
Appl. Comput. Harmon. Anal. 54 (2021) 75–136
Contents lists available at ScienceDirect

Applied and Computational Harmonic Analysis

www.elsevier.com/locate/acha

Reproducing kernel Hilbert space compactification of unitary 

evolution groups

Suddhasattwa Das a, Dimitrios Giannakis a,∗, Joanna Slawinska b

a Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
b Finnish Center for Artificial Intelligence, Department of Computer Science, University of Helsinki, 
Helsinki, FI-00014, Finland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 April 2019
Received in revised form 23 
November 2020
Accepted 26 February 2021
Available online 3 March 2021
Communicated by E. Le Pennec

Keywords:
Koopman operators
Perron-Frobenius operators
Ergodic dynamical systems
Reproducing kernel Hilbert spaces
Spectral theory

A framework for coherent pattern extraction and prediction of observables of 
measure-preserving, ergodic dynamical systems with both atomic and continuous 
spectral components is developed. This framework is based on an approximation 
of the generator of the system by a compact operator Wτ on a reproducing 
kernel Hilbert space (RKHS). The operator Wτ is skew-adjoint, and thus can 
be represented by a projection-valued measure, discrete by compactness, with an 
associated orthonormal basis of eigenfunctions. These eigenfunctions are ordered in 
terms of a Dirichlet energy, and provide a notion of coherent observables under the 
dynamics akin to the Koopman eigenfunctions associated with the atomic part of 
the spectrum. In addition, Wτ generates a unitary evolution group {etWτ }t∈R on the 
RKHS, which approximates the unitary Koopman group of the system. We establish 
convergence results for the spectrum and Borel functional calculus of Wτ as τ → 0+, 
as well as an associated data-driven formulation utilizing time series data. Numerical 
applications to ergodic systems with atomic and continuous spectra, namely a torus 
rotation, the Lorenz 63 system, and the Rössler system, are presented.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Characterizing and predicting the evolution of observables of dynamical systems is an important problem 
in the mathematical, physical, and engineering sciences, both theoretically and from an applications stand-
point. A framework that has been gaining popularity [1–22] is the operator-theoretic approach to ergodic 
theory [23–25], where instead of directly studying the properties of the dynamical flow on state space, one 
characterizes the dynamics through its action on linear spaces of observables. The two classes of opera-
tors that have been predominantly employed in these approaches are the Koopman and Perron-Frobenius 
(transfer) operators, which are duals to one another on appropriate spaces of functions and measures, re-
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spectively. It is a remarkable fact, realized in the work of Koopman in the 1930s [26], that the action of 
a general nonlinear system on such spaces can be characterized through linear evolution operators, acting 
on observables by composition with the flow. Thus, despite the potentially nonlinear nature of the dynam-
ics, many relevant problems, such as coherent pattern detection, statistical prediction, and control, can be 
formulated as intrinsically linear problems, making the full machinery of functional analysis available to 
construct approximation techniques.

The Koopman operator U t associated with a continuous-time, continuous flow Φt : M → M on a manifold 
M acts on functions by composition, U tf = f ◦ Φt. It is a contractive operator on the Banach space C0(M)
of bounded continuous functions on M , and a unitary operator on the Hilbert space L2(μ) associated with 
any invariant Borel probability measure μ. Our main focus will be the latter Hilbert space setting, in which 
U = {U t}t∈R becomes a unitary evolution group. In this setting, it is merely a matter of convention to 
consider Koopman operators instead of transfer operators, for the action of the transfer operator at time 
t on densities of measures in L2(μ) is given by the adjoint U t∗ = U−t of U t. We will also assume that the 
invariant measure μ is ergodic.

In this work, we seek to address the following two broad classes of problems:

(i) Coherent pattern extraction; that is, identification of a collection of observables in L2(μ) having high 
regularity and an approximately periodic evolution under U t. A precise notion of coherent observables 
stated in terms of Koopman eigenfunctions, or approximate Koopman eigenfunctions, will be given in 
(5) and (12), respectively.

(ii) Prediction; that is, approximation of U tf at arbitrary t ∈ R for a fixed observable f ∈ L2(μ).

Throughout, we require that the methods to address these problems are data-driven; i.e., they only utilize 
information from the values of a function F : M → Y taking values in a data space Y , sampled finitely 
many times along an orbit of the dynamics.

1.1. Spectral characterization of unitary evolution groups

By Stone’s theorem on one-parameter unitary groups [27,28], the Koopman group U is completely char-
acterized by its generator—a densely defined, skew-adjoint, unbounded operator V : D(V ) → L2(μ) with 
domain D(V ) ⊂ L2(μ), where

V f = lim
t→0

U tf − f

t
, f ∈ D(V ).

In particular, associated with V is a unique projection-valued measure (PVM) E : B(R) → L(L2(μ)) acting 
on the Borel σ-algebra B(R) on the real line and taking values in the space L(L2(μ)) of bounded operators 
on L2(μ), such that

V =
∫
R

iω dE(ω), U t =
∫
R

eiωt dE(ω). (1)

The latter relationship expresses the Koopman operator at time t as an exponentiation of the generator, 
U t = etV , which can be thought of as operator-theoretic analog of the exponentiation of a skew-symmetric 
matrix yielding a unitary matrix. In fact, the map V �→ etV is an application of the Borel functional 
calculus, whereby one lifts a Borel-measurable function Z : iR → C on the imaginary line iR ⊂ C, to an 
operator-valued function
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Z(V ) =
∫
R

Z(iω) dE(ω), (2)

acting on the skew-adjoint operator V via an integral against its corresponding PVM E.
The spectral representation of the unitary Koopman group can be further refined by virtue of the fact 

that L2(μ) admits the U t-invariant orthogonal splitting

L2(μ) = Hp ⊕ Hc, Hc = H⊥
p , (3)

where Hp and Hc are closed orthogonal subspaces of L2(μ) associated with the atomic (point) and continuous 
components of E, respectively. On these subspaces, there exist unique PVMs Ep : B(R) → L(Hp) and 
Ec : B(R) → L(Hc), respectively, where Ep is atomic and Ec is continuous, yielding the decomposition

E = Ep ⊕ Ec. (4)

We will refer to Ep and Ec as the point and continuous spectral components of E, respectively.
The subspace Hp is the closed linear span of the eigenspaces of V (and thus of U t). Correspondingly, the 

atoms of Ep, i.e., the singleton sets {ωj} ⊂ R for which Ep({ωj}) �= 0, contain the eigenfrequencies of the 
generator. In particular, for every such ωj, Ep({ωj}) is equal to the orthogonal projector to the eigenspace 
of V at eigenvalue iωj , and all such eigenvalues are simple by ergodicity of the invariant measure μ. As a 
result, Hp admits an orthonormal basis {zj} satisfying

V zj = iωjzj , U tzj = eiωjtzj , U tf =
∑

j

eiωjt〈zj , f〉μzj , ∀f ∈ Hp, (5)

where 〈·, ·〉μ is the inner product on L2(μ). It follows from the above that the Koopman eigenfunctions 
form a distinguished orthonormal basis of Hp, whose elements zj evolve under the dynamics by multipli-
cation by periodic phase factors at the frequencies ωj, even if the underlying dynamical flow is nonlinear 
and aperiodic. In contrast, observables f ∈ Hc do not exhibit an analogous quasiperiodic evolution, and 
are characterized instead by a weak-mixing property (decay of correlations), typical of chaotic dynam-
ics,

1
t

t∫
0

|〈g, Usf〉μ| ds −−−→
t→∞

0, ∀g ∈ L2(μ).

1.2. Pointwise and spectral approximation techniques

While the two classes of pattern extraction and prediction problems listed above are obviously related 
by the fact that they involve the same evolution operators, in some aspects they are fairly distinct, as for 
the latter it is sufficient to perform pointwise (or even weak) approximations of the operators, whereas 
the former are fundamentally of a spectral nature. In particular, observe that a convergent approximation 
technique for the prediction problem can be constructed by taking advantage of the fact that U t is a bounded 
(and therefore continuous) linear operator, without explicit consideration of its spectral properties. That is, 
given an arbitrary orthonormal basis {φ0, φ1, . . .} of L2(μ) with associated orthogonal projection operators 
ΠL : L2(μ) → span{φ0, . . . , φL−1}, the finite-rank operator U t

L = ΠLU tΠL is fully characterized by the 
matrix elements U t

ij = 〈φi, U tφj〉μ with 0 ≤ i, j ≤ L − 1, and by continuity of U t, the sequence of operators 
U t

L converges pointwise to U t. Thus, if one has access to data-driven approximations U t
N,ij of U t

ij determined 
from N measurements of F taken along an orbit of the dynamics, and these approximations converge as 
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N → ∞, then, as L → ∞ and N � L, the corresponding finite-rank operators U t
N,L converge pointwise 

to U t.
This property was employed in [12] in a technique called diffusion forecasting, whereby the approx-

imate matrix elements U t
N,ij are evaluated in a data-driven basis constructed from samples of F using 

the diffusion maps algorithm (a kernel algorithm for manifold learning) [29]. By spectral convergence 
results for kernel integral operators [30] and ergodicity, as N → ∞, the data-driven basis functions 
converge to an orthonormal basis of L2(μ) in an appropriate sense, and thus the corresponding approx-
imate Koopman operators U t

N,L converge pointwise to U t as described above. In [12], it was demonstrated 
that diffusion forecasts of observables of the Lorenz 63 (L63) system [31] have skill approaching that of 
ensemble forecasts using the true model, despite the fact that the Koopman group in this case has a 
purely continuous spectrum (except from the trivial eigenfrequency at 0). Pointwise-convergent approxi-
mation techniques for Koopman operators were also studied in [20,32] in the context of extended dynamic 
mode decomposition (EDMD) algorithms [14]. However, these methods require the availability of an or-
thonormal basis of L2(μ) of sufficient regularity, which, apart from special cases, is difficult to have in 
practice (particularly when the support of μ is an unknown, measure-zero subset of the ambient state 
space M).

Of course, this is not to say that the spectral decomposition in (4) is irrelevant in a prediction setting, 
for it reveals that an orthonormal basis of L2(μ) that splits between the invariant subspaces Hp and Hc

would yield a more efficient representation of U t than an arbitrary basis. This representation could be 
made even more efficient by choosing the basis of Hp to be a Koopman eigenfunction basis (e.g., [17]). 
Still, so long as a method for approximating a basis of L2(μ) is available, arranging for compatibility of 
the basis with the spectral decomposition of U t is a matter of optimizing performance rather than ensuring 
convergence.

In contrast, as has been recognized since the earliest techniques in this area [1–4], in coherent pattern 
extraction problems the spectral properties of the evolution operators play a crucial role from the outset. In 
the case of measure-preserving ergodic dynamics studied here, the Koopman eigenfunctions in (5) provide 
a natural notion of temporally coherent observables that capture intrinsic frequencies of the dynamics. 
Unlike the eigenfunctions of other operators commonly used in data analysis (e.g., the covariance operators 
employed in the proper orthogonal decomposition [33]), Koopman eigenfunctions have the property of being 
independent of the observation map F , thus leading to a definition of coherence that is independent of the 
observation modality used to probe the system. In applications in fluid dynamics [6,34], climate dynamics 
[35], and many other domains, it has been found that the patterns recovered by Koopman eigenfunction 
analysis have high physical interpretability and ability to recover dynamically significant timescales from 
multiscale input data.

1.3. Review of existing methodologies

Despite the attractive theoretical properties of evolution operators, the design of data-driven spectral 
approximation techniques that can naturally handle both point and continuous spectra, with rigorous con-
vergence guarantees, is challenging, and several open problems remain. As an illustration of these challenges, 
and to place our work in context, it is worthwhile noting that besides approximating the continuous spec-
trum (which is obviously challenging), rigorous approximation of the atomic spectral component Ep is also 
non-trivial, since, apart from the case of circle rotations, it is concentrated on a dense, countable subset 
of the real line. In applications, the density of the atomic part of the spectrum and the possibility of the 
presence of a continuous spectral component necessitate the use of some form of regularization to ensure 
well-posedness of spectral approximation schemes. In the transfer operator literature, the use of regulariza-
tion techniques such as domain restriction to function spaces where the operators are quasicompact [2], or 
compactification by smoothing by kernel integral operators [8], has been prevalent, though these methods 
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may require more information than the single observable time series assumed to be available here. On the 
other hand, many of the popular techniques in the Koopman operator literature, including the dynamic 
mode decomposition (DMD) [6,7] and EDMD [14] do not explicitly consider regularization, and instead im-
plicitly regularize the operators by projection onto finite-dimensional subspaces (e.g., Krylov subspaces and 
subspaces spanned by general dictionaries of observables). Despite the practical simplicity of this approach, 
controlling its asymptotic behavior as the dimension of the approximation space increases is difficult; see, 
e.g., Fig. 5 in Sect. 9.

To our knowledge, the first spectral convergence results for EDMD [16] were obtained for a variant of the 
framework called Hankel-matrix DMD [15], which employs dictionaries constructed by application of delay-
coordinate maps [36] to the observation function. However, these results are based on an assumption that 
the observation map lies in a finite-dimensional Koopman invariant subspace (which must be necessarily a 
subspace of Hp); an assumption unlikely to hold in practice. This assumption is relaxed in [20], who establish 
weak spectral convergence results implied by strongly convergent approximations of the Koopman operator 
derived through EDMD. This approach makes use of an a priori known orthonormal basis of L2(μ), the 
availability of which is not required in Hankel-matrix DMD.

A fairly distinct class of approaches to (E)DMD perform spectral estimation for Koopman operators 
using harmonic analysis techniques [3,4,21,22]. Among these, [3,4] consider a spectral decomposition of 
the Koopman operator closely related to (4), though expressed in terms of spectral measures on S1 as 
appropriate for unitary operators, and utilize harmonic averaging (discrete Fourier transform) techniques 
to estimate eigenfrequencies and the projections of the data onto Koopman eigenspaces. While this ap-
proach can theoretically recover the correct eigenfrequencies corresponding to eigenfunctions with nonzero 
projections onto the observation map, its asymptotic behavior in the limit of large data exhibits a highly 
singular dependence on the frequency employed for harmonic averaging—this hinders the construction of 
practical algorithms that converge to the true eigenfrequencies by examining candidate eigenfrequencies in 
finite sets. The method also does not address the problem of approximating the continuous spectrum, or the 
computation of Koopman eigenfunctions on the whole state space (as opposed to eigenfunctions computed 
on orbits).

The latter problem was addressed in [22], who employed the theory of reproducing kernel Hilbert spaces 
(RKHSs) [37,38] to identify conditions for a candidate frequency ω ∈ R to be a Koopman eigenfrequency 
based on the RKHS norm of the corresponding Fourier function eiωt sampled on an orbit. For the frequencies 
meeting these criteria, they constructed pointwise-defined Koopman eigenfunctions in RKHS using out-of-
sample extension techniques [39]. While this method also suffers from a singular behavior in ω, it was 
found to perform better than conventional harmonic averaging, particularly in mixed-spectrum systems 
with non-trivial atomic and continuous spectral components simultaneously present. However, the question 
of approximating the continuous spectrum remains moot. RKHS-based approaches for spectral analysis of 
Koopman operators have also been proposed in [40,41], though these methods rely on the strong assumption 
that the Koopman operator maps the RKHS into itself. The latter is known to be satisfied only in special 
cases, such as RKHSs with flow-invariant reproducing kernels [22, Corollary 9].

In [21], a promising approach for estimating both the atomic and continuous parts of the spectrum was 
introduced, based on spectral moment estimation techniques. This approach consistently approximates the 
spectral measure of the Koopman operator on the cyclic subspace associated with a given scalar-valued 
observable, and is also capable of identifying its atomic, absolutely continuous, and singular continuous 
components. However, since it operates on cyclic subspaces associated with individual observables, it is 
potentially challenging to extend to applications involving a high-dimensional data space Y , including 
spatiotemporal systems where the dimension of Y is formally infinite.

In [13,17,18] a different approach was taken, focusing on approximations of the eigenvalue problem 
for the skew-adjoint generator V , as opposed to the unitary Koopman operators U t, in an orthonor-
mal basis of an invariant subspace of Hp (of possibly infinite dimension) learned from observed data 
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via kernel algorithms [29,30,42–44] as in diffusion forecasting. A key ingredient of these techniques is a 
family K1, K2, . . . of kernel integral operators on L2(μ) constructed from delay-coordinate-mapped data 
with Q delays, such that, in the infinite-delay limit, KQ converges in norm to a compact integral op-
erator K∞ : L2(μ) → L2(μ) commuting with U t for all t ∈ R. Because commuting operators have 
common eigenspaces, and the eigenspaces of compact operators at nonzero corresponding eigenvalues are 
finite-dimensional, the eigenfunctions of K∞ (approximated by eigenfunctions of KQ at large Q) pro-
vide a highly efficient basis to perform Galerkin approximation of the Koopman eigenvalue problem. In 
[13,17,18], a well-posed variational eigenvalue problem was formulated by regularizing the raw generator 
V by the addition of a small amount of diffusion, represented by a positive-semidefinite self-adjoint op-
erator Δ : D(Δ) → L2(μ) on a suitable domain D(Δ) ⊂ D(V ). This leads to an advection-diffusion 
operator

L = V − θΔ, θ > 0, (6)

whose eigenvalues and eigenfunctions can be computed through Galerkin schemes based on classical ap-
proximation theory for variational eigenvalue problems [45]. The diffusion operator in (6) is constructed so 
as to commute with V , so that every eigenfunction of L is a Koopman eigenfunction, with eigenfrequency 
equal to the imaginary part of the corresponding eigenvalue. Moreover, it was shown that the variational 
eigenvalue problem for L can be consistently approximated from time series data acquired via a generic 
observation map.

Advection-diffusion operators as in (6) can, in some cases, also provide a notion of coherent observables 
in the continuous spectrum subspace Hc, although from this standpoint the results are arguably not very 
satisfactory. In particular, it follows from results in [46] that if the support X ⊆ M of the invariant measure 
μ has manifold structure, and Δ is chosen to be a Laplacian or weighted Laplacian for a suitable Riemannian 
metric, then the spectrum of L contains only isolated eigenvalues, irrespective of the presence of continuous 
spectrum [17]. However, if V has a non-empty continuous spectrum, then there exists no smooth Riemannian 
metric whose corresponding Laplacian commutes with V , meaning that L is necessarily non-normal. The 
spectra of non-normal operators can have several undesirable, or difficult to control, properties, including 
extreme sensitivity to perturbations and failure to have a complete basis of eigenvectors. The behavior of L
is even more difficult to characterize if X is not a smooth manifold, and V possesses continuous spectrum. In 
[13,17,18], these difficulties are avoided by effectively restricting V to an invariant subspace of Hp through 
a careful choice of data-driven basis, but this approach provides no information about the ability of the 
method to identify coherent observables in Hc.

Operators analogous to L in (6), acting on suitable spaces of distributions, have also been shown to 
consistently approximate the spectrum of the generator of Anosov flows [47,48], allowing, in particular, to 
recover Pollicott-Ruelle resonances [49,50] in such systems through zero viscosity (θ → 0) limits. However, 
these approaches make extensive use of the hyperbolic structure of Anosov flows, which is not exhibited 
by the more general class of ergodic flows studied here. Put together, these facts motivate a different 
regularization approach to (6) that can seamlessly handle both the point and continuous spectra of V , while 
being amenable to data-driven approximation.

1.4. Contributions of this work

In this paper, we propose a data-driven framework for pattern extraction and prediction in measure-
preserving, ergodic dynamical systems, which retains the advantageous aspects of [12,13,17,18] through the 
use of kernel integral operators to provide orthonormal bases of appropriate regularity, while being naturally 
adapted to dynamical systems with arbitrary (pure point, mixed, or continuous) spectral characteristics. 
The key element of our approach is to replace the diffusion regularization in (6) by a compactification of 
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the skew-adjoint generator V of such systems (which is unbounded, and has complicated spectral behavior), 
mapping it to a family of compact, skew-adjoint operators Wτ : Hτ → Hτ , τ > 0, each acting on an RKHS 
Hτ of functions on the state space manifold M . In fact, the operators Wτ are not only compact, they are 
trace-class integral operators with continuous kernels. Moreover, the spaces Hτ employed in this framework 
are dense in L2(μ), and have Markovian reproducing kernels. We use the unitary operator group {etWτ }t∈R

generated by Wτ as an approximation of the Koopman group U , and establish spectral and pointwise 
convergence as τ → 0 in an appropriate sense. This RKHS approach has the following advantages.

