〉 are purely imaginary. In fact, it follows from the definition of z that

〈z, Vz〉/i = 〈ψ , Vφ〉 = ω, (14)

and from the definition of the generator that
1
i
〈z, Vz〉 = lim

t→0

1
it
〈z, (Ut − Id)z〉 = lim

t→0

1
it
(αt − 1) = α̇t |t=0,

so we can use 〈z, Vz〉/i and α̇t |t=0/i as alternative definitions of the frequency ω as in the
statement of Theorem 1.
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Using these relationships, the generator equation in (1), and the bound for |βt | in (12),
we obtain

d
dt
|βt |2 = 2Re

(
β∗t

dβt
dt

)
= 2Re

(
β∗t

d
dt
〈z∗, Utz〉

)
= 2Re

(
β∗t 〈z∗, VUtz〉)

= −2Re (
β∗t 〈Vz∗, Utz〉) = −2Re (

β∗t 〈Vz∗,αt z + βt z∗ + rt〉
)

= −2Re (
β∗t 〈Vz∗, rt〉

) ≤ 2|βt ||〈Vz∗, rt〉| ≤ 2‖Vz‖L2(μ)‖rt‖L2(μ).

Therefore, the squaredmodulus |βt |2 is bounded by a solution of the differential inequality
d
dt
|βt |2 ≤ ‖Vz‖L2(μ)‖rt‖L2(μ), β0 = 0, (15)

where we have used (12) to set the initial conditions Note that we were able to use the
generator equation in order to arrive at this relation since z ∈ ranKT , and every element
in ranKT has a C1(M) representative and thus lies in the domain of the generator, D(V ).
Inspecting (13) and (15) indicates that the norm of the residual ‖rt‖L2(μ) bounds ‖Utz−

αt z‖L2(μ) both directly, in (13), and indirectly by bounding the rate of growth of |βt |2,
in (15). In addition, d

dt |βt |2 depends on the norm ‖Vz‖L2(μ). The following two lemmas
are useful for estimating these terms.

Lemma 1 With the notation and assumptions of Theorem 1, for every t ≥ 0 and T > 0
the commutator [Ut, KT ] satisfies

‖[Ut, KT ]‖ ≤
2‖h‖C1(R+)‖d‖2C(X×X)t

T
,

where ‖·‖ denotes L2(μ) operator norm.

Proof The proof follows closely that of Lemma 19 in [19], which established a similar
result for discrete-time sampling and C(X) operator norm. In particular, it is a direct
consequence of the definition of the delay-coordinate distance dT in (6) that for any
x, x′ ∈ X and t ≥ 0,

d2T (�
t (x),�t (x′)) = 1

T

∫ T

0
d2(�t+u(x),�t+u(x′)) du

= d2T (x, x
′)+ 1

T

(∫ T+t

T
du−

∫ t

0
du

)
d2(�u(x),�u(x′)).

Therefore,

|d2T (�t (x),�t (x′))− d2T (x, x
′)| ≤ 2‖d‖2C(X×X)t

T
,
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and using the above and the definition of the kernel kT in (7), we get

|kT (�t (x),�t (x′))− kT (x, x′)| = |h(kT (�t (x),�t (x′)))− h(kT (x, x′))|
≤ ‖h‖C1(R+)|d2T (�t (x),�t (x′))− d2T (x, x

′)|

≤ 2‖h‖C1(R+)‖d‖2C(X×X)t
T

. (16)

It then follows that for any f ∈ L2(μ)

‖UtKT f − KTUtf ‖L2(μ) =
∥∥∥∥
∫

�

(
kT (�t (·), x)f (x)− kT (·, x)f (�t (x))

)
dμ(x)

∥∥∥∥
L2(μ)

=
∥∥∥∥
∫

�

(
kT (�t (·),�t (x))− kT (·, x)

)
Utf (x) dμ(x)

∥∥∥∥
L2(μ)

≤ ‖kT (�t (·),�t (·))− kT‖C(X×X)‖Utf ‖L1(μ)
≤ ‖kT (�t (·),�t (·))− kT‖C(X×X)‖f ‖L2(μ).

Note that to obtain the second and last lines in the displayed equations above, we used
the fact that μ is an invariant probability measure under the flow �t . Using this result
and (16), we arrive at

‖[Ut, KT ]‖ = ‖UtKT − KTUt‖ ≤ 2‖h‖C1(R+)‖d‖2C(X×X)t
T

,

proving the lemma. ��

Lemma 2 With the notation and assumptions of Theorem 1, the family of operators {AT =
VKT | T > 0} is uniformly bounded on L2(μ) with

‖AT‖ ≤ ‖V ‖‖h‖C1(R+)‖d2‖C1(M×M).

Proof We use the notation V1 : C1(M ×M) → C(M ×M) to represent the differential
operator on C1(M ×M) which acts by the dynamical vector field V : C1(M) → C(M)
along the first coordinate, i.e.,

V1f (x, x′) = lim
t→0

f (�t (x), x′)
t

= V fx′ (x),

where fx′ = f (·, x′) ∈ C1(M).Note thatV1 andV have equal operator norms, ‖V1‖ = ‖V ‖.
Moreover, V1 commutes with the induced action by the product dynamical flow �t ⊗�t

on C1(M ×M), in the sense that

V1(f ◦�t ⊗�t ) = (V1f ) ◦�t ⊗�t , ∀t ≥ 0, ∀f ∈ C1(M ×M).

Using these facts, we obtain

‖V1d2T‖C(X×X) =
∥∥∥∥∥
1
T

∫ T

0
V1(d2 ◦�t ⊗�t ) dt

∥∥∥∥∥
C(X×X)

=
∥∥∥∥∥
1
T

∫ T

0
(V1d2) ◦�t ⊗�t dt

∥∥∥∥∥
C(X×X)

≤ ‖V1d2‖C(X×X) ≤ ‖V1‖‖d2‖C1(M×M) = ‖V ‖‖d2‖C1(M×M),
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and thus,

‖V1kT‖C(X×X) = ‖V1(h ◦ d2T )‖C(X×X) ≤ ‖h‖C1(R+)‖V1d2T‖C(X×X)
≤ ‖h‖C1(R+)‖V ‖‖d2‖C1(M×M). (17)

Now, because kT lies in C1(M ×M), for every f ∈ L2(μ) we have

AT f = VKT f = V
∫

�

kT (·, x)f (x) dμ(x) =
∫

�

V1kT (·, x)f (x) dμ(x),

so AT is a kernel integral operator on L2(μ) whose kernel V1kT is continuous on X × X .
The L2(μ) operator norm of AT therefore satisfies

‖AT‖ ≤ ‖V1kT‖C(X×X),
and the claim of the lemma follows from (17). ��

With these results in place, we proceed to bound ‖rt‖L2(μ). First, acting withKT on both
sides of (11), we obtain

KTUtz = αtKT z + βtKT z∗ + KTrt

= αt√
2
(λTφ + iνTψ)+ βt√

2
(λTφ − iνTψ)+ KTrt

= λT (αt z + βt z∗)+ iδT (αt − βt )ψ + KTrt
= λTUtz + iδT (αt − βt )ψ + (KT − λT )rt

= 1√
2
Ut (KTφ + iλTψ)+ iδT (αt − βt )ψ + (KT − λT )rt

= 1√
2
Ut (KTφ + iKTψ)+ iδT (αt − βt −Ut )ψ + (KT − λT )rt

= UtKTz + iδT (αt − βt −Ut )ψ + (KT − λT )rt .

