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A framework for coherent pattern extraction and prediction of observables of
measure-preserving, ergodic dynamical systems with both atomic and continuous
spectral components is developed. This framework is based on an approximation
of the generator of the system by a compact operator W, on a reproducing
kernel Hilbert space (RKHS). The operator W, is skew-adjoint, and thus can
be represented by a projection-valued measure, discrete by compactness, with an
associated orthonormal basis of eigenfunctions. These eigenfunctions are ordered in
terms of a Dirichlet energy, and provide a notion of coherent observables under the
dynamics akin to the Koopman eigenfunctions associated with the atomic part of
the spectrum. In addition, W, generates a unitary evolution group {e/"V~ },cr on the
RKHS, which approximates the unitary Koopman group of the system. We establish
convergence results for the spectrum and Borel functional calculus of W, as 7 — 0%,
as well as an associated data-driven formulation utilizing time series data. Numerical
applications to ergodic systems with atomic and continuous spectra, namely a torus
rotation, the Lorenz 63 system, and the Rossler system, are presented.
© 2021 The Author(s). Published by Elsevier Inc. This is an open access article
under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Characterizing and predicting the evolution of observables of dynamical systems is an important problem

in the mathematical, physical, and engineering sciences, both theoretically and from an applications stand-

point. A framework that has been gaining popularity [1-22] is the operator-theoretic approach to ergodic

theory [23-25], where instead of directly studying the properties of the dynamical flow on state space, one

characterizes the dynamics through its action on linear spaces of observables. The two classes of opera-

tors that have been predominantly employed in these approaches are the Koopman and Perron-Frobenius

(transfer) operators, which are duals to one another on appropriate spaces of functions and measures, re-
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spectively. It is a remarkable fact, realized in the work of Koopman in the 1930s [26], that the action of
a general nonlinear system on such spaces can be characterized through linear evolution operators, acting
on observables by composition with the flow. Thus, despite the potentially nonlinear nature of the dynam-
ics, many relevant problems, such as coherent pattern detection, statistical prediction, and control, can be
formulated as intrinsically linear problems, making the full machinery of functional analysis available to
construct approximation techniques.

The Koopman operator U? associated with a continuous-time, continuous flow ®* : M — M on a manifold
M acts on functions by composition, Ut f = f o ®!. It is a contractive operator on the Banach space C°(M)
of bounded continuous functions on M, and a unitary operator on the Hilbert space L?(u) associated with
any invariant Borel probability measure p. Our main focus will be the latter Hilbert space setting, in which
U = {Ut};er becomes a unitary evolution group. In this setting, it is merely a matter of convention to
consider Koopman operators instead of transfer operators, for the action of the transfer operator at time
t on densities of measures in L?(u) is given by the adjoint U™ = Ut of U’. We will also assume that the
invariant measure y is ergodic.

In this work, we seek to address the following two broad classes of problems:

(i) Coherent pattern extraction; that is, identification of a collection of observables in L?(u) having high
regularity and an approximately periodic evolution under U?. A precise notion of coherent observables
stated in terms of Koopman eigenfunctions, or approximate Koopman eigenfunctions, will be given in
(5) and (12), respectively.

(ii) Prediction; that is, approximation of U'f at arbitrary ¢ € R for a fixed observable f € L?(u).

Throughout, we require that the methods to address these problems are data-driven; i.e., they only utilize
information from the values of a function F': M — Y taking values in a data space Y, sampled finitely
many times along an orbit of the dynamics.

1.1. Spectral characterization of unitary evolution groups

By Stone’s theorem on one-parameter unitary groups [27,28], the Koopman group U is completely char-
acterized by its generator—a densely defined, skew-adjoint, unbounded operator V : D(V) — L?(u) with
domain D(V') C L?(u), where

Utf -
vi=lim "2 pe by,

In particular, associated with V is a unique projection-valued measure (PVM) E : B(R) — £(L?(u)) acting
on the Borel o-algebra B(R) on the real line and taking values in the space £(L?(u)) of bounded operators
on L?(u), such that

V= /iwdE(w), Ut = /ei“’t dE(w). (1)

R R

The latter relationship expresses the Koopman operator at time t as an exponentiation of the generator,
Ut = eV, which can be thought of as operator-theoretic analog of the exponentiation of a skew-symmetric

tV' is an application of the Borel functional

matrix yielding a unitary matrix. In fact, the map V — e
calculus, whereby one lifts a Borel-measurable function Z : iR — C on the imaginary line iR C C, to an

operator-valued function
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ZWU:/HMMMM, (2)

R

acting on the skew-adjoint operator V via an integral against its corresponding PVM F.
The spectral representation of the unitary Koopman group can be further refined by virtue of the fact
that L?(u) admits the U'-invariant orthogonal splitting

L*(p)=H,®H,, H.=Hy, (3)

where H, and H.. are closed orthogonal subspaces of L?(u) associated with the atomic (point) and continuous
components of E, respectively. On these subspaces, there exist unique PVMs E, : B(R) — L£(H,) and
E.: B(R) — L(H,), respectively, where E, is atomic and E. is continuous, yielding the decomposition

E=E,®E.. (4)

We will refer to £, and E, as the point and continuous spectral components of E, respectively.

The subspace H,, is the closed linear span of the eigenspaces of V' (and thus of U*). Correspondingly, the
atoms of Ej, i.e., the singleton sets {w;} C R for which E,({w;}) # 0, contain the eigenfrequencies of the
generator. In particular, for every such w;, E,({w;}) is equal to the orthogonal projector to the eigenspace
of V at eigenvalue iw;, and all such eigenvalues are simple by ergodicity of the invariant measure p. As a
result, H, admits an orthonormal basis {z;} satisfying

Vz; =iw;z;, Ulzj=e“ilz;, U'f= Zeiwit<zj,f>uzj, Ve Hp, (5)
J

where (-,-), is the inner product on L?(u). It follows from the above that the Koopman eigenfunctions
form a distinguished orthonormal basis of H),, whose elements z; evolve under the dynamics by multipli-
cation by periodic phase factors at the frequencies wj, even if the underlying dynamical flow is nonlinear
and aperiodic. In contrast, observables f € H. do not exhibit an analogous quasiperiodic evolution, and
are characterized instead by a weak-mixing property (decay of correlations), typical of chaotic dynam-
ics,

t
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1.2. Pointwise and spectral approximation techniques

While the two classes of pattern extraction and prediction problems listed above are obviously related
by the fact that they involve the same evolution operators, in some aspects they are fairly distinct, as for
the latter it is sufficient to perform pointwise (or even weak) approximations of the operators, whereas
the former are fundamentally of a spectral nature. In particular, observe that a convergent approximation
technique for the prediction problem can be constructed by taking advantage of the fact that U? is a bounded
(and therefore continuous) linear operator, without explicit consideration of its spectral properties. That is,
given an arbitrary orthonormal basis {¢o, ¢1, ...} of L?(u) with associated orthogonal projection operators
Iy, : L?(u) — span{¢o,...,dr_1}, the finite-rank operator Ul = TI,U'Il; is fully characterized by the
matrix elements Uitj = (¢, U'¢p;), with 0 < i,j < L —1, and by continuity of U, the sequence of operators
U], converges pointwise to U'. Thus, if one has access to data-driven approximations Uy, ,; of U; determined
from N measurements of F' taken along an orbit of the dynamics, and these approximations converge as
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N — oo, then, as L — oo and N > L, the corresponding finite-rank operators U]tv’ 1, converge pointwise
to U?.

This property was employed in [12] in a technique called diffusion forecasting, whereby the approx-
imate matrix elements U}f\,’ij are evaluated in a data-driven basis constructed from samples of F' using
the diffusion maps algorithm (a kernel algorithm for manifold learning) [29]. By spectral convergence
results for kernel integral operators [30] and ergodicity, as N — oo, the data-driven basis functions
converge to an orthonormal basis of L?(;) in an appropriate sense, and thus the corresponding approx-
imate Koopman operators Uztv, ;, converge pointwise to U* as described above. In [12], it was demonstrated
that diffusion forecasts of observables of the Lorenz 63 (L63) system [31] have skill approaching that of
ensemble forecasts using the true model, despite the fact that the Koopman group in this case has a
purely continuous spectrum (except from the trivial eigenfrequency at 0). Pointwise-convergent approxi-
mation techniques for Koopman operators were also studied in [20,32] in the context of extended dynamic
mode decomposition (EDMD) algorithms [14]. However, these methods require the availability of an or-
thonormal basis of L?(u) of sufficient regularity, which, apart from special cases, is difficult to have in
practice (particularly when the support of p is an unknown, measure-zero subset of the ambient state
space M).

Of course, this is not to say that the spectral decomposition in (4) is irrelevant in a prediction setting,
for it reveals that an orthonormal basis of L?(u) that splits between the invariant subspaces H, and H..
would yield a more efficient representation of U! than an arbitrary basis. This representation could be
made even more efficient by choosing the basis of H, to be a Koopman eigenfunction basis (e.g., [17]).
Still, so long as a method for approximating a basis of L?(u) is available, arranging for compatibility of
the basis with the spectral decomposition of U? is a matter of optimizing performance rather than ensuring
convergence.

In contrast, as has been recognized since the earliest techniques in this area [1-4], in coherent pattern
extraction problems the spectral properties of the evolution operators play a crucial role from the outset. In
the case of measure-preserving ergodic dynamics studied here, the Koopman eigenfunctions in (5) provide
a natural notion of temporally coherent observables that capture intrinsic frequencies of the dynamics.
Unlike the eigenfunctions of other operators commonly used in data analysis (e.g., the covariance operators
employed in the proper orthogonal decomposition [33]), Koopman eigenfunctions have the property of being
independent of the observation map F', thus leading to a definition of coherence that is independent of the
observation modality used to probe the system. In applications in fluid dynamics [6,34], climate dynamics
[35], and many other domains, it has been found that the patterns recovered by Koopman eigenfunction
analysis have high physical interpretability and ability to recover dynamically significant timescales from
multiscale input data.

1.3. Review of existing methodologies

Despite the attractive theoretical properties of evolution operators, the design of data-driven spectral
approximation techniques that can naturally handle both point and continuous spectra, with rigorous con-
vergence guarantees, is challenging, and several open problems remain. As an illustration of these challenges,
and to place our work in context, it is worthwhile noting that besides approximating the continuous spec-
trum (which is obviously challenging), rigorous approximation of the atomic spectral component E,, is also
non-trivial, since, apart from the case of circle rotations, it is concentrated on a dense, countable subset
of the real line. In applications, the density of the atomic part of the spectrum and the possibility of the
presence of a continuous spectral component necessitate the use of some form of regularization to ensure
well-posedness of spectral approximation schemes. In the transfer operator literature, the use of regulariza-
tion techniques such as domain restriction to function spaces where the operators are quasicompact [2], or
compactification by smoothing by kernel integral operators [8], has been prevalent, though these methods
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may require more information than the single observable time series assumed to be available here. On the
other hand, many of the popular techniques in the Koopman operator literature, including the dynamic
mode decomposition (DMD) [6,7] and EDMD [14] do not explicitly consider regularization, and instead im-
plicitly regularize the operators by projection onto finite-dimensional subspaces (e.g., Krylov subspaces and
subspaces spanned by general dictionaries of observables). Despite the practical simplicity of this approach,
controlling its asymptotic behavior as the dimension of the approximation space increases is difficult; see,
e.g., Fig. 5 in Sect. 9.

To our knowledge, the first spectral convergence results for EDMD [16] were obtained for a variant of the
framework called Hankel-matrix DMD [15], which employs dictionaries constructed by application of delay-
coordinate maps [36] to the observation function. However, these results are based on an assumption that
the observation map lies in a finite-dimensional Koopman invariant subspace (which must be necessarily a
subspace of Hp); an assumption unlikely to hold in practice. This assumption is relaxed in [20], who establish
weak spectral convergence results implied by strongly convergent approximations of the Koopman operator
derived through EDMD. This approach makes use of an a priori known orthonormal basis of L?(u), the
availability of which is not required in Hankel-matrix DMD.

A fairly distinct class of approaches to (E)DMD perform spectral estimation for Koopman operators
using harmonic analysis techniques [3,4,21,22]. Among these, [3,4] consider a spectral decomposition of
the Koopman operator closely related to (4), though expressed in terms of spectral measures on S' as
appropriate for unitary operators, and utilize harmonic averaging (discrete Fourier transform) techniques
to estimate eigenfrequencies and the projections of the data onto Koopman eigenspaces. While this ap-
proach can theoretically recover the correct eigenfrequencies corresponding to eigenfunctions with nonzero
projections onto the observation map, its asymptotic behavior in the limit of large data exhibits a highly
singular dependence on the frequency employed for harmonic averaging—this hinders the construction of
practical algorithms that converge to the true eigenfrequencies by examining candidate eigenfrequencies in
finite sets. The method also does not address the problem of approximating the continuous spectrum, or the
computation of Koopman eigenfunctions on the whole state space (as opposed to eigenfunctions computed
on orbits).

The latter problem was addressed in [22], who employed the theory of reproducing kernel Hilbert spaces
(RKHSSs) [37,38] to identify conditions for a candidate frequency w € R to be a Koopman eigenfrequency
based on the RKHS norm of the corresponding Fourier function e’ sampled on an orbit. For the frequencies
meeting these criteria, they constructed pointwise-defined Koopman eigenfunctions in RKHS using out-of-
sample extension techniques [39]. While this method also suffers from a singular behavior in w, it was
found to perform better than conventional harmonic averaging, particularly in mixed-spectrum systems
with non-trivial atomic and continuous spectral components simultaneously present. However, the question
of approximating the continuous spectrum remains moot. RKHS-based approaches for spectral analysis of
Koopman operators have also been proposed in [40,41], though these methods rely on the strong assumption
that the Koopman operator maps the RKHS into itself. The latter is known to be satisfied only in special
cases, such as RKHSs with flow-invariant reproducing kernels [22, Corollary 9.

In [21], a promising approach for estimating both the atomic and continuous parts of the spectrum was
introduced, based on spectral moment estimation techniques. This approach consistently approximates the
spectral measure of the Koopman operator on the cyclic subspace associated with a given scalar-valued
observable, and is also capable of identifying its atomic, absolutely continuous, and singular continuous
components. However, since it operates on cyclic subspaces associated with individual observables, it is
potentially challenging to extend to applications involving a high-dimensional data space Y, including
spatiotemporal systems where the dimension of Y is formally infinite.

In [13,17,18] a different approach was taken, focusing on approximations of the eigenvalue problem
for the skew-adjoint generator V, as opposed to the unitary Koopman operators U!, in an orthonor-
mal basis of an invariant subspace of H, (of possibly infinite dimension) learned from observed data
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via kernel algorithms [29,30,42-44] as in diffusion forecasting. A key ingredient of these techniques is a
family K7, Ks, ... of kernel integral operators on L?(u) constructed from delay-coordinate-mapped data
with @ delays, such that, in the infinite-delay limit, Ko converges in norm to a compact integral op-
erator Ko, : L?(u) — L?(p) commuting with U for all t € R. Because commuting operators have
common eigenspaces, and the eigenspaces of compact operators at nonzero corresponding eigenvalues are
finite-dimensional, the eigenfunctions of K., (approximated by eigenfunctions of Kg at large Q) pro-
vide a highly efficient basis to perform Galerkin approximation of the Koopman eigenvalue problem. In
[13,17,18], a well-posed variational eigenvalue problem was formulated by regularizing the raw generator
V' by the addition of a small amount of diffusion, represented by a positive-semidefinite self-adjoint op-
erator A : D(A) — L%(u) on a suitable domain D(A) C D(V). This leads to an advection-diffusion
operator

L=V —0A, 0>0, (6)

whose eigenvalues and eigenfunctions can be computed through Galerkin schemes based on classical ap-
proximation theory for variational eigenvalue problems [45]. The diffusion operator in (6) is constructed so
as to commute with V| so that every eigenfunction of L is a Koopman eigenfunction, with eigenfrequency
equal to the imaginary part of the corresponding eigenvalue. Moreover, it was shown that the variational
eigenvalue problem for L can be consistently approximated from time series data acquired via a generic
observation map.

Advection-diffusion operators as in (6) can, in some cases, also provide a notion of coherent observables
in the continuous spectrum subspace H., although from this standpoint the results are arguably not very
satisfactory. In particular, it follows from results in [46] that if the support X C M of the invariant measure
1 has manifold structure, and A is chosen to be a Laplacian or weighted Laplacian for a suitable Riemannian
metric, then the spectrum of L contains only isolated eigenvalues, irrespective of the presence of continuous
spectrum [17]. However, if V has a non-empty continuous spectrum, then there exists no smooth Riemannian
metric whose corresponding Laplacian commutes with V', meaning that L is necessarily non-normal. The
spectra of non-normal operators can have several undesirable, or difficult to control, properties, including
extreme sensitivity to perturbations and failure to have a complete basis of eigenvectors. The behavior of L
is even more difficult to characterize if X is not a smooth manifold, and V' possesses continuous spectrum. In
[13,17,18], these difficulties are avoided by effectively restricting V' to an invariant subspace of H,, through
a careful choice of data-driven basis, but this approach provides no information about the ability of the
method to identify coherent observables in H..

Operators analogous to L in (6), acting on suitable spaces of distributions, have also been shown to
consistently approximate the spectrum of the generator of Anosov flows [47,48], allowing, in particular, to
recover Pollicott-Ruelle resonances [49,50] in such systems through zero viscosity (f — 0) limits. However,
these approaches make extensive use of the hyperbolic structure of Anosov flows, which is not exhibited
by the more general class of ergodic flows studied here. Put together, these facts motivate a different
regularization approach to (6) that can seamlessly handle both the point and continuous spectra of V, while
being amenable to data-driven approximation.

1.4. Contributions of this work

In this paper, we propose a data-driven framework for pattern extraction and prediction in measure-
preserving, ergodic dynamical systems, which retains the advantageous aspects of [12,13,17,18] through the
use of kernel integral operators to provide orthonormal bases of appropriate regularity, while being naturally
adapted to dynamical systems with arbitrary (pure point, mixed, or continuous) spectral characteristics.
The key element of our approach is to replace the diffusion regularization in (6) by a compactification of
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the skew-adjoint generator V of such systems (which is unbounded, and has complicated spectral behavior),
mapping it to a family of compact, skew-adjoint operators W, : H,. — H,, 7 > 0, each acting on an RKHS
H, of functions on the state space manifold M. In fact, the operators W, are not only compact, they are
trace-class integral operators with continuous kernels. Moreover, the spaces H, employed in this framework
are dense in L?(u1), and have Markovian reproducing kernels. We use the unitary operator group {e/"V7},cr
generated by W, as an approximation of the Koopman group U, and establish spectral and pointwise
convergence as 7 — 0 in an appropriate sense. This RKHS approach has the following advantages.

(i) The fact that W, is skew-adjoint avoids non-normality issues, and allows decomposition of these oper-
ators in terms of unique PVMs &; : B(R) — L(#,). The existence of &; allows in turn the construction

of a Borel functional calculus for W, , meaning in particular that operator exponentiation, e!"=

, is well
defined. Moreover, by compactness of W.., the measures &, are purely atomic, have bounded support,
and are thus characterized by a countable set of bounded, real-valued eigenfrequencies with a corre-
sponding orthonormal eigenbasis of H,. The skew-adjointness of W, and the generator V also enables
the use of spectral approximation techniques based on strong convergence in a core of V' [51], which
are special to skew- or self-adjoint operators and would not be available in a direct approximation of
the unitary Koopman group.

(ii) For systems that do possess nontrivial Koopman eigenfunctions, there exists a subset of the eigen-
functions of W, converging to them as 7 — 0. These eigenfunctions can be identified a posteriori by
monitoring the growth of a Dirichlet energy functional as a function of 7. Crucially, however, the eigen-
functions of W, provide a basis for the whole of L?(u), including the continuous spectrum subspace
H_, that evolves under the dynamics as an approximate Koopman eigenfunction basis.

(iii) The evaluation of e/~

in the eigenbasis of W, leads to a stable and efficient scheme for forecasting
observables, which can be initialized with pointwise initial data in M. This improves upon diffusion
forecasting [12], as well as comparable prediction techniques operating directly on L?(u1), which produce
“weak” forecasts (i.e., expectation values of observables with respect to probability densities in L?(u)).
In addition, being based on an approximation of the generator, the evolution of observables under et~
is of a fundamentally generative nature, in contrast with direct approximations of the action of the
Koopman group on fixed target observables [52] which would typically be of an interpolatory nature.
(iv) Our framework is well-suited for data-driven approximation using techniques from statistics and ma-
chine learning [30,39,53]. In particular, the theory of interpolation and out-of-sample extension in
RKHS allows for consistent and stable approximation of quantities of interest (e.g., the eigenfunctions
of W, and the action of e~ on a prediction observable), based on data acquired on a finite trajectory

in the state space M.

In our main results, Theorems 1, 2 and Corollaries 3, 4, we prove the spectral convergence of W, to V in
an appropriate sense by defining auxiliary compact operators acting on L?(p). The relationships between
these operators are depicted in Fig. 1 in the form of a flow chart. In Theorem 21, we give a data-driven
analog of our main results, indicating how to construct finite-rank operators from finite datasets without
prior knowledge of the underlying system and/or state space, and how spectral convergence still holds in
an appropriate sense.

1.5. Plan of the paper

In Section 2, we make our assumptions on the underlying system precise, and state our main results. This
is followed by results on compactification of operators in RKHS, Theorems 5-10, in Section 3, which will be
useful for the proofs of the main results. Before proving our main results, we also review some concepts from
ergodic theory and functional analysis in Section 4. Then, in Sections 5 and 6, we prove Theorems 5-8 and
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Fig. 1. Outline of the main results and relationships between operators employed in the paper. Our focus is on approximating, in
a spectral sense, the group of unitary Koopman operators U® on the Lz(p,) space of observables of an ergodic dynamical system
with an invariant measure p, and establishing associated data-driven schemes. We approach this problem by approximating the
Koopman generator V' and its associated spectral measure given in (1). In particular, we construct a family of compact, skew-

adjoint operators V; which have strong resolvent convergence to V as 7 — 0, resulting in a spectral approximation of V' in the

sense of convergence of the corresponding spectral measures. Simultaneously, the exponentiation of etVr converges strongly to the

Koopman operator €'V, These results provide means of (i) extraction of coherent observables associated with the approximate
point spectrum of V (Corollary 3); and (ii) prediction of observables under the dynamics (Corollary 4). A key element of the
approach is a family of compact, skew-adjoint operators W, on RKHSs H . of appropriate regularity (Theorem 1). These operators
are constructed in Theorem 6, and are related to V; by a canonical unitary transformation U, between L?> (1) and H-. The main
results on the spectral convergence of V; to V and strong convergence of the associated spectral measures are stated in Theorem 2.
To connect W, to V, we rely on two regularizations, A, (Theorem 5) and B, (Theorem 7), of V. Theorems 8 and 9 establish
commutation and spectral relationships between VT, W., A, and B, followed by spectral convergence results for these operators
in Theorem 10. Theorem 21 and Corollary 22 describe data-driven analogs of the main approximation results utilizing time series
data. These approaches are illustrated with numerical examples in Section 8.

9, 10, respectively, while Section 7 contains the proof of our main results. In Section 8, we describe a data-
driven method to approximate the compactified generator W, and establish its convergence (Theorem 21).
In Section 9, we present illustrative numerical examples of our framework applied to dynamical systems with
both purely atomic and continuous Koopman spectra, namely a quasiperiodic rotation on a 2-torus, and the
Rossler and L63 systems. We state our primary conclusions in Section 9. The paper also includes an appendix
on variable-bandwidth Gaussian kernels [43] (Appendix A). Pseudocode is included in Appendix B.

2. Main results

All of our main results will use the following standing assumptions and notations.

Assumption 1. &t : M — M, t € R, is a continuous-time, continuous flow on a metric space M. There
erists a forward-invariant, m-dimensional, C", compact, connected manifold M C M, such that the re-
stricted flow map ®'|p; is also C". X C M is a compact invariant set, supporting an ergodic, invariant
Borel probability measure (.