(i) The fact that Wτ is skew-adjoint avoids non-normality issues, and allows decomposition of these oper-
ators in terms of unique PVMs Eτ : B(R) → L(Hτ ). The existence of Eτ allows in turn the construction 
of a Borel functional calculus for Wτ , meaning in particular that operator exponentiation, etWτ , is well 
defined. Moreover, by compactness of Wτ , the measures Eτ are purely atomic, have bounded support, 
and are thus characterized by a countable set of bounded, real-valued eigenfrequencies with a corre-
sponding orthonormal eigenbasis of Hτ . The skew-adjointness of Wτ and the generator V also enables 
the use of spectral approximation techniques based on strong convergence in a core of V [51], which 
are special to skew- or self-adjoint operators and would not be available in a direct approximation of 
the unitary Koopman group.

(ii) For systems that do possess nontrivial Koopman eigenfunctions, there exists a subset of the eigen-
functions of Wτ converging to them as τ → 0. These eigenfunctions can be identified a posteriori by 
monitoring the growth of a Dirichlet energy functional as a function of τ . Crucially, however, the eigen-
functions of Wτ provide a basis for the whole of L2(μ), including the continuous spectrum subspace 
Hc, that evolves under the dynamics as an approximate Koopman eigenfunction basis.

(iii) The evaluation of etWτ in the eigenbasis of Wτ leads to a stable and efficient scheme for forecasting 
observables, which can be initialized with pointwise initial data in M . This improves upon diffusion 
forecasting [12], as well as comparable prediction techniques operating directly on L2(μ), which produce 
“weak” forecasts (i.e., expectation values of observables with respect to probability densities in L2(μ)). 
In addition, being based on an approximation of the generator, the evolution of observables under etWτ

is of a fundamentally generative nature, in contrast with direct approximations of the action of the 
Koopman group on fixed target observables [52] which would typically be of an interpolatory nature.

(iv) Our framework is well-suited for data-driven approximation using techniques from statistics and ma-
chine learning [30,39,53]. In particular, the theory of interpolation and out-of-sample extension in 
RKHS allows for consistent and stable approximation of quantities of interest (e.g., the eigenfunctions 
of Wτ and the action of etWτ on a prediction observable), based on data acquired on a finite trajectory 
in the state space M .

In our main results, Theorems 1, 2 and Corollaries 3, 4, we prove the spectral convergence of Wτ to V in 
an appropriate sense by defining auxiliary compact operators acting on L2(μ). The relationships between 
these operators are depicted in Fig. 1 in the form of a flow chart. In Theorem 21, we give a data-driven 
analog of our main results, indicating how to construct finite-rank operators from finite datasets without 
prior knowledge of the underlying system and/or state space, and how spectral convergence still holds in 
an appropriate sense.

1.5. Plan of the paper

In Section 2, we make our assumptions on the underlying system precise, and state our main results. This 
is followed by results on compactification of operators in RKHS, Theorems 5–10, in Section 3, which will be 
useful for the proofs of the main results. Before proving our main results, we also review some concepts from 
ergodic theory and functional analysis in Section 4. Then, in Sections 5 and 6, we prove Theorems 5–8 and 
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Fig. 1. Outline of the main results and relationships between operators employed in the paper. Our focus is on approximating, in 
a spectral sense, the group of unitary Koopman operators Ut on the L2(μ) space of observables of an ergodic dynamical system 
with an invariant measure μ, and establishing associated data-driven schemes. We approach this problem by approximating the 
Koopman generator V and its associated spectral measure given in (1). In particular, we construct a family of compact, skew-
adjoint operators Ṽτ which have strong resolvent convergence to V as τ → 0, resulting in a spectral approximation of V in the 
sense of convergence of the corresponding spectral measures. Simultaneously, the exponentiation of etṼτ converges strongly to the 
Koopman operator etV . These results provide means of (i) extraction of coherent observables associated with the approximate 
point spectrum of V (Corollary 3); and (ii) prediction of observables under the dynamics (Corollary 4). A key element of the 
approach is a family of compact, skew-adjoint operators Wτ on RKHSs Hτ of appropriate regularity (Theorem 1). These operators 
are constructed in Theorem 6, and are related to Ṽτ by a canonical unitary transformation Uτ between L2(μ) and Hτ . The main 
results on the spectral convergence of Ṽτ to V and strong convergence of the associated spectral measures are stated in Theorem 2. 
To connect Wτ to V , we rely on two regularizations, Aτ (Theorem 5) and Bτ (Theorem 7), of V . Theorems 8 and 9 establish 
commutation and spectral relationships between Ṽτ , Wτ , Aτ , and Bτ , followed by spectral convergence results for these operators 
in Theorem 10. Theorem 21 and Corollary 22 describe data-driven analogs of the main approximation results utilizing time series 
data. These approaches are illustrated with numerical examples in Section 8.

9, 10, respectively, while Section 7 contains the proof of our main results. In Section 8, we describe a data-
driven method to approximate the compactified generator Wτ , and establish its convergence (Theorem 21). 
In Section 9, we present illustrative numerical examples of our framework applied to dynamical systems with 
both purely atomic and continuous Koopman spectra, namely a quasiperiodic rotation on a 2-torus, and the 
Rössler and L63 systems. We state our primary conclusions in Section 9. The paper also includes an appendix 
on variable-bandwidth Gaussian kernels [43] (Appendix A). Pseudocode is included in Appendix B.

2. Main results

All of our main results will use the following standing assumptions and notations.

Assumption 1. Φt : M → M, t ∈ R, is a continuous-time, continuous flow on a metric space M. There 
exists a forward-invariant, m-dimensional, Cr, compact, connected manifold M ⊆ M, such that the re-
stricted flow map Φt|M is also Cr. X ⊆ M is a compact invariant set, supporting an ergodic, invariant 
Borel probability measure μ.

This assumption is met by many dynamical systems encountered in applications, including ergodic flows 
on compact manifolds with regular invariant measures (in which case M = M = X), certain dissipative 
ordinary differential equations on noncompact manifolds (e.g., the L63 system [31], where M = R3, M is 
an appropriate absorbing ball [54], and X a fractal attractor [55]), and certain dissipative partial equations 
with inertial manifolds [56] (where M is an infinite-dimensional function space).

In what follows, we seek to compactify the generator V , whose action is similar to that of a differentiation 
operator along the trajectories of the flow. Intuitively, one way of achieving this is to compose V with 
appropriate smoothing operators. To that end, we will employ kernel integral operators associated with 
RKHSs.
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Kernels and their associated integral operators. In the context of interest here, a kernel will be a continuous 
function k : M × M → C, which can be thought of as a measure of similarity or correlation between pairs 
of points in M . Associated with every kernel k and every finite, compactly supported Borel measure ν (e.g., 
the invariant measure μ) is an integral operator K : L2(ν) → C0(M), acting on f ∈ L2(ν) as

Kf :=
∫
M

k(·, y)f(y) dν(y). (7)

If, in addition, k lies in Cr(M × M), then K imparts this smoothness to Kf , i.e., Kf ∈ Cr(M). Note that 
the compactness of supp(ν) is important for this conclusion to hold. The kernel k is said to be Hermitian 
if k(x, y) = k∗(y, x) for all x, y ∈ M . It is called positive-definite if for every sequence of distinct points 
x1, . . . , xn ∈ M the n × n kernel matrix K = [k(xi, xj)] is non-negative, and strictly positive-definite if K
is strictly positive-definite. Clearly, every real, Hermitian kernel is symmetric, i.e., k(x, y) = k(y, x) for all 
x, y ∈ M .

Aside from inducing an operator mapping into Cr(M), a kernel k also induces an operator G = ιK on 
L2(ν), where ι : C0(M) → L2(ν) is the canonical L2 inclusion map on continuous functions. The operator 
G is Hilbert-Schmidt, and thus compact and of finite trace. In particular, its Hilbert-Schmidt norm and 
trace are given by

‖G‖HS :=
√

tr(G∗G) = ‖k‖L2(ν×ν), tr G =
∫
M

k(x, x) dν(x), (8)

respectively. Moreover, if k is Hermitian, G is self-adjoint, and there exists an orthonormal basis of L2(μ)
consisting of its eigenfunctions. Let Xν denote the support of ν. A kernel k will be called L2(ν)-positive and 
L2(ν)-strictly-positive if G ≥ 0 and G > 0, respectively; in those cases, G is also of trace class. Note that if 
k is (strictly) positive-definite on Xν × Xν , then it is L2(ν)- (strictly-) positive. Moreover, k will be called 
a L2(ν)-Markov kernel if the associated integral operator G : L2(ν) → L2(ν) is Markov, i.e., (i) Gf ≥ 0 if 
f ≥ 0; (ii) 

∫
M

Gf dν =
∫

M
f dν, for all f ∈ L2(ν); and (iii) Gf = f if f is constant. The Markov kernel k

will be said to be ergodic if Gf = f iff f is constant. A sufficient condition for k to be Markov is that k ≥ 0
on Xν × Xν , and 

∫
M

k(x, ·) dν = 1 for ν-a.e. x ∈ M . If k > 0 on Xν × Xν , then k is ergodic.

Reproducing kernel Hilbert spaces. An RKHS on M is a Hilbert space H of complex-valued functions on 
M with the special property that for every x ∈ M , the point-evaluation map δx : H → C, δxf = f(x), is 
a bounded, and thus continuous, linear functional. By the Riesz representation theorem, every RKHS has 
a unique reproducing kernel, i.e., a kernel k : M × M → C such that for every x ∈ M the kernel section 
k(x, ·) lies in H, and for every f ∈ H,

f(x) = δxf = 〈k(x, ·), f〉H,

where 〈·, ·, 〉H is the inner product of H, assumed conjugate-linear in the first argument. It then follows that 
k is Hermitian. Conversely, according to the Moore-Aronszajn theorem [57], given a Hermitian, positive-
definite kernel k : M × M → C, there exists a unique RKHS H for which k is the reproducing kernel. 
Moreover, the range of K from (7) lies in H, so we can view K as an operator K : L2(ν) → H between 
Hilbert spaces. With this definition, K is compact, and the adjoint operator K∗ : H → L2(ν) maps f ∈ H
into its L2(ν) equivalence class, i.e., K∗ = ι|H and G = K∗K. For any compact subset S ⊆ M , one can 
similarly define H(S) to be the RKHS induced on S by the kernel k|S×S . In fact, upon restriction to the 
support Xν , the range of K is a dense subspace of H(Xν). This implies that every function in H(Xν) has 
a unique extension to a function in H lying in the closed subspace K := ran K ⊆ H.
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Nyström extension. Let H be an RKHS on M with reproducing kernel k. Then, the Nyström extension 
operator N : D(N ) → H acts on a subspace D(N ) of L2(ν), mapping each element f in its domain to a 
function N f ∈ H, such that N f lies in the same L2(ν) equivalence class as f . In other words, N f(x) = f(x)
for ν-a.e. x ∈ M , and K∗N is the identity on D(N ). It can also be shown that D(N ) = ran K∗, ran N = K, 
and N K∗ is the identity on K. Moreover, if k is L2(ν)-strictly-positive, then D(N ) is a dense subspace 
of L2(ν). In fact, D(N ) can be endowed with the structure of a Hilbert space, equipped with the inner 
product 〈f, g〉N = 〈N f, N g〉H. If k is L2(ν)-strictly-positive and Markov ergodic, this space behaves in 
many ways analogously to a Sobolev space on a compact Riemannian manifold. In particular, equipped 
with this inner product, D(N ) embeds compactly into L2(ν), and ‖f‖N ≥ ‖f‖L2(ν) with equality iff f is 
constant. Moreover, the ‖·‖N norm induces a Dirichlet energy functional D : D(N ) → R,

D(f) = ‖f‖2
N

‖f‖2
L2(ν)

− 1, ∀f ∈ D(N ) \ {0}, and D(0) = 0, (9)

where D(f) is non-negative and vanishes iff f is constant by L2(ν)-Markovianity and ergodicity of k. 
Intuitively, D can be interpreted as a measure of “roughness” of functions in D(N ), which vanishes for 
constant functions, and is large for functions that project strongly to the eigenfunctions of G with small 
corresponding eigenvalues. We will give a precise constructive definition of N , and discuss its properties, in 
Section 4.

The following assumption specifies our nominal requirements on kernels pertaining to regularity and 
existence of an associated RKHS.

Assumption 2. p : M × M → R is a Cr, symmetric, positive-definite kernel, and ν a Borel probability 
measure with compact support Xν ⊆ M . Moreover, p is L2(ν)-strictly-positive and Markov ergodic.

We will later describe how kernels satisfying Assumption 2 can easily be constructed from symmetric, 
positive-definite, positive-valued Cr kernels using the bistochastic kernel normalization technique proposed 
in [58]. It should be noted that many of our results will require r = 1 differentiability class in Assumptions 1
and 2, but in some cases that requirement can be relaxed to r = 0.

One-parameter kernel families. Let P : L2(ν) → H be the integral operator associated with a kernel p

satisfying Assumption 2, taking values in the corresponding RKHS H. The associated operator G = P ∗P

on L2(ν) has positive eigenvalues, which can be ordered as 1 = λ0 > λ1 ≥ . . .. Given a real, orthonormal basis 
{φ0, φ1, . . .} of L2(ν) consisting of corresponding eigenfunctions, the set {ψ0, ψ1, . . .} with ψj = λ

−1/2
j Pφj

is an orthonormal basis of ran P ⊆ H, and the restrictions of these functions to Xν form an orthonormal 
basis of H(Xν). Defining

λτ,j := exp
(
τ(1 − λ−1

j )
)

, ψτ,j :=
√

λτ,j/λj ψj , pτ (x, y) :=
∞∑

j=0
ψτ,j(x)ψτ,j(y), (10)

where τ > 0, and x, y are arbitrary points in M , the following theorem establishes the existence of a 
one-parameter family of RKHSs, indexed by τ , and an associated Markov semigroup on L2(ν).

Theorem 1 (Markov kernels). Let Assumption 2 hold. Then, for every τ > 0, the series expansion for pτ (x, y)
in (10) converges in Cr(M × M) norm to a Cr, symmetric function. Moreover, the following hold:

(i) For every τ > 0, pτ is a positive-definite kernel on M . In addition, it is L2(ν)-strictly-positive and 
Markov ergodic.
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(ii) For every τ > 0, the RKHS Hτ associated with pτ lies dense in L2(ν), and for every 0 < τ1 < τ2, the 
inclusions Hτ2 ⊆ Hτ1 ⊆ H hold. Moreover, {ψτ,0, ψτ,1, . . .} is an orthonormal basis of Hτ .

(iii) Define G0 := IdL2(ν) and Gτ = P ∗
τ Pτ , where Pτ : L2(ν) → Hτ is the integral operator associated with 

pτ . Then, the family {Gτ }τ≥0 forms a strongly continuous, self-adjoint Markov semigroup.

Remark. Theorem 1 is independent of the dynamical system in Assumption 1. It is a general RKHS result, 
allowing one to employ basis functions for the RKHS H(Xν), restricted on the support of ν, to construct a 
family of RKHSs Hτ on the entire compact manifold M . In particular, ran Pτ is a dense subspace of Hτ , 
while ran P is not necessarily dense in H.

The semigroup structure of the family {Gτ }τ≥0 in Theorem 1(iii) implies, in particular, that for every 
τ1, τ2 ≥ 0, Gτ1+τ2 = Gτ1Gτ2 . Moreover, strong continuity is equivalent to pointwise convergence of Gτ to 
the identity operator as τ → 0+. These two properties, as well as the Markov ergodic property, will all be 
important in our compactification schemes for the Koopman generator, presented in Theorem 2 and Section 3
below. The measure ν will now be set to the invariant measure μ. In what follows, Nτ : D(Nτ ) → Hτ will be 
the Nyström operator associated with Hτ . We also let H∞ =

⋂
τ>0 D(Nτ ) be the dense subspace of L2(μ)

whose elements have Hτ representatives for every τ > 0. Note that H∞ is dense since it contains all finite 
linear combinations of the φj . Similarly, setting H∞ =

⋂
τ>0 Hτ , it follows that H∞(X) is a dense subspace 

of H(X). In addition, we will be making use of the polar decomposition of Pτ . The latter can be shown to 
take the form

Pτ = Uτ G1/2
τ , (11)

where Uτ : L2(μ) → Hτ is the unitary operator such that Uτ φj = ψj,τ for all pairs (φj , ψj,τ ) from (10). 
Given a Borel-measurable function Z : iR → C and a densely-defined skew-adjoint operator T , Z(T ) will 
denote the operator-valued function obtained through the Borel functional calculus as in Section 1. For 
every set Ω ⊂ C, ∂Ω will denote its boundary.

Theorem 2 (Main theorem). Under Assumptions 1, 2 with r = 1, and the definitions in (10), the following 
hold for every τ > 0:

(i) The operator Wτ := Pτ V P ∗
τ : Hτ → Hτ is a well-defined, skew-adjoint, real integral operator of trace 

class.
(ii) The operator Gτ V : D(V ) → L2(μ) extends to a trace class integral operator Bτ : L2(μ) → L2(μ). 

Moreover, the restriction of Bτ to the dense subspace D(Nτ ) ⊆ D(V ) coincides with the operator 
P ∗

τ Wτ Nτ .
(iii) The operators Bτ and Wτ have the same spectra, including multiplicities of eigenvalues. Moreover, 

there exists a unique, purely atomic PVM Eτ : B(R) → L(Hτ ), such that Wτ =
∫
R iω dEτ (ω).

In addition, as τ → 0+:

(iv) For every bounded, Borel-measurable set Ω ⊂ R such that E(∂Ω) = 0, P ∗
τ Eτ (Ω)Nτ and U∗

τ Eτ (Ω)Uτ

converge to E(Ω), in the strong operator topologies of H∞ and L2(μ), respectively.
(v) For every bounded continuous function Z : iR → C, P ∗

τ Z(Wτ )Nτ and U∗
τ Z(Wτ )Uτ converge to Z(V ), 

in the strong operator topologies of H∞ and L2(μ), respectively.
(vi) For every holomorphic function Z : D(Z) → C, with iR ⊂ D(Z) ⊆ C and Z|iR bounded, Z(Bτ )

converges strongly to Z(V ) on L2(μ).
(vii) For every element iω of the spectrum of the generator V , there exists a continuous curve τ → ωτ such 

that iωτ is an eigenvalue of Bτ and Wτ , and limτ→0+ ωτ = ω.
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The skew-adjoint operator Wτ from Theorem 2 can be viewed as a compact approximation to the gen-
erator V . This approximation has a number of advantages for both coherent extraction and prediction. 
First, although V is unbounded and could exhibit complex spectral behavior (see Section 1), Wτ has a 
complete orthonormal basis of eigenfunctions, which are C1 functions lying in Hτ . This suggests that the 
eigenfunctions of Wτ are good candidates for coherent observables of high regularity, which are well defined 
for systems with general spectral characteristics. Moreover, the discrete spectra of compact, skew-adjoint 
operators can be used to construct and approximate to any degree of accuracy the Borel functional calculi 
of these operators, and in particular perform forecasting through exponentiation of Wτ . The eigenvalues 
and eigenfunctions of the smoothing operators Pτ employed in the construction of Wτ can also be easily 
derived from those of P with little computational overhead. In Corollaries 3 and 4 below, we make precise 
the utility of Wτ for the purposes of coherent pattern extraction and forecasting, respectively. See Fig. 3
for an illustration of the dependence of the spectrum of Wτ on τ for dynamical systems with point and 
continuous Koopman spectra.

Approximate point spectrum. Given t ∈ R and ε > 0, a complex number γ is said to lie in the ε-approximate 
point spectrum of U t if there exists a nonzero f ∈ L2(μ) such that

‖U tf − γf‖L2(μ) < ε‖f‖L2(μ). (12)

Such observables f (which include Koopman eigenfunctions as special cases), satisfying (12) for small ε and 
t lying in a given time interval, exhibit a form of dynamical coherence, as they evolve approximately as 
Koopman eigenfunctions over that time interval. We will refer to (γ, f) satisfying (12) as an ε-approximate 
eigenpair of U t. A discussion on how the ε-approximate point spectrum varies with ε, and its relation to the 
spectrum, in the context of a general, closed, unbounded operator, can be found in Section 4. The following 
corollary of Theorem 2 establishes that the eigenvalues of Wτ corresponding to eigenfunctions that satisfy 
certain Dirichlet energy criteria, can be used to identify points in the ε-approximate point spectrum of the 
Koopman operator at any ε > 0. In what follows, D : D(N ) → R will denote the Dirichlet energy from (9), 
induced on L2(μ) by the kernel p in Assumption 2. We also introduce the function R : R+ × R+ → R, 
defined as

R(ε, τ) := sup{T > 0 : ‖(U t − etBτ )P ∗‖ < ε, ∀t ∈ [−T, T ]}.