Therefore,

(KT − λT )rt = −[Ut, KT ]z + iδT (Ut − αt − βt )ψ .

which, in conjunction with (12), leads to

‖(KT − λT )z‖L2(μ) ≤ ‖[Ut, KT ]‖ + 3δT . (18)

On the other hand,

‖(KT − λT )rt‖L2(μ) =
∑

λj,T∈σp(KT )\{λT ,νT }
(λj,T − λT )2|〈φj,T , rt〉|2

≥
∑

λj,T∈σp(KT )\{λT ,νT }
γ 2
T |〈φj,T , rt〉|2 = γ 2

T‖rt‖2L2(μ), (19)

and using (18), (19), and Lemma 1, we arrive at the bound

‖rt‖L2(μ) ≤
1
γT

(
2‖h‖C1(R+)‖d‖2C(X×X)t

T
+ 3δT

)
= st , (20)

where the function st was defined in the statement of Theorem 1.
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Next, it follows from Lemma 2 that

‖Vz‖L2(μ) =
1√
2
‖V (φ + iψ)‖L2(μ) =

1√
2

∥∥∥∥VKT

(
φ

λT
+ i

ψ

νT

)∥∥∥∥
L2(μ)

= 1
λT

∥∥∥∥AT

(
z + i√

2

(
1
νT

− 1
λT

)
ψ

)∥∥∥∥
L2(μ)

≤ ‖AT‖(1+ δ̃T )
λT

= ‖V ‖‖h‖C1(R+)‖d2‖C1(M×M)(1+ δ̃T )
λT

. (21)

Inserting the estimates for ‖rt‖L2(μ) and ‖Vz‖L2(μ) in (20) and (21), respectively, into (15),
and using the definition of the constant C2 in the statement of the theorem, then leads to
the differential inequality

d
dt
|βt |2 ≤ C2‖V ‖(1+ δ̃T )

λT
st , β0 = 0,

and integrating we obtain

|βt |2 ≤ C2‖V ‖(1+ δ̃T )
λT

∫ t

0
su du = 2C2(1+ δ̃T )

λTγT

(
C1t2

T
+ 3δT t

)
= St , (22)

where the function St is defined in the statement of the theorem. Substituting (20) and (22)
into (13) then leads to ‖Utz − αt z‖L2(μ) ≤ st +√St , proving Claim (i) of the theorem.

3.2 Proof of Claim (ii)

First, to verify thatω is independent of the choice ofmutually orthonormal basis functions
φ and ψ , it is sufficient to consider the following two cases:

– Case I: λT and νT are simple eigenvalues. In this case, the claim is obvious since
any unit-norm eigenvectors φ′ and ψ ′ corresponding to λT and νT , respectively, are
related to φ and ψ by

φ′ = cφφ, ψ ′ = cψψ ,

where cφ , cψ ∈ {−1, 1}.
– Case II: λT = νT are twofold-degenerate eigenvalues. To verify the claim, let {φ′,ψ ′}

be any real, orthonormal basis of the corresponding eigenspace, E. Then, there exists
a 2× 2 orthogonal matrix O such that(

φ′

ψ ′

)
= O

(
φ

ψ

)
, O =

(
Oφφ Oφψ

Oψφ Oψψ

)
.

Since 〈φ, Vφ〉 = 〈ψ , Vψ〉 = 0 (by skew-adjointness and reality of V , in conjunction
with reality of φ and ψ), we have

|〈ψ ′, Vφ′〉| = |〈Oψφφ + Oψψψ , OφφVφ + OφψVψ〉|
= |(OψφOφψ − OφφOψψ )ω|
= |detO||ω| = |ω|,

proving that |ω| is independent of the choice of real orthonormal basis of E.

Next, to bound |αt − eiωt |, we follow a differential inequality approach similar to that
used to bound |βt | in Sect. 3.1. In particular, let at = αt − eiωt . We have

|at |2 = |αt |2 + 1− 2Re(αte−iωt ),
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and therefore
d
dt
|at |2 ≤ d

dt
|αt |2 + 2

∣∣∣∣Re d
dt

(
αte−iωt

)∣∣∣∣ . (23)

To place a bound on the first term in the right-hand side of (23), observe that

d
dt
|αt |2 = 2Re

(
α∗t

dαt
dt

)
= 2Re

(
α∗t 〈z, UtVz〉) = −2Re (

α∗t 〈Vz,Utz〉)

= −2Re (
α∗t 〈Vz,αt z + βt z∗ + rt〉

)
= −2Re (|αt |2〈Vz, z〉 + α∗t βt〈Vz, z∗〉 + α∗t 〈Vz, rt〉

)
= −2Re (

α∗t 〈Vz, rt〉
) ≤ 2|αt ||〈Vz, rt〉| ≤ 2|〈Vz, rt〉|. (24)

Note that to obtain the equality in the second-to-last line, we used the facts that 〈z∗, Vz〉
and 〈z, Vz〉 are vanishing and purely imaginary, respectively (see Sect. 3.1). Moreover, we
used the bound |αt | ≤ 1 in (12) and Lemma 2 to arrive at the inequality in the last line.
Similarly, using (14) and the fact that 〈z∗, Vz〉 = 0 leads to

∣∣∣∣Re d
dt

(
αte−iωt

)∣∣∣∣ =
∣∣∣Re

(
〈Vz,αt z + βt z∗ + rt〉e−iωt − iωαte−iωt

)∣∣∣
=

∣∣∣Re(〈Vz, rt〉e−iωt )
∣∣∣ ≤ |〈Vz, rt〉|, (25)

and inserting (24) and (25) into (23), we obtain
d
dt
|at |2 ≤ 4|〈Vz, rt〉| = 4C2‖V ‖(1+ δ̃T )

λT
st .