This assumption is met by many dynamical systems encountered in applications, including ergodic flows
on compact manifolds with regular invariant measures (in which case M = M = X), certain dissipative
ordinary differential equations on noncompact manifolds (e.g., the L63 system [31], where M = R3, M is
an appropriate absorbing ball [54], and X a fractal attractor [55]), and certain dissipative partial equations
with inertial manifolds [56] (where M is an infinite-dimensional function space).

In what follows, we seek to compactify the generator V', whose action is similar to that of a differentiation
operator along the trajectories of the flow. Intuitively, one way of achieving this is to compose V with
appropriate smoothing operators. To that end, we will employ kernel integral operators associated with
RKHSs.



S. Das et al. / Appl. Comput. Harmon. Anal. 54 (2021) 75-136 83

Kernels and their associated integral operators. In the context of interest here, a kernel will be a continuous
function k : M x M — C, which can be thought of as a measure of similarity or correlation between pairs
of points in M. Associated with every kernel k and every finite, compactly supported Borel measure v (e.g.,
the invariant measure y) is an integral operator K : L?(v) — C°(M), acting on f € L?*(v) as

Kf = / k(y) () duly). (7)

M

If, in addition, k lies in C"(M x M), then K imparts this smoothness to K f, i.e., K f € C"(M). Note that
the compactness of supp(v) is important for this conclusion to hold. The kernel k is said to be Hermitian
if k(z,y) = k*(y,x) for all z,y € M. It is called positive-definite if for every sequence of distinct points
x1,...,Zn € M the n x n kernel matrix K = [k(x;, ;)] is non-negative, and strictly positive-definite if K
is strictly positive-definite. Clearly, every real, Hermitian kernel is symmetric, i.e., k(z,y) = k(y,x) for all
x,y € M.

Aside from inducing an operator mapping into C" (M), a kernel k also induces an operator G = tK on
L?(v), where ¢+ : C°(M) — L*(v) is the canonical L? inclusion map on continuous functions. The operator
G is Hilbert-Schmidt, and thus compact and of finite trace. In particular, its Hilbert-Schmidt norm and
trace are given by

Gllus = Vtr(G*G) = ||kl L2(wxp), trG = /k:(x,:c) dv(z), (8)

M

respectively. Moreover, if k is Hermitian, G is self-adjoint, and there exists an orthonormal basis of L%(u)
consisting of its eigenfunctions. Let X, denote the support of v. A kernel k will be called L?(v)-positive and
L?(v)-strictly-positive if G > 0 and G > 0, respectively; in those cases, G is also of trace class. Note that if
k is (strictly) positive-definite on X, x X, then it is L?(v)- (strictly-) positive. Moreover, k will be called
a L?(v)-Markov kernel if the associated integral operator G : L?(v) — L%(v) is Markov, i.e., (i) Gf > 0 if
f>0; (i) [,,Gfdv = [, fdv, forall f € L*(v); and (iii) Gf = f if f is constant. The Markov kernel k
will be said to be ergodic if Gf = f iff f is constant. A sufficient condition for k to be Markov is that k > 0
on X, x X, and [, k(x,-)dv =1 for v-a.e. x € M. If k > 0 on X,, x X, then k is ergodic.

Reproducing kernel Hilbert spaces. An RKHS on M is a Hilbert space H of complex-valued functions on
M with the special property that for every € M, the point-evaluation map 0, : H — C, d,f = f(z), is
a bounded, and thus continuous, linear functional. By the Riesz representation theorem, every RKHS has
a unique reproducing kernel, i.e., a kernel k : M x M — C such that for every x € M the kernel section
k(x,-) lies in H, and for every f € H,

where (-, -, )4 is the inner product of H, assumed conjugate-linear in the first argument. It then follows that
k is Hermitian. Conversely, according to the Moore-Aronszajn theorem [57], given a Hermitian, positive-
definite kernel k : M x M — C, there exists a unique RKHS # for which k is the reproducing kernel.
Moreover, the range of K from (7) lies in H, so we can view K as an operator K : L?*(v) — H between
Hilbert spaces. With this definition, K is compact, and the adjoint operator K* : H — L?(v) maps f € H
into its L?(v) equivalence class, i.e., K* = |3y and G = K*K. For any compact subset S C M, one can
similarly define H(S) to be the RKHS induced on S by the kernel k|sxs. In fact, upon restriction to the
support X,,, the range of K is a dense subspace of H(X, ). This implies that every function in H(X,) has
a unique extension to a function in H lying in the closed subspace K := ran K C H.
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Nystrom extension. Let H be an RKHS on M with reproducing kernel k. Then, the Nystrom extension
operator N : D(N') — H acts on a subspace D(N) of L?(v), mapping each element f in its domain to a
function N'f € H, such that A/ f lies in the same L?(v) equivalence class as f. In other words, N f(z) = f(z)
for v-a.e. x € M, and K*N is the identity on D(N). It can also be shown that D(N) = ran K*, ran N = K,
and NK* is the identity on K. Moreover, if k is L?(v)-strictly-positive, then D(N) is a dense subspace
of L?(v). In fact, D(N) can be endowed with the structure of a Hilbert space, equipped with the inner
product {f,g)n = (Nf,Ng). If k is L?(v)-strictly-positive and Markov ergodic, this space behaves in
many ways analogously to a Sobolev space on a compact Riemannian manifold. In particular, equipped
with this inner product, D(N') embeds compactly into L?(v), and || f|a > || fllr2() with equality iff f is
constant. Moreover, the ||-||»- norm induces a Dirichlet energy functional D : D(N) — R,

2
Vi

D —
D =Tt "

Ve D)\ {0}, and D(0) =0, 9)

where D(f) is non-negative and vanishes iff f is constant by L?(v)-Markovianity and ergodicity of k.
Intuitively, D can be interpreted as a measure of “roughness” of functions in D(N), which vanishes for
constant functions, and is large for functions that project strongly to the eigenfunctions of G with small
corresponding eigenvalues. We will give a precise constructive definition of A/, and discuss its properties, in
Section 4.

The following assumption specifies our nominal requirements on kernels pertaining to regularity and
existence of an associated RKHS.

Assumption 2. p : M x M — R is a C", symmetric, positive-definite kernel, and v a Borel probability
measure with compact support X,, C M. Moreover, p is L?(v)-strictly-positive and Markov ergodic.

We will later describe how kernels satisfying Assumption 2 can easily be constructed from symmetric,
positive-definite, positive-valued C" kernels using the bistochastic kernel normalization technique proposed
in [58]. It should be noted that many of our results will require r = 1 differentiability class in Assumptions 1
and 2, but in some cases that requirement can be relaxed to r = 0.

One-parameter kernel families. Let P : L?(v) — H be the integral operator associated with a kernel p
satisfying Assumption 2, taking values in the corresponding RKHS #. The associated operator G = P*P
on LQ(Z/) has positive eigenvalues, which can be ordered as 1 = Ag > A\; > .... Given a real, orthonormal basis
{¢0,#1,...} of L?(v) consisting of corresponding eigenfunctions, the set {to,%1,...} with 1; = /\;1/2P¢j
is an orthonormal basis of ran P C H, and the restrictions of these functions to X, form an orthonormal
basis of H (X, ). Defining

Ar,j = exp (T(l - )‘;1)) y Yrj= )‘T,j/>‘j ¥j, pr(2,9) Zw‘r,j Q/J‘r,j (Y), (10)

where 7 > 0, and x,y are arbitrary points in M, the following theorem establishes the existence of a
one-parameter family of RKHSs, indexed by 7, and an associated Markov semigroup on L?(v).

Theorem 1 (Markov kernels). Let Assumption 2 hold. Then, for every T > 0, the series expansion for p.(x,y)
in (10) converges in C"(M x M) norm to a C", symmetric function. Moreover, the following hold:

(i) For every T > 0, p, is a positive-definite kernel on M. In addition, it is L?(v)-strictly-positive and
Markov ergodic.
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(i) For every T > 0, the RKHS H., associated with p, lies dense in L*(v), and for every 0 < 11 < T2, the
inclusions Hr, C H,, CH hold. Moreover, {1+ 0,%+1,...} is an orthonormal basis of H,.

(iii) Define Go :=1d2(,) and G, = P} P;, where Py : L*(v) — H. is the integral operator associated with
pr. Then, the family {G:}.>¢ forms a strongly continuous, self-adjoint Markov semigroup.

Remark. Theorem 1 is independent of the dynamical system in Assumption 1. It is a general RKHS result,
allowing one to employ basis functions for the RKHS H(X,), restricted on the support of v, to construct a
family of RKHSs ., on the entire compact manifold M. In particular, ran P, is a dense subspace of H.,
while ran P is not necessarily dense in H.

The semigroup structure of the family {G;},>¢ in Theorem 1(iii) implies, in particular, that for every
T1,72 > 0, Gr,4r, = G+, G,. Moreover, strong continuity is equivalent to pointwise convergence of G, to
the identity operator as 7 — 0%. These two properties, as well as the Markov ergodic property, will all be
important in our compactification schemes for the Koopman generator, presented in Theorem 2 and Section 3
below. The measure v will now be set to the invariant measure p. In what follows, N : D(N,) — H, will be
the Nystrom operator associated with H,. We also let Hoo = [~ D(N;) be the dense subspace of L?(y)
whose elements have H, representatives for every 7 > 0. Note that H, is dense since it contains all finite
linear combinations of the ¢;. Similarly, setting Hoo = [, Hr, it follows that H..(X) is a dense subspace
of H(X). In addition, we will be making use of the polar decomposition of P,. The latter can be shown to
take the form

P, =U,GY?, (11)

where U, : L?(p) — H, is the unitary operator such that U,¢; = 1, . for all pairs (¢;, ;) from (10).
Given a Borel-measurable function Z : iR — C and a densely-defined skew-adjoint operator T, Z(T) will
denote the operator-valued function obtained through the Borel functional calculus as in Section 1. For
every set Q C C, 9Q will denote its boundary.

Theorem 2 (Main theorem). Under Assumptions 1, 2 with r = 1, and the definitions in (10), the following
hold for every T > 0:

(i) The operator W, := P,V P* : H, — H. is a well-defined, skew-adjoint, real integral operator of trace
class.

(ii) The operator G,V : D(V) — L?(u) extends to a trace class integral operator B, : L*(n) — L*(u).
Moreover, the restriction of B, to the dense subspace D(N;) C D(V) coincides with the operator
PXW.N-.

(iii) The operators B, and W, have the same spectra, including multiplicities of eigenvalues. Moreover,
there exists a unique, purely atomic PVM &, : B(R) — L(H,), such that W, = [ iw dE-(w).

In addition, as 7 — 07T

(iv) For every bounded, Borel-measurable set Q C R such that E(0Q) = 0, P& (N, and UXE(Q)U,
converge to E(SQ), in the strong operator topologies of Hu and L?(u), respectively.

(v) For every bounded continuous function Z : iR — C, PFZ(W,)N; and U:Z (W)U, converge to Z(V),
in the strong operator topologies of Hso and L*(p), respectively.

(vi) For every holomorphic function Z : D(Z) — C, with iR C D(Z) C C and Z|;gr bounded, Z(B,)
converges strongly to Z(V) on L*(p).

(vii) For every element iw of the spectrum of the generator V, there exists a continuous curve T — w; such
that iw, is an eigenvalue of B, and W, and lim,_g+ wr = w.
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The skew-adjoint operator W, from Theorem 2 can be viewed as a compact approximation to the gen-
erator V. This approximation has a number of advantages for both coherent extraction and prediction.
First, although V' is unbounded and could exhibit complex spectral behavior (see Section 1), W, has a
complete orthonormal basis of eigenfunctions, which are C! functions lying in #,. This suggests that the
eigenfunctions of W, are good candidates for coherent observables of high regularity, which are well defined
for systems with general spectral characteristics. Moreover, the discrete spectra of compact, skew-adjoint
operators can be used to construct and approximate to any degree of accuracy the Borel functional calculi
of these operators, and in particular perform forecasting through exponentiation of W,. The eigenvalues
and eigenfunctions of the smoothing operators P, employed in the construction of W, can also be easily
derived from those of P with little computational overhead. In Corollaries 3 and 4 below, we make precise
the utility of W, for the purposes of coherent pattern extraction and forecasting, respectively. See Fig. 3
for an illustration of the dependence of the spectrum of W, on 7 for dynamical systems with point and
continuous Koopman spectra.

Approximate point spectrum. Given t € R and € > 0, a complex number + is said to lie in the e-approximate
point spectrum of U? if there exists a nonzero f € L?(u) such that

NU*f =7 fllz2n < el flle2 - (12)

Such observables f (which include Koopman eigenfunctions as special cases), satisfying (12) for small ¢ and
t lying in a given time interval, exhibit a form of dynamical coherence, as they evolve approximately as
Koopman eigenfunctions over that time interval. We will refer to (v, f) satisfying (12) as an e-approximate
eigenpair of U!. A discussion on how the e-approximate point spectrum varies with €, and its relation to the
spectrum, in the context of a general, closed, unbounded operator, can be found in Section 4. The following
corollary of Theorem 2 establishes that the eigenvalues of W, corresponding to eigenfunctions that satisfy
certain Dirichlet energy criteria, can be used to identify points in the e-approximate point spectrum of the
Koopman operator at any € > 0. In what follows, D : D(N) — R will denote the Dirichlet energy from (9),
induced on L2(u) by the kernel p in Assumption 2. We also introduce the function R : Ry x Ry — R,
defined as

R(e,7) :=sup{T > 0: [|[(U" — 'B")P*|| < ¢, Vt € [T, T]}.
Here, the norm of (U? — e'B7) P* is taken as an operator from H into L?(u). The function R(e, 7) identifies
a time interval (—R(7, €), R(7, €)) > t over which the operator families U* and ‘5~ are e-close. We will later

show in Proposition 20 that for every ¢ > 0, R(e, 7) diverges as 7 — 0T,

Corollary 3 (Coherent observables). Let (iw,,(;) be an eigenpair of W,. Then, (e, 2., with z; = P*(,,
is an e-approzimate eigenpair of U for allt € (=T(e,7),T(e, 7)), where

T(e,7) = R(e,7)//D(2;) + 1.
In addition, the following hold:
(i) Iflim,_o+ w, =: w exists, and T'(e,T) diverges as T — 0 for every € > 0, then iw is an element of the
spectrum of V.

(ii) If lim, o+ w,r =: w exists, and D(z;) is bounded as T — 0, then iw is an eigenvalue of V. Moreover,
the sequence z, converges to the eigenspace of V' corresponding to iw.
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Remark. An important consideration in spectral approximation techniques is to identify and/or control the
occurrence of spectral pollution [59], i.e., eigenvalues iw, of the approximating operators W, converging to
points which do not lie in the spectrum of V. Corollary 3 establishes that the regularity of the correspond-
ing eigenfunctions (., as measured through the Dirichlet energy functional associated with the RKHS H,
provides a useful a posteriori criterion for identifying spectral pollution.

Turning now to forecasting, let {iw;o,iw-1,...} be the set of eigenvalues of W, Note that since W,
is a compact, skew-adjoint real operator, the iw;, occur in complex-conjugate pairs, and 0 is the only
accumulation point of the sequence w; o, wr1,.... Let also {(r0,¢r1,-..} be an orthonormal basis of H,
consisting of corresponding eigenfunctions. The following is a corollary of Theorem 2, which shows that the
evolution of an observable in L?() under U? can be evaluated to any degree of accuracy by evolution of an
approximating observable in H., under e!"V~.

Corollary 4 (Prediction). For every T > 0, W, generates a norm-continuous group of unitary operators
eWr o ", — H,, t € R. Moreover, for any observable f € L?(u), error bound ¢ > 0, and compact set
T C R, there exists f. € Hoo (independent of T ) and 19 > 0, such that for every 7 € (0,79) and t € T,

U f = Pre™ fel| gy <& €M7 fo= D0 €5 e, Fh, G
=0

Remark. The function e~ f, lies in H,, and is therefore a continuous function which we employ to predict
the evolution of the observable f under U!. Corollary 4 suggests that to obtain this function, we first
regularize f by approximating it by a function f. € Ho, and then invoke the functional calculus for the
compact operator W, to evolve f. as an approximation of U?f. Note that analogous error bounds to that in
Corollary 4 can be obtained for operator-valued functions Z(V') of the generator other than the exponential
functions, Z(V) = eV = U'. A constructive procedure for obtaining the forecast function in a data-driven
setting will be described in Section 8.

The flow chart in Fig. 1 summarizes the relationships between the operator families in Theorem 2 and
Corollaries 3, 4 and their associated modes of convergence.

3. Compactification schemes for the generator

In this section, we lay out various schemes for obtaining compact operators by composing the generator V'
with operators derived from kernels. These schemes are of independent interest, as they are applicable, with
appropriate modifications, to more general classes of unbounded, skew- of self-adjoint operators obtained
by extension of differentiation operators. In some cases, the following weaker analog of Assumption 2 will
be sufficient.

Assumption 3. k: M x M — R is a C', symmetric positive-definite kernel.

Given the RKHS H C C'(M) associated with k from Assumption 3, and the corresponding integral
operators K : L?(u) — H, G = K*K : L*(n) — L*(p), and closed subspace K = ran K C H, we begin by
formally introducing the operators A : L?(u) — L?(u) and W : H — H, where

A:=VG=VK*K, W:=KVK*. (13)

Note that it is not necessarily the case that these operators are well defined, for the ranges of G and K*
may lie outside of the domain of V. Nevertheless, as the following two theorems establish, A and W are
well-defined, and in fact compact, operators.
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Theorem 5 (Pre-smoothing). Let Assumptions 1 and 3 hold, and define k' : M x M — R as the C° kernel
with k' (x,y) := limy_o(k(®(2),y) — k(z,y))/t. Then:

(i) The range of G lies in the domain of V.
(ii) The operator A from (13) is a well-defined, Hilbert-Schmidt integral operator on L?(u) with kernel k',
and thus bounded in operator norm by

AL < [[Allzs = I1E | 2 uxp) < 1 llco xxx)-
(iii) A is equal to the negative adjoint, —(GV)*, of the densely defined operator GV : D(V) — L?(u).

Remark. As stated in Section 1, V is an unbounded operator, whose domain is a strict subspace of L?(p).
Theorem 5 thus shows that if we regularize this operator by first applying the smoothing operator G, then
not only is A bounded, it is also Hilbert-Schmidt, and thus compact. In essence, this property follows from
the C! regularity of the kernel.

Arguably, the regularization scheme leading to A, which involves first smoothing by application of G,
followed by application of V, is among the simplest and most intuitive ways of regularizing V. However,
the resulting operator A will generally not be skew-symmetric; in fact, apart from special cases, A will be
non-normal. Theorem 6 below provides an alternative regularization approach for V', leading to a Hilbert-
Schmidt operator on ‘H which is additionally skew-adjoint. Working with this operator also takes advantage
of the RKHS structure, allowing pointwise function evaluation by bounded linear functionals.

Theorem 6 (Compactification in RKHS). Let Assumptions 1 and 3 hold, and define K :MxM—R as the
C° kernel with K (z,y) = —K (y,z). Then:

(i) The range of K* lies in the domain of V., and VK* : H — L?(u) is a bounded operator.
(ii) The operator W from (13) is a well-defined, Hilbert-Schmidt, skew-adjoint, real operator on H, with
ran W C IC, satisfying

W= / B () () duty).

M

Remark. Because W is skew-adjoint, real, and compact, it has the following properties, which we will later
use.

(i) Tts nonzero eigenvalues are purely imaginary, occur in complex-conjugate pairs, and accumulate only
at zero. Moreover, there exists an orthonormal basis of H consisting of corresponding eigenfunctions.
(ii) It generates a norm-continuous, one-parameter group of unitary operators e H — H,teR.

In the next theorem, we connect the operators A and W through the adjoint of A.

Theorem 7 (Post-smoothing). Let Assumptions 1 and 3 hold. Then, the adjoint of —A from (13) is a Hilbert-
Schmidt integral operator B : L?(n) — L?(u) with kernel k'. In addition:

(i) The densely-defined operator GV : D(V) — L?(u) is bounded, and B is equal to its closure, GV :=
(GV)**. Moreover, B is a closed extension of KWN : D(N) — L%(u), and if the kernel k is L?(u)-
strictly-positive, i.e., D(N) is a dense subspace of L*(u), that extension is unique.
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(ii) B generates a norm-continuous, 1-parameter group of operators e'B : L?(n) — L?(u), t € R, satisfying
K*eW = 'BK*, K*e"WN = etB|D(N), vt € R.

Remark. Because V is an unbounded operator, defined on a dense subset D(V) C L?(u), the domain of GV
is also restricted to D(V). It is therefore a non-intuitive result that a regularization of V' after an application
of G could still result in a bounded operator that can be extended to the entire space L?(u).

Theorem 7(i) shows that, on the subspace D(N) C L?(u), B acts by first performing Nystrém extension,
then acting by W, then mapping back to L?(u) by inclusion via K*. In other words, B is a natural analog
of W acting on L?(u), though note that, unlike W, B is generally not skew-adjoint. To summarize, on the
basis of Theorems 5—7, we have obtained the following sequence of operator extensions:

KWN CGV Cc B=GV = (GV)**.

As our final compactification of V', we will construct a skew-adjoint operator V on L? (1) by conjugation
by a compact operator. In particular, since G is positive, it has a square root G2 : L?(u) — L?(u), which
is the unique positive operator satisfying G'/2G'/2 = G. Note that by compactness of G, G/2 is compact,
and its action on functions can be conveniently evaluated in an eigenbasis of G. Moreover, it can be verified
that ran G'/2 = ran K*. In fact, the operators K and G'/? are related to K via the polar decomposition,
K = UGY?, where U : L?*(1) — H is a (uniquely defined) partial isometry with rani{ = K, analogous to
U; in (11). Note that K is an invariant subspace of W. Moreover, if K has dense range, then I becomes
unitary. Using these definitions, we will show in Theorem 8 below that the operator G*/2V G1/2, defined on
the subspace {f € L?*(u) : G'/2f € D(V)}, actually extends to a well-defined compact operator.

Theorem 8 (Skew-adjoint compactification). Let Assumptions 1 and 3 hold with r = 1. Then, GY/?VG'/? is
a densely defined, bounded operator with a unique skew-adjoint extension to a Hilbert-Schmidt, real operator
V 1 L*(u) — L*(u). Moreover, V is related to the operator W from Theorem 6 via conjugation by the
partial isometry U, i.e., V.=U*WU. In particular, if the kernel k is L?(u)-strictly-positive, V and Wl are
unitarily equivalent.

This completes the statement of our compactification schemes for V. Since these schemes are all carried
out using the same kernel k, one might expect that the spectral properties of the compact operators A, B,
V, and W, exhibit non-trivial relationships. These relationships will be made precise in Theorems 9 and 10
below. Hereafter, o(T) and o,(T") will denote the spectrum and point spectrum (set of eigenvalues) of a
linear operator 7', respectively.

Theorem 9 (Spectra of the compactified generators). Let Assumptions 1 and 3 hold with r = 1, and assume

further that the kernel k is L*(p)-strictly-positive. Let also {Zo, Z1,...} be an orthonormal basis of L*(u),

consisting of eigenfunctions zZ; of V corresponding to purely imaginary eigenvalues iw;. Then:

(i) A and B have the same eigenvalues as V, including multiplicities. Moreover, o,(W) = a,(V), including
multiplicities if K has dense range.

In addition, if the kernel k is L*(u)-Markov ergodic:

(ii) 0 is a simple eigenvalue of each of the operators A, B, V, and Wk, corresponding to constant eigen-
functions.
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1/2

iti) Bvery Z; lies in the domain of G—Y2. Moreover, the set {z},2",...}} with 2 = G~Y2%: consists
J 07 ~1 J J

of eigenfunctions of A, corresponding to the eigenvalues {iwp,iwy, ...}, and forms an unconditional
Schauder basis of L?(p).

(iv) The set {zo,21,...} with z; = Gl/zéj is an unconditional Schauder basis of L*(11), consisting of eigen-
functions of B corresponding to the same eigenvalues, {iwg,iw1,...}. Moreover, it is the unique dual
sequence to the {z;}, satisfying (2}, 21), = 0.

(v) The set {o,C1,---} with (; = K2 is an orthonormal basis of K consisting of eigenfunctions (; of W
corresponding to the eigenvalues iw;.