Here, the norm of (U t − etBτ )P ∗ is taken as an operator from H into L2(μ). The function R(ε, τ) identifies 
a time interval (−R(τ, ε), R(τ, ε)) � t over which the operator families U t and etBτ are ε-close. We will later 
show in Proposition 20 that for every ε > 0, R(ε, τ) diverges as τ → 0+.

Corollary 3 (Coherent observables). Let (iωτ , ζτ ) be an eigenpair of Wτ . Then, (eiωτ t, zτ ), with zτ = P ∗
τ ζτ , 

is an ε-approximate eigenpair of U t for all t ∈ (−T (ε, τ), T (ε, τ)), where

T (ε, τ) = R(ε, τ)/
√

D(zτ ) + 1.

In addition, the following hold:

(i) If limτ→0+ ωτ =: ω exists, and T (ε, τ) diverges as τ → 0+ for every ε > 0, then iω is an element of the 
spectrum of V .

(ii) If limτ→0+ ωτ =: ω exists, and D(zτ ) is bounded as τ → 0+, then iω is an eigenvalue of V . Moreover, 
the sequence zτ converges to the eigenspace of V corresponding to iω.
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Remark. An important consideration in spectral approximation techniques is to identify and/or control the 
occurrence of spectral pollution [59], i.e., eigenvalues iωτ of the approximating operators Wτ converging to 
points which do not lie in the spectrum of V . Corollary 3 establishes that the regularity of the correspond-
ing eigenfunctions ζτ , as measured through the Dirichlet energy functional associated with the RKHS H, 
provides a useful a posteriori criterion for identifying spectral pollution.

Turning now to forecasting, let {iωτ,0, iωτ,1, . . .} be the set of eigenvalues of Wτ Note that since Wτ

is a compact, skew-adjoint real operator, the iωj,τ occur in complex-conjugate pairs, and 0 is the only 
accumulation point of the sequence ωτ,0, ωτ,1, . . .. Let also {ζτ,0, ζτ,1, . . .} be an orthonormal basis of Hτ

consisting of corresponding eigenfunctions. The following is a corollary of Theorem 2, which shows that the 
evolution of an observable in L2(μ) under U t can be evaluated to any degree of accuracy by evolution of an 
approximating observable in H∞ under etWτ .

Corollary 4 (Prediction). For every τ > 0, Wτ generates a norm-continuous group of unitary operators 
etWτ : Hτ → Hτ , t ∈ R. Moreover, for any observable f ∈ L2(μ), error bound ε > 0, and compact set 
T ⊂ R, there exists fε ∈ H∞ (independent of T ) and τ0 > 0, such that for every τ ∈ (0, τ0) and t ∈ T ,

∥∥U tf − P ∗
τ etWτ fε

∥∥
L2(μ) < ε, etWτ fε =

∞∑
j=0

eiωτ,jt〈ζτ,j , fε〉Hτ
ζτ,j .

Remark. The function etWτ fε lies in Hτ , and is therefore a continuous function which we employ to predict 
the evolution of the observable f under U t. Corollary 4 suggests that to obtain this function, we first 
regularize f by approximating it by a function fε ∈ H∞, and then invoke the functional calculus for the 
compact operator Wτ to evolve fε as an approximation of U tf . Note that analogous error bounds to that in 
Corollary 4 can be obtained for operator-valued functions Z(V ) of the generator other than the exponential 
functions, Z(V ) = etV = U t. A constructive procedure for obtaining the forecast function in a data-driven 
setting will be described in Section 8.

The flow chart in Fig. 1 summarizes the relationships between the operator families in Theorem 2 and 
Corollaries 3, 4 and their associated modes of convergence.

3. Compactification schemes for the generator

In this section, we lay out various schemes for obtaining compact operators by composing the generator V
with operators derived from kernels. These schemes are of independent interest, as they are applicable, with 
appropriate modifications, to more general classes of unbounded, skew- of self-adjoint operators obtained 
by extension of differentiation operators. In some cases, the following weaker analog of Assumption 2 will 
be sufficient.

Assumption 3. k : M × M → R is a C1, symmetric positive-definite kernel.

Given the RKHS H ⊂ C1(M) associated with k from Assumption 3, and the corresponding integral 
operators K : L2(μ) → H, G = K∗K : L2(μ) → L2(μ), and closed subspace K = ran K ⊆ H, we begin by 
formally introducing the operators A : L2(μ) → L2(μ) and W : H → H, where

A := V G = V K∗K, W := KV K∗. (13)

Note that it is not necessarily the case that these operators are well defined, for the ranges of G and K∗

may lie outside of the domain of V . Nevertheless, as the following two theorems establish, A and W are 
well-defined, and in fact compact, operators.
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Theorem 5 (Pre-smoothing). Let Assumptions 1 and 3 hold, and define k′ : M × M → R as the C0 kernel 
with k′(x, y) := limt→0(k(Φt(x), y) − k(x, y))/t. Then:

(i) The range of G lies in the domain of V .
(ii) The operator A from (13) is a well-defined, Hilbert-Schmidt integral operator on L2(μ) with kernel k′, 

and thus bounded in operator norm by

‖A‖ ≤ ‖A‖HS = ‖k′‖L2(μ×μ) ≤ ‖k′‖C0(X×X).

(iii) A is equal to the negative adjoint, −(GV )∗, of the densely defined operator GV : D(V ) → L2(μ).

Remark. As stated in Section 1, V is an unbounded operator, whose domain is a strict subspace of L2(μ). 
Theorem 5 thus shows that if we regularize this operator by first applying the smoothing operator G, then 
not only is A bounded, it is also Hilbert-Schmidt, and thus compact. In essence, this property follows from 
the C1 regularity of the kernel.

Arguably, the regularization scheme leading to A, which involves first smoothing by application of G, 
followed by application of V , is among the simplest and most intuitive ways of regularizing V . However, 
the resulting operator A will generally not be skew-symmetric; in fact, apart from special cases, A will be 
non-normal. Theorem 6 below provides an alternative regularization approach for V , leading to a Hilbert-
Schmidt operator on H which is additionally skew-adjoint. Working with this operator also takes advantage 
of the RKHS structure, allowing pointwise function evaluation by bounded linear functionals.

Theorem 6 (Compactification in RKHS). Let Assumptions 1 and 3 hold, and define k̃′ : M × M → R as the 
C0 kernel with k̃′(x, y) = −k′(y, x). Then:

(i) The range of K∗ lies in the domain of V , and V K∗ : H → L2(μ) is a bounded operator.
(ii) The operator W from (13) is a well-defined, Hilbert-Schmidt, skew-adjoint, real operator on H, with 

ran W ⊆ K, satisfying

Wf =
∫
M

k̃′(·, y)f(y) dμ(y).

Remark. Because W is skew-adjoint, real, and compact, it has the following properties, which we will later 
use.

(i) Its nonzero eigenvalues are purely imaginary, occur in complex-conjugate pairs, and accumulate only 
at zero. Moreover, there exists an orthonormal basis of H consisting of corresponding eigenfunctions.

(ii) It generates a norm-continuous, one-parameter group of unitary operators etW : H → H, t ∈ R.

In the next theorem, we connect the operators A and W through the adjoint of A.

Theorem 7 (Post-smoothing). Let Assumptions 1 and 3 hold. Then, the adjoint of −A from (13) is a Hilbert-
Schmidt integral operator B : L2(μ) → L2(μ) with kernel k̃′. In addition:

(i) The densely-defined operator GV : D(V ) → L2(μ) is bounded, and B is equal to its closure, GV :=
(GV )∗∗. Moreover, B is a closed extension of KWN : D(N ) → L2(μ), and if the kernel k is L2(μ)-
strictly-positive, i.e., D(N ) is a dense subspace of L2(μ), that extension is unique.
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(ii) B generates a norm-continuous, 1-parameter group of operators etB : L2(μ) → L2(μ), t ∈ R, satisfying

K∗etW = etBK∗, K∗etW N = etB|D(N ), ∀t ∈ R.

Remark. Because V is an unbounded operator, defined on a dense subset D(V ) ⊂ L2(μ), the domain of GV

is also restricted to D(V ). It is therefore a non-intuitive result that a regularization of V after an application 
of G could still result in a bounded operator that can be extended to the entire space L2(μ).

Theorem 7(i) shows that, on the subspace D(N ) ⊂ L2(μ), B acts by first performing Nyström extension, 
then acting by W , then mapping back to L2(μ) by inclusion via K∗. In other words, B is a natural analog 
of W acting on L2(μ), though note that, unlike W , B is generally not skew-adjoint. To summarize, on the 
basis of Theorems 5–7, we have obtained the following sequence of operator extensions:

KWN ⊆ GV ⊂ B = GV = (GV )∗∗.

As our final compactification of V , we will construct a skew-adjoint operator Ṽ on L2(μ) by conjugation 
by a compact operator. In particular, since G is positive, it has a square root G1/2 : L2(μ) → L2(μ), which 
is the unique positive operator satisfying G1/2G1/2 = G. Note that by compactness of G, G1/2 is compact, 
and its action on functions can be conveniently evaluated in an eigenbasis of G. Moreover, it can be verified 
that ran G1/2 = ran K∗. In fact, the operators K and G1/2 are related to K via the polar decomposition, 
K = UG1/2, where U : L2(μ) → H is a (uniquely defined) partial isometry with ran U = K, analogous to 
Uτ in (11). Note that K is an invariant subspace of W . Moreover, if K has dense range, then U becomes 
unitary. Using these definitions, we will show in Theorem 8 below that the operator G1/2V G1/2, defined on 
the subspace {f ∈ L2(μ) : G1/2f ∈ D(V )}, actually extends to a well-defined compact operator.

Theorem 8 (Skew-adjoint compactification). Let Assumptions 1 and 3 hold with r = 1. Then, G1/2V G1/2 is 
a densely defined, bounded operator with a unique skew-adjoint extension to a Hilbert-Schmidt, real operator 
Ṽ : L2(μ) → L2(μ). Moreover, Ṽ is related to the operator W from Theorem 6 via conjugation by the 
partial isometry U , i.e., Ṽ = U∗WU . In particular, if the kernel k is L2(μ)-strictly-positive, Ṽ and W |K are 
unitarily equivalent.

This completes the statement of our compactification schemes for V . Since these schemes are all carried 
out using the same kernel k, one might expect that the spectral properties of the compact operators A, B, 
Ṽ , and W , exhibit non-trivial relationships. These relationships will be made precise in Theorems 9 and 10
below. Hereafter, σ(T ) and σp(T ) will denote the spectrum and point spectrum (set of eigenvalues) of a 
linear operator T , respectively.

Theorem 9 (Spectra of the compactified generators). Let Assumptions 1 and 3 hold with r = 1, and assume 
further that the kernel k is L2(μ)-strictly-positive. Let also {z̃0, ̃z1, . . .} be an orthonormal basis of L2(μ), 
consisting of eigenfunctions z̃j of Ṽ corresponding to purely imaginary eigenvalues iωj. Then:

(i) A and B have the same eigenvalues as Ṽ , including multiplicities. Moreover, σp(W ) = σp(Ṽ ), including 
multiplicities if K has dense range.

In addition, if the kernel k is L2(μ)-Markov ergodic:

(ii) 0 is a simple eigenvalue of each of the operators A, B, Ṽ , and W |K, corresponding to constant eigen-
functions.
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(iii) Every z̃j lies in the domain of G−1/2. Moreover, the set {z′
0, z′

1, . . .}} with z′
j = G−1/2z̃j consists 

of eigenfunctions of A, corresponding to the eigenvalues {iω0, iω1, . . .}, and forms an unconditional 
Schauder basis of L2(μ).

(iv) The set {z0, z1, . . .} with zj = G1/2z̃j is an unconditional Schauder basis of L2(μ), consisting of eigen-
functions of B corresponding to the same eigenvalues, {iω0, iω1, . . .}. Moreover, it is the unique dual 
sequence to the {zj}, satisfying 〈z′

j , zl〉μ = δjl.
(v) The set {ζ0, ζ1, . . .} with ζj = Kz′

j is an orthonormal basis of K consisting of eigenfunctions ζj of W
corresponding to the eigenvalues iωj.

(vi) The operators A, B, Ṽ , and W , admit the representations

A =
∞∑

j=0
iωj〈zj , ·〉L2(μ)z

′
j , B =

∞∑
j=0

iωj〈z′
j , ·〉L2(μ)zj , Ṽ =

∞∑
j=0

iωj〈z̃j , ·〉L2(μ)z̃j ,

W =
∞∑

j=0
iωj〈ζj , ·〉Hζj ,

where the infinite sums for A and B converge strongly, and those for Ṽ , and W converge in Hilbert-
Schmidt norm.

Remark. The Markovianity assumption on the kernel was important to conclude that A, B, Ṽ , and W |K
have finite-dimensional nullspaces (which may not be the case for a general compact operator), allowing us to 
establish a one-to-one correspondence of the spectra of these operators, including eigenvalue multiplicities.

An immediate consequence of Theorem 9, in conjunction with Theorems 7 and 8, is that Ṽ and W

are decomposable in terms of unique PVMs Ẽ : B(R) → L(L2(μ)) and E : B(R) → L(H), such that 
Ṽ =

∫
R iω dẼ(ω), W =

∫
R iω dE(ω), and

Ẽ(Ω) =
∑

j:ωj∈Ω
〈z̃j , ·〉L2(μ)z̃j , E(Ω) =

∑
j:ωj∈Ω

〈ζj , ·〉Hζj + 1Ω(0) projK⊥ , (14)

where 1Ω is the indicator function on Ω, and projK⊥ : H → H the orthogonal projection onto K⊥. Moreover, 
Ẽ and E are related by conjugation by the partial isometry U : L2(μ) → H from Theorem 8,

Ẽ(Ω) = U∗E(Ω)U , ∀Ω ∈ B(R), (15)

and if k is L2(μ)-strictly positive, Ẽ(Ω) and E(Ω)|K are unitarily equivalent. The compactness of Ṽ and W , 
which is reflected in the fact that Ẽ and E are purely atomic PVMs, allows for simple expressions for the 
Borel functional calculi of these operators. In particular, for every Borel-measurable function Z : iR → C, 
we have

Z(Ṽ ) =
∫
R

Z(iω) dẼ(ω) =
∞∑

j=0
Z(iωj)〈z̃j , ·〉L2(μ)z̃j ,

Z(W ) =
∫
R

Z(iω) dE(ω) =
∞∑

j=0
Z(iωj)〈ζj , ·〉Hζj + Z(0) projK⊥ ,

with all limits taken in the strong operator topology. Note that if K has dense range (as in Theorem 2), 
K⊥ reduces to the zero subspace, and projK⊥ vanishes in the above expressions.
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In the case of A and B, the fact that these are, in general, non-normal operators precludes the con-
struction of associated Borel functional calculi. Nevertheless, the compactness of these operators allows 
one to construct their holomorphic functional calculi in a straightforward manner. Specifically, given any 
holomorphic function Z : D(Z) → C on an open set D(Z) ⊆ C containing σ(A) = σ(B), we define

Z(A) =
∮
γ

Z(z)(z − A)−1 dz, Z(B) =
∮
γ

Z(z)(z − B)−1 dz,

where γ is a Cauchy contour in D(Z) containing σ(A) in its interior. Now, because Ṽ G1/2 = G1/2V G =
G1/2A, we have A = G−1/2Ṽ G1/2, and it follows from Taylor series that for any such holomorphic function Z,

Z(A) = G−1/2Z(Ṽ )G1/2, Z(B) = Z(−A)∗ ⊇ G1/2Z(Ṽ )G−1/2. (16)

The results in Theorems 5–9 are for compactifications based on general kernels satisfying Assumptions 1
and 3 and their associated integral operators. Next, we establish spectral convergence results for one-
parameter families of kernels that include the kernels pτ associated with the Markov semigroups in our 
main result, Theorem 2. Specifically, we assume:

Assumption 4. {kτ : M × M → R} with τ > 0 is a one-parameter family of C1, symmetric, L2(μ)-strictly-
positive kernels, such that, as τ → 0+, the sequence of the corresponding compact operators Gτ = K∗

τ Kτ

on L2(μ) converges strongly to the identity, and the sequence of the skew-adjoint compactified generators 
Ṽτ ⊇ G

1/2
τ V G

1/2
τ converges strongly to V on the subspace D(V 2) ⊂ D(V ).

Let Hτ be the RKHS on M with reproducing kernel kτ , Nτ : D(Nτ ) → Hτ the corresponding Nyström 
extension operator, and H∞ the L2(μ) subspace equal to ∩τ>0D(Nτ ). Define the partial isometries Uτ :
L2(μ) → Hτ through the polar decomposition Kτ = Uτ G

1/2
τ , as in Theorem 8. Note that, in general, H∞

could be the zero subspace, but contains at least constant functions if the kτ are L2(μ)-Markov kernels. 
As stated in Section 2, if H∞ is the space associated with the kernels pτ from (10), whose corresponding 
integral operators form a Markov semigroup and thus have common eigenspaces, then it is even dense in 
L2(μ). With these definitions, we establish the following notion of spectral convergence for approximations 
of the generator V by compact operators.

Theorem 10 (Spectral convergence). Suppose that Assumptions 1 and 4 hold with r = 1, and let Aτ , Bτ , Ṽτ :
L2(μ) → L2(μ) and Wτ : Hτ → Hτ with τ > 0, be the Hilbert-Schmidt operators from Theorems 5–8, 
associated with the kernels kτ from Assumption 4. Let also Ẽτ and Eτ be the PVMs associated with Ṽτ and 
Wτ , respectively, constructed as in (14). Then, as τ → 0+, the following hold:

(i) The operator Bτ converges strongly to V on D(V ).
(ii) For every bounded continuous function Z : iR → C, Z(Ṽτ ) and U∗

τ Z(Wτ )Uτ converge strongly to Z(V )
on L2(μ).

(iii) For every holomorphic function Z : D(Z) → C, with iR ⊂ D(Z) ⊆ C and Z|iR bounded, Z(Aτ ) and 
Z(Bτ ) converge strongly to Z(V ) on L2(μ). Moreover, K∗

τ Z(Wτ )Nτ converges strongly to Z(V ) on 
H∞.

(iv) For every bounded Borel-measurable set Ω ⊂ R such that Ẽ(∂Ω) = 0, Ẽτ (Ω) and U∗
τ Eτ (Ω)Uτ converge 

strongly to E(Ω) on L2(μ).
(v) For every element iω of the spectrum of V , there exists a sequence of eigenvalues iωτ of Aτ , Bτ , Ṽτ , 

and Wτ converging to iω.
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Theorem 10 makes several of the statements of our main result, Theorem 2. In Section 5, we will prove 
the latter by invoking Theorems 5–10 for the family of Markov kernels pτ . There, the semigroup structure of 
pτ will allow us to extend the convergence result for K∗

τ Z(Wτ )Nτ from holomorphic functions to bounded 
continuous functions Z, and further deduce that Aτ , Bτ , Ṽτ , and Wτ are of trace class.

4. Results from functional analysis and analysis on manifolds

In this section, we review some basic concepts from RKHS theory, spectral approximation of operators, 
and analysis on manifolds that will be useful in our proofs of the theorems stated in Sections 2 and 3.

4.1. Results from RKHS theory

Nyström extension. We begin by describing the Nyström extension in RKHS. In what follows, H will be an 
RKHS on M with reproducing kernel k, ν an arbitrary finite Borel measure with compact support Xν ⊆ M , 
and K : L2(ν) → H the corresponding integral operator defined via (7). The Nyström extension operator 
N : D(N ) → H, with D(N ) ⊂ L2(ν), extends elements of its domain, which are equivalence classes of 
functions defined up to sets of ν measure zero, to functions in H, which are defined at every point in M
and can be pointwise evaluated by continuous linear functionals. Specifically, introducing the functions

ψj = λ
−1/2
j Kφj , j ∈ J, (17)

where {φ0, φ1, . . .} is an orthonormal set in L2(ν) consisting of eigenfunctions of G = K∗K, corresponding 
to strictly positive eigenvalues λ0 ≥ λ1 ≥ · · · , and J = {j ∈ N0 : λj > 0}, we define

D(N ) =

⎧⎨
⎩
∑
j∈J

ajφj :
∑
j∈J

|aj |2/λj < ∞

⎫⎬
⎭ , N

⎛
⎝∑

j∈J

ajφj

⎞
⎠ :=

∑
j∈J

ajλ
−1/2
j ψj . (18)

It follows directly from these definitions that {ψj}j∈J is an orthonormal set in H satisfying K∗ψj = λ
1/2
j φj , 

and N is a closed-range, closed operator with D(N ) = ran K∗ and ran N = K := ran K = span{ψj}j∈J . 
Moreover, K∗N and N K∗ reduce to the identity operators on D(N ) and ran N , respectively. In fact, upon 
restriction to Xν , ran N coincides with the RKHS H(Xν), and {ψj |X}j∈J forms an orthonormal basis of 
the latter space. If, in addition, the kernel k is L2(ν)-strictly-positive, as we frequently require in this paper, 
then D(N ) is a dense subspace of L2(ν), and K∗ coincides with the pseudoinverse of N . The latter is defined 
as the unique bounded operator N † : H → L2(μ) satisfying (i) ker N † = ran N ⊥; (ii) ran N † = ker N ⊥; and 
(iii) N N †f = f , for all f ∈ ran N . Note that we have described the Nyström extension for the L2 space 
associated with an arbitrary compactly supported Borel measure ν since later on we will be interested in 
applying this procedure not only for the invariant measure μ of the system, but also for discrete sampling 
measures encountered in data-driven approximation schemes.