Integrating this differential inequality subject to the initial condition a0 = α0 − 1 = 0
then leads to

|αt − eiωt |2 = |at |2 ≤ 4St ,

and the bound inClaim (ii) ofTheorem1 follows.This completes our proof of the theorem.

4 Data-driven approximation
In this section, we consider how to approximate the eigenvalues and eigenfunctions of the
integral operator KT , as well as the frequency ω and autocorrelation function αt , from the
time series data y0, . . . , yN−1 sampled at the interval �t, as described in Sect. 2.1. Aside
from errors associated by approximating continuous-time delay-coordinate maps by
(their more familiar) discrete-time analogs, error analyses for the approximation scheme
described below have been performed elsewhere [19,21,34]. Here, we limit ourselves to
a high-level description of the construction and its convergence in the large-data limit,
relegating technical details to these references.

4.1 Construction of the data-driven approximation scheme

The main steps in the construction of the approximation scheme are as follows:

Step 1 (Discrete-time delay-coordinate map) Replace the continuous-time delay-
coordinate map FT : � → L2([0, T ];Y ) by the discrete-time map FQ,�t : � → YQ

given by

FQ,�t (x) = (F (x), F (��t (x)), . . . , F (�(Q−1)�t (x))). (26)
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Here, Q is an integer parameter corresponding to the number of delays. The map FQ,�t
with �t = T/Q then induces a continuous distance-like function dT,�t : �×� → R+,

d2T,�t (x, x
′) = 1

Q
‖FQ,�t (x)− FQ,�t (x′)‖2YQ = 1

Q

Q−1∑
q=0

d2(�(q−1)�t (x),�(q−1)�t (x′)),

which is meant to approximate continuous-time function dT from (6). Specifically, stan-
dard properties of quadrature using the rectangle rule [22] lead to the estimates

‖d2T − d2T,�t‖C(M×M) ≤
‖d2‖C1(M×M) �t

2
= ‖d2‖C1(M×M)T

2Q
, (27)

‖d2T − d2T,�t‖C1(M×M) = o(�t0). (28)

Similarly, we approximate the continuous-time kernel kT in (7) by kT,�t := h◦d2T,�t . Note
that (28) merely indicates that as �t → 0, d2T,�t converges to d2T in C1 norm. A stronger
bound can be obtained if dT has higher than C1 regularity, e.g., ‖d2T − d2T,�t‖C1(M×M) =
O(�tα) if it lies in C1,α(M ×M) for some α > 0.

Step2 (Samplingmeasure) Replace theHilbert spaceL2(μ) associatedwith the invariant
measure with the finite-dimensional Hilbert space L2(μN ) associated with the sampling
measure μN = ∑N−1

n=0 δxn/N on the dynamical trajectory x0, . . . , xN−1 ∈ � underlying
the data y0, . . . , yN−1. Here, δx denotes the Dirac measure supported at x ∈ �. The space
L2(μN ) consists of equivalence classes ofmeasurable, complex-valued functions on�with
common values at the sampled states x0, . . . , xN , and is equipped with the inner product

〈f, g〉N =
∫

�

f ∗g dμN = 1
N

N−1∑
n=0

f ∗(xn)g(xn).

For simplicity of exposition, we will assume that all sampled states xn are distinct (by
ergodicity, this will be the case aside from trivial cases), so L2(μN ) is an N -dimensional
Hilbert space, canonically isomorphic to C

N equipped with a normalized dot product.
Under this isomorphism, an element f ∈ L2(μN ) is represented by a column vector
	f = (f0, . . . , fN−1)� ∈ C

N such that fn = f (xn), and we have 〈f, g〉N = 	f · 	g/N . Moreover,
a linear map A : L2(μN ) → L2(μN ) is represented by an N × N matrix A such that A	f
corresponds to the column vector representation of Af . We will also assume without loss
of generality that the starting state x0 (and thus the entire sampled dynamical trajectory)
lies in the forward-invariant manifoldM, but note that x0 need not lie on the support X of
the invariant measure. In light of these facts, our data-driven schemes can be numerically
implemented using standard tools from linear algebra, and as we will see below, their for-
mulation requires few structural modifications of their infinite-dimensional counterparts
from Sect. 2.

Step 3 (Data-driven integral operator) Approximate the kernel integral operator KT :
L2(μ)→ L2(μ) by the operator KT,�t,N : L2(μN )→ L2(μN ), where

KT,�t,N f =
∫

�

kT,�t (·, x)f (x) dμN (x) = 1
N

N−1∑
n=0

kT,�t (·, xn)f (xn).

This operator is self-adjoint, and there exists a real orthonormal basis {φ0,T,�t,N , . . . ,
φN−1,T,�t,N } of L2(μN ) consisting of its eigenvectors, with corresponding eigenvalues
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λ0,T,�t,N ≥ λ1,T,�t,N ≥ · · · ≥ λN−1,T,�t,N . The data-driven operator KT,�t,N is understood
as an approximation of KT in the following spectral sense:

– Let λj,T,�t,N be a nonzero eigenvalue of KT,�t,N . Then, λj,T,�t,N is employed as an
approximation of eigenvalue λj,T of KT .

– Eigenfunction φj,T,�t,N ∈ L2(μN ) has a continuous representative

ϕj,T,�t,N = 1
λj,T,�t,N

∫
�

kT,�t (·, x)φj,T,�t,N (x) dμN (x), (29)

defined everywhere on �. The restriction of ϕj,T,�t,N toM is a continuously differen-
tiable function, employed as an approximation of ϕj,T from (9).

Numerically, the eigenvalues and eigenvectors of KT,�t,N are computed by solving the
eigenvalue problem for the N × N kernel matrix K = [kT,�t,N (xm, xn)]mn/N , which is
the matrix representation of KT,�t,N according to Step 2 above. For kernels with rapidly
decaying shape functions (e.g., theGaussian kernels employed in Sect. 5 below), the leading
eigenvalues andeigenvectors ofK arewell approximatedby the corresponding eigenvalues
andeigenvectors of a sparsematrixobtainedby zeroingout small entries ofK , considerably
reducing computational cost. See, e.g., Appendix A in [29], or Appendix B in [19] for
further details on numerical implementation.

Step 4 (Shift operator) For each time t = q�t, q ∈ N0, approximate the Koopman
operator Ut : L2(μ) → L2(μ) by the q-step shift operator Uq

N : L2(μN ) → L2(μN ),
defined as

Uq
N f (xn) =

⎧⎨
⎩
f (xn+q), 0 ≤ n ≤ N − 1− q,

0, n > N − 1− q.