(vi) The operators A, B, V, and W, admit the representations

!
A= E iw;(zj, ) r2(u )25, B= E w; ],~L2 )Zis V= E iw;(Zj, ) L2 () 2

W= Ziwj@jv ISR

J=0

where the infinite sums for A and B converge strongly, and those for V., and W converge in Hilbert-
Schmidt norm.

Remark. The Markovianity assumption on the kernel was important to conclude that A, B, V, and Wk
have finite-dimensional nullspaces (which may not be the case for a general compact operator), allowing us to
establish a one-to-one correspondence of the spectra of these operators, including eigenvalue multiplicities.

An immediate consequence of Theorem 9, in conjunction with Theorems 7 and 8, is that V and W
are decomposable in terms of unique PVMs E : B(R) — L£(L*(n)) and € : B(R) — L(H), such that
V= [piwdBEw), W = [piwdE(w), and

B = Y Eewi, £ = Y (G nué + 1a(0) proje., (14)

Jiw; €Q Jiw; EQ

where 1g is the indicator function on , and proj. : H — H the orthogonal projection onto K. Moreover,
E and & are related by conjugation by the partial isometry U : L?(u) — H from Theorem 8,

E(Q) =U*E)U, vQe BR), (15)

and if k is L?(p)-strictly positive, E(Q) and £(Q)|x are unitarily equivalent. The compactness of V and W,
which is reflected in the fact that £ and £ are purely atomic PVMs, allows for simple expressions for the
Borel functional calculi of these operators. In particular, for every Borel-measurable function Z : iR — C,
we have

Z(V) / zw dE ZZ ij ZJ,' Lz(u)gja
R J=0

Z(W) = / iw) d€(w ZZ iw; ), )nC + Z(0) proji,
R J=0

with all limits taken in the strong operator topology. Note that if K has dense range (as in Theorem 2),
K+ reduces to the zero subspace, and proj,. vanishes in the above expressions.
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In the case of A and B, the fact that these are, in general, non-normal operators precludes the con-
struction of associated Borel functional calculi. Nevertheless, the compactness of these operators allows
one to construct their holomorphic functional calculi in a straightforward manner. Specifically, given any
holomorphic function Z : D(Z) — C on an open set D(Z) C C containing o0(A) = o(B), we define

Z(A) = ](Z(z)(z ~A)lds, Z(B) = j{Z(z)(z _B)lds,

Y Y

where v is a Cauchy contour in D(Z) containing o(A) in its interior. Now, because VG'/? = G2V G =
G'/2 A, we have A = G~1/2VG'/2, and it follows from Taylor series that for any such holomorphic function Z,

Z(A) =G V2Zz(W)GY?, Z(B)=Z(-A) 2 GY*z(V)GV2. (16)

The results in Theorems 5-9 are for compactifications based on general kernels satisfying Assumptions 1
and 3 and their associated integral operators. Next, we establish spectral convergence results for one-
parameter families of kernels that include the kernels p, associated with the Markov semigroups in our
main result, Theorem 2. Specifically, we assume:

Assumption 4. {k, : M x M — R} with 7 > 0 is a one-parameter family of C*, symmetric, L?(u)-strictly-
positive kernels, such that, as T — 0%, the sequence of the corresponding compact operators G, = K*K,
on L*(p) converges strongly to the identity, and the sequence of the skew-adjoint compactified generators
V. D G2V GY? converges strongly to V on the subspace D(V?)c D(V).

Let H, be the RKHS on M with reproducing kernel k., A, : D(N;) — H., the corresponding Nystrém
extension operator, and H,, the L?(u) subspace equal to N,~oD(N;). Define the partial isometries U, :
L?(u) — H, through the polar decomposition K, = UTGi/Z, as in Theorem 8. Note that, in general, H.,
could be the zero subspace, but contains at least constant functions if the k, are L?(u)-Markov kernels.
As stated in Section 2, if H., is the space associated with the kernels p, from (10), whose corresponding
integral operators form a Markov semigroup and thus have common eigenspaces, then it is even dense in
L?(u1). With these definitions, we establish the following notion of spectral convergence for approximations
of the generator V' by compact operators.

Theorem 10 (Spectral convergence). Suppose that Assumptions 1 and 4 hold with r =1, and let A,, B, v, :
L?(p) — L2*(u) and Wy : H, — H, with 7 > 0, be the Hilbert-Schmidt operators from Theorems 5-8,
associated with the kernels k. from Assumption 4. Let also ET and &, be the PVMs associated with VT and
W, respectively, constructed as in (14). Then, as 7 — 0%, the following hold:

(i) The operator B, converges strongly to V on D(V).

(ii) For every bounded continuous function Z : iR — C, Z(V,) and U*Z(W,)U, converge strongly to Z(V')
on L?(p).

(iii) For every holomorphic function Z : D(Z) — C, with iR C D(Z) C C and Z|;g bounded, Z(A;) and
Z(B;) converge strongly to Z(V) on L*(u). Moreover, K*Z(W.)N, converges strongly to Z(V) on
H...

(iv) For every bounded Borel-measurable set @ C R such that E(0Q) = 0, E.(Q) and U E-(Q)U, converge
strongly to E(Q) on L?(u).

(v) For every element iw of the spectrum of V', there exists a sequence of eigenvalues iw, of A, B, v,
and W, converging to iw.



92 S. Das et al. / Appl. Comput. Harmon. Anal. 54 (2021) 75-136

Theorem 10 makes several of the statements of our main result, Theorem 2. In Section 5, we will prove
the latter by invoking Theorems 5—10 for the family of Markov kernels p. There, the semigroup structure of
p, will allow us to extend the convergence result for K*Z(W.)N; from holomorphic functions to bounded
continuous functions Z, and further deduce that A., B,, V;, and W, are of trace class.

4. Results from functional analysis and analysis on manifolds

In this section, we review some basic concepts from RKHS theory, spectral approximation of operators,
and analysis on manifolds that will be useful in our proofs of the theorems stated in Sections 2 and 3.

4.1. Results from RKHS theory

Nystrom extension. We begin by describing the Nystrom extension in RKHS. In what follows, H will be an
RKHS on M with reproducing kernel &k, v an arbitrary finite Borel measure with compact support X,, C M,
and K : L?(v) — H the corresponding integral operator defined via (7). The Nystrom extension operator
N : DN) — H, with D(N) C L?(v), extends elements of its domain, which are equivalence classes of
functions defined up to sets of v measure zero, to functions in #H, which are defined at every point in M
and can be pointwise evaluated by continuous linear functionals. Specifically, introducing the functions

v =\ PKe;, jed, (17)

where {¢g, ¢1,...} is an orthonormal set in L?(v) consisting of eigenfunctions of G = K* K, corresponding
to strictly positive eigenvalues Ao > Ay > ---, and J = {j € Ny : \; > 0}, we define

D(N) = Zajgbj : Z |aj|2/)\j <0 g, /\/ Zajd)j = Zaj)\j_l/Q'l/Jj. (18)

JjEJ jeJ JjE€J jeJ

It follows directly from these definitions that {1;},cs is an orthonormal set in H satisfying K*v,; = )\;/ ¢,

and N is a closed-range, closed operator with D(N) = ran K* and ran V' = K := ran K = span{; }je.
Moreover, K*N and N'K* reduce to the identity operators on D(N) and ran A/, respectively. In fact, upon
restriction to X,, ran N coincides with the RKHS #(X,), and {¢;|x },cs forms an orthonormal basis of
the latter space. If, in addition, the kernel k is L?(v)-strictly-positive, as we frequently require in this paper,
then D(N) is a dense subspace of L?(v), and K* coincides with the pseudoinverse of . The latter is defined
as the unique bounded operator N : H — L?(u) satisfying (i) ker N'T = ran N'*; (i) ran N'T = ker N'*; and
(iii) NNTf = f, for all f € ran V. Note that we have described the Nystrom extension for the L? space
associated with an arbitrary compactly supported Borel measure v since later on we will be interested in
applying this procedure not only for the invariant measure p of the system, but also for discrete sampling
measures encountered in data-driven approximation schemes.

Polar decomposition. A number of the results stated in Sections 2 and 3 make use of the polar decomposition
of kernel integral operators associated with RKHSs. We now review this construction. First, recall that the
polar decomposition of a bounded linear map T : H; — Hs between two Hilbert spaces H; and Hs is the
unique factorization T' = U|T|, where |T| = (T*T)'/? is a non-negative, self-adjoint operator on Hj, and
U : Hy — Hy is a partial isometry with kerZ/*+ = ran|T|. The spaces kerid* and rani{ are known as the
initial and final spaces of the partial isometry . In the case of the integral operator K : L?(v) — H, we
have K = U|K|, where |K| = G/? by definition of G = K*K. Moreover, it follows from the relationships
K¢; = X\/*; and GY/%¢; = \}/*¢;, which hold for every j € J, that U¢; = t; for j € J. Thus, the
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initial and final spaces of U are given by kerUd*+ = ran K* = D(N) and rani{ = ran K = K, respectively. In
addition, since K*1); = )\;/Z(bj = G1/2¢j, we can conclude that ran G'/2 = ran K*, and

D(GV?) =DWN), N=uc"'? KuU=a" (19)

Mercer representation. A classical result in the theory of RKHSs with continuous kernels is the Mercer
theorem [60], allowing one to represent the kernel through eigenfunctions. In the following lemma, we
will state this result together with a useful integral formula for computing the trace of integral operators
associated with continuous kernels.

Lemma 11. Let H be an RKHS on M associated with a continuous reproducing kernel k, and v a finite Borel
measure with compact support X,, C M. Assume, further, the notations in (17). Then, the following hold:

(1) (Mercer theorem) For every x,y € Xy, k(x,y) = 3_;c; ¥} (2)¢;(y), where the sum converges absolutely
and uniformly with respect to (z,y) € X, X X,.
(ii) The trace of the integral operator G = K*K is equal to [,, k(x,z)dv(z).

Proof. We will only prove Claim (ii). For that, we use Claim (i) to compute explicitly

/k(x,x) dv(x) = /k(x x)dv(z /Zw x)Y;(z) dv(z /|1/)J ) 2dv ()

M X, x, J€J J€Tx,

= | K2 dv = NP dr =Y "N [P dv=> "X =trG.
=Y [icwPar =3 [Nl ar =Y /J >

JEJX ]EJX jeJ X, Jj€

The last equality on the first line follows from the absolute convergence of >, ;[4; (2)|? to k(z,x). The
first equality in the second line follows from the fact that K* is the L?(v)-inclusion operator on H. 0O

Bistochastic kernel normalization. Our main result, Theorem 2, as well as a number of the auxiliary results
in Theorem 9, require that the reproducing kernel under consideration be Markovian. However, the notion
of Markovianity depends on a choice of measure (e.g., in the case of Theorems 2 and 9, the invariant measure
), which is usually either unknown, or integrals with respect to it cannot be evaluated in closed form. As
a result, a common approach to building Markov kernels is to start from a positive-valued unnormalized
kernel, which can be evaluated in closed form, and then perform a normalization procedure to render it
Markovian. Such kernel normalizations are widely used in manifold learning [29,43,44], spectral clustering
[30], and other applications. However, many of these approaches produce non-symmetric kernels which are
not suitable for defining RKHSs. Here, we construct symmetric Markov kernels with associated RKHSs
using the bistochastic normalization procedure introduced in [58], which yields symmetric, positive-definite
Markov kernels with corresponding RKHSs. The starting point for this construction is a kernel k on M
satisfying Assumption 3, and in addition, being strictly positive-valued everywhere, i.e., k > 0. Given a
Borel probability measure v with compact support X,, C M, the kernel k induces the functions d : M — R
and ¢ : M — R such that

k(z,y)
d(y)

amzfuﬁwww,am:/ dv(y).
M

M

By strict positivity and C" regularity of k& and compactness of X,,, the functions d, ¢, 1/d, and 1/q are
strictly positive and C". As a result, p: M x M — R, with
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o) = | Mo 2)k(z0) 4y (20)

is also a C", positive-definite kernel with p > 0. It then follows by construction that p is symmetric and
satisfies [, p(x,-)dv = 1 for all x € M. That is, p is a positive-definite, symmetric, and L*(v)-Markov
ergodic kernel. In fact, if the kernel k is strictly positive-definite on X, x X, then p is also strictly positive-
definite on that set, and thus is L?(v)-strictly-positive. To verify this, note that

CHekGa) o co o Kww) oo d@)
p(a:,y)—Al d(z)d(y) =), K ’y)_ql/g(x)qm(y)’ (=)

and because 2 — d(z) is a strictly positive continuous function, it suffices to show that the kernel ko (z, ) =
S k(x, 2)k(z, x) dv(z) is strictly positive-definite on L?(v). Now note that k is a strictly positive-definite
kernel on X, x X, by strict positive-definiteness of k and strict positivity of the continuous function x — G(z).
Thus, in order to verify that ks, and thus p, is strictly positive-definite on X, x X, it suffices to show:

Lemma 12. Let v be a finite Borel measure with compact support X,, C M, and k : X, xX,, — R a symmetric,
strictly positive-definite kernel. Then, the kernel ks : X, x X, = R, with ka(z,y) = [, k(z, 2)k(z,y) dv(z)
1s strictly positive-definite.

Proof. We must show that for any collection of distinct points xg, ... z,—1 € X, the m x m kernel matrix
G = [ka(z;,2;)] is positive definite. Defining v, = Z;-n;()l 0z, /m, this is equivalent to showing that the
operator Go : L?(v,,) — L?(v,) with matrix representation G in the standard orthonormal basis of
L?(vy,) is positive. To that end, observe that Go = (K*K,,)*K*K,,, where K,, : L*(v;,) — H(X,) and
K : L?(v) — H(X,) are the integral operators associated with k and the measures v, and v, respectively,
mapping into the RKHS H (X, ) associated with k. Because K, is an injective operator by strict positive-
definiteness of k, and K* is injective by definition, K*K,, is injective, and for every nonzero f € L?(v,,),
(f,G2f) 12 () = (K* Ko f, K* Ky, ), > 0. This shows that G is positive, and thus k; is a strictly positive-
definite kernel, proving the lemma. 0O

In summary, we have established that if the kernel k satisfies Assumption 3, and is also positive-valued
and strictly positive-definite on the support of v, then the bistochastic normalization procedure in (20)
yields a O, strictly positive definite, and thus L?(v)-strictly-positive, Markov ergodic kernel. In particular,
if it happens that k is strictly positive-definite on M x M, the kernel from (20) is L?(v)-strictly-positive
and Markov ergodic for every compactly supported Borel probability measure v. This approach therefore
provides a convenient way of constructing Markov kernels meeting the conditions of Theorem 1. In Section 8,
we will employ bistochastic normalization of strictly positive-definite, positive-valued kernels to construct
data-driven approximations to the Markov kernels in Theorem 1 that converge in the limit of large data.

4.2. Spectral approximation of operators

Strong resolvent convergence. In order to prove the various spectral convergence claims made in Sections 2
and 3, we need appropriate notions of convergence of operators approximating the generator V that imply
spectral convergence. Clearly, because V' is unbounded, it is not possible to employ convergence in operator
norm for that purpose. In fact, for the approximations studied here, even strong convergence on the domain
of V may not necessarily hold. For example, in an approximation of V' by V7., where T, 7 > 0, is a
family of smoothing operators on L?(u) with ranT, C D(V), the convergence of T, f to f as 7 — 0T does
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not necessarily imply that VT, f converges to V f, as V is unbounded. In the setting of unbounded, skew-
adjoint operators, a weaker form of convergence, which is nevertheless sufficient to establish our spectral
convergence claims, is strong resolvent convergence [51].

To wit, let T : D(T) — H be a skew-adjoint operator on a Hilbert space H, and consider a sequence
of operators T, : D(T,;) — H indexed by a parameter 7 > 0. The sequence T is said to converge to T
as 7 — 07 in strong resolvent sense if for every complex number p in the resolvent set of T, not lying
~1 converge to (p — T)~!
every quadratic polynomial p, p(iT%) is also bounded. Following [61], we say that the sequence T is p2-

on the imaginary line, the resolvents (p — T) strongly. If T is bounded, for
continuous if every T is bounded, and the function 7 — ||p(¢T%)|| is continuous for every such p. Henceforth,
when convenient, we will use the notation = and - to indicate strong convergence and strong resolvent
convergence, respectively.

As we will see in Lemma 14 below, T, = T implies T <= T'. Further, if 7" is bounded and the sequence
T is uniformly bounded in operator norm, then T, = T implies T, = T [51, Proposition 10.1.13]. These
facts indicate that strong resolvent convergence can be viewed as a generalization of strong convergence of
bounded operators. For our purposes, the usefulness of strong resolvent convergence is that it implies the
following convergence results for spectra and Borel functional calculi of skew-adjoint operators.

Proposition 13. Suppose that T, : D(T;) — H is a sequence of skew-adjoint operators converging in strong
resolvent sense as T — 07 to a skew-adjoint operator T : D(T) — H. Let also ©, : B(R) — L(H) and
O : B(R) = L(H) be the PVMs associated with T, and T, respectively. Then:

(i) For every bounded, continuous function Z : iR — C, Z(T,) converges strongly to Z(T).

(ii) Let J C J' C iR be two bounded intervals. Then, for every f € L*(u), imsup, o+ [|15(Tr) fll22¢0) <
115 (T) fll 22y -

(iii) For every bounded, Borel-measurable set Q C R such that ©(9Q) = 0, ©,(Q) converges strongly to
o(Q).

(iv) For every bounded, Borel-measurable function Z : iR — C of bounded support, Z(T.) converges strongly
to Z(T), provided that ©(S) = 0, where S C R is a closed set such that iS contains the discontinuities
of Z.

(v) If T is bounded, (iii) holds for every Borel-measurable set Q@ C R, and (iv) for every bounded Borel-
measurable function Z : iR — C.

(vi) If the operators Ty are compact, then for every element 6 € iR of the spectrum of T, there exists a
one-parameter family 0, € iR of eigenvalues of Ty such that lim,_,o+ 6, = 0. Moreover, if the sequence
T, is p2-continuous, the curve T — 0, is continuous.

Proof. Claim (i) is actually an equivalent characterization of strong resolvent convergence [51, Propo-
sition 10.1.9]. Claim (v) is a classical result from spectral approximation theory for normal, bounded
operators, e.g., [62, Chapter 8, Theorem 2]. In Claim (vi), the existence of the family 6, follows from
[51, Corollary 10.2.2], in conjunction with compactness of T:.. The continuity of 7 — 6, follows from [61,
Theorem 1].

It now remains to prove Claims (ii)—(iv). Starting from Claim (ii), note that a property of the Borel
functional calculus for a skew-adjoint operator T' : D(T) — H (more commonly stated for self-adjoint
operators, e.g., [63]) is that for any Borel-measurable function Z : iR — R lying in L>®(iR), Z(T) is a
bounded self-adjoint operator. Moreover, this functional calculus preserves positivity, in the sense that if
Z is positive, then Z(T') is positive operator, and as a result Z(T') < Z'(T) whenever Z < Z’'. With these
properties, let Z : iR — R be a piecewise-linear continuous function equal to 1 on J, and with support
contained in J'. Let also 1g be the indicator function of any set Q. Then, the inequalities 13 < Z2 < 12,
hold everywhere in iR, so for each 7 > 0, 13(7T,) < Z*(T,) < 1%,(T). In addition, since Z is continuous and
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bounded, Z(T;) converges strongly to Z(T') by Claim (i). The proof of Claim (ii) can now be completed
using the following inequality:

lim sup ||1J<TT)fH%2(/J) = lim Solip<1J(T‘r)f7 1J(TT>f>[L = lim Sup<1?](TT)f7 f>u

T—0+ T—0+

<limsup(Z*(T,)f, f), = limsup(Z(T,) f, Z(T}) f)

T—0+ 70t

= limsup | Z(T-) flIZ2() = 1Z2(T) 1720

7—0t
=(Z2(D)f, Z(T) f)u = (Z* (D), flu
< WDV, Hu = 1L (D) Fl122 -

Next, we will prove Claim (iii) in the case that 2 is an interval [a,b] C R with ©(9Q) = ©({a,b}) =0
(i.e., neither of ia and b is an eigenvalue of T'). Given any w > 0, let f,, : iR — iR be a continuous function
such that f,(iw) equals iw for w € i[a,b], equals 0 outside i[a — w,b + w], and is linear on the intervals
ila —w,a] and i[b,b + w]. By Claim (i), lim, o+ fu(ZTr) = fuw(T). Moreover, the operators fy, (1), fu(T)
are bounded and skew-adjoint, and therefore, by Claim (v), for every bounded, measurable g : iR — R,

lim (go fu)(T7) = 7—12(131+ 9(fuw(T7)) = g(fu(T)) = (g o fu)(T). (21)

T—01

Setting g = 1, then leads to
gofu=Tlio+ 1y, Jui=[bb+w]Nf,(Q)
Thus, substituting for g o f,, in (21) using the latter identity, and rearranging, we obtain

Tl_i)r(r)l+ [0-(2) +60,(Jy) —O(Jy)] =0(Q), Yw > 0. (22)
Note that here we have used the fact that for any Borel set S C R, ©(S) = 1;5(T), and a similar fact for T;.
The operator ©(J,,) is the spectral projection onto the subspace H,, = ran ©(.J,,) C H. Since O(90) = 0
and Nys0Jw = {b}, we have NysoHy, = {0}. As a result, as w — 0, the H form an increasing sequence
of subspaces with U,~oH;5 = H. Thus, to prove that ©,(Q) converges strongly to ©(f2), it is enough to
verify the same claim on Hj;o for every fixed wg > 0. To that end, let wy > 0 be fixed, and consider an
arbitrary f € Hd;o. By construction, ©(J,,)f vanishes for every 0 < w < wg. Moreover, by Claim (ii),

limsup [|©+(Jw) fllr2(u) = limsup |[Lig, (Tr) fllz2e) < [1Lig,, (Tr) fllzge =0, Vu' € (w,wo),
0+ T7—0t

from which it follows that lim, ,o+ ©.(Jy)f = 0. Thus, substituting the identities O(J,)f = 0 and
lim, o+ ©-(Jy)f = 0 into (22) yields

OQ)f = lim [0,(2) + O,(Ju) — O(J)] f = lim O,(Q)f + lim O,(Ju)f + O(Ju)f = lim O,(Q)f,
7—0+ =0+ 7—0+ T—0+
proving that Claim (iii) is true for Q equal to an interval.

We now extend this result to the case that {2 is an arbitrary bounded Borel subset of R with ©(9€) = 0.
For that, it is sufficient to fix an arbitrary b > 0, and prove the result for the elements of the set ¥’ = {Q €
B([—b,b]) : ©(092) = 0}, where B([—b,b]) is the Borel o-algebra on [—b,b]. Let then ¥ be the collection of
subsets Q@ C B([—b, b]), such that ©,() converges strongly to ©(2). It can be shown that ¥ is a o-algebra.
Moreover, ¥ contains all intervals having zero © measure on their boundary, and thus must also contain the
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o-algebra generated by such intervals. But this latter o-algebra contains ', and therefore ©.(2) 2 ©(Q)
for all Q@ € ¥/, proving Claim (iii).