Polar decomposition. A number of the results stated in Sections 2 and 3 make use of the polar decomposition 
of kernel integral operators associated with RKHSs. We now review this construction. First, recall that the 
polar decomposition of a bounded linear map T : H1 → H2 between two Hilbert spaces H1 and H2 is the 
unique factorization T = U|T |, where |T | = (T ∗T )1/2 is a non-negative, self-adjoint operator on H1, and 
U : H1 → H2 is a partial isometry with ker U⊥ = ran|T |. The spaces ker U⊥ and ran U are known as the 
initial and final spaces of the partial isometry U . In the case of the integral operator K : L2(ν) → H, we 
have K = U|K|, where |K| = G1/2 by definition of G = K∗K. Moreover, it follows from the relationships 
Kφj = λ

1/2
j ψj and G1/2φj = λ

1/2
j φj , which hold for every j ∈ J , that Uφj = ψj for j ∈ J . Thus, the 
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initial and final spaces of U are given by ker U⊥ = ran K∗ = D(N ) and ran U = ran K = K, respectively. In 
addition, since K∗ψj = λ

1/2
j φj = G1/2φj , we can conclude that ran G1/2 = ran K∗, and

D(G−1/2) = D(N ), N = UG−1/2, K∗U = G1/2. (19)

Mercer representation. A classical result in the theory of RKHSs with continuous kernels is the Mercer 
theorem [60], allowing one to represent the kernel through eigenfunctions. In the following lemma, we 
will state this result together with a useful integral formula for computing the trace of integral operators 
associated with continuous kernels.

Lemma 11. Let H be an RKHS on M associated with a continuous reproducing kernel k, and ν a finite Borel 
measure with compact support Xν ⊆ M . Assume, further, the notations in (17). Then, the following hold:

(i) (Mercer theorem) For every x, y ∈ Xν , k(x, y) =
∑

j∈J ψ∗
j (x)ψj(y), where the sum converges absolutely 

and uniformly with respect to (x, y) ∈ Xν × Xν .
(ii) The trace of the integral operator G = K∗K is equal to 

∫
M

k(x, x) dν(x).

Proof. We will only prove Claim (ii). For that, we use Claim (i) to compute explicitly

∫
M

k(x, x) dν(x) =
∫

Xν

k(x, x) dν(x) =
∫

Xν

∑
j∈J

ψ∗
j (x)ψj(x) dν(x) =

∑
j∈J

∫
Xν

|ψj(x)|2dν(x)

=
∑
j∈J

∫
Xν

|K∗ψj |2 dν =
∑
j∈J

∫
Xν

λj |φj |2 dν =
∑
j∈J

λj

∫
Xν

|φj |2 dν =
∑
j∈J

λj = tr G.

The last equality on the first line follows from the absolute convergence of 
∑

j∈J |ψj(x)|2 to k(x, x). The 
first equality in the second line follows from the fact that K∗ is the L2(ν)-inclusion operator on H. �
Bistochastic kernel normalization. Our main result, Theorem 2, as well as a number of the auxiliary results 
in Theorem 9, require that the reproducing kernel under consideration be Markovian. However, the notion 
of Markovianity depends on a choice of measure (e.g., in the case of Theorems 2 and 9, the invariant measure 
μ), which is usually either unknown, or integrals with respect to it cannot be evaluated in closed form. As 
a result, a common approach to building Markov kernels is to start from a positive-valued unnormalized 
kernel, which can be evaluated in closed form, and then perform a normalization procedure to render it 
Markovian. Such kernel normalizations are widely used in manifold learning [29,43,44], spectral clustering 
[30], and other applications. However, many of these approaches produce non-symmetric kernels which are 
not suitable for defining RKHSs. Here, we construct symmetric Markov kernels with associated RKHSs 
using the bistochastic normalization procedure introduced in [58], which yields symmetric, positive-definite 
Markov kernels with corresponding RKHSs. The starting point for this construction is a kernel k on M

satisfying Assumption 3, and in addition, being strictly positive-valued everywhere, i.e., k > 0. Given a 
Borel probability measure ν with compact support Xν ⊆ M , the kernel k induces the functions d : M → R

and q : M → R such that

d(x) =
∫
M

k(x, y) dν(y), q(x) =
∫
M

k(x, y)
d(y) dν(y).

By strict positivity and Cr regularity of k and compactness of Xν , the functions d, q, 1/d, and 1/q are 
strictly positive and Cr. As a result, p : M × M → R, with
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p(x, y) =
∫
M

k(x, z)k(z, y)
d(x)q(z)d(y)

dν(z) (20)

is also a Cr, positive-definite kernel with p > 0. It then follows by construction that p is symmetric and 
satisfies 

∫
M

p(x, ·) dν = 1 for all x ∈ M . That is, p is a positive-definite, symmetric, and L2(ν)-Markov 
ergodic kernel. In fact, if the kernel k is strictly positive-definite on Xν × Xν , then p is also strictly positive-
definite on that set, and thus is L2(ν)-strictly-positive. To verify this, note that

p(x, y) =
∫
M

k̃(x, z)k̃(z, y)
d̃(x)d̃(y)

dν(z), k̃(x, y) = k(x, y)
q1/2(x)q1/2(y)

, d̃(x) = d(x)
q1/2(x)

,

and because x �→ d̃(x) is a strictly positive continuous function, it suffices to show that the kernel k̃2(x, y) =∫
M

k̃(x, z)k̃(z, x) dν(z) is strictly positive-definite on L2(ν). Now note that k̃ is a strictly positive-definite 
kernel on Xν×Xν by strict positive-definiteness of k and strict positivity of the continuous function x �→ q̃(x). 
Thus, in order to verify that k̃2, and thus p, is strictly positive-definite on Xν × Xν , it suffices to show:

Lemma 12. Let ν be a finite Borel measure with compact support Xν ⊆ M , and k : Xν×Xν → R a symmetric, 
strictly positive-definite kernel. Then, the kernel k2 : Xν × Xν → R, with k2(x, y) =

∫
M

k(x, z)k(z, y) dν(z)
is strictly positive-definite.

Proof. We must show that for any collection of distinct points x0, . . . xm−1 ∈ Xν the m × m kernel matrix 
G2 := [k2(xi, xj)] is positive definite. Defining νm =

∑m−1
j=0 δxj

/m, this is equivalent to showing that the 
operator G2 : L2(νm) → L2(νm) with matrix representation G2 in the standard orthonormal basis of 
L2(νm) is positive. To that end, observe that G2 = (K∗Km)∗K∗Km, where Km : L2(νm) → H(Xν) and 
K : L2(ν) → H(Xν) are the integral operators associated with k and the measures νm and ν, respectively, 
mapping into the RKHS H(Xν) associated with k. Because Km is an injective operator by strict positive-
definiteness of k, and K∗ is injective by definition, K∗Km is injective, and for every nonzero f ∈ L2(νm), 
〈f, G2f〉L2(νm) = 〈K∗Kmf, K∗Kmf〉ν > 0. This shows that G2 is positive, and thus k2 is a strictly positive-
definite kernel, proving the lemma. �

In summary, we have established that if the kernel k satisfies Assumption 3, and is also positive-valued 
and strictly positive-definite on the support of ν, then the bistochastic normalization procedure in (20)
yields a Cr, strictly positive definite, and thus L2(ν)-strictly-positive, Markov ergodic kernel. In particular, 
if it happens that k is strictly positive-definite on M × M , the kernel from (20) is L2(ν)-strictly-positive 
and Markov ergodic for every compactly supported Borel probability measure ν. This approach therefore 
provides a convenient way of constructing Markov kernels meeting the conditions of Theorem 1. In Section 8, 
we will employ bistochastic normalization of strictly positive-definite, positive-valued kernels to construct 
data-driven approximations to the Markov kernels in Theorem 1 that converge in the limit of large data.

4.2. Spectral approximation of operators

Strong resolvent convergence. In order to prove the various spectral convergence claims made in Sections 2
and 3, we need appropriate notions of convergence of operators approximating the generator V that imply 
spectral convergence. Clearly, because V is unbounded, it is not possible to employ convergence in operator 
norm for that purpose. In fact, for the approximations studied here, even strong convergence on the domain 
of V may not necessarily hold. For example, in an approximation of V by V Tτ , where Tτ , τ ≥ 0, is a 
family of smoothing operators on L2(μ) with ran Tτ ⊆ D(V ), the convergence of Tτ f to f as τ → 0+ does 
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not necessarily imply that V Tτ f converges to V f , as V is unbounded. In the setting of unbounded, skew-
adjoint operators, a weaker form of convergence, which is nevertheless sufficient to establish our spectral 
convergence claims, is strong resolvent convergence [51].

To wit, let T : D(T ) → H be a skew-adjoint operator on a Hilbert space H, and consider a sequence 
of operators Tτ : D(Tτ ) → H indexed by a parameter τ > 0. The sequence Tτ is said to converge to T
as τ → 0+ in strong resolvent sense if for every complex number ρ in the resolvent set of T , not lying 
on the imaginary line, the resolvents (ρ − Tτ )−1 converge to (ρ − T )−1 strongly. If Tτ is bounded, for 
every quadratic polynomial p, p(iTτ ) is also bounded. Following [61], we say that the sequence Tτ is p2-
continuous if every Tτ is bounded, and the function τ �→ ‖p(iTτ )‖ is continuous for every such p. Henceforth, 
when convenient, we will use the notation s−→ and sr−→ to indicate strong convergence and strong resolvent 
convergence, respectively.

As we will see in Lemma 14 below, Tτ
s−→ T implies Tτ

sr−→ T . Further, if T is bounded and the sequence 
Tτ is uniformly bounded in operator norm, then Tτ

sr−→ T implies Tτ
s−→ T [51, Proposition 10.1.13]. These 

facts indicate that strong resolvent convergence can be viewed as a generalization of strong convergence of 
bounded operators. For our purposes, the usefulness of strong resolvent convergence is that it implies the 
following convergence results for spectra and Borel functional calculi of skew-adjoint operators.

Proposition 13. Suppose that Tτ : D(Tτ ) → H is a sequence of skew-adjoint operators converging in strong 
resolvent sense as τ → 0+ to a skew-adjoint operator T : D(T ) → H. Let also Θτ : B(R) → L(H) and 
Θ : B(R) → L(H) be the PVMs associated with Tτ and T , respectively. Then:

(i) For every bounded, continuous function Z : iR → C, Z(Tτ ) converges strongly to Z(T ).
(ii) Let J ⊂ J ′ ⊂ iR be two bounded intervals. Then, for every f ∈ L2(μ), lim supτ→0+ ‖1J(Tτ )f‖L2(μ) ≤

‖1J ′(T )f‖L2(μ).
(iii) For every bounded, Borel-measurable set Ω ⊂ R such that Θ(∂Ω) = 0, Θτ (Ω) converges strongly to 

Θ(Ω).
(iv) For every bounded, Borel-measurable function Z : iR → C of bounded support, Z(Tτ ) converges strongly 

to Z(T ), provided that Θ(S) = 0, where S ⊂ R is a closed set such that iS contains the discontinuities 
of Z.

(v) If T is bounded, (iii) holds for every Borel-measurable set Ω ⊆ R, and (iv) for every bounded Borel-
measurable function Z : iR → C.

(vi) If the operators Tτ are compact, then for every element θ ∈ iR of the spectrum of T , there exists a 
one-parameter family θτ ∈ iR of eigenvalues of Tτ such that limτ→0+ θτ = θ. Moreover, if the sequence 
Tτ is p2-continuous, the curve τ → θτ is continuous.

Proof. Claim (i) is actually an equivalent characterization of strong resolvent convergence [51, Propo-
sition 10.1.9]. Claim (v) is a classical result from spectral approximation theory for normal, bounded 
operators, e.g., [62, Chapter 8, Theorem 2]. In Claim (vi), the existence of the family θτ follows from 
[51, Corollary 10.2.2], in conjunction with compactness of Tτ . The continuity of τ �→ θτ follows from [61, 
Theorem 1].

It now remains to prove Claims (ii)–(iv). Starting from Claim (ii), note that a property of the Borel 
functional calculus for a skew-adjoint operator T : D(T ) → H (more commonly stated for self-adjoint 
operators, e.g., [63]) is that for any Borel-measurable function Z : iR → R lying in L∞(iR), Z(T ) is a 
bounded self-adjoint operator. Moreover, this functional calculus preserves positivity, in the sense that if 
Z is positive, then Z(T ) is positive operator, and as a result Z(T ) ≤ Z ′(T ) whenever Z ≤ Z ′. With these 
properties, let Z : iR → R be a piecewise-linear continuous function equal to 1 on J , and with support 
contained in J ′. Let also 1Ω be the indicator function of any set Ω. Then, the inequalities 12

J ≤ Z2 ≤ 12
J ′

hold everywhere in iR, so for each τ > 0, 12
J(Tτ ) ≤ Z2(Tτ ) ≤ 12

J ′(T ). In addition, since Z is continuous and 
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bounded, Z(Tτ ) converges strongly to Z(T ) by Claim (i). The proof of Claim (ii) can now be completed 
using the following inequality:

lim sup
τ→0+

‖1J(Tτ )f‖2
L2(μ) = lim sup

τ→0+
〈1J(Tτ )f, 1J(Tτ )f〉μ = lim sup

τ→0+
〈12

J(Tτ )f, f〉μ

≤ lim sup
τ→0+

〈Z2(Tτ )f, f〉μ = lim sup
τ→0+

〈Z(Tτ )f, Z(Tτ )f〉μ

= lim sup
τ→0+

‖Z(Tτ )f‖2
L2(μ) = ‖Z(T )f‖2

L2(μ)

= 〈Z(T )f, Z(T )f〉μ = 〈Z2(T )f, f〉μ

≤ 〈12
J ′(T )f, f〉μ = ‖1J ′(T )f‖2

L2(μ).

Next, we will prove Claim (iii) in the case that Ω is an interval [a, b] ⊂ R with Θ(∂Ω) = Θ({a, b}) = 0
(i.e., neither of ia and ib is an eigenvalue of T ). Given any w > 0, let fw : iR → iR be a continuous function 
such that fw(iω) equals iω for ω ∈ i[a, b], equals 0 outside i[a − w, b + w], and is linear on the intervals 
i[a − w, a] and i[b, b + w]. By Claim (i), limτ→0+ fw(Tτ ) = fw(T ). Moreover, the operators fw(Tτ ), fw(T )
are bounded and skew-adjoint, and therefore, by Claim (v), for every bounded, measurable g : iR → R,

lim
τ→0+

(g ◦ fw)(Tτ ) = lim
τ→0+

g(fw(Tτ )) = g(fw(T )) = (g ◦ fw)(T ). (21)

Setting g = 1iΩ then leads to

g ◦ fw = 1iΩ + 1Jw
, Jw := [b, b + w] ∩ f−1

w (Ω).

Thus, substituting for g ◦ fw in (21) using the latter identity, and rearranging, we obtain

lim
τ→0+

[Θτ (Ω) + Θτ (Jw) − Θ(Jw)] = Θ(Ω), ∀w > 0. (22)

Note that here we have used the fact that for any Borel set S ⊂ R, Θ(S) = 1iS(T ), and a similar fact for Tτ . 
The operator Θ(Jw) is the spectral projection onto the subspace Hw = ran Θ(Jw) ⊆ H. Since Θ(∂Ω) = 0
and ∩w>0Jw = {b}, we have ∩w>0Hw = {0}. As a result, as w → 0+, the H⊥

w form an increasing sequence 
of subspaces with ∪w>0H⊥

w = H. Thus, to prove that Θτ (Ω) converges strongly to Θ(Ω), it is enough to 
verify the same claim on H⊥

w0
for every fixed w0 > 0. To that end, let w0 > 0 be fixed, and consider an 

arbitrary f ∈ H⊥
w0

. By construction, Θ(Jw)f vanishes for every 0 < w < w0. Moreover, by Claim (ii),

lim sup
τ→0+

‖Θτ (Jw)f‖L2(μ) = lim sup
τ→0+

‖1iJw
(Tτ )f‖L2(μ) ≤ ‖1iJw′ (Tτ )f‖L2(μ) = 0, ∀w′ ∈ (w, w0),

from which it follows that limτ→0+ Θτ (Jw)f = 0. Thus, substituting the identities Θ(Jw)f = 0 and 
limτ→0+ Θτ (Jw)f = 0 into (22) yields

Θ(Ω)f = lim
τ→0+

[Θτ (Ω) + Θτ (Jw) − Θ(Jw)] f = lim
τ→0+

Θτ (Ω)f + lim
τ→0+

Θτ (Jw)f + Θ(Jw)f = lim
τ→0+

Θτ (Ω)f,

proving that Claim (iii) is true for Ω equal to an interval.
We now extend this result to the case that Ω is an arbitrary bounded Borel subset of R with Θ(∂Ω) = 0. 

For that, it is sufficient to fix an arbitrary b > 0, and prove the result for the elements of the set Σ′ = {Ω ∈
B([−b, b]) : Θ(∂Ω) = 0}, where B([−b, b]) is the Borel σ-algebra on [−b, b]. Let then Σ be the collection of 
subsets Ω ⊆ B([−b, b]), such that Θτ (Ω) converges strongly to Θ(Ω). It can be shown that Σ is a σ-algebra. 
Moreover, Σ contains all intervals having zero Θ measure on their boundary, and thus must also contain the 
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σ-algebra generated by such intervals. But this latter σ-algebra contains Σ′, and therefore Θτ (Ω) s−→ Θ(Ω)
for all Ω ∈ Σ′, proving Claim (iii).

Finally, we prove Claim (iv). Let Z be as claimed, with support contained in a bounded open interval 
I ⊂ iR. Then, the set I \ S is a countable union of bounded open intervals I1, I2, . . .. Note that H is 
the direct sum of the mutually orthogonal spaces ran Θ(I1), ran Θ(I2), . . ., ran Θ(S), and ran Θ(Ic). Among 
these, ran Θ(Ic) is contained in the kernel of Z(T ). Moreover, in a manner similar to the proof of Claim (iii), 
it can be shown that Z|S(Tτ ) converges pointwise to 0. Thus, for every f ∈ ran Θ(S), Z(Tτ )f = Z|S(Tτ )f
converges to Tf = 0. In light of these facts, Claim (iv) can be simplified to the case that Z is a continuous 
function supported on an interval (ia, ib) ⊂ iR with Θ({a, b}) = 0. In this case, constructing a function fw

as in Claim (iii), and using the same line of reasoning, it can be shown that Z(Tτ ) → Z(T ) as τ → 0+. This 
proves Claim (iv) and the Proposition. �

Proposition 13 lays the foundation for many of the spectral convergence results in Theorem 10, and thus 
Theorem 2. It also highlights, through Claim (iii), the convergence properties for the functional calculus 
and spectrum lost from the fact that V is unbounded. Yet, despite the usefulness of the results stated in 
Proposition 13, the basic assumption made, namely that Tτ converges to T in strong resolvent sense, is 
oftentimes difficult to explicitly verify. Fortunately, in the case of skew-adjoint operators of interest here, 
there exist sufficient conditions for strong resolvent convergence, which are easier to verify. Before stating 
these conditions, we recall that a core for a closed operator T : D(T ) → H on a Hilbert space H is any 
subspace C ⊆ D(T ) such that T is the closure of the restricted operator T |C . In other words, C is a core 
if the closure of the graph of T |C , as a subset of H × H, is the graph of T . Note that T may not have a 
unique core. We also introduce the notion of convergence in the strong dynamical sense [51]. Specifically, a 
sequence Tτ : D(Tτ ) → H, τ > 0, of skew-adjoint operators is said to converge to T : D(T ) → H as τ → 0
in the strong dynamical sense if etTτ converges strongly to etT for every t ∈ R. Note that in the case of the 
operators Ṽτ from Assumption 4 approximating the generator V , strong dynamical convergence means that 
the unitary operators etṼτ converge strongly to the Koopman operator U t = etV for every time t ∈ R.