It should be noted that, unlike Utf = f ◦�t , the shift operator Uq
N is not a composition

operator by the underlying dynamical flow—this is because �t does not preserve μN -
null sets, and thus ◦�t does not lift to an operator on equivalence classes of functions in
L2(μN ). In fact, whileUt is unitary,Uq

N is a nilpotent operator withUN
N = 0. Still, despite

these differences, one can interpret Uq
N as an approximation of the Koopman operator in

the following sense:

– Let U t : C(M) → C(M), t ≥ 0, denote the Koopman operator on continuous func-
tions on the forward-invariant manifold M. Let also ιN : C(M) → L2(μN ) be the
canonical linear operator mapping C(M) functions to their corresponding equiva-
lence classes in L2(μN ), respectively. Then, for any fixed q ∈ N0 and continuous
function f ∈ C(M), we have

Uq
N ◦ ιN f = ιN ◦U q�t f + rN , (30)

where rN ∈ L2(μN ) are residuals whose norm converges to 0, limN→∞‖rN‖L2(μN ) =
0. In contrast, the Koopman operator on L2(μ) satisfies Ut ◦ ιf = ι ◦ U t f for any
(fixed) t ∈ R, where ι : C(M)→ L2(μ) is the canonical inclusion map.
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Step 5 (Finite-difference operator) Approximate the generator V : D(V ) → L2(μ) by
the finite-difference operator V�t,N : L2(μN )→ L2(μN ), where

V�t,N = UN − Id
�t

.

Explicitly, we have

V�t,N f (xn) =
⎧⎨
⎩
(f (xn+1)− f (xn))/�t, 0 ≤ n ≤ N − 2,

−f (xN−1)/�t, n = N − 1.

This operator can be understood as an approximation of the generator in the following
sense:

– Let V�t : C(M) → C(M) be the finite-difference approximation of the dynamical
vector field V : C1(M)→ C(M), given by

V�t = U �t − Id
�t

.

Then, for any f ∈ C(M), we have

V�t,N ◦ ιN f = ιN ◦ V�t f + r�t,N ,

where limN→∞‖r�t,N‖L2(μN ) = 0. If, in addition, f lies in C1(M), then

V�t f = V f + r�t , (31)

where the residual r�t converges uniformly to 0 as the sampling interval decreases,
lim�t→0+‖r�t‖C(M) = 0. Note that the generatorV on L2(μ) satisfiesV ◦ ιf = ι◦V f
for any f ∈ C1(M).

Step 6 (Coherent features) In order to construct coherent observables analogously
to Theorem 1, pick two consecutive, nonzero, simple eigenvalues of KT,�t,N , which
we denote λT,�t,N and νT,�t,N suppressing j subscripts and consider corresponding
real normalized eigenfunctions φT,�t,N and ψT,�t,N , respectively. Alternatively, a single
twofold-degenerate nonzero eigenvalue can be used. Then, form the complex unit vector
zT,�t,N = (φT,�t,N + iψT,�t,N )/

√
2 ∈ L2(μN ), and compute its continuous representative

ζ�t,N = 1√
2

∫
�

kT,�t,N (·, x)
(

φ�t,N
λ�t,N

+ i
ψ�t,N
ν�t,N

)
dμN (x). (32)

The function ζ�t,N is employed as a data-driven coherent feature, analogous to ζ in
Corollary 3. Note, in particular, that ζ�t,N is expressible as a finite linear combination of
kernel sections k(·, xn) and thus can be empirically evaluated at any point in�. Moreover,
we construct data-driven analogs of the autocorrelation function αt for t = q�t and the
oscillatory frequency ω by computing

αq,�t,N = 〈z�t,N , U
q
N z�t,N 〉N , ω�t,N = 〈ψ�t,N , V�t,Nφ�t,N 〉N , (33)

respectively.

4.2 Convergence in the large-data limit

We are interested in establishing convergence of the data-driven coherent observable
ζ�t,N , autocorrelation function αq,�t,N , and oscillatory frequency ω�t,N to their coun-
terparts from Sect. 2 in a limit of large data, N → ∞, and vanishing sampling interval,
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�t → 0. For that, we follow a similar approach to [19,34], who employ spectral approx-
imation results for kernel integral operators by Von Luxburg et al. [44]. The principal
elements of this approach are as follows.

Operators on continuous functions Since the operators KT and KT,�t,N act on differ-
ent Hilbert spaces, we use the space of continuous functions on the forward-invariant
manifold M as a universal comparison space to establish spectral convergence. In par-
ticular, since the kernels kT and kT,�t,N are all continuous, one can consider integral
operators KT : C(M) → C(M) and KT,�t,N : C(M) → C(M), defined analogously
to KT : L2(μ) → L2(μ) and KT,�t,N : L2(μN ) → L2(μN ), respectively. We then have
ι◦KT = KT ◦ ι and ιN ◦KT,�t,N = KT,�t,N ◦ ιN , and it is straightforward to verify that λj,T
(resp. λj,T,�t,N ) is a nonzero eigenvalue of KT (resp. KT,�t,N ) if and only if it is a nonzero
eigenvalue of KT (resp. KT,�t,N ). Moreover, if φj,T ∈ L2(μ) (resp. φj,T,�t,N ∈ L2(μN )) is
a corresponding eigenfunction of KT (resp. KT,�t,N ), then ϕj,T ∈ C(M) from (9) (resp.
ϕj,T,�t,N ∈ C(M) from (29)) is a corresponding eigenfunction of KT (resp. KT,�t,N ). It
can further be shown thatKT is compact, and clearly,KT,�t,N has finite rank.

Ergodicity and physical measures Let Bμ ⊆ � be the basin of the ergodic invariant
measure μ, i.e., the set of initial conditions x0 ∈ � such that the corresponding sampling
measures μN weak-converge to μ,

lim
N→∞EμN f = Eμf, ∀f ∈ Cb(�), (34)

for Lebesgue almost every sampling interval�t. Here,Eρ f =
∫
�
f dρ denotes expectation

with respect to a measure ρ, and Cb(�) is the Banach space of continuous, real-valued
functions on � equipped with the uniform norm. By ergodicity of the dynamical flow
�t , Bμ ∩ X is a dense subset of the support X of μ. Moreover, for a class of dynamical
systemspossessing so-calledphysicalmeasures [65] thebasinBμ haspositivemeasurewith
respect to an ambient probability measure on state space � from which initial conditions
are drawn, even if X is a null set with respect to that measure. In such situations, the
data-driven scheme described in Sect. 4.1 converges from a “large” set of experimentally
accessible initial conditions, which need not lie on the support ofμ. Examples include the
L63 system, where the ergodic invariant measure supported on the Lorenz attractor is a
Sinai–Ruelle–Bowen (SRB)measure with a basin of positive Lebesguemeasure in� = R

3

[62]. For simplicity of exposition, andwithout loss of generality with regards to asymptotic
convergence, we will henceforth assume that the initial state x0 lies in Bμ ∩M. Moreover,
�t → 0 limits will be assumed to be taken along a sequence such that (34) holds.