Finally, we prove Claim (iv). Let Z be as claimed, with support contained in a bounded open interval
I C iR. Then, the set I\ S is a countable union of bounded open intervals Iy, I5,.... Note that H is
the direct sum of the mutually orthogonal spaces ran ©(I1),ran ©(I3), ..., ran O(S), and ran ©(I¢). Among
these, ran ©(I°¢) is contained in the kernel of Z(T'). Moreover, in a manner similar to the proof of Claim (iii),
it can be shown that Z|s(T,) converges pointwise to 0. Thus, for every f € ranO(S5), Z(T)f = Z|s(T)f
converges to T'f = 0. In light of these facts, Claim (iv) can be simplified to the case that Z is a continuous
function supported on an interval (ia,ib) C iR with ©({a,b}) = 0. In this case, constructing a function f,
as in Claim (iii), and using the same line of reasoning, it can be shown that Z(T) — Z(T) as 7 — 0. This
proves Claim (iv) and the Proposition. O

Proposition 13 lays the foundation for many of the spectral convergence results in Theorem 10, and thus
Theorem 2. It also highlights, through Claim (iii), the convergence properties for the functional calculus
and spectrum lost from the fact that V' is unbounded. Yet, despite the usefulness of the results stated in
Proposition 13, the basic assumption made, namely that T, converges to T in strong resolvent sense, is
oftentimes difficult to explicitly verify. Fortunately, in the case of skew-adjoint operators of interest here,
there exist sufficient conditions for strong resolvent convergence, which are easier to verify. Before stating
these conditions, we recall that a core for a closed operator T : D(T) — H on a Hilbert space H is any
subspace C' C D(T) such that T is the closure of the restricted operator T'|c. In other words, C is a core
if the closure of the graph of T'|¢, as a subset of H x H, is the graph of T. Note that 7" may not have a
unique core. We also introduce the notion of convergence in the strong dynamical sense [51]. Specifically, a
sequence T, : D(T;) — H, 7 > 0, of skew-adjoint operators is said to converge to T : D(T) = H as 7 — 0

tT,

in the strong dynamical sense if e!”~ converges strongly to e!” for every ¢ € R. Note that in the case of the

operators V; from Assun}ption 4 approximating the generator V, strong dynamical convergence means that

tVr

the unitary operators e*V~ converge strongly to the Koopman operator U? = etV for every time t € R.

Lemma 14. Let T : D(T;) — H and T : D(T) — H be the skew-adjoint operators from Proposition 13.
Then, the following hold:

(i) The domain D(T?) of the operator T? is a core for T.
(ii) If T converges pointwise to T on a core for T, then it also converges in strong resolvent sense.
(iii) Strong resolvent convergence of T, to T is equivalent to strong dynamical convergence.

Proof. Claim (i) follows from [64, Theorem 5]. Claims (ii) and (iii) follow from Propositions 10.1.18 and
10.1.8, respectively, of [51]. There, the statements are for self-adjoint operators, but they apply to skew-
adjoint operators as well. O

Remark. Lemma 14(ii) indicates that a sufficient condition for strong resolvent convergence of a sequence
skew-adjoint operators is pointwise convergence in a smaller domain (a core) than the full domain of the
limit operator; that is, strong resolvent convergence is weaker than strong convergence for this class of
operators. In Proposition 19 ahead, we will see that the operator family V, employed in Theorem 2 actually
converges pointwise to V' on the whole of D(V).

Approzimate point spectrum and pseudospectrum. Generalizing the definition in (12), we say that a complex
number  lies in the e-approximate point spectrum oy, (T') of a closed operator T': D(T') — H on a Hilbert
space H for € > 0, if there exists f € H, with || f||g = 1, such that [65,60]

ITf =~fllm <e (23)
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As e decreases towards 0, 04y (T") forms an increasing family of open subsets of the complex plane, such
that Ues00qp.(T') = C. Moreover, if T is a normal operator, 0,4, (1) is the union of all open e-balls in the
complex plane with centers lying in its spectrum, o (7). If, in addition, T" is bounded, Nes00ap,e(T) = o(T).
The e-approximate point spectrum is also a subset of the e-pseudospectrum o.(7") of T, defined as the set
of complex numbers ~ such that ||[(T'—~) || > 1/e, with the convention that ||(T'—~)~!|| = oo if v € o(T)
[67]. Specifically, 0¢(T) = 0qp,(T) Uo(T), and if T is normal and bounded, o.(T') = 04p,(T). For our
purposes, a distinguished property of each element v € o) ((T) is that there exists an associated unit-norm
vector f € H which behaves approximately as an eigenfunction of 7', in the sense of (23).

4.8. Results from analysis on manifolds

We will state a number of standard results from analysis on manifolds that will be used in the proofs
presented in Sections 5 and 7. In what follows, we consider that M is a C" compact manifold, equipped with
an arbitrary C"~! Riemannian metric (e.g., a metric induced from the ambient space M, or the embedding
F: M — Y into the data space Y from Section 8), and an associated covariant derivative operator V. We
let CO(M;T M) denote the vector space of continuous vector fields on M (continuous sections of the tangent
bundle TM), and CY(M;T*"M) with 0 < g < r the vector space of tensor fields a of type (0,n) having
continuous covariant derivatives Via € C9=7(M; T*"*I M) up to order j = q. The Riemannian metric in-
duces norms on these spaces defined by ||Z||co(arrary = maxeenm ||E| 2, [lollcoaryren ary = maxzenr ||z, and
el caarsronary = EZOHVjaHCO(M;T*(qH)M), where ||-||, denotes pointwise Riemannian norms on tensors.
The case C4(M;T*"M) with n = 0 corresponds to the C?(M) spaces of functions. All of the C°(M;TM)
and C1(M;T*" M) spaces become Banach spaces with the norms defined above, and by compactness of M,
the topology of these spaces is independent of the choice of Riemannian metric. Hereafter, we will use ¢(?)
to denote the canonical inclusion map of C9(M) into L?(u) (u being the invariant measure), and abbreviate
(9 = as in Section 2. We will also use ¢34 to denote the inclusion map of an RKHS H with a C'? reproducing
kernel into C'?(M). It follows from [37, Propositions 6.1 and 6.2] that the latter map is bounded.

The following result expresses how vector fields can be viewed as bounded operators on functions.

Lemma 15. Let M be a compact, C* manifold, equipped with a C° Riemannian metric. Then, as an operator
from C*(M) to CO(M), every vector field = € CO°(M;TM) is bounded, with operator norm ||Z|| bounded

above by ||E]|co(aryrar)-

Proof. Denoting the gradient operator associated with the Riemannian metric on M by grad, the claim
follows by an application of the Cauchy-Schwartz inequality for the Riemannian inner product, viz.

IZ2fllcoary = IE - grad fllcoary < IEllcoarsran llgrad fllcoarrary = IZlcoarran IV fllco(arir=ary

<|Elcoarsranylfllerany- O

In particular, under Assumption 1, the dynamical flow ®® on M is generated by a vector field Ve
C°(M;TM), for which Lemma 15 applies. This vector field is related to the generator V by a conjugacy
with ¢ and ()| namely, V=1V,

The following is a well known result from analysis [68].

Lemma 16 (C! convergence theorem). Let M be a compact, connected, C* manifold equipped with a C°
Riemannian metric. Let also f; + M — R be a sequence of tensor fields in C*(M;T*"M), such that
the sequence {||V fjllcoarrevarytjen s summable. Then, if there exists x € M such that the series
F, = ZjeN fj(z) converges in Riemannian norm, the series ZjeN f; converges uniformly to a tensor field
F e CYM;T*" VM) such that F(z) = F,.
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This lemma leads to the following C" convergence result for functions, which will be useful for establishing
the smoothness of kernels constructed as infinite sums of C” eigenfunctions.

Lemma 17. Let M be a compact, connected, C" manifold with r > 1, equipped with a C"~' Riemannian
metric. Suppose that f; : M — R is a sequence of real-valued C" (M) functions such that (i) the sequence
U filleran}jen is summable; and (ii) there evists x € M such that the series F, = Z;io fi(z) converges.
Then, the series Z;io fj converges absolutely and in C" (M) norm to a C” function F', such that F(z) = F.

Proof. We will prove this lemma by induction over ¢ € {1,...,r}, invoking Lemma 16 as needed. First,
note that summability of {|f;llcr(a)}jen implies summability of {[|V?f;||coarr=ann)}jen} for all ¢ €
{1,...,r}. Because of this, and the fact that >,y f;(x) converges, it follows from Lemma 16 that } .y f;
converges in C! norm to some C* function F. This establishes the base case for the induction (¢ = 1). Now
suppose that it has been shown that ZjeN f; converges to F' in C?(M) norm for 1 < ¢ < r. In that case,
> jen Vfj(x) converges, and by summability of {IIVIT fillco (et ary b jen, it follows from Lemma, 16
that VIF = 3. Vf; converges in C'(M;T*IM) norm. Thus, VIT'F = 37, VIt f; converges in
CO(M; T*(¢+Y M) norm, which in turn implies that > jen [ converges to F' in C9tY(M) norm, and the
lemma is proved by induction. O

5. Proof of Theorems 5-8

Proof of Theorem 5. By Assumption 3, H is a subspace of C*(M), and therefore for every f € H, K*f =
(W f. Claim (i) then follows from the facts that ran:(*) € D(V), and K is bounded. To prove Claim (ii),
let K’ : L?(u) — CY(M) be the kernel integral operator associated with the continuous kernel &', and ¢ the
C°(M) — L?(p) inclusion map. Because 1K’ is a Hilbert-Schmidt integral operator on L?(u), with operator
norm bounded above by its Hilbert-Schmidt norm, [[eK'|| < [|K'|[z2(uxp) < K lco(x xx), the claim will
follow if it can be shown that 1K’ = VG. To that end, note that for every f € L?(u) and x € M we have
K'f(z) = (K'(x,), ) - Thus, using the C°(M) limit &'(z,-) = limy_,¢ g¢, where g = (k(®*(z), ) —k(z,"))/t,
and continuity of inner products, we obtain

1

K flw) = (2, ), £ = {Jim ge, £ = imdge, £ = lim 2 (6@ @), ), £, = (b(z,), f)u] = VE f (@),

As a result, because ran K C C1(M), for any f € L?(p) it follows that
K f=WKf=VWKf=VK'Kf=VGY,
proving Claim (ii). Finally, to prove Claim (iii), we have by definition of the adjoint,
D((GV)*):={f € L*(n) : 3h € L*(u) such that Vg € D(V), (f,GVg), = (h.g).}. (GV)'f:=h,

where h is unique by the Riesz representation theorem and density of D(V') in L?(u). We will now use this
definition to show that (GV)* = —VG = —A. Indeed, for every f € D(A) = L?() and every g € D(V),
setting h = —Af, we obtain

<ha g>,u = <_Af7 g>,u = _<VGfa g>,u = <Gf7 Vg>,u = <f7 GVg>,u
This satisfies the definition of (GV)*, proving the claim and the theorem. 0O

Proof of Theorem 6. We begin with the proof of Claim (i). The inclusion ran K* C D(V') holds because H
is a subspace of C'. To prove that VK* is bounded, note that by Lemma 15, and the fact that the inclusion
map ty : H — C1(M) is bounded,
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proving that V K* is bounded and completing the proof of Claim (i). Turning to Claim (ii), that W is compact
follows from the fact that it is a composition of a compact operator, K, by a bounded operator, VK*.
Moreover, W is skew-symmetric by skew-adjointness of V', and thus skew-adjoint because it is bounded.
W is also real because K and V are real operators. It thus remains to verify the integral formula for W f
stated in the theorem. For that, it follows from the Leibniz rule for vector fields and the fact that k lies in
CH(M x M) that for every f € CY(M) and = € X,

— — ~

k(a, )WV f=V(kz,)f) = (Vk(@,))f =V(k(@,)f)+ k()]

Using this result, and the fact that [, V(k(z,)f)dp = (1ar, V(k(z, -)f)), vanishes by skew-adjointness of
V', we obtain

KVEK*f(z) = KV f(z) = KV f(z) = /k(x,-)Vfdu: /E’(x,~)fdu. O
M M

Proof of Theorem 7. That B = —A* is a Hilbert-Schmidt integral operator with kernel &' follows from
standard properties of integral operators. Next, to prove Claim (i), note that GV is bounded as it has a
bounded adjoint, (GV)* = —A, by Theorem 5, and therefore has a unique closed extension GV : L?(u) —
L?(u) equal to (GV)**. In order to verify that GV = B, it suffices to show that GV f = Bf for all f in
any dense subspace of D(V); in particular, we can choose the subspace t(")C*(M). For any observable (1) f
in this subspace, we have Bf = (K'f and GV f = DKV f, where K’ : L2() — C°(M) is the integral
operator with kernel K’, defined analogously to the operator K’ in the proof of Theorem 5. Employing the
Leibniz rule as in the proof of Theorem 6, it is straightforward to verify that B f is indeed equal to GV f,
proving that B is the unique closed extension of GV. Next, to show that B is also an extension of K*WN,
it suffices to show that GV O K*WN. For that, note that K*WN is a well-defined operator by Theorem 6,
and thus, substituting the definition of W in (13), and using the fact that K*A is the identity on D(N),
we obtain

K*WN = GVE*N = GV|p).-

This shows that K*KWN C GV C B, confirming that B is a closed extension of K*WN. If k is strictly
positive, then D(A) is dense, and B is the unique closed extension of K*WA . This completes the proof of
Claim (i).

Next, to prove Claim (ii), note that because B is bounded, the Taylor series e'® = 3> (¢tB)"/n!
converges in operator norm for every ¢ € R, and the set {e!®},cr clearly forms a group under composition
of operators. This group is norm-continuous by boundedness of B. Similarly, we have e/ = ">  (tW)" /n!
in operator norm, and observing that for every n € N, K*W"™ = B"K* we arrive at the claimed identity,

* tW ooln*n Oolnn* tB 1%
K*e :E—'tKW:E—'tBK:eK.
n. n:
n=0 n=0

The identity K*e'"V N = e'P|p () then follows from the fact that K*A is the identity on D(N). O

Proof of Theorem 8. Let {¢;}32, be an orthonormal basis of L?(u) consisting of eigenfunctions ¢; of G
corresponding to eigenvalues A; ordered in decreasing order. Let also {1); }?O:O be an orthonormal basis of
‘H, whose first J elements are given by (17) (with some abuse of notation as J may be infinite). Recall from
Section 4.1 that U¢; = 1b;. To prove the theorem, it suffices to show that G'/2VG'/? is well-defined on a
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dense subspace of L?(11), and on that subspace, G2V G2 and U*WU are equal. To verify that G1/2V G/2
is densely defined, note first that G/ 2¢; trivially vanishes for j ¢ J, and therefore G2y Gt/ 2¢; is well-
defined and vanishes too. Moreover if j € J, G1/2¢j = K*¢;, and Gl/QVGl/Q@ is again well defined since
ran K* C D(V). As a result, the domain of G'/2VG'/2 contains all linear combinations of ¢; with j ¢ J,
and all finite combinations with j € J, and is therefore a dense subspace of L?(u). Next, to show that U*WU
and G2V G'/? are equal on this subspace, it suffices to show that they have the same matrix elements in
the {¢;} basis of L?(u), i.e., that (¢;, GY/2VG/2¢;),, is equal to (¢;,U* WU ;)3 for all i,j € Ny. Indeed,
because kerid = ker G'/2 = (ran G'/?)L, both Up; and G1/2¢j vanish when j ¢ J. We therefore deduce
that if either of 4 and j does not lie in J, the matrix elements (¢;,U*WU¢p;), and (¢;, GY/2WG2¢p,),
both vanish. On the other hand, if ¢, j € J, we have

(G UWUS ), = (i, Wb = (K0, VE ;) = (AP K¢ A PE* K ¢y),,
=(G'2¢;, VG'2¢)), = (¢, G2V G2 ¢;) ..

We have thus shown that Z*WU and G*/?V G'/? are equal on a dense subspace of L?(u), and because the
former operator is bounded and defined on the whole of L?(u), it follows that V = U*WU is the unique
closed extension of GY/2VG'/2. That V is skew-adjoint, Hilbert-Schmidt, and real follows immediately. O

6. Proof of Theorems 9 and 10

We will need the following lemma, describing how to convert between eigenfunctions of A, B, V, and W.
The proof will be omitted since it follows directly from the definitions of these operators.

Lemma 18. Let Assumptions 1 and 3 hold with r = 1. Then,

(i) If ¢ € K is an eigenfunction of W at eigenvalue iw, then K*C is an eigenfunction of B at eigenvalue
w.
(ii) 2/ € L3(p) is an eigenfunction of A at eigenvalue iw iff Kz’ is an eigenfunction of W at eigenvalue
w.
(iii) If 2" is an eigenfunction of A at eigenvalue iw, then G272’ is an eigenfunction of V at eigenvalue iw.
(iv) If 2 € L*(n) is an eigenfunction of V at eigenvalue iw, then G'/?% is an eigenfunction of B at
etgenvalue iw.

Proof of Theorem 9. Starting from Claim (i), let W be the restriction of W onto the closed subspace K C H.
Since K is invariant under W, and ker W D K+ by definition, we have o,(W) = o,(W) if K+ = {0} (i.e., K
has dense range), and o,(W) = a,(W) U {0} = 0,(W) otherwise. Thus, to prove the claim, it is enough to
show that o,,(A) = 0,(B) = 0,(V) = 0,(W), including eigenvalue multiplicities. To that end, note first that

W and V are unitarily equivalent by Theorem 8 and strict L?(u)-positivity of k, and thus o,(W) = JP(V),

including multiplicities. Moreover, by Lemma 18, 0,(A) C 0,(W) C iR, and because A is a real operator,
it follows that ¢,(A) is symmetric about the origin of the imaginary line iR, so that

op(A) = =op(A) = =0p(A)" = —0,(A7) = —0p(=B) = 9,(B).

Thus, the equality of ¢,(A), o,(B), 0,(V), and o,(W) will follow if it can be shown that o,(A) = o, (V).

Indeed, it follows from Lemmas 18(iii) and 18(iv) that o,(A) C 0,(V) and 0,(V) C 0,(B), respectively.

These relationships, together with the fact that o,(A) = o,(B), imply that o,(A) = 0,(V), and thus

0(A) =0(B) =0(V) =0c(W), as claimed. The equality of the multiplicities of the eigenvalues of A, B, and
V follows from the facts that K and G'/? are injective operators. This completes the proof of Claim (i).



102 S. Das et al. / Appl. Comput. Harmon. Anal. 54 (2021) 75-136

To prove Claim (ii), note that because k is L?(u)-Markov ergodic, Gf = f implies that f is p-a.e.
constant. In addition, by ergodicity of the flow ®¢, V f = 0 implies again that f is p-a.e. constant. It then
follows that

Af =0 = V(Gf)=0 = Gf = p-a.e. constant = [ = p-a.e. constant.

This shows that 0 is a simple eigenvalue of A with constant corresponding eigenfunctions. Therefore, since
0p(A) = 0,(B) = 0,(V) = 0,(W), including multiplicities, 0 is also a simple eigenvalue of B, V, and W,
and the constancy of the corresponding eigenfunctions follows directly from the definition of these operators.

Next, to prove Claims (iii) and (iv), fix a nonzero eigenvalue iw; of A. By compactness of this operator, the
corresponding eigenspace is finite-dimensional, and thus the injective operator G'/2 maps every basis of this
eigenspace to a linearly independent set. By Lemma 18(iii) and Claim (i), this set is actually a basis of the
eigenspace of V at eigenvalue iw;. As result, every eigenfunction of V at nonzero corresponding eigenvalue
lies in the range of G'/2. Moreover, it follows from Claim (ii) that every eigenfunction of V at eigenvalue
0 is constant, and thus also lies in the range of G'/2. We therefore conclude that every eigenfunction of V
lies in the range of G'/2, and thus in the domain of G~'/2, as claimed. The fact that Z; € ran G2 for all

7 € Ny also implies that zé is an eigenfunction of A at eigenvalue iw;, since
Vi, = VGY2G™1?% = GVPVGG/?z; = GV A2,

In addition, we can deduce directly from Lemma 18(iv) that each of the z; are eigenfunctions of B at
eigenvalue iw;, as stated in Claim (iv).

To complete the proof of Claims (iii) and (iv), it remains to show that {z{, 2, ...} and {zo, 21, ...} form
unconditional Schauder bases of L?(p). For that, note first that z;j is a dual sequence to the zé-, ie.,

(2 z)p = (G722, GM22) 0 = (35, 2) 0 = 051

As a result, since every Schauder basis has a unique dual sequence, which is also a Schauder basis [69],
Claims (iii) and (iv) will be proved if it can be shown that {zo,z21,...} is an unconditional Schauder
basis. To verify that this is indeed the case, fix {¢o, ¢1,...} from (17) as an orthonormal basis of L?(u)
(corresponding to the eigenvalues Ao, A1, ...), and {eg, e1, ...} as the standard orthonormal basis of ¢, and
define the unbounded operator Z’ : D(Z') C ¢?> — (2, the bounded operator L : ¢?> — (2, the unitary
operator U : £2 — ¢2, and the diagonal operator A : ¢? — ¢ such that

<ei7 Zlej>f2 = <¢1; Z;'>;u <€7;, Lej>€2 = <Zi7 ¢j>#a <ei7 Uej>f2 = <¢1; 2j>;u <€7;, Aej>€2 = )\1574

Here, D(Z’) is defined as the dense subspace of £ whose elements Zoio cje; satisfy Zf? ol{®is 2i) cjl? <

oo. Note that Z’* and L are the matrix representations of the mappings ¢, — z ,and ¢; — z;, respectively,

in the orthonormal basis {¢g, ¢1,...}. With these definitions, the N x N matrlces with elements (e;, Z'e;) 2

and (e;, Le;), which represent Z’ and L, respectively, have £? summable columns and rows respectively.
Next, note that L is a left inverse of Z’, as can be verified by computing

(e LZ'ej) = (21 83)ulbsr 20u = D (2, 83)u(bss )b 200 = D > (20 &3 (b5 1)l bss 2
7=0 7=0 7=0 k=0
= <Z ¢j7zl u¢]az<¢jazl/>u¢k> = <Zi7zl/>l»1« = 6il' (24)
7=0 k=0

m
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Similarly, one can verify the identities L = U*A'/2 and Z’ = A~'/2U. Using these results, and defining

I, : /2 — £? as the canonical orthogonal projection onto span{eg, ..., e;_1}, we obtain
Z'ILL = AV 2UILU*AY? = A-YV2IAY? =10, Z'1LL l—> Id. (25)
— o0

By [70, Lemma 2.1], (24) and (25) imply that the columns of the matrix representation of Z’, i.e., the
eigenfunctions 23-, form a Schauder basis of L?(x). The unconditionality of this basis follows from the fact
that if the z; are permuted, (25) still holds, but with the rows and columns of the matrix representations
of U, Z', L, and A correspondingly permuted. This completes the proof of Claims (iii) and (iv).

In Claim (v), the fact that the ¢; are eigenfunctions of W follows from Lemma 18 (ii). We also have

(=KG % =Uz,

and because U acts as a unitary operator from L?(u) to K, the fact that {Z, Z1, ...} is an orthonormal basis
of L?(u) implies that {Co, 1, ...} is an orthonormal basis of K, proving the claim.

Finally, in Claim (vi), note first that all of the summations are well defined and independent of ordering
due to the unconditionality of all the bases involved. The results for V and W follow from standard properties
of Hilbert-Schmidt, skew-adjoint operators. Here, we will only verify the representation of B, as the case for
A, is analogous. By Claim (iv), every f € L?(p) has a unique expansion f = Z?io a;z;, with the summation
holding in L?(p) sense. Then, since Bz; = iw;z; and B is bounded,

oo o0 o0
Bf=B8B E ajzj = g a;jBz; = g a;jiw;z;.
Jj=0 Jj=0

Jj=0

The fact that Bf = 372 (], f)uiw;z; then follows from the identity below for the coefficients a;:

o0 oo oo
<Z;‘»f>y_<zé'»zak2k> :Zak@;‘,zk);tzzakéjk:aj'
k=0 k=0 k=0

m

This completes the proof of the claim and Theorem 9. O
Proof of Theorem 10. It follows from the strong convergence G, = Id in Assumption 4 that

(Br =V)flle2quy = tim G-V = V) fll2gy = lim [(Gr = 1)V f|l2g) =0, Vf € D(V?),

lim ||
T—0t

proving Claim (i). Turning to Claim (ii), it follows from Lemma 14(i) that D(V?) is a core for V, and thus

by Assumption 4 and Lemma 14(ii) that, as 7 — 0%, V, converges to V in strong resolvent sense. The

strong convergence of Z(V,) to Z(V') then follows by Proposition 13(i). The result for U*Z (W, )U, follows
from the fact that this operator is equal to Z(V;), by (15).
To prove Claim (iii) note first that, by standard properties of the Borel functional calculus, Z(V,) is a

uniformly bounded family of operators with ||Z(V;)|| < || Z]|coir). As a result, it follows from the uniform
boundedness principle that Z(V;,)G~? 2 Z(V), as 7 — 0F. Similarly, G~'* is uniformly bounded, so the
strong 7 — 0T limit of Gi/QZ(AT) is equal to the strong 7 — 07 limit of Z(A,). However, Gi/ZZ(AT) =
Z(VT)Gy2 by (16), and we conclude that Z(A,) 2 Z(V), as claimed. That Z(B,) = Z(V) then follows
immediately from the fact that B, = —A*. The latter result leads in turn to the strong convergence
K:Z(WN; 2 Z(V) on He,, since, by Theorem 7(ii) and complex analyticity of Z, K*Z(W,)N, and
Z(B;) are equal operators on H .