Lemma 14. Let Tτ : D(Tτ ) → H and T : D(T ) → H be the skew-adjoint operators from Proposition 13. 
Then, the following hold:

(i) The domain D(T 2) of the operator T 2 is a core for T .
(ii) If Tτ converges pointwise to T on a core for T , then it also converges in strong resolvent sense.
(iii) Strong resolvent convergence of Tτ to T is equivalent to strong dynamical convergence.

Proof. Claim (i) follows from [64, Theorem 5]. Claims (ii) and (iii) follow from Propositions 10.1.18 and 
10.1.8, respectively, of [51]. There, the statements are for self-adjoint operators, but they apply to skew-
adjoint operators as well. �
Remark. Lemma 14(ii) indicates that a sufficient condition for strong resolvent convergence of a sequence 
skew-adjoint operators is pointwise convergence in a smaller domain (a core) than the full domain of the 
limit operator; that is, strong resolvent convergence is weaker than strong convergence for this class of 
operators. In Proposition 19 ahead, we will see that the operator family Ṽτ employed in Theorem 2 actually 
converges pointwise to V on the whole of D(V ).

Approximate point spectrum and pseudospectrum. Generalizing the definition in (12), we say that a complex 
number γ lies in the ε-approximate point spectrum σap,ε(T ) of a closed operator T : D(T ) → H on a Hilbert 
space H for ε > 0, if there exists f ∈ H, with ‖f‖H = 1, such that [65,66]

‖Tf − γf‖H < ε. (23)
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As ε decreases towards 0, σap,ε(T ) forms an increasing family of open subsets of the complex plane, such 
that ∪ε>0σap,ε(T ) = C. Moreover, if T is a normal operator, σap,ε(T ) is the union of all open ε-balls in the 
complex plane with centers lying in its spectrum, σ(T ). If, in addition, T is bounded, ∩ε>0σap,ε(T ) = σ(T ). 
The ε-approximate point spectrum is also a subset of the ε-pseudospectrum σε(T ) of T , defined as the set 
of complex numbers γ such that ‖(T − γ)−1‖ > 1/ε, with the convention that ‖(T − γ)−1‖ = ∞ if γ ∈ σ(T )
[67]. Specifically, σε(T ) = σap,ε(T ) ∪ σ(T ), and if T is normal and bounded, σε(T ) = σap,ε(T ). For our 
purposes, a distinguished property of each element γ ∈ σap,ε(T ) is that there exists an associated unit-norm 
vector f ∈ H which behaves approximately as an eigenfunction of T , in the sense of (23).

4.3. Results from analysis on manifolds

We will state a number of standard results from analysis on manifolds that will be used in the proofs 
presented in Sections 5 and 7. In what follows, we consider that M is a Cr compact manifold, equipped with 
an arbitrary Cr−1 Riemannian metric (e.g., a metric induced from the ambient space M, or the embedding 
F : M → Y into the data space Y from Section 8), and an associated covariant derivative operator ∇. We 
let C0(M ; TM) denote the vector space of continuous vector fields on M (continuous sections of the tangent 
bundle TM), and Cq(M ; T ∗nM) with 0 ≤ q ≤ r the vector space of tensor fields α of type (0, n) having 
continuous covariant derivatives ∇jα ∈ Cq−j(M ; T ∗n+jM) up to order j = q. The Riemannian metric in-
duces norms on these spaces defined by ‖Ξ‖C0(M ;T M) = maxx∈M ‖Ξ‖x, ‖α‖C0(M ;T ∗nM) = maxx∈M ‖α‖x, and 
‖α‖Cq(M ;T ∗nM) =

∑q
j=0‖∇jα‖C0(M ;T ∗(q+j)M), where ‖·‖x denotes pointwise Riemannian norms on tensors. 

The case Cq(M ; T ∗nM) with n = 0 corresponds to the Cq(M) spaces of functions. All of the C0(M ; TM)
and Cq(M ; T ∗nM) spaces become Banach spaces with the norms defined above, and by compactness of M , 
the topology of these spaces is independent of the choice of Riemannian metric. Hereafter, we will use ι(q)

to denote the canonical inclusion map of Cq(M) into L2(μ) (μ being the invariant measure), and abbreviate 
ι(0) = ι as in Section 2. We will also use ιH to denote the inclusion map of an RKHS H with a Cq reproducing 
kernel into Cq(M). It follows from [37, Propositions 6.1 and 6.2] that the latter map is bounded.

The following result expresses how vector fields can be viewed as bounded operators on functions.

Lemma 15. Let M be a compact, C1 manifold, equipped with a C0 Riemannian metric. Then, as an operator 
from C1(M) to C0(M), every vector field Ξ ∈ C0(M ; TM) is bounded, with operator norm ‖Ξ‖ bounded 
above by ‖Ξ‖C0(M ;T M).

Proof. Denoting the gradient operator associated with the Riemannian metric on M by grad, the claim 
follows by an application of the Cauchy-Schwartz inequality for the Riemannian inner product, viz.

‖Ξf‖C0(M) = ‖Ξ · grad f‖C0(M) ≤ ‖Ξ‖C0(M ;T M)‖grad f‖C0(M ;T M) = ‖Ξ‖C0(M ;T M)‖∇f‖C0(M ;T ∗M)

≤ ‖Ξ‖C0(M ;T M)‖f‖C1(M). �
In particular, under Assumption 1, the dynamical flow Φt on M is generated by a vector field �V ∈

C0(M ; TM), for which Lemma 15 applies. This vector field is related to the generator V by a conjugacy 
with ι and ι(1), namely, ι�V = V ι(1).

The following is a well known result from analysis [68].

Lemma 16 (C1 convergence theorem). Let M be a compact, connected, C1 manifold equipped with a C0

Riemannian metric. Let also fj : M → R be a sequence of tensor fields in C1(M ; T ∗nM), such that 
the sequence {‖∇fj‖C0(M ;T ∗(n+1)M)}j∈N is summable. Then, if there exists x ∈ M such that the series 
Fx :=

∑
j∈N fj(x) converges in Riemannian norm, the series 

∑
j∈N fj converges uniformly to a tensor field 

F ∈ C1(M ; T ∗(n+1)M) such that F (x) = Fx.
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This lemma leads to the following Cr convergence result for functions, which will be useful for establishing 
the smoothness of kernels constructed as infinite sums of Cr eigenfunctions.

Lemma 17. Let M be a compact, connected, Cr manifold with r ≥ 1, equipped with a Cr−1 Riemannian 
metric. Suppose that fj : M → R is a sequence of real-valued Cr(M) functions such that (i) the sequence 
{‖fj‖Cr(M)}j∈N is summable; and (ii) there exists x ∈ M such that the series Fx =

∑∞
j=0 fj(x) converges. 

Then, the series 
∑∞

j=0 fj converges absolutely and in Cr(M) norm to a Cr function F , such that F (x) = Fx.

Proof. We will prove this lemma by induction over q ∈ {1, . . . , r}, invoking Lemma 16 as needed. First, 
note that summability of {‖fj‖Cr(M)}j∈N implies summability of {‖∇qfj‖C0(M ;T ∗qM)}j∈N} for all q ∈
{1, . . . , r}. Because of this, and the fact that 

∑
j∈N fj(x) converges, it follows from Lemma 16 that 

∑
j∈N fj

converges in C1 norm to some C1 function F . This establishes the base case for the induction (q = 1). Now 
suppose that it has been shown that 

∑
j∈N fj converges to F in Cq(M) norm for 1 < q < r. In that case, ∑

j∈N ∇qfj(x) converges, and by summability of {‖∇q+1fj‖C0(M ;T ∗(q+1)M)}j∈N , it follows from Lemma 16
that ∇qF =

∑
j∈N ∇qfj converges in C1(M ; T ∗qM) norm. Thus, ∇q+1F =

∑
j∈N ∇q+1fj converges in 

C0(M ; T ∗(q+1)M) norm, which in turn implies that 
∑

j∈N fj converges to F in Cq+1(M) norm, and the 
lemma is proved by induction. �
5. Proof of Theorems 5–8

Proof of Theorem 5. By Assumption 3, H is a subspace of C1(M), and therefore for every f ∈ H, K∗f =
ι(1)f . Claim (i) then follows from the facts that ran ι(1) ⊂ D(V ), and K is bounded. To prove Claim (ii), 
let K ′ : L2(μ) → C0(M) be the kernel integral operator associated with the continuous kernel k′, and ι the 
C0(M) → L2(μ) inclusion map. Because ιK ′ is a Hilbert-Schmidt integral operator on L2(μ), with operator 
norm bounded above by its Hilbert-Schmidt norm, ‖ιK ′‖ ≤ ‖k′‖L2(μ×μ) ≤ ‖k′‖C0(X×X), the claim will 
follow if it can be shown that ιK ′ = V G. To that end, note that for every f ∈ L2(μ) and x ∈ M we have 
K ′f(x) = 〈k′(x, ·), f〉μ. Thus, using the C0(M) limit k′(x, ·) = limt→0 gt, where gt = (k(Φt(x), ·) −k(x, ·))/t, 
and continuity of inner products, we obtain

K ′f(x) = 〈k′(x, ·), f〉μ = 〈lim
t→0

gt, f〉μ = lim
t→0

〈gt, f〉μ = lim
t→0

1
t
[〈k(Φt(x), ·), f〉μ − 〈k(x, ·), f〉μ] = �V Kf(x).

As a result, because ran K ⊂ C1(M), for any f ∈ L2(μ) it follows that

ιK ′f = ι�V Kf = V ι(1)Kf = V K∗Kf = V Gf,

proving Claim (ii). Finally, to prove Claim (iii), we have by definition of the adjoint,

D((GV )∗) := {f ∈ L2(μ) : ∃h ∈ L2(μ) such that ∀g ∈ D(V ), 〈f, GV g〉μ = 〈h, g〉μ}, (GV )∗f := h,

where h is unique by the Riesz representation theorem and density of D(V ) in L2(μ). We will now use this 
definition to show that (GV )∗ = −V G = −A. Indeed, for every f ∈ D(A) = L2(μ) and every g ∈ D(V ), 
setting h = −Af , we obtain

〈h, g〉μ = 〈−Af, g〉μ = −〈V Gf, g〉μ = 〈Gf, V g〉μ = 〈f, GV g〉μ.

This satisfies the definition of (GV )∗, proving the claim and the theorem. �
Proof of Theorem 6. We begin with the proof of Claim (i). The inclusion ran K∗ ⊂ D(V ) holds because H
is a subspace of C1. To prove that V K∗ is bounded, note that by Lemma 15, and the fact that the inclusion 
map ιH : H → C1(M) is bounded,
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‖V K∗f‖L2(μ) = ‖ι�V f‖L2(μ) ≤ ‖�V f‖C0(M) ≤ ‖�V ‖‖f‖C1(M) ≤ ‖ιH‖‖�V ‖‖f‖H,

proving that V K∗ is bounded and completing the proof of Claim (i). Turning to Claim (ii), that W is compact 
follows from the fact that it is a composition of a compact operator, K, by a bounded operator, V K∗. 
Moreover, W is skew-symmetric by skew-adjointness of V , and thus skew-adjoint because it is bounded. 
W is also real because K and V are real operators. It thus remains to verify the integral formula for Wf

stated in the theorem. For that, it follows from the Leibniz rule for vector fields and the fact that k lies in 
C1(M × M) that for every f ∈ C1(M) and x ∈ X,

k(x, ·)�V f = �V (k(x, ·)f) − (�V k(x, ·))f = �V (k(x, ·)f) + k̃′(x, ·)f.

Using this result, and the fact that 
∫

M
�V (k(x, ·)f) dμ = 〈1M , V (k(x, ·)f)〉μ vanishes by skew-adjointness of 

V , we obtain

KV K∗f(x) = KV ι(1)f(x) = K �V f(x) =
∫
M

k(x, ·)�V f dμ =
∫
M

k̃′(x, ·)f dμ. �

Proof of Theorem 7. That B = −A∗ is a Hilbert-Schmidt integral operator with kernel k̃′ follows from 
standard properties of integral operators. Next, to prove Claim (i), note that GV is bounded as it has a 
bounded adjoint, (GV )∗ = −A, by Theorem 5, and therefore has a unique closed extension GV : L2(μ) →
L2(μ) equal to (GV )∗∗. In order to verify that GV = B, it suffices to show that GV f = Bf for all f in 
any dense subspace of D(V ); in particular, we can choose the subspace ι(1)C1(M). For any observable ι(1)f

in this subspace, we have Bf = ιK̃ ′f and GV f = ι(1)K �V f , where K̃ ′ : L2(μ) → C0(M) is the integral 
operator with kernel K̃ ′, defined analogously to the operator K ′ in the proof of Theorem 5. Employing the 
Leibniz rule as in the proof of Theorem 6, it is straightforward to verify that Bf is indeed equal to GV f , 
proving that B is the unique closed extension of GV . Next, to show that B is also an extension of K∗WN , 
it suffices to show that GV ⊇ K∗WN . For that, note that K∗WN is a well-defined operator by Theorem 6, 
and thus, substituting the definition of W in (13), and using the fact that K∗N is the identity on D(N ), 
we obtain

K∗WN = GV K∗N = GV |D(N ).

This shows that K∗KWN ⊆ GV ⊂ B, confirming that B is a closed extension of K∗WN . If k is strictly 
positive, then D(N ) is dense, and B is the unique closed extension of K∗WN . This completes the proof of 
Claim (i).

Next, to prove Claim (ii), note that because B is bounded, the Taylor series etB =
∑∞

n=0(tB)n/n!
converges in operator norm for every t ∈ R, and the set {etB}t∈R clearly forms a group under composition 
of operators. This group is norm-continuous by boundedness of B. Similarly, we have etW =

∑∞
n=0(tW )n/n!

in operator norm, and observing that for every n ∈ N, K∗W n = BnK∗, we arrive at the claimed identity,

K∗etW =
∞∑

n=0

1
n! t

nK∗W n =
∞∑

n=0

1
n! t

nBnK∗ = etBK∗.

The identity K∗etW N = etB|D(N ) then follows from the fact that K∗N is the identity on D(N ). �
Proof of Theorem 8. Let {φj}∞

j=0 be an orthonormal basis of L2(μ) consisting of eigenfunctions φj of G
corresponding to eigenvalues λj ordered in decreasing order. Let also {ψj}∞

j=0 be an orthonormal basis of 
H, whose first J elements are given by (17) (with some abuse of notation as J may be infinite). Recall from 
Section 4.1 that Uφj = ψj . To prove the theorem, it suffices to show that G1/2V G1/2 is well-defined on a 
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dense subspace of L2(μ), and on that subspace, G1/2V G1/2 and U∗WU are equal. To verify that G1/2V G1/2

is densely defined, note first that G1/2φj trivially vanishes for j /∈ J , and therefore G1/2V G1/2φj is well-
defined and vanishes too. Moreover if j ∈ J , G1/2φj = K∗ψj , and G1/2V G1/2φj is again well defined since 
ran K∗ ⊂ D(V ). As a result, the domain of G1/2V G1/2 contains all linear combinations of φj with j /∈ J , 
and all finite combinations with j ∈ J , and is therefore a dense subspace of L2(μ). Next, to show that U∗WU
and G1/2V G1/2 are equal on this subspace, it suffices to show that they have the same matrix elements in 
the {φj} basis of L2(μ), i.e., that 〈φi, G1/2V G1/2φj〉μ is equal to 〈φi, U∗WUφj〉H for all i, j ∈ N0. Indeed, 
because ker U = ker G1/2 = (ran G1/2)⊥, both Uφj and G1/2φj vanish when j /∈ J . We therefore deduce 
that if either of i and j does not lie in J , the matrix elements 〈φi, U∗WUφj〉μ and 〈φj , G1/2WG1/2φj〉μ

both vanish. On the other hand, if i, j ∈ J , we have

〈φi, U∗WUφj〉μ = 〈ψi, Wψj〉H = 〈K∗ψi, V K∗ψj〉μ = 〈λ−1/2
i K∗Kφi, λ

−1/2
j K∗Kφj〉μ

= 〈G1/2φi, V G1/2φj〉μ = 〈φi, G1/2V G1/2φj〉μ.

We have thus shown that U∗WU and G1/2V G1/2 are equal on a dense subspace of L2(μ), and because the 
former operator is bounded and defined on the whole of L2(μ), it follows that Ṽ = U∗WU is the unique 
closed extension of G1/2V G1/2. That Ṽ is skew-adjoint, Hilbert-Schmidt, and real follows immediately. �
6. Proof of Theorems 9 and 10

We will need the following lemma, describing how to convert between eigenfunctions of A, B, Ṽ , and W̃ . 
The proof will be omitted since it follows directly from the definitions of these operators.

Lemma 18. Let Assumptions 1 and 3 hold with r = 1. Then,

(i) If ζ ∈ K is an eigenfunction of W̃ at eigenvalue iω, then K∗ζ is an eigenfunction of B at eigenvalue 
iω.

(ii) z′ ∈ L2(μ) is an eigenfunction of A at eigenvalue iω iff Kz′ is an eigenfunction of W̃ at eigenvalue 
iω.

(iii) If z′ is an eigenfunction of A at eigenvalue iω, then G1/2z′ is an eigenfunction of Ṽ at eigenvalue iω.
(iv) If z̃ ∈ L2(μ) is an eigenfunction of Ṽ at eigenvalue iω, then G1/2z̃ is an eigenfunction of B at 

eigenvalue iω.

Proof of Theorem 9. Starting from Claim (i), let W̃ be the restriction of W onto the closed subspace K ⊆ H. 
Since K is invariant under W , and ker W ⊇ K⊥ by definition, we have σp(W ) = σp(W̃ ) if K⊥ = {0} (i.e., K
has dense range), and σp(W ) = σp(W̃ ) ∪ {0} = σp(W̃ ) otherwise. Thus, to prove the claim, it is enough to 
show that σp(A) = σp(B) = σp(Ṽ ) = σp(W̃ ), including eigenvalue multiplicities. To that end, note first that 
W̃ and Ṽ are unitarily equivalent by Theorem 8 and strict L2(μ)-positivity of k, and thus σp(W̃ ) = σp(Ṽ ), 
including multiplicities. Moreover, by Lemma 18, σp(A) ⊆ σp(W̃ ) ⊂ iR, and because A is a real operator, 
it follows that σp(A) is symmetric about the origin of the imaginary line iR, so that

σp(A) = −σp(A) = −σp(A)∗ = −σp(A∗) = −σp(−B) = σp(B).

Thus, the equality of σp(A), σp(B), σp(Ṽ ), and σp(W̃ ) will follow if it can be shown that σp(A) = σp(Ṽ ). 
Indeed, it follows from Lemmas 18(iii) and 18(iv) that σp(A) ⊆ σp(Ṽ ) and σp(Ṽ ) ⊆ σp(B), respectively. 
These relationships, together with the fact that σp(A) = σp(B), imply that σp(A) = σp(Ṽ ), and thus 
σ(A) = σ(B) = σ(Ṽ ) = σ(W̃ ), as claimed. The equality of the multiplicities of the eigenvalues of A, B, and 
Ṽ follows from the facts that K and G1/2 are injective operators. This completes the proof of Claim (i).
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To prove Claim (ii), note that because k is L2(μ)-Markov ergodic, Gf = f implies that f is μ-a.e. 
constant. In addition, by ergodicity of the flow Φt, V f = 0 implies again that f is μ-a.e. constant. It then 
follows that

Af = 0 =⇒ V (Gf) = 0 =⇒ Gf = μ-a.e. constant =⇒ f = μ-a.e. constant.

This shows that 0 is a simple eigenvalue of A with constant corresponding eigenfunctions. Therefore, since 
σp(A) = σp(B) = σp(Ṽ ) = σp(W̃ ), including multiplicities, 0 is also a simple eigenvalue of B, Ṽ , and W̃ , 
and the constancy of the corresponding eigenfunctions follows directly from the definition of these operators.

Next, to prove Claims (iii) and (iv), fix a nonzero eigenvalue iωj of A. By compactness of this operator, the 
corresponding eigenspace is finite-dimensional, and thus the injective operator G1/2 maps every basis of this 
eigenspace to a linearly independent set. By Lemma 18(iii) and Claim (i), this set is actually a basis of the 
eigenspace of Ṽ at eigenvalue iωj . As result, every eigenfunction of Ṽ at nonzero corresponding eigenvalue 
lies in the range of G1/2. Moreover, it follows from Claim (ii) that every eigenfunction of Ṽ at eigenvalue 
0 is constant, and thus also lies in the range of G1/2. We therefore conclude that every eigenfunction of Ṽ
lies in the range of G1/2, and thus in the domain of G−1/2, as claimed. The fact that z̃j ∈ ran G1/2 for all 
j ∈ N0 also implies that z′

j is an eigenfunction of A at eigenvalue iωj , since

Ṽ z̃j = Ṽ G1/2G−1/2z̃j = G1/2V GG−1/2z̃j = G1/2Az′
j .