Spectral convergence Since our approach for coherent feature extraction employs on
eigenvalues and eigenvectors of kernel integral operators, it is necessary to ensure that
the family KT,�t,N converges to KT in a sufficiently strong sense so as to imply spectral
convergence. Here, we consider the iterated limit of N →∞ followed by �t → 0; under
the former limit, empirical expectation values with respect to the sampling measures
converge to expectation values with respect to the invariant measure (according to (34)),
and under the latter limit, the kernels based on discrete-time delay-coordinate maps
converge to their continuous-time counterparts (according to (27)). In particular, we
have:
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Proposition 2 Withnotation andassumptions as above, letλj,T be anonzero eigenvalue of
KT , where the ordering λ0,T ≥ λ1,T ≥ · · · is in decreasing order and includesmultiplicities.
Let �j,T : C(M)→ C(M) be the spectral projection to the corresponding eigenspace. Then,
the following hold:

(i) The jth eigenvalues λj,T,�t,N of KT,�t,N (ordered with the same convention as the
eigenvalues ofKT ) converge to λj,T , in the sense of the iterated limit

lim
�t→0

lim
N→∞ λj,T,�t,N = λj,T .

(ii) For any neighborhood � ⊆ C such that σ (KT ) ∩ � = {λj,T }, the spectral pro-
jections ��,T,�t,N of KT,�t,N onto � converge strongly to �j,T . In particular, for
any eigenfunction ϕj,T ∈ C(M) of KT corresponding to eigenvalue λj,T there exist
eigenfunctions ϕj,T,�t,N ∈ C(M) ofKT,�t,N corresponding to λj,T,�t,N , such that

lim
�t→0

lim
N→∞‖ϕj,T,�t,N − ϕj,T‖C(M) = 0.

Remark 2 Analogous spectral convergence results to Proposition 2 hold for integral oper-
ators with data-dependent kernels kT,�t,N , so long as these kernels have well defined
N → ∞ limits in C(M) norm. Examples of such kernels include Markov-normalized
kernels [10,15,16] and variable-bandwidth Gaussian kernels [9]. See, e.g., Theorem 7 in
[34] for a spectral convergence result for data-dependent kernels related to the kernels
employed in the numerical experiments in Sect. 5.

A corollary of Proposition 2 is that the properties the data-driven coherent observable
ζ�t,N from (32) and the corresponding empirical autocorrelation function and oscillatory
frequency in (33) converge to their counterparts from Theorem 1 and thus obey the same
pseudospectral bounds associated with dynamical coherence.

Corollary 4 Under the assumptions of Proposition 2, the following hold in the large-data
limit, �t → 0 after N →∞, where ζ , αt , and ω are defined in Theorem 1:

(i) ζ�t,N converges to the coherent feature ζ , uniformly on the forward-invariant man-
ifold M, i.e.,

lim
�t→0

lim
N→∞‖ζ�t,N − ζ‖C(M) = 0.

(ii) For any q ∈ N, the empirical autocorrelationαq,�t,N converges to the autocorrelation
function αt at t = q�t.

(iii) The empirical oscillatory frequency ω�t,N converges to the frequency ω.

Proof The uniform convergence of ζ�t,N to ζ in Claim (i) is a direct consequence of
Proposition 2. Claim (ii) follows from the Claim (i), in conjunction with the residual
estimate in (30), viz.

lim
�t→0

lim
N→∞αq,�t,N = lim

�t→0
lim

N→∞〈z�t,N , U
q
N z�t,N 〉N

= lim
�t→0

lim
N→∞〈ιN ζ�t,N , U

q
N ιN ζ�t,N 〉N

= lim
�t→0

lim
N→∞〈ιN ζ�t,N , ιNU q�tζ�t,N + rN 〉N

= lim
�t→0

lim
N→∞〈ιN ζ�t,N , ιNU q�tζ�t,N 〉N
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= lim
�t→0

lim
N→∞

1
N

N−1∑
n=0

ζ�t,N (xn)z�t,N (xn+q)

=
∫

�

ζ ∗U q�tζ dμ = 〈ιζ , ιU q�tζ 〉 = 〈z, Uq�t z〉
= αq�t .

Claim (iii) follows similarly, using a finite-difference residual estimate in (31), in conjunc-
tion with the C1-norm convergence of kT,�t to kT as �t → 0 (see (28)). ��

4.3 Choice of kernel

Following [21], in the numerical experiments described below we employ integral oper-
ators KT,�t,N : L2(μN ) → L2(μN ) associated with a family of symmetric, Markov-
normalized kernels kT,�t,N constructed using the variable-bandwidth Gaussian kernels
in conjunction with the bistochastic Markov normalization procedure proposed in [9]
and [15], respectively. Specifically, to build kT,�t,N we start from a radial Gaussian kernel
k̄T,�t : �×� → R+ on delay-coordinate mapped data,

k̄T,�t (x, x′) = exp
(
−d2T,�t (x, x

′)
σ̄ 2

)
,

where σ̄ is a positive bandwidth parameter determined numerically from the data (see,
e.g., Algorithm 1 in [29]). Using this kernel, we compute the bandwidth function ρT,�t,N ∈
C(�) given by

ρT,�t,N (x) =
(∫

�

k̄T,�t (x, ·) dμN

)−1/m
=

(
1
N

N−1∑
n=0

k̄T,�t (x, xn)
)−1/m

.

Here, m > 0 is an estimate of the dimension of the support X of the invariant measure,
computed through the same procedure used to tune the kernel bandwidth σ̄ . We then
build the variable-bandwidth kernel κT,�t,N : �×� → R+, where

κT,�t,N (x, x′) = exp
(
− d2T,�t (x, x

′)
σ 2ρT,�t,N (x)ρT,�t,N (x′)

)
. (35)

In the above, σ is a positive bandwidth parameter determined automatically in a similar
manner as σ̄ , though note that in general, σ and σ̄ have different values.
By construction, κT,�t,N is continuous, positive, and bounded away from zero onM×M.