Next, the strong convergence of E,(Q) to E(2) in Claim (iv) follows from Proposition 13(iii). Equa-
tion (15) then leads to the result for U*E, (Q)U;. Finally, Claim (v) follows from Proposition 13(vi). O
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7. Proof of Theorems 1, 2 and Corollaries 3, 4

Proof of Theorem 1. First, note that by Lemma 11(ii), the sequence {);}%2, is summable. Moreover, since
Aj <1, {A]}32, is summable for every ¢ > 1. Now define 7, ; = (Ar;/); )1/2. Due to the exponential decay
of the A\, ; in (10), the sequences {r! .}22, and {r] /)\;}32, are summable for every ¢ > 1 and 7 > 0.
Observe now that 1 ; and p, can be expressed as

oo
1 2
Yrj =15 = rT,j / Pg;, p‘r T y Zr ,jw] ) (26)
7=0

It therefore follows from the summability of {TEJ 720 that for every 7 > 0, the series for p,(z,y) also
converges absolutely and uniformly on X, x X,,, and condition (ii) of Lemma 17 is satisfied. Next, observe
that for every j € Ng and a € {1,...,7},

(O zrr,jAjl/z/p(-,y)%(y) dv(y), Vr;= TnjA{l/Q/VO‘p(-,y)%(y) dv(y),
M

M

and thus |[¢+ ;[ crar) < 775, ||p||CT(M><M) Let now V; f and V; f denote the covariant derivatives of f €
C'(M x M) with respect to the first and second variables, respectively. Defining f;(z,y) = ¥ ;(2)-;(y),
and noting that f; is a C"(M x M) function by C" regularity of p (and thus 1;), we have

. _ a8 ) 2 )
1 fillerany = . 66{; o H (VIVQ) 1 (:c,y)‘ COM;T~+B M) — il
Ca+f=m

where, C is a constant equal to a multiple of ||p|

é,.(MxM). This bound implies that {Hfchr(M)};iO €,
and condition (i) of Lemma 17 is satisfied. We therefore conclude that Lemma 17 applies, and as a result,
for every x,y € M, 3372 fi(x,y) = 3272 %r,;(x)1r;(y) converges in C"(M x M) norm to a C"(M x M)
function, p,, as claimed.

Next, we begin our proof of Claim (i) by showing that p, is the reproducing kernel for an RKHS. Fixing
7 > 0, we start from the pre-Hilbert space Hy = span{v- ;}, equipped with the inner product

m—1 n—1 m—1n—1
< Z a;itr g, Z bjwj,7'> = Z Z a;dijb;.
i=0 =0

o, =0 j=0

By (26), for every f = Z; 0 cji/JTj € Hy, we have

n—1 2 n—1 n—1
£ = 1D eirrgtbs|| =D IreilPlesl> < C e = Cllf 1,
J=0 o IO J=0

where C' = maxj6N0|rT,j|2. This implies that every Cauchy sequence in Hy is a Cauchy sequence in H,
and as a result the Hilbert space completion of Hy, denoted H, can be identified with a subspace of H.
In particular, H is a Hilbert space of functions on M with an orthonormal basis {t, ]} 2o- We will next
show that H is an RKHS with reproducing kernel p, by showing that, for every x € M, the kernel sections
pr(x,-) lie in H, and function evaluation at z is a bounded linear functional on H equal to an inner product
with these sections. Indeed, since p is the reproducing kernel for H, for every = € M, the section p(z,-) lies
in H, and thus, by the Mercer representation for p, Z;io |95 (x)|* < oo. It therefore follows that
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Z WJT,j ZT W)J < o0,
j=0

and because {¢-;}32, is an orthonormal basis of H, p-(z,-) = > 72 ¢r j(2)¢ ; lies in H. Moreover, for
every x € M and f € H,

Z Vrjs i ¥rj( <Zw‘l',] z)r g, f > = <p7'(1'7')7f>Ha
7=0

H

which shows that pointwise evaluation on H is given by inner products with the kernel sections p.. We
therefore conclude that H is an RKHS, denoted H,, with p, as its C" reproducing kernel. As a result, p, is
positive-definite, and it induces integral operators P, : L?(v) — H, and G, = P*P,. It also follows from the
Mercer representation for p, that G, is a strictly positive, compact operator with the same eigenfunctions
¢; as G, corresponding to the eigenvalues 0 < A ; < 1, where A; o = 1 is simple. What remains to prove
Claim (i) is to show that G, is L?(v)-Markov ergodic. We will verify this assertion following the proof of
Claim (iii).

Turning to Claim (ii), note that for every j € Ny, the function wj/)\;/Z equals 97 ;/A;;, and thus lies
in H,. Moreover, this function lies in the same L?(v) equivalence class as ¢;, and because the ¢; form an
orthonormal basis of L?(v), it follows that #., is dense in L?(v). To verify the claimed inclusion relationships
between H and H,, we use (26) to characterize these spaces as

oo o0 oo oo
Zaj’(/}j : Z |a]“2 <00 g, H, = Zajrﬂjz/)j : Z |CLj|2 < o0
=0 7=0 3=0 =0

Now note that since A\, ; = exp[—7(1/A; — 1)], for every 7 > 0 and 7 € (0, 72), we have

>‘T2,j/>“r1,j = exp[(ﬁ — 7'2)(1/)\]‘ — 1)] <1, (27)

which shows that H,, € H,,. That H, C H follows from the fact that the r, ; are bounded. This completes
the proof of Claim (ii).

Next, turning to Claim (iii), we have already established in Claim (i) that for every 7 > 0, G, is an
L?(v)-strictly positive, compact, contraction on L?(v) with a simple eigenvalue A, = 1. The semigroup
property follows directly from the facts the ¢; form an orthonormal eigenbasis for all G, 7 > 0, with
eigenvalues A; ;, and for each j € Ng and 71,7 > 0, A7 47, j = Ar, jAr, ;. To establish strong continuity of
this semigroup, it is enough to show that for every f € L?(v) and € > 0,

TILISIJr H(GT — Id)fHLZ(,,) < 2e. (28)

Indeed, expanding f = Z;‘;O a;¢;, the partial sum f;, = Zf;ol a;¢; with L large-enough satisfies || f —
frllz2() < €. Then, because

L
(Gr —1d)f = (G- —1d) fr + (G = 1A)(f — fr) = Y _a; (Arj — 1) & + (G = 1A)(f — f1),
=0

and ||G-|| = A0 = 1, the last term in the above equation can be bounded as |[(G; —1d)(f — fr)llz2() < €
Now note that for each j, A\;; — 1 = exp (7(17)\;1)) — 1 converges to 0 as 7 — 0T, so that

||Zj;:0 aj (Ar; — 1) ¢jllr2) < € for 7 small-enough, and (28) is satisfied. This proves Claim (iii).
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We will now show that G, is L?(v)-Markov, completing the proof of Claim (i) and the theorem. By Hille-
Yosida theory for strongly continuous, contraction semigroups of positive, compact operators [71], there
exists a positive, self-adjoint operator £ : D(L£) — L?(v) with compact resolvent such that, for all 7 > 0,
G, = e "F. L is a diagonal operator with eigenbasis ¢; and corresponding eigenvalues

In particular, since Ay = 1 is simple, £ has a simple eigenvalue 0 corresponding to the constant eigenfunction
¢o = 1p. It then follows from results on Markov semigroups (e.g., [72, Chapter 14, Theorem 2]) that the
semigroup generated by —L is actually L?(v)-Markov ergodic. That is, for every 7 > 0, G, = e™ 7% is
a Markov operator with transition probability density p,(z,-) relative to v. This completes the proof of

Claim (i) and Theorem 1. O

Before proceeding with the proof of Theorem 2, we will state a useful proposition, which is a consequence
of the semigroup structure of the operator family {G},>0. In what follows, I, : L?(u) — L?(u) will denote
the orthogonal projection onto the subspace spanned by {¢q,...,dr_1}.

Proposition 19. Under the assumptions of Theorem 2:

(i) AsT— 0T, GT_I/2 converges pointwise to the identity on Hy,
(i) For every T > 0, the compactified generator V, : L?>(pn) — L2(pn) from Assumption / is equal to
a*vay”.
(iii) For every T >0, A;, B, V,, and W, are trace class operators.
(iv) The operator families {A; >0, {Br}r>0, {Vs}trs0, and {W;},50 are p2-continuous.
(v) AsT — 0%, A, By, Vs, and UsW.U, converge pointwise to V on D(V).

Proof. By (27), for every j, A, ; increases strictly monotonically as 7 — 0%, which means that A_ 1/ 2

decreases strictly monotonically. Now, since D(Gr 1/2) D(N;) (See Section 4.1) and G- Y2 T AL 1/2¢J,
for every f € Ho and 0 < 7/ < 7, we have ||GT, fHLz(#) < HG; fHL2(u)7 and thus

H., C D(G;Y?) C D(G.?).
Therefore, fixing € > 0 and 75 > 0, to prove Claim (i) it is enough to show that
Tim [|GZV2f = fllpegy = lim (G2 —1d) fllLa < 26, Vf € D(GZY?). (29)
To that end, we begin by using the triangle inequality to write down the bound
(G2 =1d) fll L2y < IGZY? =TT f| 22y + (G ? = 1d)(Id =T1L) £ ]| 2 - (30)

Now, since G, and G 2 are diagonal operators, they commute with II; and Id —IIy. As a result, for every
T € (0,7), by (27),

(G7Y2 —Td)(Id —TIL) £ r2() < (G = Td)(Id —TIL) £l r2(y = I|(1d —TIL) (G2 = 1d) £l 12

and the last term vanishes as L — oo. Therefore, for L large-enough, the second term on the right-hand
side of (30) is less than e for every 7 € (0, 7). Similarly, for any fixed L, for 7 small-enough, the first term
is also less than €, proving (29) and Claim (i).
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To prove Claim (ii), note that for every 7/ > 0,
Var: D G32VG? = G VG,

where the last equality follows from the semigroup structure of {Gr},;>o. However, the range of G lies
in the domain of V, so we conclude that Vo = G VG = G A, Setting 7/ = 7/2 and noting that
Grpo= Gl/Q leads to the claim.

Next, to prove Claim (iii), observe that V. =G, /2B /2, which shows that V. is trace class since G.. /2
is trace class and B; /3 is bounded. Similarly, we have B; = B /3G /o, which shows that B, is trace class.
That W, and A, are trace class then follows from the fact that the former is unitarily equivalent to V. and
the latter equal to the negative adjoint of B..

Turning to Claim (iv), we will only prove p2-continuity for {V;},~o. The result for {W,},-o follows
immediately by unitary equivalence of V; and W, and the results for {A,},~o and {B;},;>¢ can be verified
analogously to the proof for {V;},o below.

First, by Claim (ii), it is sufficient to establish p2-continuity for the family of operators {G,A;};~o. That
is, fixing a quadratic polynomial @, we have to show that the operator norm ||Q (G- A7 )| 12, is a continuous
function of 7 > 0. This is in turn equivalent to showing that 7 — Q (G, A;) is a continuous map in the
L?(1) operator norm topology. Note that this continuity is not affected by the addition of a constant term
to the polynomial ). Thus, without loss of generality, we may assume that @ is a homogeneous polynomial
of the form Q(x) = az?+ Bz. By Theorems 1 and 5, G, and A, are both Hilbert-Schmidt integral operators
with kernels p, and p’, respectively. Since the composition of a bounded operator with a Hilbert-Schmidt
operator is again a Hilbert-Schmidt operator, it follows that

QG A;)=aG,0A,0G,0A, + G0 A,

is Hilbert-Schmidt. As a result, because the Hilbert-Schmidt norm induces a stronger topology than the
L?(u1) operator norm, it is sufficient to prove the stronger claim that 7+ Q (G A,) is a continuous map in
the Hilbert-Schmidt norm topology.

By (8), the Hilbert-Schmidt norm of the kernel integral operator Q (G, A,) is just the L?(u x u) norm
of its kernel. Thus, denoting this kernel by g, : M x M — R, the task now is to show that 7 — ||g- || 12,
is a continuous function of 7, or, equivalently, that 7 + ¢, is continuous in the L?(y x ) norm topology.
That this is indeed the case follows from the claims below.

(a) 7+ p,; and T+ pl. are continuous in the L*(u x w) norm topology. Indeed, by (10) and (26),

o0

L 00 e}
2 1/2 1/2 2 1/2 1/2
o7 = prellfagy = D | —Ar{,j‘ SO LN X Mt X M

Jj=0 Jj=0 Jj=L+1 j=L+1

‘ 2

so that for L sufficiently large, the last two terms can be made arbitrarily small, whereas for every
fixed L the term Z]L:o |/\1]/2 - )\l{i|2 converges to 0 as 7 — 7’. This establishes L?(u x 1) continuity of
7+ pr. The claim for 7 — p.. follows analogously.

(b) If a;,by : M x M — R are two kernel families depending continuously on T with respect to L*(uu x p)
norm, then their composition, c.(x,y) = [,, ar(x,2)b;(2,y) du(z), is also continuous. This claim can
be verified via a standard calculation in analysis, which will be omitted here.

The continuity of 7 — g, then follows from these results since g, is equal to a sum of various compositions
of p; and p.. This completes the proof of Claim (iv).
Finally, to prove Claim (v), fix f = Z;io a;¢; € D(V), and observe the following:
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(a) G.f is a family of functions in D(V), converging, as T — 07 to f. The convergence follows from
Theorem 1(iii). Moreover, since G, has a C! kernel p,, the G, f have C! representatives. Thus, G, f
lies in D(V'), as claimed.

(b) P-f is a Cauchy sequence in H. To verify this, fix 79 > 0. Then, for every 7,7’ € (0,79),

o) L o)
1/2 1/2)2 1/2 1/2\2 1/2 1/2)2
HEJ—PJWH=§(M@_A4>|%P:§:QJJ_&Q>WWH‘§:(M@_A4)|%ﬁ

=0 =0 j=L+1

and therefore, since A, ; € [0,1) for every 7 > 0 and j € Ny, we obtain

L 2 e oo
. . 1/2 1/2
limsup || P f — P, f13, < hmsupz ()\T{_’j —)\_n/j) la;|? + 2 Z la;|? = 2 Z |aj|?.
T0—0+F To—0% S5 j=L+1 j=L+1

The above inequality holds for every L € N, and the last term vanishes as L — oo, proving the claim.

(c) A,f is a Cauchy sequence in L*(u). To verify this, note that V. P* : H — L?(u) is a bounded operator
by Theorem 6(i), and therefore, since P, f is a Cauchy sequence in H, A.f = VPP, f = VP*(P.f) is
a Cauchy sequence in L?(u).

We have thus shown that G, f is a family of functions in D(V) which converges as 7 — 07 to f, and
whose image under V', namely V(G f) = A, f, forms a Cauchy sequence. Since V is a closed operator, the
limit of this Cauchy sequence is equal to V f. Thus, A, f converges to V f, and since f was arbitrary, it
follows that A, converges to V pointwise on D(V). In addition, because G, A, = Var, and G, is uniformly
bounded and converges to the identity, it follows that V. also converges pointwise to V on D(V). Note
that we have used Claim (ii) to deduce equality of G, A, and Va,. Finally, the pointwise convergence of
B, = G,V to V follows directly from the pointwise convergence of G, to the identity, and the result for
UW U, = V. is obvious. This completes the proof of Proposition 19. O

Proof of Theorem 2. First, Proposition 19(iii) established that W, and B, are trace class. Moreover,
Claim (i) of the theorem follows from Theorem 6(ii), Claim (ii) follows from Theorem 7, and Claim (iii)
follows from Theorem 9(i) and (14). Aside from the convergence of P*Z(W.)N; to Z(V) for bounded
continuous (as opposed to holomorphic) functions, Claims (iv)—(vii) will follow from Theorems 9, 10 and
Proposition 19(iv) if we can show that p, satisfies Assumption 4. Theorem 1(iii) establishes the condition
in this assumption that G, converges pointwise to the identity. In order to verify Assumption 4, it thus
remains to be shown that, as 7 — 07, V, converges pointwise to V on D(V?). This follows immediately
from Proposition 19(v), where we have shown the stronger result that V. converges to V pointwise on the
whole of D(V').

What remains to complete the proof of Theorem 2 is to show that P*Z (W, )N, converges strongly on
H, to Z(V) for bounded continuous Z. By (19), for every f € H., we have

P Z(W )N, f = PrUUZ(W UG 2 f = G2 Z2(V,) G2 f,
and therefore
PrZ(Wo N, f = Z(V)f = GY2Z(V)G V2 f = Z(V) f

= GVPZ(V) (G2 1) f + (G2 Z(V,) — Z(V)) .

By Proposition 19(i) and the fact that G¥*z (V;) is a uniformly bounded family of operators converging
pointwise to Z(V), as 7 — 07, each of the terms in the right-hand side of the last equation converges to 0.
This shows that P*Z(W, )N, f = Z(V) on H, completing the proof of Theorem 2. 0O
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Before proving Corollary 3, we will state and prove a proposition on the e-approximate spectrum of U*.
One of the important claims we make is that, suitably restricted to the space P*H = D(N') C L?(u), e*Br
converges in norm to U?, as opposed to merely strongly as shown in Theorem 2(vi). In particular, we will
consider the quantity Q(t,7) = ||(U? — ¢!B~)P*|| for t € R,7 > 0, where |[-|| denotes H — L?(u) operator
norm.

Proposition 20. Let Assumptions 1, 2 hold, with r = 2. Then, the function Q is continuous, vanishes at
t =0 for every T € (0,00), and converges to 0 as T — 0% for every t € R. Moreover, for every eigenfunction
¢ of W, with eigenvalue iw, and every t € R, et lies in the e-approzimate point spectrum of U, with

e=Qt,7)VD(z) + 1, 2z =P /IIPlr2g, U 2 — €97 20|12y < €.
Moreover, for every fived € > 0, R(e,7) defined in Corollary 3 diverges as 7 — 0%.

Proof. By arguments analogous to those used to prove Proposition 19(iv), the map (¢,7) +— (U* — e!Br) P*
is continuous in the Hilbert-Schmidt norm topology of operators from H into L?(u) at every (¢,7) € RxR.
This implies continuity of (t,7) ~ (U* — e*B7) in the operator norm topology, and thus continuity of Q.
That Q(t,7) vanishes as 7 — 0% at fixed ¢ follows from the fact that U* — e!Pr converges pointwise to 0,
and P* is compact. That Q(0,-) = 0 is obvious. Next, to verify that e™7¢ lies in the e-approximate point
spectrum of U' with € = Q(t,7)\/D(2,) + 1, we use Theorem 7(ii) to compute

|U'P;¢ — eintP:CTHLZ(u) _ |U'Pr¢ — P:etWTCTHL?(u)

||UtZT _ eiWTtZT||L2(y,) _

1PCrll 2w - 1PrCrllzeu
U =P PEC 2 _ @ - B P*Ce | L2y
HP'?CT”L%/L) ”P*CTHLZ(H)
¢ ll9

Ut — etBrypr|| 21— = D(z,) + 1, 31
< I( err) HHP*CTIIW) Qt,7)vVD(zr) + (31)

Finally, fix an € > 0. It follows by continuity of Q, that for every T' > 0, t € [T, T}, and small-enough
7 > 0, we have Q(t,7) < e. This implies that R(e,7) > T for small enough 7. Since T' was arbitrary, we can
conclude that R(e,7) diverges as 7 — 0. O

Proof of Corollary 3. The first inequality follows from the definition of Q(¢,7) and R(e, 7), in conjunction
with (31). Next, to prove Claim (i), it is sufficient to show that ¢! lies in the spectrum of U for every
t € R. To that end, we use the triangle inequality and the fact that ||z;||z2(,) = 1 to obtain the bound

U2 — ez |lp2gn < U 2r — €7 2 || L2y + €78 — €™, VT € R, (32)

Now, because lim, _,o+ w, = w, there exists 79 > 0 such that for all 7 € (0, 79), |e®“t —e™| < ¢/2. Moreover,
because T'(e, 7) is unbounded, there exists 74 € (0, 70] such that ¢ lies in the interval (—=T'(e/2,7),T(e/2, 7))
from Claim (i) for all 7 € (0,71). As a result, the bound in (31) becomes

U 2 — €' 2|12 < €/2+€/2 =€, V7€ (0,71).

Since € was arbitrary, we conclude that U’ — e*! has no bounded inverse, i.e., €/“? lies in the spectrum of
Ut, as claimed.

Claim (ii) will be proven by contradiction. In particular, assume that there exists a sequence 7; > 0
monotonically converging to 0 as j — oo, and d > 0 such that for every j € N, z;, is at distance at least 0
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from the 1-dimensional eigenspace Z of V' corresponding to iw. Here, as a measure of distance of a vector
z € L*(p) from Z we use d(z, Z) := inf{||z — 2/||2(,) : 2’ € Z}. Since ||zr, ||p2(u) = 1, it follows from the
boundedness of D(z,,) that ||z, ||~ is bounded. Therefore, by compactness of the embedding of D(N') into
L?(), 2, has a subsequence converging to some vector z € L?(u). By assumption on the 7;, d(z, Z) is
greater than . We will complete the proof by showing that z lies, in fact, in Z, leading to a contradiction.
To that end, note that the condition that D(z,) is bounded, together with the fact that R(e,7) diverges
from Proposition 20, implies that T'(e,7) diverges. Thus, the conclusion of Claim (i) holds, and z satisfies
Uz — e z|| 12,y < € for every € > 0. We therefore conclude that U’z = €™’z for every ¢ € R, i.e., that z
lies in Z, in contradiction with the assumption that d(z, £Z) > §. This completes the proof of Claim (ii). O

Proof of Corollary 4. Since {¢g, ¢1, ...} is an orthonormal basis of L?(u), for L large enough, fr, := Il f sat-
isfies || f — fLllp2(,,) < €/2. Moreover, since {U"}4er is a unitary group, the inequality | U f — Uth||L2(M) <
€/2 is preserved for all t € R. Moreover, fr, lies in Ho, as it is a finite linear combination of the ¢;. Now
define f. = Nfz, so that f. € Heo, and P*f. = f1. An application of Theorem 2(v) with Z(iw) = ¢
then shows that, as 7 — 0T, ||U!fy — PretWr feHLZ(M) converges to zero, where the convergence is uniform
for t € T by continuity of the map t — Ul fr — Pre!Wr fe. Therefore, there exists 79 > 0 such that for all
7€ (0,70) and t € T, |U fr, — Pre™~ f|| 124y < €/2. Corollary 4 is then proved by the bound

HUtf - P:eitwrfs

< |0 f = U il oy + [ 12 = PrE .

)<e/2—|—e/2:e. O

L2 (p) L2 (p

8. Data-driven approximation

We now take up the problem of approximating the operators in Theorems 1 and 2 from a finite time
series of observed data and without prior knowledge of the dynamical flow ®!. Specifically, we consider that
available to us is a time series F'(xq), F(x1), ..., F(xn_1), consisting of the values of an observation function
F : M — Y that takes values in a data space Y, sampled at a fixed time interval At > 0 along an orbit
Zg,T1,...,xn_1 of the dynamics. As already alluded to in Section 1, besides the lack of knowledge of the
dynamical flow map ®!, this task presents a number of obstacles, including:

(i) In general, one does not have direct access to the ergodic invariant measure p and the associated L?(u)
space, but is limited to working with the sampling measure puy = Zg:_ol 0z, /N supported on the finite
trajectory {xo,...,xn—_1}. In fact, even if u were explicitly known, its support X would typically be
a non-smooth subset of the ambient manifold M, of zero Lebesgue measure (e.g., a fractal attractor),
significantly hindering the construction of orthonormal bases of L?(u) by restriction of smooth basis
functions defined on M.