In addition, we can deduce directly from Lemma 18(iv) that each of the zj are eigenfunctions of B at 
eigenvalue iωj , as stated in Claim (iv).

To complete the proof of Claims (iii) and (iv), it remains to show that {z′
0, z′

1, . . .} and {z0, z1, . . .} form 
unconditional Schauder bases of L2(μ). For that, note first that zj is a dual sequence to the z′

j , i.e.,

〈z′
j , zl〉μ = 〈G−1/2z̃j , G1/2z̃l〉μ = 〈z̃j , z̃l〉μ = δjl.

As a result, since every Schauder basis has a unique dual sequence, which is also a Schauder basis [69], 
Claims (iii) and (iv) will be proved if it can be shown that {z0, z1, . . .} is an unconditional Schauder 
basis. To verify that this is indeed the case, fix {φ0, φ1, . . .} from (17) as an orthonormal basis of L2(μ)
(corresponding to the eigenvalues λ0, λ1, . . .), and {e0, e1, . . .} as the standard orthonormal basis of �2, and 
define the unbounded operator Z ′ : D(Z ′) ⊂ �2 → �2, the bounded operator L : �2 → �2, the unitary 
operator U : �2 → �2, and the diagonal operator Λ : �2 → �2 such that

〈ei, Z ′ej〉�2 = 〈φi, z′
j〉μ, 〈ei, Lej〉�2 := 〈zi, φj〉μ, 〈ei, Uej〉�2 = 〈φi, z̃j〉μ, 〈ei, Λej〉�2 = λiδij .

Here, D(Z ′) is defined as the dense subspace of �2 whose elements 
∑∞

j=0 cjej satisfy 
∑∞

i,j=0|〈φi, z′
j〉μcj |2 <

∞. Note that Z ′ ∗ and L are the matrix representations of the mappings φj �→ z′
j , and φj �→ zj , respectively, 

in the orthonormal basis {φ0, φ1, . . .}. With these definitions, the N ×N matrices with elements 〈ei, Z ′ej〉�2

and 〈ei, Lej〉, which represent Z ′ and L, respectively, have �2 summable columns and rows respectively.
Next, note that L is a left inverse of Z ′, as can be verified by computing

〈ei, LZ ′ej〉μ =
∞∑

j=0
〈zi, φj〉μ〈φj , z′

l〉μ =
∞∑

j=0
〈zi, φj〉μ〈φj , φj〉μ〈φj , z′

l〉μ =
∞∑

j=0

∞∑
k=0

〈zi, φj〉μ〈φj , φk〉μ〈φj , z′
l〉μ

=
〈 ∞∑

j=0
〈φj , zi〉μφj ,

∞∑
k=0

〈φj , z′
l〉μφk

〉
μ

= 〈zi, z′
l〉μ = δil. (24)



S. Das et al. / Appl. Comput. Harmon. Anal. 54 (2021) 75–136 103
Similarly, one can verify the identities L = U∗Λ1/2 and Z ′ = Λ−1/2U . Using these results, and defining 
Πl : �2 → �2 as the canonical orthogonal projection onto span{e0, . . . , el−1}, we obtain

Z ′ΠlL = Λ−1/2UΠlU
∗Λ1/2 = Λ−1/2ΠlΛ1/2 = Πl, Z ′ΠlL

s−−−→
l→∞

Id . (25)

By [70, Lemma 2.1], (24) and (25) imply that the columns of the matrix representation of Z ′, i.e., the 
eigenfunctions z′

j , form a Schauder basis of L2(μ). The unconditionality of this basis follows from the fact 
that if the zj are permuted, (25) still holds, but with the rows and columns of the matrix representations 
of U , Z ′, L, and Λ correspondingly permuted. This completes the proof of Claims (iii) and (iv).

In Claim (v), the fact that the ζj are eigenfunctions of W̃ follows from Lemma 18 (ii). We also have

ζj = KG−1/2z̃j = U z̃j ,

and because U acts as a unitary operator from L2(μ) to K, the fact that {z̃0, ̃z1, . . .} is an orthonormal basis 
of L2(μ) implies that {ζ0, ζ1, . . .} is an orthonormal basis of K, proving the claim.

Finally, in Claim (vi), note first that all of the summations are well defined and independent of ordering 
due to the unconditionality of all the bases involved. The results for Ṽ and W̃ follow from standard properties 
of Hilbert-Schmidt, skew-adjoint operators. Here, we will only verify the representation of B, as the case for 
A, is analogous. By Claim (iv), every f ∈ L2(μ) has a unique expansion f =

∑∞
j=0 ajzj , with the summation 

holding in L2(μ) sense. Then, since Bzj = iωjzj and B is bounded,

Bf = B

∞∑
j=0

ajzj =
∞∑

j=0
ajBzj =

∞∑
j=0

ajiωjzj .

The fact that Bf =
∑∞

j=0〈z′
j , f〉μiωjzj then follows from the identity below for the coefficients aj :

〈z′
j , f〉μ =

〈
z′

j ,

∞∑
k=0

akzk

〉
μ

=
∞∑

k=0

ak〈z′
j , zk〉μ =

∞∑
k=0

akδjk = aj .

This completes the proof of the claim and Theorem 9. �
Proof of Theorem 10. It follows from the strong convergence Gτ

s−→ Id in Assumption 4 that

lim
τ→0+

‖(Bτ − V )f‖L2(μ) = lim
τ→0+

‖(Gτ V − V )f‖L2(μ) = lim
τ→0+

‖(Gτ − Id)V f‖L2(μ) = 0, ∀f ∈ D(V 2),

proving Claim (i). Turning to Claim (ii), it follows from Lemma 14(i) that D(V 2) is a core for V , and thus 
by Assumption 4 and Lemma 14(ii) that, as τ → 0+, Ṽτ converges to V in strong resolvent sense. The 
strong convergence of Z(Ṽτ ) to Z(V ) then follows by Proposition 13(i). The result for U∗

τ Z(Wτ )Uτ follows 
from the fact that this operator is equal to Z(Ṽτ ), by (15).

To prove Claim (iii) note first that, by standard properties of the Borel functional calculus, Z(Ṽτ ) is a 
uniformly bounded family of operators with ‖Z(Ṽτ )‖ ≤ ‖Z‖C0(iR). As a result, it follows from the uniform 

boundedness principle that Z(Ṽτ )G1/2
τ

s−→ Z(V ), as τ → 0+. Similarly, G1/2
τ is uniformly bounded, so the 

strong τ → 0+ limit of G1/2
τ Z(Aτ ) is equal to the strong τ → 0+ limit of Z(Aτ ). However, G1/2

τ Z(Aτ ) =
Z(Ṽτ )G1/2

τ by (16), and we conclude that Z(Aτ ) s−→ Z(V ), as claimed. That Z(Bτ ) s−→ Z(V ) then follows 
immediately from the fact that Bτ = −A∗

τ . The latter result leads in turn to the strong convergence 
K∗

τ Z(Wτ )Nτ
s−→ Z(V ) on H∞, since, by Theorem 7(ii) and complex analyticity of Z, K∗

τ Z(Wτ )Nτ and 
Z(Bτ ) are equal operators on H∞.

Next, the strong convergence of Ẽτ (Ω) to E(Ω) in Claim (iv) follows from Proposition 13(iii). Equa-
tion (15) then leads to the result for U∗

τ Eτ (Ω)Uτ . Finally, Claim (v) follows from Proposition 13(vi). �
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7. Proof of Theorems 1, 2 and Corollaries 3, 4

Proof of Theorem 1. First, note that by Lemma 11(ii), the sequence {λj}∞
j=0 is summable. Moreover, since 

λj ≤ 1, {λq
j}∞

j=0 is summable for every q ≥ 1. Now define rτ,j = (λτ,j/λj)1/2. Due to the exponential decay 
of the λτ,j in (10), the sequences {rq

τ,j}∞
j=0 and {rq

τ,j/λj}∞
j=0 are summable for every q ≥ 1 and τ > 0. 

Observe now that ψτ,j and pτ can be expressed as

ψτ,j = rτ,jψj = rτ,jλ
−1/2
τ,j Pφj , pτ (x, y) =

∞∑
j=0

r2
τ,jψj(x)ψj(y). (26)

It therefore follows from the summability of {r2
τ,j}∞

j=0 that for every τ > 0, the series for pτ (x, y) also 
converges absolutely and uniformly on Xν × Xν , and condition (ii) of Lemma 17 is satisfied. Next, observe 
that for every j ∈ N0 and α ∈ {1, . . . , r},

ψτ,j = rτ,jλ
−1/2
j

∫
M

p(·, y)φj(y) dν(y), ∇αψτ,j = rτ,jλ
−1/2
j

∫
M

∇αp(·, y)φj(y) dν(y),

and thus ‖ψτ,j‖Cr(M) ≤ rτ,jλ
−1/2
j ‖p‖Cr(M×M). Let now ∇1f and ∇2f denote the covariant derivatives of f ∈

C1(M × M) with respect to the first and second variables, respectively. Defining fj(x, y) = ψτ,j(x)ψτ,j(y), 
and noting that fj is a Cr(M × M) function by Cr regularity of p (and thus ψj), we have

‖fj‖Cr(M) =
∑

α,β∈{0,...,r},
α+β=m

∥∥∥(∇α
1 ∇β

2

)
fj(x, y)

∥∥∥
C0(M ;T ∗(α+β)M)

≤ Cr2
τ,j/λj ,

where, C is a constant equal to a multiple of ‖p‖2
Cr(M×M). This bound implies that 

{
‖fj‖Cr(M)

}∞
j=0 ∈ �1, 

and condition (i) of Lemma 17 is satisfied. We therefore conclude that Lemma 17 applies, and as a result, 
for every x, y ∈ M , 

∑∞
j=0 fj(x, y) =

∑∞
j=0 ψτ,j(x)ψτ,j(y) converges in Cr(M × M) norm to a Cr(M × M)

function, pτ , as claimed.
Next, we begin our proof of Claim (i) by showing that pτ is the reproducing kernel for an RKHS. Fixing 

τ > 0, we start from the pre-Hilbert space H0 = span{ψτ,j}, equipped with the inner product

〈
m−1∑
i=0

aiψτ,j ,
n−1∑
j=0

bjψj,τ

〉
H0

=
m−1∑
i=0

n−1∑
j=0

a∗
i δijbj .

By (26), for every f =
∑n−1

j=0 cjψτ,j ∈ H0, we have

‖f‖2
H =

∥∥∥∥∥∥
n−1∑
j=0

cjrτ,jψj

∥∥∥∥∥∥
2

H

=
n−1∑
j=0

|rτ,j |2|cj |2 ≤ C

n−1∑
j=0

|cj |2 = C‖f‖2
H0

,

where C = maxj∈N0 |rτ,j |2. This implies that every Cauchy sequence in H0 is a Cauchy sequence in H, 
and as a result the Hilbert space completion of H0, denoted H, can be identified with a subspace of H. 
In particular, H is a Hilbert space of functions on M with an orthonormal basis {ψτ,j}∞

j=0. We will next 
show that H is an RKHS with reproducing kernel pτ by showing that, for every x ∈ M , the kernel sections 
pτ (x, ·) lie in H, and function evaluation at x is a bounded linear functional on H equal to an inner product 
with these sections. Indeed, since p is the reproducing kernel for H, for every x ∈ M , the section p(x, ·) lies 
in H, and thus, by the Mercer representation for p, 

∑∞ |ψj(x)|2 < ∞. It therefore follows that
j=0
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∞∑
j=0

|ψτ,j(x)|2 =
∞∑

j=0
r2

τ,j |ψj(x)|2 < ∞,

and because {ψτ,j}∞
j=0 is an orthonormal basis of H, pτ (x, ·) =

∑∞
j=0 ψτ,j(x)ψτ,j lies in H. Moreover, for 

every x ∈ M and f ∈ H,

f(x) =
∞∑

j=0
〈ψτ,j , f〉H ψτ,j(x) =

〈 ∞∑
j=0

ψτ,j(x)ψτ,j , f

〉
H

= 〈pτ (x, ·), f〉H ,

which shows that pointwise evaluation on H is given by inner products with the kernel sections pτ . We 
therefore conclude that H is an RKHS, denoted Hτ , with pτ as its Cr reproducing kernel. As a result, pτ is 
positive-definite, and it induces integral operators Pτ : L2(ν) → Hτ and Gτ = P ∗

τ Pτ . It also follows from the 
Mercer representation for pτ that Gτ is a strictly positive, compact operator with the same eigenfunctions 
φj as G, corresponding to the eigenvalues 0 < λτ,j ≤ 1, where λτ,0 = 1 is simple. What remains to prove 
Claim (i) is to show that Gτ is L2(ν)-Markov ergodic. We will verify this assertion following the proof of 
Claim (iii).

Turning to Claim (ii), note that for every j ∈ N0, the function ψj/λ
1/2
j equals ψτ,j/λτ,j , and thus lies 

in Hτ . Moreover, this function lies in the same L2(ν) equivalence class as φj , and because the φj form an 
orthonormal basis of L2(ν), it follows that Hτ is dense in L2(ν). To verify the claimed inclusion relationships 
between H and Hτ , we use (26) to characterize these spaces as

H =

⎧⎨
⎩

∞∑
j=0

ajψj :
∞∑

j=0
|aj |2 < ∞

⎫⎬
⎭ , Hτ =

⎧⎨
⎩

∞∑
j=0

ajrτ,jψj :
∞∑

j=0
|aj |2 < ∞

⎫⎬
⎭ .

Now note that since λτ,j = exp[−τ(1/λj − 1)], for every τ2 > 0 and τ1 ∈ (0, τ2), we have

λτ2,j/λτ1,j = exp[(τ1 − τ2)(1/λj − 1)] < 1, (27)

which shows that Hτ2 ⊆ Hτ1 . That Hτ1 ⊆ H follows from the fact that the rτ,j are bounded. This completes 
the proof of Claim (ii).

Next, turning to Claim (iii), we have already established in Claim (i) that for every τ > 0, Gτ is an 
L2(ν)-strictly positive, compact, contraction on L2(ν) with a simple eigenvalue λτ,0 = 1. The semigroup 
property follows directly from the facts the φj form an orthonormal eigenbasis for all Gτ , τ ≥ 0, with 
eigenvalues λτ,j , and for each j ∈ N0 and τ1, τ2 ≥ 0, λτ1+τ2,j = λτ1,jλτ2,j . To establish strong continuity of 
this semigroup, it is enough to show that for every f ∈ L2(ν) and ε > 0,

lim
τ→0+

‖(Gτ − Id)f‖L2(ν) < 2ε. (28)

Indeed, expanding f =
∑∞

j=0 ajφj , the partial sum fL =
∑L−1

j=0 ajφj with L large-enough satisfies ‖f −
fL‖L2(ν) < ε. Then, because

(Gτ − Id)f = (Gτ − Id)fL + (Gτ − Id)(f − fL) =
L∑

j=0
aj (λτ,j − 1) φj + (Gτ − Id)(f − fL),

and ‖Gτ ‖ = λτ,0 = 1, the last term in the above equation can be bounded as ‖(Gτ − Id)(f − fL)‖L2(ν) < ε. 
Now note that for each j, λτ,j − 1 = exp

(
τ(1 − λ−1

j )
)

− 1 converges to 0 as τ → 0+, so that 
‖
∑L

aj (λτ,j − 1) φj‖L2(ν) < ε for τ small-enough, and (28) is satisfied. This proves Claim (iii).
j=0
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We will now show that Gτ is L2(ν)-Markov, completing the proof of Claim (i) and the theorem. By Hille-
Yosida theory for strongly continuous, contraction semigroups of positive, compact operators [71], there 
exists a positive, self-adjoint operator L : D(L) → L2(ν) with compact resolvent such that, for all τ ≥ 0, 
Gτ = e−τL. L is a diagonal operator with eigenbasis φj and corresponding eigenvalues

− d

dτ
λτ,j

∣∣∣∣
τ=0

= 1
λj

− 1.

In particular, since λ0 = 1 is simple, L has a simple eigenvalue 0 corresponding to the constant eigenfunction 
φ0 ≡ 1M . It then follows from results on Markov semigroups (e.g., [72, Chapter 14, Theorem 2]) that the 
semigroup generated by −L is actually L2(ν)-Markov ergodic. That is, for every τ > 0, Gτ = e−τL is 
a Markov operator with transition probability density pτ (x, ·) relative to ν. This completes the proof of 
Claim (i) and Theorem 1. �

Before proceeding with the proof of Theorem 2, we will state a useful proposition, which is a consequence 
of the semigroup structure of the operator family {Gτ }τ≥0. In what follows, ΠL : L2(μ) → L2(μ) will denote 
the orthogonal projection onto the subspace spanned by {φ0, . . . , φL−1}.

Proposition 19. Under the assumptions of Theorem 2:

(i) As τ → 0+, G−1/2
τ converges pointwise to the identity on H∞.

(ii) For every τ > 0, the compactified generator Ṽτ : L2(μ) → L2(μ) from Assumption 4 is equal to 
G

1/2
τ V G

1/2
τ .

(iii) For every τ > 0, Aτ , Bτ , Ṽτ , and Wτ are trace class operators.
(iv) The operator families {Aτ }τ>0, {Bτ }τ>0, {Ṽτ }τ>0, and {Wτ }τ>0 are p2-continuous.
(v) As τ → 0+, Aτ , Bτ , Ṽτ , and U∗

τ Wτ Uτ converge pointwise to V on D(V ).

Proof. By (27), for every j, λτ,j increases strictly monotonically as τ → 0+, which means that λ
−1/2
τ,j

decreases strictly monotonically. Now, since D(G−1/2
τ ) = D(Nτ ) (see Section 4.1) and G−1/2

τ : φj �→ λ
−1/2
τ,j φj , 

for every f ∈ H∞ and 0 < τ ′ < τ , we have ‖G
−1/2
τ ′ f‖L2(μ) ≤ ‖G

−1/2
τ f‖L2(μ), and thus

H∞ ⊆ D(G−1/2
τ ) ⊆ D(G−1/2

τ ′ ).

Therefore, fixing ε > 0 and τ0 > 0, to prove Claim (i) it is enough to show that

lim
τ→0+

‖G−1/2
τ f − f‖L2(μ) = lim

τ→0+
‖(G−1/2

τ − Id)f‖L2(μ) < 2ε, ∀f ∈ D(G−1/2
τ0

). (29)

To that end, we begin by using the triangle inequality to write down the bound

‖(G−1/2
τ − Id)f‖L2(μ) ≤ ‖(G−1/2

τ − Id)ΠLf‖L2(μ) + ‖(G−1/2
τ − Id)(Id −ΠL)f‖L2(μ). (30)

Now, since Gτ and G−1/2
τ are diagonal operators, they commute with ΠL and Id −ΠL. As a result, for every 

τ ∈ (0, τ0), by (27),

‖(G−1/2
τ − Id)(Id −ΠL)f‖L2(μ) ≤ ‖(G−1/2

τ0
− Id)(Id −ΠL)f‖L2(μ) = ‖(Id −ΠL)(G−1/2

τ0
− Id)f‖L2(μ),

and the last term vanishes as L → ∞. Therefore, for L large-enough, the second term on the right-hand 
side of (30) is less than ε for every τ ∈ (0, τ0). Similarly, for any fixed L, for τ small-enough, the first term 
is also less than ε, proving (29) and Claim (i).
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To prove Claim (ii), note that for every τ ′ > 0,

Ṽ2τ ′ ⊇ G
1/2
2τ ′ V G

1/2
2τ ′ = Gτ ′V Gτ ′ ,

where the last equality follows from the semigroup structure of {Gτ}τ≥0. However, the range of Gτ lies 
in the domain of V , so we conclude that Ṽ2τ ′ = Gτ ′V Gτ ′ = Gτ ′Aτ ′ . Setting τ ′ = τ/2 and noting that 
Gτ/2 = G

1/2
τ leads to the claim.

Next, to prove Claim (iii), observe that Ṽτ = Gτ/2Bτ/2, which shows that Ṽτ is trace class since Gτ/2
is trace class and Bτ/2 is bounded. Similarly, we have Bτ = Bτ/2Gτ/2, which shows that Bτ is trace class. 
That Wτ and Aτ are trace class then follows from the fact that the former is unitarily equivalent to Ṽτ and 
the latter equal to the negative adjoint of Bτ .

Turning to Claim (iv), we will only prove p2-continuity for {Ṽτ }τ>0. The result for {Wτ }τ>0 follows 
immediately by unitary equivalence of Ṽτ and Wτ , and the results for {Aτ }τ>0 and {Bτ }τ>0 can be verified 
analogously to the proof for {Ṽτ }τ>0 below.