Intuitively, the function ρ−mT,�t,N can be thought of as a kernel estimate of the “sampling
density” of the data relative to an ambient measure. The variable-bandwidth construction
in (35) can then be thought of as a data-adaptive adjustment of the bandwidth σ , such
that a data point x is assigned a smaller (larger) bandwidth σρT,�t,N (x) when the sampling
density is higher (lower), thus reducing sensitivity to sampling errors. This intuition can
be made precise if the support X has the structure of a Riemannian manifold and μ the
structure of a smooth volume form. In that case, the variable-bandwidth kernel effects a
conformal change of Riemannian metric on the data such that in the new geometry the
invariant measure has constant density relative to the Riemannian volume form; see [29]
for further details.
Next, we normalize the kernel κT,�t,N to obtain a symmetric Markov kernel kT,�t,N :

�×� → R+ by first computing the strictly positive, continuous functions

uT,�t,N =
∫

�

κT,�t,N (·, x) dμN (x), vT,�t,N =
∫

�

κT,�t,N (·, x)
uT,�t,N (x)

dμN (x),
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and then defining

kT,�t,N (x, x′) =
∫

�

κT,�t,N (x, x′′)κT,�t,N (x′′, x)
uT,�t,N (x)vT,�t,N (x′′)uT,�t,N (x′)

dμN (x′′). (36)

It can be readily verified that with this definition kT,�t,N is a symmetric, strictly positive
kernel with the Markov property,

∫
�
kT,�t,N (x, x′) dμN (x′) = 1, for all x ∈ �. Moreover,

kT,�t,N is (strictly) positive-definite on the support of μN if κT,�t,N is (strictly) positive-
definite. It can further be shown [34] that in the large-data limit, �t → 0 after N →∞,
kT,�t,N , converges to an L2(μ)-Markov, symmetric, continuous kernel kT so an analo-
gous spectral convergence result to Proposition 2 holds for this class of kernels (see also
Remarks 1 and 2).
For the purposes of extraction of coherent observables of measure-preserving, ergodic

dynamics, symmetric Markov kernels have the natural property of exhibiting a constant
eigenfunction corresponding to the top eigenvalue, λ0,T,�t,N = λ0,T = 1, with the remain-
ing eigenfunctions capturingmutually orthogonal features orthogonal to the constant. See
Appendix B in [21] for pseudocode for solving the eigenvalue problem for KT,�t,N , where
explicit formation of the kernel in (36) is avoided through singular value decomposition
of a non-symmetric kernel matrix.

5 Numerical examples
5.1 Dataset description

As an application of the results in Sects. 2–4, we study the properties of eigenfunctions
of the integral operators KT,�t,N induced by the L63 system on � = R

3 with the standard
parameters,

ẋ = 	V (x), x = (x1, x2, x3) ∈ R
3, 	V (x) = (V 1, V 2, V 3),

V 1 = 10(x2 − x1), V 2 = 28x1 − x2 − x1x3, V 3 = x1x2 − 8x3/3.

We generate numerical trajectories x0, . . . , xÑ−1 ∈ � sampled at an interval �t = 0.01
natural time units using MATLAB’s ode45 solver. Numerical integration starts at an
arbitrary point x̃ ∈ R

3, and we allow the state to settle near the Lorenz attractor over
a spinup time of 640 time units before collecting the first sample x0. In anticipation of
the fact that we will be using the delay-coordinate map in (26), we sample a total of
Ñ = N + Q − 1 states, where Q is the number of delays, and N is fixed at N = 64,000.
We consider two experiments, one withQ = 1 corresponding to no delays (T = 0) and

another onewithQ = 800 corresponding to a delay-embeddingwindow ofT = Q�t = 8
natural time units. The latter, is approximately equal to 9 Lyapunov characteristic times
TL = 1/�, where � ≈ 0.91 [55] is the positive Lyapunov exponent of the L63 system.
The T = 8 embedding window is also approximately equal to 10 oscillations assuming
a characteristic oscillatory timescale of To = 0.8. In both cases we set the observation
map F : � → Y to the identity map on R

3, so the corresponding delay coordinate map
FQ,�t takes values in YQ = R

3Q. Note that, after delay embedding, each experiment
has N = 64,000 samples yn = FQ,�t available for analysis, which corresponds to 800
oscillatory timescales To.
As stated in Sect. 2.1, this L63 setup rigorously satisfies all the assumptions made in

Theorem 1 [42,45,62]. In addition, since �t � To, (N − 1)�t � To, and in the T = 8
setup, �t � T , we expect no significant sampling errors to be present in our numerical
experiments; in particular, we expect the leading eigenfunctions of the data-driven integral
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Fig. 3 Leading 20 eigenvalues λj,T of the integral operators KT for T = 0 and T = 8

operators KT,�t,N to be good approximations of the corresponding eigenfunctions of the
operators KT from Theorem 1.

5.2 Coherent observables

We now discuss the properties of eigenfunctions of KT,�t,N constructed using the
approach described in Sect. 4.3, some of which were already shown in Figs. 1 and 2.
All results were obtained using the symmetric Markov kernels in (36) with N = 64,000,
�t = 0.01, and representative values of T in the range 0 to 64. For the rest of this sec-
tion, we suppress �t and N indices from our notation. Moreover, we do not distinguish
between eigenfunctions z ∈ L2(μN ) and their continuous representatives ζ ∈ C(M), as
our visualizationswill be restricted to the training dataset {xn}N−1n=0 forwhich z(xn) = ζ (xn).
We begin in Fig. 3 with a plot of the leading 20 eigenvalues λj,T of KT for T = 0

and T = 8, where both operators have the top eigenvalue λ0,T = 1 by Markovianity
of the kernels. When T = 0, KT has a small spectral gap λ0,T − λ1,T ≈ 0.0075, and
the subsequent eigenvalues exhibit a gradual decay, reaching λj,T ≈ 0.8 at j = 20. In
contrast, when T = 8, KT exhibits a significantly larger spectral gap λ0,T − λ1,T ≈ 0.4,
with a nearly degenerate corresponding eigenspace. In particular, we have λ1,T ≈ 0.6032
and λ2,T ≈ 0.6015, and the corresponding gap parameters from Theorem 1 take the
values δT ≈ 0.001 and δ̃T ≈ 0.002. Thus, on the basis of Theorem 1, the complex-valued
observable z = (φ1,T + iφ2,T )/