(ii) In many experimental scenarios, the sampled states will not lie exactly on the invariant set X, as it is
not feasible to achieve complete convergence of the trajectory to that set.

(iii) Measurements are not taken continuously in time, preventing direct evaluation of the action of the
dynamical vector field V on functions.

To address the first two issues, we take advantage of the fact that in many ergodic dynamical systems
encountered in applications, the statistical properties of observables with respect to the sampling measures
associated with a suitable class of initial points xg coincide with those of the invariant measure [73], as
discussed below.

Basin of a measure. The basin of an invariant measure p is the set of initial points such that the sampling
measures py on the trajectories starting from them converge weakly to . More specifically, it is the set of
points zg € M such that for every continuous function f € C°(M),
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M M n=0
This set will be denoted B,,. If 11 is ergodic, as assumed throughout this work, then p-a.e. point in M lies
in its basin. The invariant measure p is said to be physical if B, has nonzero measure with respect to some
reference measure in the ambient manifold M. For instance, in typical experimental scenarios, initial points
are drawn from some distribution equivalent to a smooth volume measure on M. In such cases, physicality
of p ensures convergence of the data-driven techniques for a “large” set of initial conditions. While, in what
follows, we will not require that p be physical as an explicit assumption, it should be kept in mind that
some type of physicality is oftentimes an implied assumption in practical applications.

Finite-difference approximation. Following [17,18,74], to address the discrete-time sampling of the data,
we approximate the action of the dynamical vector field V on C” functions using finite differences. As a

concrete example, a scheme appropriate to the C! regularity in Theorem 2 and Assumption 5 is a central
finite-difference scheme Va; : CO(M) — C°(M), given by

f(@2(x) — f(@~2(x))
2 At ’

VAtf (z) = (33)
By compactness of M, for any f € C'(M), the error ||VAtf — Vf||CO(M) of this scheme vanishes as At — 0,
and is o(At) and O((At)?) if f lies in C?(M) or C3(M), respectively.

The assumptions underlying our data-driven approximation schemes are as follows.

Assumption 5. The dataset {yo,...,yn_1} consists of the values y, = F(x,) of an injective, C' observation
map F : M +Y into a manifold Y, sampled along a trajectory xo, ..., xx_1, T, = P (xg), starting from
a point xo € B, which is not a fized point of the dynamics. Moreover:

(i) The sampling interval At is such that p is an ergodic invariant measure of the map ®>t : M — M.
(i) k:Y xY = R is a C' symmetric, strictly positive-definite kernel with x > 0.

Note that Assumption 5(i) is satisfied iff w At is not a multiple of 27 for any Koopman eigenfrequency w.
For dynamics on a separable space, there can only be countably many such w, and thus Assumption 5(i) is
satisfied for every At in a full-measure, co-countable subset of the real line. The manifold Y will be referred
to as the data space. While it usually has the structure of a linear space (e.g., Y = R™), in a number of
scenarios Y can be nonlinear (e.g., directional measurements with ¥ = S?2).

The techniques described below will be based on the kernel k: M x M — R,

k(z,2') ==k (F(x), F(2)), (34)

induced from the kernel x on data space. Note that k(z, z') can be evaluated given the data points F'(x) and
F(z), without explicit knowledge of the underlying dynamical states x and z’. Moreover, the assumptions
on x and F in Assumption 5 ensure that k is also a C'' symmetric, strictly positive-definite kernel. We will
discuss how to construct x when the injectivity condition on F' is not satisfied below.

Data-driven Hilbert spaces. Since the starting point zy is not a fixed point, and p is an ergodic invariant
measure of ®2¢, all sampled states xq, . .., 2y_1 are distinct. Therefore L?(yy), is an N-dimensional Hilbert
space, equipped with the inner product (f, g)., = 271:/:—01 f*(xn)g(zn)/N. This space consists of equivalence
classes of complex-valued functions on M having common values at xg, ...,zy_1 (i.e., the support of puy).
It is clear that L2(uy) is isomorphic to the space CV equipped with a normalized Euclidean inner product.
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Note that one issue with establishing convergence of data-driven approximation techniques in this setting
is that there is no obvious way of comparing functions in L?(ux) and L?(u). Here, we avoid this issue by
performing our approximations in suitable RKHSs, whose elements can be projected into both L?(uy) and
L?(i). The main elements of our approach, which closely parallel the theoretical results in Section 2, are
(i) construction of a family of L?(uy)-Markov kernels with its associated semigroup and RKHSs, H., x;
(ii) construction skew-adjoint operators W, y on M.y approximating the compactified generator W, and
evaluation of the spectral decomposition and functional calculus of these operators; and (iii) prediction of
observables by exponentiation of the data-driven generators. We will now describe these procedures, and
then, in Theorem 21, establish their convergence in the limit of large data. Pseudocode implementing our
approach is included in Algorithms 1-4 in Appendix B.

Markov kernels. Using the bistochastic normalization procedure described in Section 4.1 with v set to the
sampling measure px and k to the pullback kernel from (34), we construct a C, L?(uy)-strictly-positive,
Markov ergodic kernel py : M x M — R. We then apply the construction in (10) with v = py to obtain a
family of kernels p, n : M x M — R, 7 > 0, which are also L?(uy)-strictly-positive and Markov ergodic.
Associated with py and p, n are RKHSs Hy and H, n, respectively, as well as the corresponding integral
operators Py : L*(un) — Hn, Prn : L?(un) = Hrny Gy = PPy, and G, n = P} xPr n. In accordance
with Theorem 1, the latter form L?(uy)-ergodic Markov semigroups for each N, with associated eigenvalues
1=XNo> A N1 > > AN n—1 > 0, L?(uy)-orthonormal eigenfunctions {¢, n.o,-.,dr N N_1}, and
H -, n-orthonormal functions {¢; no,...,%r n,nv—1} (the latter, defined analogously to the ¢ ; in (10)). The
RKHSs H, n also have associated Nystrom extension operators, Nﬂ N LQ(H ~N) — H, n. Note that because
the L?(un) are finite-dimensional spaces, and the eigenvalues A,y ; are strictly positive, the Nystrom
operators N, y are everywhere-defined.

Data-driven generator. Next, we construct finite-rank approximations of the compactified generator W..
For that, note that every finite-difference scheme Va; for the dynamical vector field induces a corresponding
operator VNVM on L?(uy). For instance, the central finite-difference scheme in (33) leads to

VN,Atf(xn) = f($n+1)2;tf(xn—1)’ n e {1, P N — 2}, VN,Atf(-'L'O) = VN,At(«TN—l) =0.

While this operator is generally not skew-adjoint, it can be employed to construct a skew-adjoint operator
Vn.ae: L2(un) — L?(uy) by antisymmetrization, namely,

Vvat — Vv ae

5 (35)

VAt =
The latter is a data-driven approximation of V, which adheres to our general scheme of approximat-
ing V using skew-adjoint operators. Note that Vi a; is fully characterized through its matrix elements
(br N.is VN.ALOr N, j) un i the ¢r n ; basis of L?(uy), which are in turn computable by applying (35) to the
eigenfunction time series ¢, n ().
Next, using Vv, a¢, we construct the skew-adjoint operators W, y a+ on H, n, defined as

Wrnat = PNV atPr N

It follows by definition of the 1,  ; basis functions of H, x that the matrix elements of W n A+ are related
to those of Vi a+ by

(V7N We N AtYr N )M,y = )\}—,/]%[77;<¢T,N,i7 VN,At¢T,N,j>/LN/\}-7/]%[7j- (36)
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Note that as 7 and j grow, the matrix elements of W, y A+ diminish in magnitude compared to those of
Vn.at due to the decay of the eigenvalues. This is a manifestation of the RKHS regularization resulting
from conjugation of Viy A+ by Pr v

Remark. As is well known, finite-difference schemes are prone to errors if the sampling interval At is not
sufficiently small, or high-frequency noise is present in the data. The extent to which the data-driven
generator matrix in (36) is susceptible to these issues ultimately depends on the kernel k., as it governs
the data-driven basis functions 1, y ;j appearing in the approximation. For instance, in [17, Theorem 22] it
was shown that for quasiperiodic systems, incorporating delay-coordinate maps in the construction of the
kernel can remove temporally i.i.d. noise of arbitrarily large variance, allowing (36) to be evaluated with
“clean” eigenfunctions. While in systems with continuous spectrum that technique may have limitations
(as adding delays would eventually suppress the kernel eigenfunctions spanning the continuous spectrum
subspace H, [18]), delay-coordinate maps should still be a useful tool for enhancing the noise robustness of
the approximation in (36). Methods for controlling errors with respect to At would include composing the
kernel with averaging operators to suppress high frequencies, or performing differentiation in the Fourier
domain using spectral tapering methods. While exploring the efficacy of such approaches lies beyond the
scope of this work, for the purposes of the methods presented in this paper, any convergent approximation
of V can be employed in place of Va, from (33).

Spectral truncation. In what follows, we will perform coherent pattern extraction and prediction using
various spectrally truncated observables and operators. For that, we will need the orthogonal projec-
tions Iy g, : L?(uy) — L?(uy) and II. N1 : Heny +— M-y mapping into span{¢no,...,on,r—1} and
span{t; N.0, - -, ¥r N.L—1}, respectively. With some abuse of notation, in what follows ¢ : B(M) — L?(p)
and vy : B(M) — L?(uy) will be the canonical inclusion and restriction maps, respectively, on the space
B(M) of bounded, complex-valued, Borel functions on M, equipped with the supremum norm. With these
definitions, given an observable f € B(M) that is to be predicted, we will treat it by first mapping it into
the spectrally truncated observable

Sy =Unpenf € L?(un), 1<L<N. (37)

Moreover, the operators used for coherent pattern extraction and prediction will be spectrally truncated
analogs of W, n A, namely

W£§37At =1 niWenadl, g, 1<L<N. (38)

The reason for these spectral truncations will become clear below. Note that in applications the parameters
L in (37) and (38) need not be equal. Moreover, since 11, y n = Id, W(]X,)At is equal to W n At

T!

Coherent pattern extraction. For any given L, W_ ]\), Ay is a skew- symmetrlc operator of rank at most L. In

particular, it is diagonal in an orthonormal basis of eigenfunctions (ﬂN’At,j € H,n,j€A{0,...,L —1},

. . . . . (L .
corresponding to purely imaginary eigenvalues zw£ ]3, At 1€

w L) (L) (L) (L)
TNAtCT N,At,j - TNAt,]CT N,At, 5" (39)

The eigenfunctions C N INR will act as data driven coherent observables, approximating the eigenfunctions
Cr,; of Wr. It should be noted that C N At,; I8 a continuous function, constructed from the training data
F(zg),...,F(xy—1), which can be evaluated at any © € M from the corresponding value F(z) of the
observation map in Y. This procedure is known as out-of-sample evaluation.
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LN 2 Oy s
B(M) —— L*(pNn) — span{¢nN,0,---, PN, L' —1}
Nowows
L2 () Hrn

2| |z(w2)

Fig. 2. Diagram illustrating the construction of the data-driven forecast function g. n A, from (40) and its relationship to
Z(V)uf. Starting with a bounded observable f € B(M), the left loop in the diagram leads to Z(V).f, and the right loop to
tgr,N,at,L,’- Note that Z(WﬂEL]\)]At) maps into the L-dimensional subspace of H. n spanned by {¢r n,0,...,%r ~N,L—1}. The
dashed arrow indicates discrepancy (error) between the data-driven function g, n a¢,r,z’ and the true observable, Z(V)¢f. The
composition of maps N; ny oIln 1 otn has been demarcated separately as an operator AV- n, . This operator represents an entire
data-driven procedure which takes as input a B(M) function f, projects it onto its first L’ components of a basis for LZ(HN), and

then outputs the Nystréom extension in H, n. This output can then be the input of any operator Z(W](\,Lz_), as above.

The reason for working with WT(Ij\), Ap> as opposed to the bare data-driven generator Wi n a4, is twofold.
First, in what follows, we will be interested in establishing a form of spectral convergence for the data-
driven generators in the limit of large data—keeping L fixed while increasing N will allow us to ensure
uniform convergence of the ¢, y a¢; with j < L —1 to the corresponding 1, ;. Moreover, working at a fixed
L < N allows to control the computational cost of data-driven approximations of W.. In fact, following the
computation of the L X L matrix representing WT(L]\), Ap the cost of acting with this operator on observables
becomes independent of the much larger data size N.

Functional calculus and forecasting. By skew-adjointness, the functional calculi of WT(LA), A; €an be conve-

niently constructed by applying any given function Z : iR — C to their eigenvalues, and projecting to the
corresponding eigenspaces. That is,

L—-1

@ _ (L) (L) (L)
ZWoNa) = Z Z(iwy N ae NG N A Ve x G N AL
=0

Given such a bounded continuous function Z and a continuous observable f € C°(M), our approximation
for Z(V)uf is the H, y function

9r.NAtLL = Z<W-£’l]/\)7’At)NT,NfN,L'7 (40)

where fy 1 is given by (37), and L, L’ are chosen such that 1 < L’ < L < N. Here, the role of the

constraint L' < L is to control the error in the dynamical evolution of fxn - by the operator etWT(va3 as L
increases, keeping L’ fixed. As with the eigenfunctions in (39), g- v ¢,/ can be evaluated at an arbitrary
state © € M, given knowledge of F(z) € Y. The relationships between the various maps employed in the
construction of this approximation are depicted diagrammatically in Fig. 2.

With these constructions, we have the following convergence result.

Theorem 21 (Data-driven approzimation). Let Assumptions 1, 2, and 5 hold. Then:

(i) Every eigenfrequency w,; of Wy, 7 > 0, can be consistently approximated by the eigenfrequencies
wH) of W in the sense that lim lim (L) =W,
T N,At,j T L—oo At—0,NAt—00 Wr N A j = Wr,j-

(if) For every eigenfunction (; ; of W, corresponding to wr j, there exist eigenfunctions (:iLA), At Of WT(LA), At

. (L) . : (L)
corresponding to Wy N AL such that imp oo HMA¢—0, N At— o0 ||(T’N’At’j — Crjlleoany = 0.

(iii) For every bounded, continuous function Z : iR — C and every bounded observable f € B(M),

lim lim lim lim 1Z(V)ef = 1grNacL,ll 2w =0, (41)

L'—s00 1—0t L—>oo At—01T,NAt—oco

where gr N AL L € Hren @S the data-driven approzimation from (40).
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Remark. Theorem 21 establishes convergence of the data-driven approximation g, x a¢,r,1/, constructed for
L’ < L. Since L’ is the last asymptotic control parameter taken to oo in (41), an alternative formulation
would be to keep L’ constant, and state

T1_1>1101+ Jim AtaO*l%%lAt—)oo 1Z(V)ef = tgrNatLi L2 =0, Vf €span{go,...,¢r -1}.
In this formulation, L’ controls the dimension of the space of response observables on which we perform
prediction, whereas L controls the dimension of the hypothesis space [53] in which the forecast function
lies. Theoretically, we fix L’ to attain convergence since span{¢y, ..., ¢ —1} need not be invariant under
Z(V). In a numerical application with a fixed training dataset, the parameters L and L’ can be tuned
independently in a cross-validation step aiming to balance bias errors (increasing with decreasing L, L) and
generalization errors (increasing with increasing L, L’).

An application of Theorem 21(ii) for Z(iw) = €™’ leads to the following corollary, establishing the
convergence of the data-driven forecast functions for Ut f.

Corollary 22. For every f € B(M), the function fT(}?V’At’L’L, € H, n defined as

(t) twiy
fT,N,At,L,L’ =e€ 1—’N’Af’-/\/'r,N]-_-[I\/,L/LJ\Tf
is an approximation of U'f, satisfying

lim lim lim lim Ut — @ —=0.
L’—00T7—0 L—0o At—0+t,NAt—oc0 H f f’T‘,N,At,L’L’Hl;(/I/)

t : . . . L
Moreover, the map t — fT(71)V7At,L7L, is continuous, and the convergence is uniform for t lying in compact
intervals.

Remark. The order in which the limits in Theorem 21 and Corollary 22 are taken is important. In particular,
the first limits taken are those of N and At. This corresponds to the limit of large data, i.e., infinitely many
samples taken at arbitrarily small sampling interval. As stated above, in order to control sampling errors
and ensure spectral convergence of the data-driven operators, the limit of large data must be taken at a fixed
resolution L. After this, the limit L — oo is taken to facilitate a finite-rank approximation of W, and Z(W).
Next, the limit 7 — 07 is taken as the O-time limit of the Markov semi-group G, leading to convergence
of W, and Z(W,) to V and Z(V), respectively, in the sense of Theorem 2. Finally, in Theorem 21(iii) and
Corollary 22, the limit L' — oo is taken to facilitate convergence to the spectrally truncated observable
Hzef € L2(u) to tf. The latter limit is analogous to an € — 07 limit of the tolerance € in Corollary 4.

Before proving Theorem 21, we will state an auxiliary lemma. In what follows, IL; ; will denote the
orthogonal projection on A, mapping into span{; o,...,¥r -1}

Lemma 23. Under the assumptions of Theorem 21, the following hold:

(i) The eigenvalues Ar n; of G. N converge to those of G., i.e., for every 7 > 0 and j € N,
my oo Ar,N,j = Arj. Moreover, for every H, basis function 1, ; there exists a sequence of Hr N
basis functions Y- n ;j converging to it in C°(M) norm in the same limit.

(if) For every T > 0, the matriz elements of W, n Ay from (36) converge to the corresponding matrix

elements of W, i.e., ima; o+ NAt—o0 (Vr,Nis Wre N, AtV N )Mo v = (Vris Wtz ), -
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(iii) As L — oo, the finite-rank, skew-adjoint operators WT(L) =1L, W11, 1 converge to W, in Hilbert-
Schmidt norm, and thus in H. operator norm.

Proof. Claim (i) was proved in [18], following the approach of [30], for Markov kernels constructed via
the kernel normalization procedure introduced in the diffusion maps algorithm [29]. The result for the
bistochastic Markov kernels from (20) follows analogously.

To verify Claim (ii), note first that the matrix elements (¢n,i, VN ,At®N,j) 12(uy) cONVerge to (@i, Vo;) 12
by convergence of the finite-difference approximation in (33) for C! functions, in conjunction with the fact
that the measure y is physical; see [18] for further details. The convergence of the (¢ n.i, Wr N At¥r N j)H, &
to (Yr., Wrpr ;). then follows from this result in conjunction with Claim (i).

Claim (iii) follows from the fact that {¢;;; = (¢¥rj, )u,¥ri : 4,5 € No} is an orthonormal basis of
the Hilbert space of Hilbert-Schmidt operators on H.,, and in this basis, every Hilbert-Schmidt operator
T :H; = H, can be decomposed as T = Z” 0
Zf,j:lo (Y75, Tr j )1, Yr i are equal to I L TIL; 1, and converge in Hilbert-Schmidt norm. Applying these
results for T'= W, leads directly to the claim. O

(¥r,i, Tr j)2, Y745 In this expansion, the partial sums

Proof of Theorem 21. Because, by Lemma 23(iii), WT(L) is a sequence of compact operators converging

in operator norm to the compact operator W, it follows that for every j € Ny such that w;; # 0, the

(L) (L)

eigenvalues iw, of WT(L) converge to iw;. Moreover, since, as follows directly from their definition, all Wr

have an eigenvalue at zero corresponding to constant eigenfunctions, we conclude that the convergence

wiLj) L—> wr; holds for all j € Ny. The convergence of the eigenvalues implies in turn that for every
? —

eigenfunction (; ; of W there exists a sequence of eigenfunctions (.~ (B) of Wit converging to it in H, norm

as L — oo. Claims (i) and (ii) will then follow if it can be shown that the eigenvalues of W( A), Ay CODVerge
to those of WT(L)7 and the corresponding eigenfunctions converge in C°(M) norm.

The convergence of the eigenvalues iwisz, Ar O ing) follows from the convergence of the matrix elements
of W(L]\), Ay tO W( ), as established in Lemma 23(ii). The existence of elgenfunctlons C( N of WT(wL]\)LAt
converging to CT’ J in C%(M) norm follows from the fact that both ¢ (L) N and C are expressible as finite

linear combinations of the ¥, x ; and ¥, ;, namely

L-1 L—1
§ : (L) (L) _ § : (L)
CT N,At,j — CT,N,At,l,ij;N’h CT,j - Cq-vld‘/w‘l"l’
=0 =0
L) _ (D) (L) T _ (D) (L) T :
where &% = (¢ N arojo - Crnann_1,) and el =(cig....,c.p ;) are eigenvectors of the Lx L

matrices representing WT(LA), Ay and W(L) respectively. By Lemma 23(i), the 1,y ; converge to v, ; in C°(M)
norm, and moreover for every eigenvector ¢ ﬁ ]) there exist ¢ AL )7 j converging to it in any vector norm. We
therefore conclude that CT N.Ar; converges in C°(M) norm to ( J , proving Claims (i) and (ii).

Turning to Claim (iii), we will verify that the limits in (41) hold in a sequential manner. First, defining
frr =T f, note that because Z (V) is a bounded operator and the Il converge pointwise to the identity,

mp oo [[Z(V)ef = Z(V) frrll g2, = 0. Thus, to verify (41), it suffices to show that

hm hm hm HZ(V)fL’ — LgT,N,At,L,L’ ||L2(H) = 0 (42)

7—01t L—=oo At—0t ,NAt—o0

Second, observe that f1 lies in Hoo, and thus, by Theorem 2(v), lim, o+ || Z(V) frr — L Z(Wo)N- frrll 2, =
0. As a result, to prove (42), it is enough to show that

lim lim ||LZ(W-,—)N-,—fL/ — L9r N,At,L,L’ ||L2(H) =0. (43)

L—oo At—0t ,NAt—oo



S. Das et al. / Appl. Comput. Harmon. Anal. 54 (2021) 75-136 117

Next, by Lemma 23(iii), limy o0 || Z(Wr)N; frr — Z(WT(L))./\/TfLIHHT = 0, which implies that (43) holds if
it can be shown that

li Z(wh) ;- , =0. 44
A0t A e 1. Z(W )N frr = tge Nasn,n L2 =0 (44)

The latter will follow in turn if it can be established that the vectors gy ar = Z(Wﬁﬁ\;’At)NT7NHN,L/fN7L/,

with fn, given by (37), converge to g = Z(WT(L))NTHL/fL/ in C°(M) norm. This fact follows from argu-
ments similar to the proof of Claim (i). That is, writing gy a¢ = Zf;ol CN,At;Vr N,; and g = Zf;ol cjtr i,
one can verify the claimed convergence from the facts that (a) the functions 1,y ; converge to ¢ ; in C°(M)
norm; and (b) the expansion coefficients cy a¢; and ¢; are determined from the action of L x L’ matrices
representing Z(Wﬁﬁ\),,At)NT,NHML/ and Z(quL))N'THL/ on the L’-dimensional vectors representing fn, r/
and frr, respectively, all of which converge in the appropriate limit by Lemma 23. The sequence of limits

in (42)—(44) then leads to (41), proving Claim (iii). This completes the proof of the theorem. O

Approzimation errors. As stated above, the convergence results in Theorem 21 and Corollary 22 require
that the limit of large data has to be taken before the limits involving the spectral truncation (L and L’)
and RKHS regularization (7) parameters. Yet, in practical applications, one typically works with a fixed
number of samples N and sampling interval At, and is faced with the question of tuning L, L', and 7 so
as to achieve optimal performance. In particular, even though from a theoretical standpoint one would like
to employ arbitrarily large L, L’ and arbitrarily small 7, such a choice would invariably lead to overfits
of the training data and/or numerical instability. In the context of prediction (i.e., Theorem 21(iii) and
Corollary 22), appropriate parameter values can be determined using cross-validation, i.e., by setting aside
a portion of the available training data as verification data, and choosing L, L', and 7, as well as other
parameters (e.g., bandwidth parameters of Gaussian kernels as in (46) ahead), so as to maximize prediction
skill in the verification dataset. In the context of spectral estimation (i.e., in the present work, coherent
pattern extraction), parameter selection is more challenging, as typically there is no a priori known ground
truth that can be employed for cross-validation. Instead, one way to proceed is through a posteriori analysis
of the results, seeking to identify eigenvalues and eigenfunctions of WT(L]\), A With minimal risk of being
affected by sampling errors.