First, by Claim (ii), it is sufficient to establish p2-continuity for the family of operators {GτAτ }τ>0. That 
is, fixing a quadratic polynomial Q, we have to show that the operator norm ‖Q (Gτ Aτ )‖L2(μ) is a continuous 
function of τ > 0. This is in turn equivalent to showing that τ �→ Q (Gτ Aτ ) is a continuous map in the 
L2(μ) operator norm topology. Note that this continuity is not affected by the addition of a constant term 
to the polynomial Q. Thus, without loss of generality, we may assume that Q is a homogeneous polynomial 
of the form Q(x) = αx2 +βx. By Theorems 1 and 5, Gτ and Aτ are both Hilbert-Schmidt integral operators 
with kernels pτ and p′

τ , respectively. Since the composition of a bounded operator with a Hilbert-Schmidt 
operator is again a Hilbert-Schmidt operator, it follows that

Q (Gτ Aτ ) = αGτ ◦ Aτ ◦ Gτ ◦ Aτ + βGτ ◦ Aτ

is Hilbert-Schmidt. As a result, because the Hilbert-Schmidt norm induces a stronger topology than the 
L2(μ) operator norm, it is sufficient to prove the stronger claim that τ �→ Q (Gτ Aτ ) is a continuous map in 
the Hilbert-Schmidt norm topology.

By (8), the Hilbert-Schmidt norm of the kernel integral operator Q (Gτ Aτ ) is just the L2(μ × μ) norm 
of its kernel. Thus, denoting this kernel by qτ : M × M → R, the task now is to show that τ �→ ‖qτ ‖L2(μ×μ)
is a continuous function of τ , or, equivalently, that τ �→ qτ is continuous in the L2(μ × μ) norm topology. 
That this is indeed the case follows from the claims below.

(a) τ �→ pτ and τ �→ p′
τ are continuous in the L2(μ × μ) norm topology. Indeed, by (10) and (26),

‖pτ − pτ ′‖2
L2(μ) =

∞∑
j=0

∣∣∣λ1/2
τ,j − λ

1/2
τ ′,j

∣∣∣2 ≤
L∑

j=0

∣∣∣λ1/2
τ,j − λ

1/2
τ ′,j

∣∣∣2 +
∞∑

j=L+1
λτ,j +

∞∑
j=L+1

λτ ′,j ,

so that for L sufficiently large, the last two terms can be made arbitrarily small, whereas for every 
fixed L the term 

∑L
j=0 |λ1/2

τj − λ
1/2
τ ′,j |2 converges to 0 as τ → τ ′. This establishes L2(μ × μ) continuity of 

τ �→ pτ . The claim for τ �→ p′
τ follows analogously.

(b) If aτ , bτ : M × M → R are two kernel families depending continuously on τ with respect to L2(μ × μ)
norm, then their composition, cτ (x, y) =

∫
M

aτ (x, z)bτ (z, y) dμ(z), is also continuous. This claim can 
be verified via a standard calculation in analysis, which will be omitted here.

The continuity of τ �→ qτ then follows from these results since qτ is equal to a sum of various compositions 
of pτ and p′

τ . This completes the proof of Claim (iv).
Finally, to prove Claim (v), fix f =

∑∞
ajφj ∈ D(V ), and observe the following:
j=0
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(a) Gτ f is a family of functions in D(V ), converging, as τ → 0+ to f . The convergence follows from 
Theorem 1(iii). Moreover, since Gτ has a C1 kernel pτ , the Gτ f have C1 representatives. Thus, Gτ f

lies in D(V ), as claimed.
(b) Pτ f is a Cauchy sequence in H. To verify this, fix τ0 > 0. Then, for every τ, τ ′ ∈ (0, τ0),

‖Pτ ′f − Pτ f‖2
H =

∞∑
j=0

(
λ

1/2
τ ′,j − λ

1/2
τ,j

)2
|aj |2 =

L∑
j=0

(
λ

1/2
τ ′,j − λ

1/2
τ,j

)2
|aj |2 +

∞∑
j=L+1

(
λ

1/2
τ ′,j − λ

1/2
τ,j

)2
|aj |2,

and therefore, since λτ,j ∈ [0, 1) for every τ > 0 and j ∈ N0, we obtain

lim sup
τ0→0+

‖Pτ ′f − Pτ f‖2
H ≤ lim sup

τ0→0+

L∑
j=0

(
λ

1/2
τ ′,j − λ

1/2
τ,j

)2
|aj |2 + 2

∞∑
j=L+1

|aj |2 = 2
∞∑

j=L+1
|aj |2.

The above inequality holds for every L ∈ N, and the last term vanishes as L → ∞, proving the claim.
(c) Aτ f is a Cauchy sequence in L2(μ). To verify this, note that V P ∗ : H → L2(μ) is a bounded operator 

by Theorem 6(i), and therefore, since Pτ f is a Cauchy sequence in H, Aτ f = V P ∗
τ Pτ f = V P ∗(Pτ f) is 

a Cauchy sequence in L2(μ).

We have thus shown that Gτ f is a family of functions in D(V ) which converges as τ → 0+ to f , and 
whose image under V , namely V (Gτ f) = Aτ f , forms a Cauchy sequence. Since V is a closed operator, the 
limit of this Cauchy sequence is equal to V f . Thus, Aτ f converges to V f , and since f was arbitrary, it 
follows that Aτ converges to V pointwise on D(V ). In addition, because Gτ Aτ = Ṽ2τ , and Gτ is uniformly 
bounded and converges to the identity, it follows that Ṽτ also converges pointwise to V on D(V ). Note 
that we have used Claim (ii) to deduce equality of Gτ Aτ and Ṽ2τ . Finally, the pointwise convergence of 
Bτ = Gτ V to V follows directly from the pointwise convergence of Gτ to the identity, and the result for 
U∗

τ Wτ Uτ = Ṽτ is obvious. This completes the proof of Proposition 19. �
Proof of Theorem 2. First, Proposition 19(iii) established that Wτ and Bτ are trace class. Moreover, 
Claim (i) of the theorem follows from Theorem 6(ii), Claim (ii) follows from Theorem 7, and Claim (iii) 
follows from Theorem 9(i) and (14). Aside from the convergence of P ∗

τ Z(Wτ )Nτ to Z(V ) for bounded 
continuous (as opposed to holomorphic) functions, Claims (iv)–(vii) will follow from Theorems 9, 10 and 
Proposition 19(iv) if we can show that pτ satisfies Assumption 4. Theorem 1(iii) establishes the condition 
in this assumption that Gτ converges pointwise to the identity. In order to verify Assumption 4, it thus 
remains to be shown that, as τ → 0+, Ṽτ converges pointwise to V on D(V 2). This follows immediately 
from Proposition 19(v), where we have shown the stronger result that Ṽτ converges to V pointwise on the 
whole of D(V ).

What remains to complete the proof of Theorem 2 is to show that P ∗
τ Z(Wτ )Nτ converges strongly on 

H∞ to Z(V ) for bounded continuous Z. By (19), for every f ∈ H∞ we have

P ∗
τ Z(Wτ )Nτ f = Pτ∗Uτ U∗

τ Z(Wτ )Uτ G−1/2
τ f = G1/2

τ Z(Ṽτ )G−1/2
τ f,

and therefore

P ∗
τ Z(Wτ )Nτ f − Z(V )f = G1/2

τ Z(Ṽτ )G−1/2
τ f − Z(V )f

= G1/2
τ Z(Ṽτ )(G−1/2

τ − Id)f + (G1/2
τ Z(Ṽτ ) − Z(V ))f.

By Proposition 19(i) and the fact that G1/2
τ Z(Ṽτ ) is a uniformly bounded family of operators converging 

pointwise to Z(V ), as τ → 0+, each of the terms in the right-hand side of the last equation converges to 0. 
This shows that P ∗

τ Z(Wτ )Nτ f
s−→ Z(V ) on H∞, completing the proof of Theorem 2. �
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Before proving Corollary 3, we will state and prove a proposition on the ε-approximate spectrum of U t. 
One of the important claims we make is that, suitably restricted to the space P ∗H = D(N ) ⊂ L2(μ), etBτ

converges in norm to U t, as opposed to merely strongly as shown in Theorem 2(vi). In particular, we will 
consider the quantity Q(t, τ) = ‖(U t − etBτ )P ∗‖ for t ∈ R, τ > 0, where ‖·‖ denotes H → L2(μ) operator 
norm.

Proposition 20. Let Assumptions 1, 2 hold, with r = 2. Then, the function Q is continuous, vanishes at 
t = 0 for every τ ∈ (0, ∞), and converges to 0 as τ → 0+ for every t ∈ R. Moreover, for every eigenfunction 
ζτ of Wτ with eigenvalue iωτ and every t ∈ R, eiωτ t lies in the ε-approximate point spectrum of U t, with

ε = Q(t, τ)
√

D(zτ ) + 1, zτ := P ∗
τ ζτ /‖P ∗

τ ζτ ‖L2(μ), ‖U tzτ − eiωτ tzτ ‖L2(μ) < ε.

Moreover, for every fixed ε > 0, R(ε, τ) defined in Corollary 3 diverges as τ → 0+.

Proof. By arguments analogous to those used to prove Proposition 19(iv), the map (t, τ) �→ (U t − etBτ )P ∗

is continuous in the Hilbert-Schmidt norm topology of operators from H into L2(μ) at every (t, τ) ∈ R ×R+. 
This implies continuity of (t, τ) �→ (U t − etBτ ) in the operator norm topology, and thus continuity of Q. 
That Q(t, τ) vanishes as τ → 0+ at fixed t follows from the fact that U t − etBτ converges pointwise to 0, 
and P ∗ is compact. That Q(0, ·) = 0 is obvious. Next, to verify that eiωτ t lies in the ε-approximate point 
spectrum of U t with ε = Q(t, τ)

√
D(zτ ) + 1, we use Theorem 7(ii) to compute

‖U tzτ − eiωτ tzτ ‖L2(μ) =
‖U tP ∗

τ ζτ − eiωτ tP ∗
τ ζτ ‖L2(μ)

‖P ∗
τ ζτ ‖L2(μ)

=
‖U tP ∗

τ ζτ − P ∗
τ etWτ ζτ ‖L2(μ)

‖P ∗
τ ζτ ‖L2(μ)

=
‖(U t − etBτ )P ∗

τ ζτ ‖L2(μ)

‖P ∗
τ ζτ ‖L2(μ)

=
‖(U t − etBτ )P ∗ζτ ‖L2(μ)

‖P ∗ζτ ‖L2(μ)

≤ ‖(U t − etBτ )P ∗‖ ‖ζτ ‖H
‖P ∗ζτ ‖L2(μ)

= Q(t, τ)
√

D(zτ ) + 1, (31)

Finally, fix an ε > 0. It follows by continuity of Q, that for every T > 0, t ∈ [−T, T ], and small-enough 
τ > 0, we have Q(t, τ) < ε. This implies that R(ε, τ) > T for small enough τ . Since T was arbitrary, we can 
conclude that R(ε, τ) diverges as τ → 0+. �
Proof of Corollary 3. The first inequality follows from the definition of Q(t, τ) and R(ε, τ), in conjunction 
with (31). Next, to prove Claim (i), it is sufficient to show that eiωt lies in the spectrum of U t for every 
t ∈ R. To that end, we use the triangle inequality and the fact that ‖zτ ‖L2(μ) = 1 to obtain the bound

‖U tzτ − eiωtzτ ‖L2(μ) ≤ ‖U tzτ − eiωτ tzτ ‖L2(μ) + |eiωτ t − eiωt|, ∀τ ∈ R+. (32)

Now, because limτ→0+ ωτ = ω, there exists τ0 > 0 such that for all τ ∈ (0, τ0), |eiωτ t −eiωt| < ε/2. Moreover, 
because T (ε, τ) is unbounded, there exists τ1 ∈ (0, τ0] such that t lies in the interval (−T (ε/2, τ), T (ε/2, τ))
from Claim (i) for all τ ∈ (0, τ1). As a result, the bound in (31) becomes

‖U tzτ − eiωtzτ ‖L2(μ) ≤ ε/2 + ε/2 = ε, ∀τ ∈ (0, τ1).

Since ε was arbitrary, we conclude that U t − eiωt has no bounded inverse, i.e., eiωt lies in the spectrum of 
U t, as claimed.

Claim (ii) will be proven by contradiction. In particular, assume that there exists a sequence τj > 0
monotonically converging to 0 as j → ∞, and δ > 0 such that for every j ∈ N, zτj

is at distance at least δ
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from the 1-dimensional eigenspace Z of V corresponding to iω. Here, as a measure of distance of a vector 
z ∈ L2(μ) from Z we use d(z, Z) := inf{‖z − z′‖L2(μ) : z′ ∈ Z}. Since ‖zτj

‖L2(μ) = 1, it follows from the 
boundedness of D(zτj

) that ‖zτj
‖N is bounded. Therefore, by compactness of the embedding of D(N ) into 

L2(μ), zτj
has a subsequence converging to some vector z ∈ L2(μ). By assumption on the τj , d(z, Z) is 

greater than δ. We will complete the proof by showing that z lies, in fact, in Z, leading to a contradiction. 
To that end, note that the condition that D(zτ ) is bounded, together with the fact that R(ε, τ) diverges 
from Proposition 20, implies that T (ε, τ) diverges. Thus, the conclusion of Claim (i) holds, and z satisfies 
‖U tz − eiωtz‖L2(μ) < ε for every ε > 0. We therefore conclude that U tz = eiωtz for every t ∈ R, i.e., that z
lies in Z, in contradiction with the assumption that d(z, Z) > δ. This completes the proof of Claim (ii). �
Proof of Corollary 4. Since {φ0, φ1, . . .} is an orthonormal basis of L2(μ), for L large enough, fL := ΠLf sat-
isfies ‖f − fL‖L2(μ) < ε/2. Moreover, since {U t}t∈R is a unitary group, the inequality ‖U tf − U tfL‖L2(μ) <

ε/2 is preserved for all t ∈ R. Moreover, fL lies in H∞ as it is a finite linear combination of the φj. Now 
define f̂ε = N fL, so that f̂ε ∈ H∞, and P ∗f̂ε = fL. An application of Theorem 2(v) with Z(iω) = eiωt

then shows that, as τ → 0+, ‖U tfL − P ∗
τ etWτ f̂ε‖L2(μ) converges to zero, where the convergence is uniform 

for t ∈ T by continuity of the map t �→ U tfL − P ∗
τ etWτ f̂ε. Therefore, there exists τ0 > 0 such that for all 

τ ∈ (0, τ0) and t ∈ T , ‖U tfL − P ∗
τ eitWτ f̂ε‖L2(μ) < ε/2. Corollary 4 is then proved by the bound

∥∥∥U tf − P ∗
τ eitWτ f̂ε

∥∥∥
L2(μ)

<
∥∥U tf − U tfL

∥∥
L2(μ) +

∥∥∥U tfL − P ∗
τ eitWτ f̂ε

∥∥∥
L2(μ)

< ε/2 + ε/2 = ε. �
8. Data-driven approximation

We now take up the problem of approximating the operators in Theorems 1 and 2 from a finite time 
series of observed data and without prior knowledge of the dynamical flow Φt. Specifically, we consider that 
available to us is a time series F (x0), F (x1), . . . , F (xN−1), consisting of the values of an observation function 
F : M → Y that takes values in a data space Y , sampled at a fixed time interval Δt > 0 along an orbit 
x0, x1, . . . , xN−1 of the dynamics. As already alluded to in Section 1, besides the lack of knowledge of the 
dynamical flow map Φt, this task presents a number of obstacles, including:

(i) In general, one does not have direct access to the ergodic invariant measure μ and the associated L2(μ)
space, but is limited to working with the sampling measure μN =

∑N−1
n=0 δxn

/N supported on the finite 
trajectory {x0, . . . , xN−1}. In fact, even if μ were explicitly known, its support X would typically be 
a non-smooth subset of the ambient manifold M , of zero Lebesgue measure (e.g., a fractal attractor), 
significantly hindering the construction of orthonormal bases of L2(μ) by restriction of smooth basis 
functions defined on M .

(ii) In many experimental scenarios, the sampled states will not lie exactly on the invariant set X, as it is 
not feasible to achieve complete convergence of the trajectory to that set.

(iii) Measurements are not taken continuously in time, preventing direct evaluation of the action of the 
dynamical vector field �V on functions.

To address the first two issues, we take advantage of the fact that in many ergodic dynamical systems 
encountered in applications, the statistical properties of observables with respect to the sampling measures 
associated with a suitable class of initial points x0 coincide with those of the invariant measure [73], as 
discussed below.

Basin of a measure. The basin of an invariant measure μ is the set of initial points such that the sampling 
measures μN on the trajectories starting from them converge weakly to μ. More specifically, it is the set of 
points x0 ∈ M such that for every continuous function f ∈ C0(M),
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lim
N→∞

∫
M

f dμN =
∫
M

f dμ, μN = 1
N

N−1∑
n=0

δxn
, xn = Φn Δt(x0).

This set will be denoted Bμ. If μ is ergodic, as assumed throughout this work, then μ-a.e. point in M lies 
in its basin. The invariant measure μ is said to be physical if Bμ has nonzero measure with respect to some 
reference measure in the ambient manifold M . For instance, in typical experimental scenarios, initial points 
are drawn from some distribution equivalent to a smooth volume measure on M . In such cases, physicality 
of μ ensures convergence of the data-driven techniques for a “large” set of initial conditions. While, in what 
follows, we will not require that μ be physical as an explicit assumption, it should be kept in mind that 
some type of physicality is oftentimes an implied assumption in practical applications.

Finite-difference approximation. Following [17,18,74], to address the discrete-time sampling of the data, 
we approximate the action of the dynamical vector field �V on Cr functions using finite differences. As a 
concrete example, a scheme appropriate to the C1 regularity in Theorem 2 and Assumption 5 is a central 
finite-difference scheme �VΔt : C0(M) → C0(M), given by

�VΔtf(x) = f(ΦΔt(x)) − f(Φ−Δt(x))
2 Δt

. (33)

By compactness of M , for any f ∈ C1(M), the error ‖�VΔtf − �V f‖C0(M) of this scheme vanishes as Δt → 0, 
and is o(Δt) and O((Δt)2) if f lies in C2(M) or C3(M), respectively.

The assumptions underlying our data-driven approximation schemes are as follows.

Assumption 5. The dataset {y0, . . . , yN−1} consists of the values yn = F (xn) of an injective, C1 observation 
map F : M �→ Y into a manifold Y , sampled along a trajectory x0, . . . , xN−1, xn = Φn Δt(x0), starting from 
a point x0 ∈ Bμ which is not a fixed point of the dynamics. Moreover:

(i) The sampling interval Δt is such that μ is an ergodic invariant measure of the map ΦΔt : M → M .
(ii) κ : Y × Y �→ R is a C1 symmetric, strictly positive-definite kernel with κ > 0.

Note that Assumption 5(i) is satisfied iff ω Δt is not a multiple of 2π for any Koopman eigenfrequency ω. 
For dynamics on a separable space, there can only be countably many such ω, and thus Assumption 5(i) is 
satisfied for every Δt in a full-measure, co-countable subset of the real line. The manifold Y will be referred 
to as the data space. While it usually has the structure of a linear space (e.g., Y = Rm), in a number of 
scenarios Y can be nonlinear (e.g., directional measurements with Y = S2).

The techniques described below will be based on the kernel k : M × M → R,

k(x, x′) := κ (F (x), F (x′)) , (34)

induced from the kernel κ on data space. Note that k(x, x′) can be evaluated given the data points F (x) and 
F (x′), without explicit knowledge of the underlying dynamical states x and x′. Moreover, the assumptions 
on κ and F in Assumption 5 ensure that k is also a C1 symmetric, strictly positive-definite kernel. We will 
discuss how to construct κ when the injectivity condition on F is not satisfied below.

Data-driven Hilbert spaces. Since the starting point x0 is not a fixed point, and μ is an ergodic invariant 
measure of ΦΔt, all sampled states x0, . . . , xN−1 are distinct. Therefore L2(μN ), is an N -dimensional Hilbert 
space, equipped with the inner product 〈f, g〉μN

:=
∑N−1

n=0 f∗(xn)g(xn)/N . This space consists of equivalence 
classes of complex-valued functions on M having common values at x0, . . . , xN−1 (i.e., the support of μN ). 
It is clear that L2(μN ) is isomorphic to the space CN equipped with a normalized Euclidean inner product. 