√
2 for T = 8 is a good candidate of a dynamically coherent

feature evolving as an ε-approximate eigenfunction of the Koopman operator with small
ε. The scatterplots and time series plots in Fig. 1 were already suggestive of this behavior,
which we now examine in further detail. As a point of comparison, we consider the
corresponding observable z constructed from the leading eigenfunctions of KT at T = 0,
which were also depicted in Fig. 1.
Figure 4 shows the evolution of the observables z as a time-parameterized curve tn �→

z(xn) on the complex plane over a portion of the training data spanning 50 natural time
units. In effect, these plots correspond to samplings of complex-valued functions on the
Lorenz attractor along dynamical trajectories, akin to the time series plots in Fig. 1 which
(up to a scaling by a factor of

√
2) correspond to the real and imaginary parts of z. The

T = 0 evolution traces out what qualitatively resembles a two-dimensional projection
of the attractor. In particular, we do not expect a dynamically coherent behavior for this
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observable, as its evolution comprises of two cycles with a mixing region when Re z � 0
which is not too different from the raw L63 dynamics. This lack of coherence is manifestly
visible in the scatterplots in Fig. 1 depicting the real and imaginary parts of z acted upon
by the Koopman operator and can also be assessed more quantitatively through plots of
the time-autocorrelation function αt , shown in Fig. 5. There, the modulus |αt | is seen to
rapidly decay from its initial value |α0| = 1, reaching |αt | ≈ 0.05 at t ≈ 0.3, and never
exceeds 0.4 after � 1 Lyapunov time.
In contrast, theobservable z constructed fromthe eigenfunctionsofKT atT = 8 exhibits

a fundamentally different behavior, consistent with an approximate cycle that remains
coherent over several Lyapunov timescales. In Fig. 4, the T = 8 dynamical trajectory lies
in what appears to be a disk in the complex plane, executing a predominantly azimuthal
motion with a slow radial motion (amplitude modulation) superposed. In particular, the
real and imaginary parts of z have a 90◦ phase difference to a good approximation (at least
when |z| is not too small), and as indicated by the time series plots in Fig. 1, they have
a nearly constant characteristic frequency. The coherent dynamical evolution stemming
from this behavior is visually evident in the scatterplots of the real and imaginary parts of
Utz in Fig. 1, which appear to “resist”mixing of level sets on significantly longer timescales
than the T = 0 eigenfunctions.
More quantitatively, in Fig. 5, the evolution of the autocorrelation function αt of z

for T = 8 is consistent with an amplitude-modulated harmonic oscillator with a well-
defined carrier frequency and slowly varying envelope function. In particular, the real and
imaginary parts of αt oscillate at a near-constant frequency and remain phase-locked to
a 90◦ phase difference at least out to t = 10 natural time units, or � 10 Lyapunov times.
Meanwhile, the modulus |αt | exhibits a significantly slower decay than what was observed
for T = 0 and remains above 0.4 for all t ∈ [0, 10]. In Fig. 6, we compare the evolution
of the autocorrelation function αt with a pure sinusoid eiωt with frequency ω determined
through the finite-difference-approximated generator using (33). The generator-based
frequency, ω ≈ 8.24 (corresponding to a period of 2π/ω ≈ 0.76), is seen to accurately
capture the carrier frequency of the αt signal, as expected from Theorem 1, with a slow
build-up of phase decoherence that becomes noticeable by t � 10.
Intriguingly, the ω ≈ 8.24 frequency identified here through eigenfunctions of KT is

close to an 8.18 approximate eigenfrequency identified in [21] through spectral analysis
of a compact approximation to the generator V constructed using reproducing kernel
Hilbert space (RKHS) techniques. The RKHS-based eigenfrequency has a correspond-
ing approximate Koopman eigenfunction, zRKHS, which has a qualitatively similar spatial
structure on the L63 attractor as the approximate eigenfunction z identified here (com-
pare Figure 5 in [21] with Fig. 1 of this paper). Moreover, both z and zRKHS resemble an
observable identified by Korda et al. [40] through a spectral analysis technique for Koop-
man operators utilizing Christoffel–Darboux kernels in frequency space (see Figure 13
in [40]). Having been identified via three independent data analysis techniques, it thus
appears that the approximate eigenfrequency ω � 8.2 and the corresponding approxi-
mate eigenfunction with the structure depicted in Fig. 1 are robust features of the L63
system, warranting further investigation.
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Fig. 4 Evolution of the real and imaginary parts of the observable z = (φ1,T + iφ2,T )/
√
2, constructed using

the leading two non-constant eigenfunctions of the integral operator KT for no delays (T = 0) and T = 8.
Here, z is plotted as a time-parameterized curve tn �→ z(xn) on the complex plane, corresponding to a
sampling of its values along an L63 dynamical trajectory at times tn = n�t . For clarity of visualization, tn is
restricted to a time interval of length 50 (whereas the full training datasets span 640 natural time units)

Fig. 5 Real part, imaginary part, and modulus of the time autocorrelation function αt of the observables z in
Fig. 4
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Fig. 6 A comparison of the real part of the autocorrelation function αt with a pure cosine wave
cosωt = Re eiωt for the T = 8 coherent observable from Fig. 4. The frequency ω was computed through (33)
using the finite-difference approximation of the generator

6 Concluding remarks
In this paper, we have studied how kernel integral operators constructed from delay-
coordinate mapped data can identify, through their eigenfunctions, dynamically coherent
features of measure-preserving, ergodic dynamical systems. We have shown that a class
of eigenfunctions of such operators lead to complex-valued observables with an approx-
imately cyclical evolution, behaving as ε-approximate eigenfunctions of the Koopman
operator for a bound ε that decreases with the length of the embedding window. Such
observables encapsulate a natural notion of dynamical coherence, so we have argued, in
the sense of having high regularity on the attractor, a well-defined oscillatory frequency,
and a slowly decaying time-autocorrelation amplitude. In addition, the spectral bounds
were explicitly characterized as functions of the embedding window length, evolution
time, and appropriate spectral gap parameters.
These results extend previous work on integral operators approximating the point spec-

trum of the Koopman operator in the infinite-delay limit [19,29] to the setting of mixing
dynamical systems with continuous Koopman spectra. Thus, they provide a theoretical
interpretation of the efficacy of a number of data-driven techniques utilizing delay embed-
dings, including DMDC [8], HAVOK analysis [12], NLSA [30,32,33], and SSA [11,63],
in extracting coherent signals from complex systems. An attractive aspect of these meth-
ods is that they are amenable to consistent data-driven approximation from time series
data based on techniques originally developed in the context of spectral clustering [44].
In particular, the data-driven schemes are rigorously applicable in situations where the
invariant measure is supported on non-smooth sets, such as fractal attractors, without
requiring addition of stochastic noise to regularize the dynamics.
As a numerical application, we have studied how eigenfunctions of kernel integral oper-

ators utilizing delay-coordinate maps identify coherent observables of the L63 model—a
system known to have a unique SRB measure with mixing dynamics [45,62], and thus
the absence of non-constant Koopman eigenfunctions in L2. We found that for a suffi-
ciently long embedding window (of approximately 8 Lyapunov times), the kernel-based
approach, realized using a symmetric Markov kernel constructed by bistochastic normal-
ization [15] of a variable-bandwidth Gaussian kernel [9], identifies through its two leading