One such a posteriori metric is the Dirichlet energy of the eigenfunctions, DN(P1>(,C7(_7LJ\),) A t,j)v induced on
L?(pun) by the RKHS H v according to (9). On the basis of well known results from statistical learning theory
[53] (generally established for i.i.d. data, though analogous results hold for equidistributed data in an ergodic
sense, as in the present work), the functional is a useful proxy for the sensitivity of CiLA), At,; to sampling
errors. In Corollary 3, we established that the Dirichlet energy is also useful for identifying dynamical
coherence. As a result, Dy (P ¢ iLA), At j) is a natural quantity to monitor for the purpose of identifying robust,
data-driven coherent observables. Still, the raw Dirichlet energy does not take into account another source
of error in our data-driven approximations, namely that we are approximating the unbounded generator

V by a finite-difference operator Vi a; of the form in (35). Such operators, and as a result WT(Ij\), Ap have
(L)

7,N,At,
that can be recovered at a given sampling interval At. In particular, eigenfrequencies close to that limit

L?(uuy) operator norm of at most 1/At, placing an effective Nyquist limit on the eigenfrequencies w

are expected to have high sensitivity to At. The above suggests assessing the robustness of the data-driven
eigenfunctions ( iLj\), Ar,; using a functional that depends on both the Dirichlet energy and eigenfrequency.
In the experiments presented in Section 9 ahead, we will employ the frequency-adjusted Dirichlet energy on
L?(py) given by

(AHVi,acf 12 y)?
1)

-1
Dy.at(f) =Dn(f) (1— ) , VfeL*(un)\{0}, and Dya:(0)=0. (45)
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By construction, this functional takes small values on functions with low roughness (in the sense of Dirichlet
energy Dy(f)), and thus reduced risk of sensitivity to sampling errors. Moreover, the term ||Vy a¢f H%Q(HN)
can be thought of as a spectral energy in the frequency domain for the time series f(z,) sampled discretely
at times t,, = n At. The term (1 — ||VN,AtfH%2(HN)/Hf||2L2(MN))_1 then penalizes f whose frequency spectral
energy is comparable to 1/At?. In what follows, we will order by convention all data-driven eigenfunctions
(jiLA), At in order of increasing Dy a¢( Py iL]\), At j). We end this section with a discussion on how to obtain
the kernel x on data space.

Choice of kernel. First, note that the injectivity assumption on the observation map F' is with minimal loss
of generality. In particular, according to the theory of delay-coordinate maps of dynamical systems [36],
under mild assumptions, the map Fg : M — YQ, Q € N, defined as

Fo(z) = (F(:E), F(o~2t), ... ,F(@*@*l)%)) :

is injective for large-enough (). Moreover, F(z,,) can be evaluated for all states z, withn € {Q—1,...,N}
given the values of F' on a finite trajectory xg, x1,...xny—_1. Thus, delay-coordinate maps are a useful remedy
when the observation map is non-injective, which is frequently the case with experimental or observational
data acquired from high-dimensional systems (e.g., engineering or geophysical fluid flows).

Assuming then that the observation map F' is injective, one can implement the techniques described in
this section with any C strictly positive-definite kernel on Y. As a concrete example for the case Y = R™,
we mention here the radial Gaussian kernels,

w(,9) = exp (—M) | (16)

€

where d : Y x Y — R is the standard Euclidean metric on R™, and € a positive bandwidth parameter.
Such kernels are popular in manifold learning techniques [29,42] due to their ability to approximate heat
kernels and the spectrum of the Laplace-Beltrami operator in the ¢ — 0% limit. Here, we do not assume
that the support X of the invariant measure has manifold structure, so generally we do not have a heat
kernel interpretation. Nevertheless, radial Gaussian kernels are known to be strictly positive-definite on
arbitrary subsets of R™ [75], which is sufficient for our purposes. The numerical experiments in Section 9
will be carried out with a variable-bandwidth variant of (46), whose construction and basic properties are
described in Appendix A.

9. Examples and discussion

In this section, we apply the procedure described in Section 8 to ergodic dynamical systems with different
types of spectra. The objective is to illustrate the results of Theorems 1, 2, 21 and Corollaries 3, 4, and
demonstrate that the framework is effective in identifying coherent observables and performing prediction
in quasiperiodic and mixing systems. We consider the following three examples:

(i) A linear, ergodic flow ®' : T? — T2 on the 2-torus,
<I>t(91, 92) = (91 + aqt, 05 + Ozgt) mod 27,

where a; and as are rationally independent frequencies, set to 1 and 30'/2, respectively. The observation
map F : T2 — R? is given by the standard embedding of the 2-torus into R3,

F(64,02) = (F1, Fy, F3) = ((1 4+ Rcos 1) cos by, (1 + Rcos ) sin 61, sin s) ,
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where we set R =1/2.
(i) The L63 system [31], generated by the C*° vector field V on R3, whose components (V1, Vs, V3) at
(z,y,z) € R3 are given by

Vi=oly—a), Va=alp—z)—y, Va=ay—p=

We use the standard parameter values 3 = 8/3, p = 28, ¢ = 10, and take F : R® — R3 to be the
identity map.

(iii) The Rossler system [76] on R?, generated by the smooth vector field V', with components (V1,Va,V3)
at (z,vy, z) given by

Vi=-y—z Vo=z+tay, Vz=b+z(z—c).

We use the standard parameter values a = 0.1, b = 0.1, ¢ = 14, and as in the case of the L63 system,
set F' to the identity map.

Methodology. The following steps describe sequentially the entire numerical procedure carried out for each
system. Additional algorithmic details, including pseudocode, are included in Appendices A and B.

1. Numerical trajectories xq, 1, ...,zx_1 of length N, with z,, = ®"2(x), were generated using a sam-
pling interval At > 0. In the case of the torus rotation, At was set to 27/500 ~ 0.013. The sampling
interval in the L.63 and Rossler experiments was 0.01 and 0.04, respectively. In all three experiments,
the nominal number of samples was N = 64,000. In the torus case, we also show eigenfunction re-
sults for N = 6400 to assess sensitivity to sampling errors. The trajectories for the torus experiments
were computed analytically. The L63 and Rossler experiments utilize numerical trajectories generated
in MATLAB, using the ode45 solver. These trajectories start from arbitrary initial conditions in R3,
followed by a spinup period of N At time units before collecting the actual “production” data.

2. The observation map F' described for each system was used to generate the respective time series
F(xg), F(21),...,F(xn_1). For our choices of F, all of these time series take values in R3. In addition,
we generated time series f(xq), f(z1),..., f(zy—1) for various other continuous, real-valued observables
for use in forecasting experiments (described below).

3. Data-driven eigenpairs (A, ;, #n ;) with j € {0, ..., L—1} were computed by applying Algorithm 1 to the
dataset F(zg),...,F(zn—1). Throughout, we used the variable-bandwidth Gaussian kernel described
in Appendix A, in conjunction with the bistochastic normalization procedure from Section 4.1. In
addition, we tuned the kernel bandwidth e using an automatic procedure; see Appendix A for further
details and references. The number of eigenfunctions employed in our experiments ranged from L = 500
to 1000; i.e., L < N in all cases. As described in Appendix A, the eigenpairs (A j,dn,;) for the
bistochastic kernels employed here can be determined from the singular values and left singular vectors
of a non-symmetric N x N kernel matrix, without explicit formation of the Markov kernel matrix
itself. We followed that approach here, using MATLAB’s svds iterative solver to perform the singular
value decomposition (SVD). All pairwise distances in data space required for kernel evaluation were
computed by brute force (as opposed to using approximate nearest-neighbor search) in MATLAB,
retaining 5000 < N nearest neighbors per datapoint.

4. Using the eigenpairs (An ;, ¢n, ;) from Step 3 as inputs, Algorithm 3 was applied to form the L x L oper-

. (L) . . . (L) . .
ator matrices for Wﬂ N.AL and compute the corresponding eigenfrequencies Wy N AL and eigenfunctions

¢ iLA), At € Hen- Throughout, we used the central finite-difference scheme in (33) (which, in this case, is
O((At)?)-accurate) to compute the matrix elements of WT(LI\), A» and MATLAB’s eig solver to compute

the (wisz, Ap> CiLJ\), A;) eigenpairs. In order to investigate the dependence of the spectra of WT(LA), Ap O
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7 (particularly from the perspective of Corollary 3), we computed eigenfrequencies for logarithmically

(L)

spaced values of 7, and examined the 7 — Wi N AL dependence through scatterplots Moreover, for

each eigenfunction, we computed its frequency—adjusted Dirichlet energy Dy, At(PNCT N AL j) from (45),

and ordered the eigenpairs (w £L13/ ar G, N At) in order of increasing Dy At(Pj\}CiLI\), At J)

5. Forecasting experiments were performed by constructing the data-driven functions f N At L1 Via Al-
gorithm 4 for lead times t,,, := m At, m € Ny, in an interval [0, mmpax At]. In all cases, we used L = L'.
Initial conditions for the forecasts were generated from a time series F'(Zo), ..., F(Zg_,) of the obser-
vation map, sampled on a dynamical trajectory Zo,...,Zx a1 of length N + Mmax, independent
of the training data. The values U'™ f(2,) = f(Zn1m) of the forecast observable on this trajectory
were used as verification data to assess the out-of-sample predictions f N At L 1 (F(Z,)). The latter,
were evaluated using Algorithm 2. In all experiments, N was equal to N. Forecast errors were assessed
through the L? norm associated with the sampling measure fi N= ZT]:,:_OI 0z, / N. Specifically, for a given
lead time t,, we compute a normalized root mean square error (RMSE) metric,

tm
e(tm) = U f — F%5 1 o2y /1 llz2qag) s

such that values e(t,,) < 1 correspond to skillful forecasts, whereas e(t,,,) ~ 1 indicates loss of skill. The
metric e(t,,) is an empirical estimator of the normalized expected error with respect to the invariant
measure, ||Uln f — fT(tJ’C,)At p.o 22 /1 fllz2(u), to which it converges almost surely as N = oo.

We now present and discuss the experimental results for each system. Hereafter, for notational simplicity,
we will drop N, L, and At subscripts and superscripts from data-driven eigenfrequencies, eigenfunctions,
and operators. We will also use D, ; as a shorthand notation for the frequency-adjusted Dirichlet energy
from (45) of the j-th eigenfunction of W..

Linear flow on the 2-torus. For any choice of rationally independent frequencies oy and s, the system
has a unique Borel ergodic invariant probability measure p, which coincides with the Haar measure on
T?2. Thus, in the notation of Assumption 1, the state space M, the forward-invariant compact manifold
M, and the support of the invariant measure X are all equal to T2. The basin of the invariant measure
B,, from Section 8 is also equal to T?2. For this invariant measure, the Koopman group on L?(x) has
pure point spectrum, consisting of eigenfrequencies of the form jioy + joaw, j1,j2 € Z, corresponding
to the eigenfunctions e*(9191+5202)  The latter form an orthonormal basis of L?(y), so that the point and
continuous spectrum subspaces in the invariant splitting in (3) are H, = L?(u) and H. = {0}, respectively.
Note that because a1 and oo are rationally independent, the set of eigenfrequencies is dense in R, which
implies that the support of the PVM E of this system (in this case, the closure of its set of eigenvalues)
is equal to the whole real line. This makes the problem of numerically distinguishing eigenfrequencies from
non-eigenfrequencies non-trivial, despite the simplicity of the underlying dynamics.

Fig. 3(a) shows a scatterplot of the eigenfrequencies w, ; and the corresponding Dirichlet energies D j,
computed for L = 500 and values of 7 logarithmically spaced in the interval [1075,1]. There, the behavior
of the numerically computed eigenfrequencies is broadly consistent with the results in Theorem 2 and
Corollary 3. In particular, the eigenfrequencies are seen to form continuous curves parameterized by 7
(consistent with Theorem 2(vii) and Proposition 19(iv)), and the Dirichlet energy delineates the curves that
have numerically converged over the examined values of 7 (i.e., as 7 approaches 107°), from those that have
not (as expected from Corollary 3). Notice, in particular, that the task of visually identifying continuous
eigenfrequency curves in Fig. 3(a) would be significantly more difficult without color-coding by Dirichlet
energy.

According to Corollary 3, the eigenfrequency curves of W, with bounded Dirichlet energies should ap-
proximate Koopman eigenfrequencies, and the corresponding eigenfunctions should approximate Koopman
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Fig. 3. Eigenfrequencies w; of the data-driven generators W as a function of 7, for (a) the linear torus flow; (b) the L63 system; and
(c) the Réssler system. Colors represent the logarithms of the frequency-adjusted Dirichlet energies from (45) of the corresponding
eigenfunctions. Only positive frequencies are shown, as the w < 0 parts of the spectra are mirror images of the w > 0 parts by
skew-adjointness and reality of W, . (For interpretation of the colors in the figure(s), the reader is referred to the web version of
this article.)

eigenfunctions. Indeed, as illustrated in Fig. 4, the leading data-driven eigenfrequencies w, ; for 7 = 107>
agree with the theoretical eigenfrequencies to two to four significant figures. Moreover, the corresponding
eigenfunctions agree well with the Koopman eigenfunctions of this system; that is, (; ; in Fig. 4 have the
structure of Fourier functions on the 2-torus, with near-exact sinusoidal time series at the corresponding
eigenfrequencies.

Next, to assess the significance of RKHS regularization in spectral approximation of the generator, in
Fig. 5 we compare the real and imaginary parts of numerical eigenfunctions ¢, ; of W, with eigenfunctions
obtained from a “naive” approximation of the generator with 7 = 0. In all cases, we select the eigenfunction
whose corresponding eigenfrequency is closest to the generating eigenfrequency a; = 1, and plot the real and
imaginary parts of ¢ ; as a scatterplot in the complex plane. For an exact approximation of a normalized
Koopman eigenfunction, the plotted points should lie in the unit circle. According to the results in the
figure, the naive approximation performs comparably to the regularized approximation for the experiment
with N = 64,000 and L = 500 basis functions, but the quality of the approximation has considerably higher
sensitivity to the number of samples and/or basis functions employed. Indeed, as is evident from Figs. 5(b)
and 5(e), decreasing the number of samples to N = 6400 imparts a significant amount of high-frequency
noise in the eigenfunction obtained from the naive approximation, whereas the eigenfunction based on
RKHS regularization is comparatively more stable. This can be understood from the fact that the quality
of the data-driven basis functions ¢y ; generally decreases with decreasing N, and the amount of quality
degradation is higher the smaller the corresponding eigenvalue Ay ; is. As a result, without regularization
to suppress the basis functions corresponding to small Ay ;, the quality of the naive approximation also
degrades.
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Fig. 4. Representative eigenfunctions (; ; of the data-driven generator W, with 7 = 10~° for the linear flow on the 2-torus.
Top row: Scatterplots of Re((r,;) on the training dataset embedded in R3. Bottom row: Time series t, ~ Re((r j(z,)) of the
eigenfunctions, sampled along a portion of the dynamical trajectory in the training data. The numerical eigenfrequencies w, ; and
frequency-adjusted Dirichlet energies D, ; are also indicated. The eigenfrequencies with j = 1, 5, and 9 shown here agree with
the theoretical eigenfrequencies a; = 1, as = 5.477, and 21 4+ las = 7.477 to within four, three, and two significant figures,
respectively.

Increasing L at fixed N is also expected to adversely affect the naive approximation, in this case not only
due to the basis function errors just mentioned, but also because the spectrum of V' is a dense subset of the
imaginary line. That is, even with “perfect” basis functions, increasing L without regularization will result
in the creation of near-degenerate eigenfrequencies around any reference eigenfrequency in the spectrum of
the approximate generator, leading to high sensitivity to perturbations. Figs. 5(c) and 5(g) demonstrate
that increasing L from 500 to 1000 in the N = 6400 experiments results in considerable degradation of the
eigenfunctions obtained from the naive approximation, whereas the eigenfunctions of the RKHS-regularized
generator behave stably under this parameter change. In the case of the larger, N = 64,000 dataset, a
similar behavior is observed in Figs. 5(d) and 5(g) by increasing L to 10,000.

Turning now to forecasting, in Fig. 6 we show prediction results for the components F} and F3 of the

torus embedding into R3, as well as the observable eft1*Fs

, which has a non-polynomial dependence on
the components of the observation map (and in this case, the Koopman eigenfunctions). In all three cases,
we use 7 = 1075 and L = 500, and examine lead times ¢ in the interval [0,3000 At] ~ [0,39], which
is approximately 26 times longer than the “fast” characteristic timescale 27/as & 1.15 of the system.
Over that interval, the normalized forecast errors £(¢) exhibit a linear error growth, remaining below 0.1

F1+Fs  The somewhat lower forecast skill for ef1t#s

in the case of Fy, F3, and below 0.2 in the case of e
is consistent with the fact that infinitely many Koopman eigenfrequencies are required to fully capture
the dynamical evolution of this observable. As mentioned in Section 1, an advantageous aspect of the
RKHS framework presented here over previous forecasting techniques operating on L? spaces [12,17] is
that it produces pointwise-evaluatable prediction functions, as opposed to expectation values with respect
to probability measures with L? densities (which must be supplied by the user as initial conditions). As
illustrated in Fig. 6, the forecasts accurately reproduce the dynamical evolution of all three observables

examined here.
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Fig. 5. Real and imaginary parts of numerical Koopman eigenfunctions for the torus flow obtained from data-driven approximations
of the generator without regularization (a—d) and the RKHS regularization W, (e-h), for different dataset sizes N and values of
the regularization and spectral resolution parameters 7 and L. The eigenfunctions depicted here are those whose corresponding
eigenfrequency in the data-driven spectrum is closest to the theoretical eigenfrequency a3 = 1. For an exact approximation of a
normalized Koopman eigenfunction, the numerical eigenfunctions should take values in the unit circle in the complex plane.
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Fig. 6. Data-driven prediction of the components F; and F3 of the embedding F' of the 2-torus into R3 (left and center columns),
and the non-polynomial observable exp(F; + F3) (right column) for the linear torus flow, using the operator etWr with 7 = 107°.
Top row: Comparison of the true and predicted signals as a function of lead time t for a fixed initial condition in the verification
dataset. Bottom row: Normalized RMSE e(t) as a function of lead time.
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Lorenz 63 system. For our standard choice of parameters, the L63 system is known to have a compact
attractor X C M in the state space M = R? [55] with fractal dimension ~ 2.06 [77], supporting a physical
invariant measure g, which has a single positive Lyapunov exponent A =~ 0.91 [78]. Due to dissipative
dynamics, the attractor is contained within absorbing balls [79], playing here the role of the forward-invariant
compact manifold M D X. The system is also rigorously known to be mixing [80], which implies that its
associated Koopman unitary group on L?(u) has no nonzero eigenfrequencies. Thus, the H,, subspace for
this system is the one-dimensional space consisting of constant functions, while H, contains all non-constant
fe L?(p) with [, fdu=0.

Fig. 3(b) shows the dependence of the eigenfrequencies of W, for the L63 system, as well as the cor-
responding Dirichlet energies, on 7 € [107°,1], computed using L = 750 basis functions. As one might
expect, the behavior of this spectrum is qualitatively different from that of the quasiperiodic torus flow
in Fig. 3(a). That is, instead of the eigenfrequency curves of low Dirichlet energy interleaved with higher-
Dirichlet-energy curves in Fig. 3(a), the eigenfrequencies in Fig. 3(b) exhibit an apparent continual growth
in Dirichlet energy as T decreases to 0. This behavior is consistent with Corollary 3, according to which if the
Dirichlet energy were to saturate along a sequence of eigenfrequencies of W, as 7 — 07, and that sequence
had a nonzero limit, then that limit would necessarily be a nonzero Koopman eigenfrequency. As stated
above, the latter is not possible for the L63 system. Nevertheless, upon visual inspection, one can identify in
Fig. 3(b) frequency bands characterized by smaller Dirichlet energy than the surrounding frequencies; e.g.,
frequency bands centered at w ~ 8, 10, 20, 27, as well as higher frequencies. According to Corollary 3, the
corresponding eigenfunctions of W are good candidates for coherent observables, evolving as approximate
Koopman eigenfunctions, as we now verify.

Representative eigenfunctions ¢, ; chosen from these frequency bands for 7 = 1074, and visualized as
scatterplots on the L63 attractor, as well as time series on the sampled dynamical trajectory, are displayed in
Fig. 7. At least at the level of time series, the qualitative features of these eigenfunctions can be interpreted
as generalizations of the Koopman eigenfunctions associated with the point spectra of measure-preserving
ergodic dynamical systems. That is, similarly to Koopman eigenfunctions, the eigenfunctions of W in Fig. 7
are narrowband signals, evolving at a characteristic frequency determined from the corresponding eigenvalue
wr,j, and with ~ 90° phase difference between their real and imaginary (not shown) parts. However, unlike
true Koopman eigenfunctions, the oscillatory signals associated with (; ; exhibit pronounced amplitude
modulations, giving them the appearance of wavepackets. If single-frequency, constant-amplitude, sinusoidal
time series are to be thought of as hallmark features of Koopman eigenfunctions in measure-preserving
systems, it appears that the eigenfunction time series of W, shown in Fig. 7 lose the constancy of the
amplitude, while maintaining a narrowband frequency character with high phase coherence between real
and imaginary parts. In other words, these eigenfunctions reveal observables of the L63 system with an
approximately cyclical behavior, despite mixing dynamics.

Despite the qualitative similarities of the corresponding time series, it is evident from Fig. 7 that the
geometrical structure of the eigenfunctions of W, on the L63 attractor may exhibit significantly different
characteristics. For example, eigenfunction ¢, 3 shown there (which corresponds to fairly high eigenfrequency,
wr 3 &~ 46) appears to be strongly localized on one of the two lobes of the L63 attractor, whereas eigenfunc-
tions ¢r1 and (; 19 (corresponding to lower eigenfrequencies, w,1 ~ 8.2 and w19 & 16, respectively) are
supported on both lobes. Moreover, the level sets of (; 3 are arranged in predominantly transverse direc-
tions to the dynamical flow, whereas those of (;; and (; 19 appear to be more aligned with the orbits of
the dynamics. These differences are consistent with the fact that w; 3 is appreciably larger than w, 1, as a
more transverse arrangement of level sets relative to the orbits of the dynamics means that more contour
crossings per unit time take place. It should be noted that an analogous eigenfunction to (3, but sup-
ported in the opposite lobe of the L63 attractor is also present in the spectrum of W, (not shown here). It is
also worthwhile noting that eigenfunction (,; bears some qualitative similarities with the pattern depicted
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Fig. 7. As in Fig. 4, but for eigenfunctions of the data-driven generator W, with 7 = 10~* for the L63 system. The eigenfunction
time series in the lower panels have been scaled by their maximum absolute values so as to fit within the same axis limits.
Observe the qualitatively different geometrical structure of the eigenfunctions on the Lorenz attractor. Despite these differences,
the corresponding eigenfunction time series have the structure of amplitude-modulated wavetrains with a fairly distinct carrier
frequency and lower-frequency modulating envelopes.

in [21, Figure 13]. Based on its corresponding eigenfrequency and level-set structure, eigenfunction (; 19
resembles a second harmonic of (; ;.

Next, we consider forecasting experiments for the three components (F, Fs, F3) of the observation map F,
which coincide with the components of the L63 state vector in R?. We evaluate data-driven forecast functions
for these observables at lead times in the interval [0,500 At] = [0, 5], using the regularization parameter
7 =107% and L = 750 basis functions. Representative forecast trajectories and the corresponding normalized
L? errors are displayed in Fig. 8. Unlike the linear error growth seen in Fig. 6 for the torus experiments,
the L63 forecasts exhibit an exponential-like initial error growth, lasting for lead times up to ¢t ~ 0.7,
and followed by a more gradual increase. The initial error growth period is somewhat shorter, though of
the same order of magnitude, than the e-folding timescale associated with the system’s positive Lyapunov
exponent, i.e., 1/A ~ 1.1. In the case of observables Fy and Fy, the normalized L? error £(t) is seen to
saturate around 1.4 as t approaches 5. Observable Fj exhibits a somewhat slower error growth than Fj
and Fy, which may be a manifestation of dynamical symmetry of the L63 system under the transformation
(r,y,2) € R3 = (—x, —y, 2), making F3 a more predictable observable.