    8 Page 30 of 33 D. Giannakis Res Math Sci            (2021) 8:8 

non-constant eigenfunctions an observable of the L63 system exhibiting a highly coher-
ent dynamical behavior. This observable has an oscillatory period of approximately 0.76
natural time units and remains coherent at least out to 10 natural time units (approxi-
mately 9 Lyapunov timescales) as measured by a 0.4 threshold of its time-autocorrelation
function. Spatially, its real and imaginary parts have a structure that could be qualitatively
described as a wavenumber 1 azimuthal oscillation about the holes in the two lobes of the
attractor, a pattern that resembles observables previously identified through Koopman
spectral analysis techniques appropriate for mixing dynamical systems [21,40].
Possible applied directions stemming from this work include detection of coherence in

prototype models for metastable regime behavior in atmospheric dynamics [18], as well
as PDE models with intermittency in both space and time [46]. On the theoretical side, it
would be interesting to explore connections between the spectral results presented here
and geometrical characterizations of coherence, including the characterization given in
DMDC based on the multiplicative ergodic theorem [8] and the dynamic isoperimetry
approach proposed in [27]. It may also be fruitful to employ coherent eigenfunctions of
integral operators based on delay-coordinate maps to construct approximation spaces
for pointwise and/or spectral approximation of Koopman and transfer operators, includ-
ing the extended dynamic mode decomposition (EDMD) technique [64] and the RKHS
compactification approaches proposed in [21].
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A Proof of Proposition 2
It is convenient to introduce an intermediate integral operatorKT,�t : C(M)→ C(M),

KT,�t f =
∫

�

kT,�t (·, x)f (x) dμ,

which integrates against the invariantmeasureμ using the discrete-time delay-coordinate
map and split the analysis of the spectral convergence ofKT,�t,N toKT to two subprob-
lems involving the convergence of (i)KT,�t,N toKT,�t as N →∞; and (ii)KT,�t toKT
as �t → 0. We now consider these two subproblems, starting from the second one.
Spectral convergence of KT,�t toKT as �t → 0 The uniform convergence of the kernels
kT,�t to kT , i.e., lim�t→0‖kT,�t − kT‖C(M×M) (see (27)), implies convergence ofKT,�t to
KT in C(M) operator norm. It then follows from results on spectral theory of compact
operators [3,13] that the analogous claims to Proposition 2 hold for the eigenvalues and
spectral projections, λ�,T,�t and ��,T,�t , respectively, ofKT,�t . That is, we have

lim
�t→0

λj,T,�t = λj,T , lim
�t→0

��,T,�t f = �j,T f, ∀f ∈ C(M), (37)

where ��,T,�t : C(M)→ C(M) is the spectral projection ofKT,�t onto �⊆ C.
Spectral convergence of KT,�t,N to KT,�t as N → 0 Unlike the KT,�t → KT case, the
operatorsKT,�t,N need not converge toKT,�t in C(M) operator norm. In essence, this is
because the weak convergence of measures in (34) is not uniform with respect to f , even
upon restriction to functions in C(M). Nevertheless, as shown in [44], the continuity of
the kernel kT is sufficient to ensure that for a fixed f ∈ C(M), a restricted form of uniform
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convergence holds, namely

lim
N→∞ sup

g∈G
|EμN g − Eμg | = 0, (38)

where G ⊂ C(M) is the set of functions given by

G = {kT (x, ·)f (·) | x ∈ M}.
A collection of functions satisfying (38) is known as a Glivenko–Cantelli class.
The Glivenko–Cantelli property turns out to be sufficient to ensure that asN →∞, the

sequence of operatorsKT,�t,N exhibits a form of convergence to KT,�t , called collectively
compact convergence which, despite being weaker than norm convergence, is sufficiently
strong to imply the spectral convergence claims in Proposition 2. We state the relevant
definitions for collectively compact convergence below and refer the reader to [13,44] for
additional details.

Definition 1 Let AN : E → E be a sequence of bounded linear operators on a Banach
space E, indexed by N ∈ N.

(i) AN is said to converge to an operator A : E → E compactly if AN converges
to A strongly, and for every uniformly bounded sequence fN ∈ E the sequence
(A− AN )fN has compact closure.

(ii) {AN } is said to be collectively compact if∪N∈NAnB has compact closure in E, where
B is the unit ball of E.

(iii) AN is said to converge to A collectively compactly if it converges pointwise, and
there exists N0 ∈ N such that for all N > N0, {AN }N>N0 is collectively compact.

It can be shown that operator norm convergence implies collectively compact conver-
gence, and collectively compact convergence implies compact convergence. The latter is
in turn sufficient for the following spectral convergence result:

Lemma 3 With the notation of Definition 1, suppose that AN converges to A compactly.
Let λ ∈ σp(A) be an isolated eigenvalue of A with finite multiplicity m, and � an open
neighborhood of λ such that σ (A) ∩� = {λ}. Then, the following hold:
(i) There exists N0 ∈ N, such that for all N > N0, σ (AN ) ∩ � is an isolated subset of

the spectrum of AN , containing at most m distinct eigenvalues whose multiplicities
sum to m. Moreover, as N →∞, every element of σ (AN>N0 ) ∩� converges to λ.

(ii) As N → ∞, the spectral projections of AN onto σ (AN ) ∩ �, defined in the sense of
the holomorphic functional calculus, converge strongly to the spectral projection of
AN onto {λ}.

Using a similar approach as Proposition 13 in [44], which employs, in particular, the
Glivenko–Cantelli property in (38), it can be shown that as N → ∞, KT,�t,N converges
collectively compactly toKT,�t . Then, Lemma 3, in conjunction with the fact thatKT,�t
is compact (so every nonzero element of its spectrum is an isolated eigenvalue of finite
multiplicity), implies that

lim
N→∞ λj,T,�t,N = λj,T,�t , lim

N→∞��,T,�t,N f

= ��,T,�t f, ∀λj,T,�t ∈ �, ∀f ∈ C(M), (39)
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where � is the spectral neighborhood in the statement of the proposition. Proposition 2
is then proved by combining (37) and (39). ��
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