To interpret the long-time behavior of the error £(t), note that the Koopman operator of a mixing
dynamical system such as L63 has the property that, as ¢t — oo, (g, U" f),, converges to (g,1),(1, f),. Based
on this, it is possible to verify that, in this limit, the normalized L? error ||(U* — etVT)f||Lz(M)/||f||Lz(M)
associated with the quasiperiodic, unitary evolution group generated by V; := UW, U, converges to v/2.
Now, our RKHS-based prediction scheme does not employ V; directly, and as follows from Corollary 4,
its error is governed by the non-unitary group generated by By, viz., |U'f — B~ P felln2() /1 || 22()-
Nevertheless, for sufficiently small 7 and ¢, e!P7 P* f, can be made arbitrarily close to etVr f, uniformly over
compact time intervals. In that case, £(t) would saturate close to /2, as observed in Fig. 8. It is worthwhile
noting that, in the presence of mixing, the forecast functions derived from expectation values must necessarily
converge to a constant equal to the mean with respect to the invariant measure of the dynamics. For instance,
as t — oo, a forecast of the form E,U'f = (p,U'f), [12,17], where p is a probability density in L?(yu),
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Fig. 8. As in Fig. 6, but for data-driven prediction of the components F, Fs, and F3 of the L63 state vector.

satisfies E,U'f — (p,1),(1,U" f)u = [, [ dp. Such forecasts have asymptotic relative error €(t) equal to 1,
i.e., smaller relative error than the quasiperiodic unitary evolution models constructed here, but arguably
a constant prediction does not provide a realistic representation of the underlying dynamics. Indeed, as
illustrated by the forecast trajectories in Fig. 8, the RKHS-based framework produces non-trivial, L63-like
dynamics even at late times, when initial-value predictability has been lost. In that regard, the data-driven
forecasts presented here are more akin to a “simulation” of L63 dynamics, as opposed to estimation of
expectation values and/or other statistics.

Réssler system. The Rossler system is sometimes viewed as a simplified analog of the L.63 system, as it only
has a single quadratic nonlinearity, as opposed to two nonlinearities in the L63 system. Yet, despite the
simplicity of its governing equations, it exhibits complex dynamical characteristics, some of which are not
seen in the L63 system. For the standard choice of parameters listed above, one well known such feature is
an outward spiraling motion in the z = 0 plane about an unstable fixed point at (z,y,2) = (0,0,0) € R3,
which undergoes intermittent bursts to large positive z values when the radial coordinate r = /x2 + y2
has become sufficiently large. This behavior produces a stiff signal in the z coordinate, as well as banding
of trajectories in state space, which are challenging to model with data-driven approaches. Another notable
aspect of the Rossler system is that chaotic behavior predominantly takes place in the (r, z) coordinates,
whereas the evolution of the azimuthal angle in the z = 0 plane proceeds at a near-constant angular
frequency, approximately equal to 1 in natural time units. The Réssler system is also known to possess a
single positive Lyapunov exponent, approximately equal to 0.071 [78]. While, to our knowledge, theorems
on the existence and measure-theoretic mixing properties of the Rossler system analogous to [77,80] for
the L63 system have not been established, the system has been studied extensively through analytical and
numerical techniques, supporting the hypothesis that the Rossler system is indeed mixing, albeit at a slow
rate [81].

In light of the above, it is perhaps not too surprising that the dependence of the eigenfrequencies of W
for this system, depicted in Fig. 3(c) for L = 750, exhibits features reminiscent of both the torus and L63
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Fig. 9. As in Fig. 4, but for eigenfunctions of W,, 7 = 107°, for the Réssler system.

spectra in Figs. 3(a) and 3(b), respectively. That is, the spectrum of W, for the Rossler system exhibits
bands of eigenfrequency curves with an apparent continual increase of Dirichlet energy with decreasing 7,
as in L63, but superposed to these curves is a set of eigenfrequencies at approximately integer multiples
of a base frequency a ~ 1, and with near-constant corresponding Dirichlet energies, as in the linear torus
flow. A visualization of corresponding eigenfunctions from the latter group, e.g., eigenfunctions ¢, ; and (; 3
in Fig. 9 computed for 7 = 1075, reveals that these frequencies are indeed associated with highly coherent
observables, which are predominantly functions of the azimuthal phase angle, and evolve near-periodically
at integer multiples of the base frequency a. Meanwhile, another group of eigenfrequencies of W.., whose
corresponding Dirichlet energies undergo a moderate increase with decreasing 7, exhibit manifestly radial
variability in state space and amplitude-modulated time series, reminiscent of the eigenfunctions recovered
in the L63 system. Such an eigenfunction is (; 39 shown in Fig. 9, whose corresponding eigenfrequency,
wr 39 ~ 0.36, is smaller than the base frequency a. On the basis of the eigenfrequency w; 39, we can identify
a characteristic timescale 27 /w; 39 /& 17.5 of coherent radial oscillations of the Réssler system.

Next, Fig. 10 shows forecasting results for the components (Fi, F», F3) of the Rossler state vector over
lead times t € [0, 2000 At] = [0, 80], computed for 7 = 107° and L = 1000. Due to the dynamical behavior
of the Réssler system outlined above, one would expect that predicting Fj is significantly more challenging
than predicting F} or F5, and this is indeed reflected in the results in Fig. 10. In particular, consistent with
the near-linear evolution of the azimuthal phase angle in the z = 0 plane, prediction of the observation map
components F; and F; remains skillful for the entire forecast interval examined, with the normalized error
e(t) exhibiting a gradual increase to 0.25 by ¢ ~ 80. An inspection of the individual forecast trajectories
shown in Fig. 10 indicates that the errors in these forecasts are predominantly amplitude errors (as opposed
to phase errors), likely caused by chaotic dynamics of the radial coordinate r. On the other hand, forecasts
of the F3 component exhibit a significantly more rapid error growth, reaching €(t) ~ 1.15 as t approaches 80.
This error can be understood from the highly stiff, intermittent nature of Fj, exhibiting infrequent excursions
to large positive values and virtually no negative values. As is evident from the forecast trajectory in Fig. 10,
the data-driven forecasts are generally successful in capturing the timing of the F3 bursts (likely aided by
the high coherence of the azimuthal phase angle), but for lead times ¢ 2 20, they struggle to reproduce the
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Fig. 10. As in Fig. 8 but for forecasts of the state-vector components of the Réssler system, using 7 = 10~° and L = 7000.

amplitude of the bursts and the non-negativity of the F3 signal. In separate calculations, we have verified
that the non-negativity of the forecast signal over a given time interval can be improved by increasing the
number of basis functions L.

10. Concluding remarks

In this paper, we have developed a data-driven framework for spectral analysis of measure-preserving,
ergodic dynamical systems, using ideas from RKHS theory. A central element of our approach has been to
regularize the unbounded, skew-adjoint generator of the unitary Koopman group of the system by pre- and
post-composing it with integral operators associated with reproducing kernels of RKHSs, rendering it into a
compact operator. We showed that if this procedure is carried out using a one-parameter family of Markov
kernels of appropriate (C!) regularity, the resulting regularized generators form a one-parameter family of
trace-class, skew-adjoint integral operators W, on RKHS, converging to the Koopman generator in strong
resolvent sense in a limit of vanishing regularization parameter 7. As a result, at every 7 > 0, W, can be
spectrally decomposed in terms of a purely atomic projection-valued measure (PVM), with an associated
discrete set of eigenfrequencies and an orthonormal basis of eigenfunctions, converging to the PVM of the
Koopman generator as 7 — 07 in an appropriate sense. Notably, this result holds for measure-preserving
ergodic systems of arbitrary spectral characteristics (pure point, continuous, mixed), and further allows
consistent approximation of the functional calculus of the Koopman generator for bounded continuous func-
tions. In particular, exponentiation of the regularized generator leads to a unitary, quasiperiodic evolution

tWr which can be used as an approximation of the Koopman group of the system to perform fore-

group, e
casting of observables with convergence guarantees. We also showed that the eigenfunctions associated with
this group form coherent observables lying in the approximate point spectrum of the Koopman operator,
generalizing the coherent patterns associated with Koopman eigenfunctions and the point spectrum of the

system.
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Another advantageous aspect of the RKHS framework is that it naturally lends itself to data-driven
approximation from time-ordered measurements of the system state taken through injective observation
maps, requiring little structural modification of the continuous formulation. In particular, the data-driven
approximation schemes employ properties of physical measures to consistently approximate integrals with
respect to the invariant measure by time averages, and take advantage of RKHS regularity to approximate
the action of the generator on functions by temporal finite differences. Coupled with the ability afforded by
RKHSs to perform interpolation and out-of-sample evaluation, this approach leads to data-driven forecast
functions for the evolution of observables, as well as coherent eigenfunctions, whose robustness can be
assessed a posteriori through a Dirichlet energy criterion.

We demonstrated the efficacy of this approach through a suite of coherent pattern extraction and forecast-
ing experiments in the setting of a quasiperiodic flow on the 2-torus and the chaotic .63 and Réssler systems.
In the case of the torus rotation, the eigenfrequencies of the RKHS-regularized operator W, correctly iden-
tify generating eigenfrequencies of the system, as well as integer combinations of such eigenfrequencies.
Meanwhile, in the L63 and Réssler settings, eigenfunctions of W, identified via the Dirichlet energy crite-
rion exhibit an approximately cyclical evolution, behaving as approximate Koopman eigenfunctions. These
eigenfunctions reveal coherent oscillatory observables of these systems with characteristic timescales de-
termined from the corresponding eigenvalues, despite potentially mixing dynamics. Forecasting using the
evolution group generated by W, was found to perform well in these systems, with skill likely aided by the
presence of approximately periodic eigenfunctions in the respective spectra.

Areas of future research stemming from this work include improved representations of the generator
through alternative schemes to finite differences, as well as extensions to partially observed systems (i.e.,
non-injective observation maps). In addition, the fact that the spectral convergence results in Theorem 2
require pointwise convergence of the approximating operators only on a core of the generator V, yet in
Proposition 19 we were able to establish pointwise convergence on the full domain D(V'), suggests that
it may be possible to weaken the C' regularity assumptions on the kernels and their associated RKHSs
underlying Theorem 2. It would also be fruitful to explore formulations of the framework presented here
utilizing methods for kernel learning [82,83] to optimize prediction skill of prescribed observables. Meanwhile,
the approximately cyclical nature of the identified eigenfunctions in the .63 and Réossler systems suggests
possible connections between the spectral properties of W, and periodic orbits of the underlying flow in
state space expected for non-uniformly hyperbolic dynamics. Finally, a topic of significant interest in both
the Koopman and transfer operator literature is spectral analysis and forecasting of dissipative and/or
non-ergodic systems [4,10,84,85]. While some of the spectral approximation techniques employed in this
work make use of the skew-adjoint structure of the generator of measure-preserving systems (e.g., strong
convergence in a core in Lemma 14), and we have also made use of ergodicity to establish correspondences
between the spectra of various types of regularized generators (e.g., Lemma 18), it would nevertheless be
fruitful to explore applications of RKHS theory to spectral analysis of such “open dynamical systems”,
extending the framework developed here beyond the measure-preserving, ergodic setting.
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Appendix A. Variable-bandwidth kernels

The numerical experiments in Section 9 were performed using variable-bandwidth Gaussian kernels ky :
Y xY — R of the form

N o [T Y)
HMM)P(WWMMW> (A1)

Here, oy : Y — R is a strictly-positive, C! function on Y, which generally depends on the training dataset
{y0,.--,yn—1}. We indicate this dependence with N subscripts. Intuitively, the role of the bandwidth
function oy is to correct for variations in the “sampling density” of the data. In particular, for a well
conditioned kernel integral operator Gy, the number of datapoints lying within radius O(e!/?) balls centered
at each datapoint should not exhibit significant variations across the dataset, yet, the standard radial
Gaussian kernel from (46) has no mechanism for preventing this from happening. For appropriately chosen
on, the variable-bandwidth kernel in (A.1) can, in effect, vary the radii of these balls to help improve
conditioning. The different bandwidth functions proposed in the literature include near-neighbor distances
[86] and kernel density estimates [43]. In the numerical experiments of Section 9, we will employ the latter
approach, defining

W@zmmw,m@zg§%/w%me@. (A.2)
Y

Here, iy = Zg;ol dy, /N is the sampling measure in data space, € a positive bandwidth parameter (differ-
ent from € in (A.1)), and m a positive parameter approximating the dimension of F(X). The parameters
€, € and m are all determined from the data automatically; see [12,17] for descriptions of this proce-
dure.

If F(X) has the structure of a Riemannian submanifold of Y, and the pushforward & on of the invariant
measure on Y has a smooth density, the functions py from (A.2) are estimates of the sampling density
p = dji/dvol, which converge in the limit of N — oo followed by € — 0. Thus, with this choice of bandwidth
function, the bandwidth of the kernel xy from (A.1) will be large (small) when the sampling density is small
(large), achieving the desired balancing of the kernel. More quantitatively, with this choice of bandwidth
functions and after suitable normalization, xy approximates the heat kernel of a conformally transformed
Riemannian metric on F(X), whose volume form has uniform density relative to fi [17]. Of course, if F(X)
does not have manifold structure, or p is not smooth, this Riemannian geometric interpretation is not
applicable, but the balancing effect of the bandwidth functions on local balls still holds. It should be noted
that one can prove spectral convergence results analogous to Lemma 23(i) for the class of N-dependent
kernels on M induced by ky; see [87] for such a result. Here, we will omit a proof of spectral convergence
for the integral operators associated with xy in the interest of brevity. It is also important to note that, to
our knowledge, it has not been established whether the kernels on M induced by ky, and the kernel that
they converge to as N — oo, are L?(uy)- and L?(p)-strictly-positive, respectively. That being said, we did
not find evidence of zero eigenvalues of G in the experiments of Section 9.

Appendix B. Pseudocode

In this appendix, we provide pseudocode listings for the techniques described in Section 8. We have split
the entire process into four algorithms, the first two of which describe the construction of the data-driven
eigenpairs (An j, ¢n, ;) from Lemma 23 and pointwise evaluation of the corresponding basis functions 1y ;

of Hy, respectively. Algorithm 3 describes the construction of the data-driven generator WT(LA), Ap from



S. Das et al. / Appl. Comput. Harmon. Anal. 54 (2021) 75-136 131

Theorem 21(i) and computation of its associated eigenvalues and eigenfunctions. Algorithm 4 describes the
construction and pointwise (out-of-sample) evaluation of the data-driven forecast function fﬁt])\, At.L,1 rom
Corollary 22. In what follows, T will denote the N-dimensional column vector whose elements are all equal
to 1. Moreover, the indexing of all vector and matrix elements will start from 0.

We begin by listing Algorithm 1 for a general kernel x on data space Y of the form in (34), evaluated
on a time series of the values of the observation map F' on a dynamical trajectory zg,...,zx—_1 in M. As
stated in Sections 8 and 9, we work with the variable-bandwidth Gaussian kernel described in Appendix A.
Evaluation of this kernel requires a kernel density estimation step, summarized in [17, Algorithm 1]. The
variable-bandwidth Gaussian kernel also requires specification of the bandwidth parameter ¢, as well as the
bandwidth and dimension parameters € and m, respectively, in (A.2). We set these parameters automatically
via the procedure described in [12, Appendix A] and [17, Algorithm 1]. The main outputs of Algorithm 1 are
the eigenpairs (An ;, ¢n ;) of the Markov operator Gy associated with the Markov kernel py, obtained via
the bistochastic normalization procedure from Section 4.1. Due to the L?(uuy) ~ C¥ isomorphism, Gy can
be represented by an N x N bistochastic matrix G with elements G;; = pn(z;, z;)/N, and the eigenvectors
¢n,; (of unit L?(pn) norm) by N-dimensional column vectors qgj = (¢n,j(w0), ..., Onj(xN-1)) " With 2-
norm ||(/§g ll2 = V/N. We will abbreviate N,j by Aj. The eigenpairs (A;, (EJ) can be computed without explicit
formation of G, owing to the fact that G = KK , where K is a non-symmetric N X N kernel matrix
to be defined in Algorithm 1. In particular, the A; are equal to the squared singular values of K, and the
gj are equal to the corresponding left singular vectors. Algorithm 1 also outputs as auxiliary outputs the
corresponding right singular vectors ; € RY of K and a degree vector ¢ € RN associated with that matrix;
these outputs will be used for pointwise evaluation in Algorithm 2.

Algorithm 1 (Data-driven basis).

e Inputs
— Time series F'(z¢),...,F(zy_1) in data space Y.
— Number L < N of eigenpairs to be computed.
e Outputs
— Leading L eigenvalues Ag, ..., A,_1 of G and the corresponding eigenvectors gZO, ceey $L_1 c RV,
— Degree vector § € RY.
- Right singular vectors o, ...,7r_1 € RYV.
o Steps

1. Compute the N x N kernel matrix K with K;; =  (F(x;), F(z;)).

2. Compute the N-dimensional degree vectors d= KT and 7= KD 1, where D = diag d.

3. Form the N x N kernel matrix K = D_lKQ_1/2, with Q = diagq.

4. Compute the L largest singular values oy, ...,05_; of K, and set Aj = 0'J2». Set ({5} and 7; to the

corresponding left and right singular vectors, respectively, normalized such that H(EJHQ =+vN.

Next, Algorithm 2 carries out the task of evaluating the RKHS functions ¢ ; € Hy at an arbitrary
collection Zg, Z1,...,&_, of points in M, given the corresponding values F'(&¢), F'(Z1),..., F(&y_,) of the
observation map F. As with Algorithm 1, this computation can be performed without explicit formation
of a kernel matrix associated with py, using instead the singular vectors 50, RN 5L—1 and 4o, ...,7L—1- In
what follows, we use the column vectors ;= (n.;(Z0), ... Un(En_1))T € RY to represent the values
of the ¥ ; at the desired points. Note that in the case of the variable-bandwidth Gaussian kernels from
Appendix A, the computation of the z/_;j requires an additional density estimation step for the out-of-sample
data F(Z,), which is carried out analogously to [17, Algorithm 1]. Moreover, all kernel parameters e, €, and
m are the same as those used in Algorithm 1.
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Algorithm 2 (Pointwise evaluation in RKHS).

o Inputs
— Values F(&),...,F(&y_,) of the observation map at the evaluation points.
— Eigenvalues Ag,...,Ar_1, eigenvectors &0, ceey $L,1, right singular vectors 7y, ...,7r_1, and degree
vector ¢ from Algorithm 1.
e Outputs
— Vectors Jo, . ,JL_l € RV with the values of the RKHS functions YN,0,---,¥nN,; at the evaluation
points.
e Steps

1. Compute the N x N kernel matrix K with Ki; = x (F(&;), F(x;)).

2. Compute the N-dimensional degree Vect(ir d=KT.

3. Form the N x N kernel matrix K = D~ IA('Q71/27 where D = diagcf and Q = diagq.
4. Output Jj = f(%.

Note that when working with Gaussian kernels, as done throughout this paper, we approximate the kernel
matrices K, K, K and K in Algorithms 1 and 2 by sparse matrices (as is common practice), retaining in
each case the ky, largest entries per row. In the numerical experiments of Section 9, ky,, was approximately
8% of N.

We now describe how to construct an L x L matrix W representing the data-driven generator WT(LI\), At

in the 9, n; basis of H,n, and use that matrix to compute the (wiLK, Atj,Ciﬁ\), Atj) eigenpairs. We

represent each eigenvector (jiL]\), At € Hen by a column vector f_; = (o, ,fL_Lj)T € CL storing

the expansion coefficients of gi,LI\)f,At,j in the 9,y ; basis, i.e., CE’LA),VAM = Zf;ol & ,jYr ;. Given a set
{Zo,...,Z5_,} of evaluation points in M, the values Ci,LJ\)/,At,j (Z,) will be represented by the column vec-
tors g:; = ((;L]\),’At’j(io), cee ;L]\),’At’j (Eg_ )" € CN. In Algorithm 3 below, we describe the construction
of W and the computation of the wy, é;, and Ej, using the central finite-difference scheme from (35) to
approximate the action of the generator. The algorithm can also be implemented using any skew-adjoint
finite-difference scheme of appropriate regularity. Moreover, we employ the basis functions and pointwise
evaluation procedures from Algorithms 1 and 2, associated with the bistochastic kernel normalization in
Section 4.1, but Algorithm 3 can be implemented using any other Markov operator meeting the conditions

of Theorem 21. Algorithm 3 also returns the frequency-adjusted Dirichlet energies Dy a¢(C (L]\), At j) of the

T

eigenfunctions from (45), abbreviated D;. We also abbreviate wisz, At DY wj.

Algorithm 3 (Data-driven generator and its eigendecomposition).

e Inputs
— RKHS regularization parameter 7 > 0.
— Time step At > 0.
— Eigenvalues Ao, ..., A\ _1, eigenvectors q;o, e qu_l, right singular vectors 7y, ...,7r—1, and degree
vector ¢ from Algorithm 1.
— Pointwise-evaluated RKHS functions 1/70, . ,JL_l from Algorithm 2.
e Outputs
— FEigenfrequencies wy, . . .,wr_1 € R, the corresponding eigenvectors EE), e ,g},l € CT, and the Dirich-
let energies Dy,...,Dr_1 > 0.
— Vectors 50, e C_’L,l € CN with the values of the eigenfunctions ngx)f,m,j at the evaluation points.
e Steps
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1. Construct the L x L diagonal matrix A, with Ajj = eT(l_AJI), and the N x L matrix ®, whose j-th
column is equal to (;j.
2. Form the skew-symmetric, tridiagonal, N x N finite-difference matrix V' with

0

N[=

1

2

0 1
-1 0 1
2AtV =

-1 0 1

o

3. Compute the L x L skew-symmetric matrix W = AY/2®TVSAL/2.

4. Set the eigenfrequencies wy, . ..,wp_1 to the imaginary parts of the eigenvalues of W. Set g; to the
corresponding eigenvectors, normalized such that ||§:;||2 =+/N.

5. For each eigenvector 5}, compute the Dirichlet energy

IAM2AT2; 3 21 .

D‘: f_l 1— At 5 A:d A,...,)\_ .
J ( IALZE |2 ( (w; A1)7) fag(Ao L-1)
6. Form the N x L matrix ¥, whose j-th column is equal to '1;]‘, and set (; = \Ilg]

Finally, Algorithm 4 computes the values of the data-driven forecast function fT(tj)V Atz from Corol-
lary 22 for lead time t > 0 at a set of evaluation points {Zo,...,Z 5} C M, using the output of Algorithm 3

and the values f(xq),..., f(xn_1) of the prediction observable f on the dynamical trajectory zg,...,zn_1.
The forecast values are output as a column vector f = (fT(t])V PR Z1C0) T(t])\, anr o (@g )T e CN.

Note that a similar approach can be employed to evaluate the approximations in Theorem 21(iii) for general
bounded continuous functions Z : iR — C.

Algorithm 4 (Data-driven prediction).
o Inputs

— Lead time t > 0.
— Number of basis functions L’ < L.

— Time series f(zg),..., f(zn—1) € C of the prediction observable.
— Eigenvalues \g, ..., Ar_1 and eigenvectors &0, e $L,1 from Algorithm 1.
— Eigenfrequencies wy,...,wr_1, eigenvectors é), . ,5 —1, and pointwise-evaluated eigenfunctions
50, . ,5L,1 from Algorithm 3.
¢ Outputs

— Column vector f € CV with the values of the forecast function for U f at the evaluation points.
e Steps

1. Form the column vector of observable values f = (f(zo), ..., f(zy_1))T € CV.

2. Compute the column vector of expansion coefficients ¢ = (co,...,cr_1)" € CE, where

{@f/(NAi”L j<r,
Cj =

0, otherwise.

3. Form the L x L diagonal matrix U = diag(1, et ... e®r-1t) the N x L eigenfunction matrix Z
whose j-th column is equal to C}, and set f = ZUZC.
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