112 S. Das et al. / Appl. Comput. Harmon. Anal. 54 (2021) 75–136
Note that one issue with establishing convergence of data-driven approximation techniques in this setting 
is that there is no obvious way of comparing functions in L2(μN ) and L2(μ). Here, we avoid this issue by 
performing our approximations in suitable RKHSs, whose elements can be projected into both L2(μN ) and 
L2(μ). The main elements of our approach, which closely parallel the theoretical results in Section 2, are 
(i) construction of a family of L2(μN )-Markov kernels with its associated semigroup and RKHSs, Hτ,N ; 
(ii) construction skew-adjoint operators Wτ,N on Hτ,N approximating the compactified generator Wτ , and 
evaluation of the spectral decomposition and functional calculus of these operators; and (iii) prediction of 
observables by exponentiation of the data-driven generators. We will now describe these procedures, and 
then, in Theorem 21, establish their convergence in the limit of large data. Pseudocode implementing our 
approach is included in Algorithms 1–4 in Appendix B.

Markov kernels. Using the bistochastic normalization procedure described in Section 4.1 with ν set to the 
sampling measure μN and k to the pullback kernel from (34), we construct a C1, L2(μN )-strictly-positive, 
Markov ergodic kernel pN : M × M → R. We then apply the construction in (10) with ν = μN to obtain a 
family of kernels pτ,N : M × M → R, τ > 0, which are also L2(μN )-strictly-positive and Markov ergodic. 
Associated with pN and pτ,N are RKHSs HN and Hτ,N , respectively, as well as the corresponding integral 
operators PN : L2(μN ) → HN , Pτ,N : L2(μN ) → Hτ,N , GN = P ∗

N PN , and Gτ,N = P ∗
τ,N Pτ,N . In accordance 

with Theorem 1, the latter form L2(μN )-ergodic Markov semigroups for each N , with associated eigenvalues 
1 = λτ,N,0 > λτ,N,1 ≥ · · · ≥ λτ,N,N−1 > 0, L2(μN )-orthonormal eigenfunctions {φτ,N,0, . . . , φτ,N,N−1}, and 
Hτ,N -orthonormal functions {ψτ,N,0, . . . , ψτ,N,N−1} (the latter, defined analogously to the ψτ,j in (10)). The 
RKHSs Hτ,N also have associated Nyström extension operators, Nτ,N : L2(μN ) → Hτ,N . Note that because 
the L2(μN ) are finite-dimensional spaces, and the eigenvalues λτ,N,j are strictly positive, the Nyström 
operators Nτ,N are everywhere-defined.

Data-driven generator. Next, we construct finite-rank approximations of the compactified generator Wτ . 
For that, note that every finite-difference scheme �VΔt for the dynamical vector field induces a corresponding 
operator ṼN,Δt on L2(μN ). For instance, the central finite-difference scheme in (33) leads to

ṼN,Δtf(xn) = f(xn+1) − f(xn−1)
2Δt

, n ∈ {1, . . . N − 2}, ṼN,Δtf(x0) = ṼN,Δt(xN−1) = 0.

While this operator is generally not skew-adjoint, it can be employed to construct a skew-adjoint operator 
VN,Δt : L2(μN ) → L2(μN ) by antisymmetrization, namely,

VN,Δt =
ṼN,Δt − Ṽ ∗

N,Δt

2 . (35)

The latter is a data-driven approximation of V , which adheres to our general scheme of approximat-
ing V using skew-adjoint operators. Note that VN,Δt is fully characterized through its matrix elements 
〈φτ,N,i, VN,Δtφτ,N,j〉μN

in the φτ,N,j basis of L2(μN ), which are in turn computable by applying (35) to the 
eigenfunction time series φτ,N,j(xn).

Next, using VN,Δt, we construct the skew-adjoint operators Wτ,N,Δt on Hτ,N , defined as

Wτ,N,Δt = P ∗
τ,N VN,ΔtPτ,N .

It follows by definition of the ψτ,N,j basis functions of Hτ,N that the matrix elements of Wτ,N,Δt are related 
to those of VN,Δt by

〈ψτ,N,i, Wτ,N,Δtψτ,N,j〉Hτ,N
= λ

1/2
τ,N,i〈φτ,N,i, VN,Δtφτ,N,j〉μN

λ
1/2
τ,N,j . (36)
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Note that as i and j grow, the matrix elements of Wτ,N,Δt diminish in magnitude compared to those of 
VN,Δt due to the decay of the eigenvalues. This is a manifestation of the RKHS regularization resulting 
from conjugation of VN,Δt by Pτ,N .

Remark. As is well known, finite-difference schemes are prone to errors if the sampling interval Δt is not 
sufficiently small, or high-frequency noise is present in the data. The extent to which the data-driven 
generator matrix in (36) is susceptible to these issues ultimately depends on the kernel kτ , as it governs 
the data-driven basis functions ψτ,N,j appearing in the approximation. For instance, in [17, Theorem 22] it 
was shown that for quasiperiodic systems, incorporating delay-coordinate maps in the construction of the 
kernel can remove temporally i.i.d. noise of arbitrarily large variance, allowing (36) to be evaluated with 
“clean” eigenfunctions. While in systems with continuous spectrum that technique may have limitations 
(as adding delays would eventually suppress the kernel eigenfunctions spanning the continuous spectrum 
subspace Hc [18]), delay-coordinate maps should still be a useful tool for enhancing the noise robustness of 
the approximation in (36). Methods for controlling errors with respect to Δt would include composing the 
kernel with averaging operators to suppress high frequencies, or performing differentiation in the Fourier 
domain using spectral tapering methods. While exploring the efficacy of such approaches lies beyond the 
scope of this work, for the purposes of the methods presented in this paper, any convergent approximation 
of V can be employed in place of �VΔt from (33).

Spectral truncation. In what follows, we will perform coherent pattern extraction and prediction using 
various spectrally truncated observables and operators. For that, we will need the orthogonal projec-
tions ΠN,L : L2(μN ) → L2(μN ) and Πτ,N,L : Hτ,N �→ Hτ,N mapping into span{φN,0, . . . , φN,L−1} and 
span{ψτ,N,0, . . . , ψτ,N,L−1}, respectively. With some abuse of notation, in what follows ι : B(M) → L2(μ)
and ιN : B(M) → L2(μN ) will be the canonical inclusion and restriction maps, respectively, on the space 
B(M) of bounded, complex-valued, Borel functions on M , equipped with the supremum norm. With these 
definitions, given an observable f ∈ B(M) that is to be predicted, we will treat it by first mapping it into 
the spectrally truncated observable

fN,L = ΠN,LιN f ∈ L2(μN ), 1 ≤ L ≤ N. (37)

Moreover, the operators used for coherent pattern extraction and prediction will be spectrally truncated 
analogs of Wτ,N,Δt, namely

W
(L)
τ,N,Δt := Πτ,N,LWτ,N,ΔtΠτ,N,L, 1 ≤ L ≤ N. (38)

The reason for these spectral truncations will become clear below. Note that in applications the parameters 
L in (37) and (38) need not be equal. Moreover, since Πτ,N,N = Id, W (N)

τ,N,Δt is equal to Wτ,N,Δt.

Coherent pattern extraction. For any given L, W (L)
τ,N,Δt is a skew-symmetric operator of rank at most L. In 

particular, it is diagonal in an orthonormal basis of eigenfunctions ζ(L)
τ,N,Δt,j ∈ Hτ,N , j ∈ {0, . . . , L − 1}, 

corresponding to purely imaginary eigenvalues iω(L)
τ,N,Δt,j, i.e.,

W
(L)
τ,N,Δtζ

(L)
τ,N,Δt,j = iω

(L)
τ,N,Δt,jζ

(L)
τ,N,Δt,j . (39)

The eigenfunctions ζ(L)
τ,N,Δt,j will act as data-driven coherent observables, approximating the eigenfunctions 

ζτ,j of Wτ . It should be noted that ζ(L)
τ,N,Δt,j is a continuous function, constructed from the training data 

F (x0), . . . , F (xN−1), which can be evaluated at any x ∈ M from the corresponding value F (x) of the 
observation map in Y . This procedure is known as out-of-sample evaluation.
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B(M) L2(μN ) span{φN,0, . . . , φN,L′−1}

L2(μ) Hτ,N

L2(μ) L2(μ) Hτ,N

ιN

ι

Nτ,N,L′

ΠN,L′

Nτ,N

Z(V ) Z
(

W
(L)
N,τ

)
error ι

Fig. 2. Diagram illustrating the construction of the data-driven forecast function gτ,N,Δt,L,L′ from (40) and its relationship to 
Z(V )ιf . Starting with a bounded observable f ∈ B(M), the left loop in the diagram leads to Z(V )ιf , and the right loop to 
ιgτ,N,Δt,L,L′ . Note that Z(W

(L)
τ,N,Δt) maps into the L-dimensional subspace of Hτ,N spanned by {ψτ,N,0, . . . , ψτ,N,L−1}. The 

dashed arrow indicates discrepancy (error) between the data-driven function gτ,N,Δt,L,L′ and the true observable, Z(V )ιf . The 
composition of maps Nτ,N ◦ ΠN,L′ ◦ ιN has been demarcated separately as an operator Nτ,N,L′ . This operator represents an entire 
data-driven procedure which takes as input a B(M) function f , projects it onto its first L′ components of a basis for L2(μN ), and 
then outputs the Nyström extension in Hτ,N . This output can then be the input of any operator Z(W

(L)
N,τ ), as above.

The reason for working with W (L)
τ,N,Δt, as opposed to the bare data-driven generator Wτ,N,Δt, is twofold. 

First, in what follows, we will be interested in establishing a form of spectral convergence for the data-
driven generators in the limit of large data—keeping L fixed while increasing N will allow us to ensure 
uniform convergence of the ψτ,N,Δt,j with j ≤ L − 1 to the corresponding ψτ,j. Moreover, working at a fixed 
L � N allows to control the computational cost of data-driven approximations of Wτ . In fact, following the 
computation of the L × L matrix representing W (L)

τ,N,Δt, the cost of acting with this operator on observables 
becomes independent of the much larger data size N .

Functional calculus and forecasting. By skew-adjointness, the functional calculi of W (L)
τ,N,Δt can be conve-

niently constructed by applying any given function Z : iR → C to their eigenvalues, and projecting to the 
corresponding eigenspaces. That is,

Z(W (L)
τ,N,Δt) =

L−1∑
j=0

Z(iω(L)
τ,N,Δt,j)〈ζ(L)

τ,N,Δt,j , ·〉Hτ,N
ζ

(L)
τ,N,Δt,j .

Given such a bounded continuous function Z and a continuous observable f ∈ C0(M), our approximation 
for Z(V )ιf is the Hτ,N function

gτ,N,Δt,L,L′ = Z(W (L)
τ,N,Δt)Nτ,N fN,L′ , (40)

where fN,L′ is given by (37), and L, L′ are chosen such that 1 ≤ L′ ≤ L ≤ N . Here, the role of the 

constraint L′ ≤ L is to control the error in the dynamical evolution of fN,L′ by the operator etW
(L)
τ,N as L

increases, keeping L′ fixed. As with the eigenfunctions in (39), gτ,N,Δt,L,L′ can be evaluated at an arbitrary 
state x ∈ M , given knowledge of F (x) ∈ Y . The relationships between the various maps employed in the 
construction of this approximation are depicted diagrammatically in Fig. 2.

With these constructions, we have the following convergence result.

Theorem 21 (Data-driven approximation). Let Assumptions 1, 2, and 5 hold. Then:

(i) Every eigenfrequency ωτ,j of Wτ , τ > 0, can be consistently approximated by the eigenfrequencies 
ω

(L)
τ,N,Δt,j of W (L)

τ , in the sense that limL→∞ limΔt→0,NΔt→∞ ω
(L)
τ,N,Δt,j = ωτ,j.

(ii) For every eigenfunction ζτ,j of Wτ corresponding to ωτ,j, there exist eigenfunctions ζ(L)
τ,N,Δt of W (L)

τ,N,Δt

corresponding to ω(L)
τ,N,Δt,j such that limL→∞ limΔt→0,NΔt→∞ ‖ζ

(L)
τ,N,Δt,j − ζτ,j‖C0(M) = 0.

(iii) For every bounded, continuous function Z : iR → C and every bounded observable f ∈ B(M),

lim
L′→∞

lim
τ→0+

lim
L→∞

lim
Δt→0+,NΔt→∞

‖Z(V )ιf − ιgτ,N,Δt,L,L′‖L2(μ) = 0, (41)

where gτ,N,Δt,L,L′ ∈ Hτ,N is the data-driven approximation from (40).
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Remark. Theorem 21 establishes convergence of the data-driven approximation gτ,N,Δt,L,L′ , constructed for 
L′ ≤ L. Since L′ is the last asymptotic control parameter taken to ∞ in (41), an alternative formulation 
would be to keep L′ constant, and state

lim
τ→0+

lim
L→∞

lim
Δt→0+,NΔt→∞

‖Z(V )ιf − ιgτ,N,Δt,L,L′‖L2(μ) = 0, ∀f ∈ span {φ0, . . . , φL′−1} .

In this formulation, L′ controls the dimension of the space of response observables on which we perform 
prediction, whereas L controls the dimension of the hypothesis space [53] in which the forecast function 
lies. Theoretically, we fix L′ to attain convergence since span{φ0, . . . , φL′−1} need not be invariant under 
Z(V ). In a numerical application with a fixed training dataset, the parameters L and L′ can be tuned 
independently in a cross-validation step aiming to balance bias errors (increasing with decreasing L, L′) and 
generalization errors (increasing with increasing L, L′).

An application of Theorem 21(ii) for Z(iω) = eiωt leads to the following corollary, establishing the 
convergence of the data-driven forecast functions for U tf .

Corollary 22. For every f ∈ B(M), the function f (t)
τ,N,Δt,L,L′ ∈ Hτ,N defined as

f
(t)
τ,N,Δt,L,L′ = etW

(L)
τ,N,ΔtNτ,N ΠN,L′ιN f

is an approximation of U tf , satisfying

lim
L′→∞

lim
τ→0

lim
L→∞

lim
Δt→0+,NΔt→∞

‖U tf − f
(t)
τ,N,Δt,L,L′‖L2(μ) = 0.

Moreover, the map t �→ f
(t)
τ,N,Δt,L,L′ is continuous, and the convergence is uniform for t lying in compact 

intervals.

Remark. The order in which the limits in Theorem 21 and Corollary 22 are taken is important. In particular, 
the first limits taken are those of N and Δt. This corresponds to the limit of large data, i.e., infinitely many 
samples taken at arbitrarily small sampling interval. As stated above, in order to control sampling errors 
and ensure spectral convergence of the data-driven operators, the limit of large data must be taken at a fixed 
resolution L. After this, the limit L → ∞ is taken to facilitate a finite-rank approximation of Wτ and Z(Wτ ). 
Next, the limit τ → 0+ is taken as the 0-time limit of the Markov semi-group Gτ , leading to convergence 
of Wτ and Z(Wτ ) to V and Z(V ), respectively, in the sense of Theorem 2. Finally, in Theorem 21(iii) and 
Corollary 22, the limit L′ → ∞ is taken to facilitate convergence to the spectrally truncated observable 
ΠL′ιf ∈ L2(μ) to ιf . The latter limit is analogous to an ε → 0+ limit of the tolerance ε in Corollary 4.

Before proving Theorem 21, we will state an auxiliary lemma. In what follows, Πτ,L will denote the 
orthogonal projection on Hτ mapping into span{ψτ,0, . . . , ψτ,L−1}.

Lemma 23. Under the assumptions of Theorem 21, the following hold:

(i) The eigenvalues λτ,N,j of Gτ,N converge to those of Gτ , i.e., for every τ ≥ 0 and j ∈ N0, 
limN→∞ λτ,N,j = λτ,j. Moreover, for every Hτ basis function ψτ,j there exists a sequence of Hτ,N

basis functions ψτ,N,j converging to it in C0(M) norm in the same limit.
(ii) For every τ > 0, the matrix elements of Wτ,N,Δt from (36) converge to the corresponding matrix 

elements of Wτ , i.e., limΔt→0+,NΔt→∞〈ψτ,N,i, Wτ,N,Δtψτ,N,j〉Hτ,N
= 〈ψτ,i, Wτ ψτ,j〉Hτ

.
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(iii) As L → ∞, the finite-rank, skew-adjoint operators W (L)
τ := Πτ,LWτ Πτ,L converge to Wτ in Hilbert-

Schmidt norm, and thus in Hτ operator norm.

Proof. Claim (i) was proved in [18], following the approach of [30], for Markov kernels constructed via 
the kernel normalization procedure introduced in the diffusion maps algorithm [29]. The result for the 
bistochastic Markov kernels from (20) follows analogously.

To verify Claim (ii), note first that the matrix elements 〈φN,i, VN,ΔtφN,j〉L2(μN ) converge to 〈φi, V φj〉L2(μ)
by convergence of the finite-difference approximation in (33) for C1 functions, in conjunction with the fact 
that the measure μ is physical; see [18] for further details. The convergence of the 〈ψτ,N,i, Wτ,N,Δtψτ,N,j〉Hτ,N

to 〈ψτ,i, Wτ ψτ,j〉Hτ
then follows from this result in conjunction with Claim (i).

Claim (iii) follows from the fact that {ψτ,ij := 〈ψτ,j , ·〉Hτ
ψτ,i : i, j ∈ N0} is an orthonormal basis of 

the Hilbert space of Hilbert-Schmidt operators on Hτ , and in this basis, every Hilbert-Schmidt operator 
T : Hτ → Hτ can be decomposed as T =

∑∞
i,j=0〈ψτ,i, Tψτ,j〉Hτ

ψτ,ij . In this expansion, the partial sums ∑L−1
i,j=0〈ψτ,i, Tψτ,j〉Hτ

ψτ,ij are equal to Πτ,LT Πτ,L, and converge in Hilbert-Schmidt norm. Applying these 
results for T = Wτ leads directly to the claim. �
Proof of Theorem 21. Because, by Lemma 23(iii), W

(L)
τ is a sequence of compact operators converging 

in operator norm to the compact operator Wτ , it follows that for every j ∈ N0 such that ωτ,j �= 0, the 
eigenvalues iω(L)

τ,j of W (L)
τ converge to iωj . Moreover, since, as follows directly from their definition, all W (L)

τ

have an eigenvalue at zero corresponding to constant eigenfunctions, we conclude that the convergence 
ω

(L)
τ,j −−−−→

L→∞
ωτ,j holds for all j ∈ N0. The convergence of the eigenvalues implies in turn that for every 

eigenfunction ζτ,j of Wτ there exists a sequence of eigenfunctions ζ(L)
τ,j of W (L)

τ converging to it in Hτ norm 

as L → ∞. Claims (i) and (ii) will then follow if it can be shown that the eigenvalues of W (L)
τ,N,Δt converge 

to those of W (L)
τ , and the corresponding eigenfunctions converge in C0(M) norm.

The convergence of the eigenvalues iω(L)
τ,N,Δt to iω(L)

τ follows from the convergence of the matrix elements 
of W

(L)
τ,N,Δt to W

(L)
τ , as established in Lemma 23(ii). The existence of eigenfunctions ζ

(L)
τ,N,Δt of W

(L)
τ,N,Δt

converging to ζ(L)
τ,j in C0(M) norm follows from the fact that both ζ(L)

τ,N,Δt and ζ(L)
τ,j are expressible as finite 

linear combinations of the ψτ,N,j and ψτ,j , namely

ζ
(L)
τ,N,Δt,j =

L−1∑
l=0

c
(L)
τ,N,Δt,l,jψτ,N,l, ζ

(L)
τ,j =

L−1∑
l=0

c
(L)
τ,l,jψτ,l,

where �c(L)
τ,N,j = (c(L)

τ,N,Δt,0,j , . . . , c(L)
τ,N,Δt,L−1,j)
 and �c(L)

τ,j = (c(L)
τ,0,j , . . . , c(L)

τ,L−1,j)
 are eigenvectors of the L ×L

matrices representing W (L)
τ,N,Δt and W (L)

τ , respectively. By Lemma 23(i), the ψτ,N,j converge to ψτ,j in C0(M)
norm, and moreover for every eigenvector �c(L)

τ,j there exist �c(L)
τ,N,j converging to it in any vector norm. We 

therefore conclude that ζ(L)
τ,N,Δt,j converges in C0(M) norm to ζ(L)

τ,j , proving Claims (i) and (ii).
Turning to Claim (iii), we will verify that the limits in (41) hold in a sequential manner. First, defining 

fL′ = ΠL′ιf , note that because Z(V ) is a bounded operator and the ΠL′ converge pointwise to the identity, 
limL′→∞ ‖Z(V )ιf − Z(V )fL′‖L2(μ) = 0. Thus, to verify (41), it suffices to show that

lim
τ→0+

lim
L→∞

lim
Δt→0+,NΔt→∞

‖Z(V )fL′ − ιgτ,N,Δt,L,L′‖L2(μ) = 0. (42)

Second, observe that fL′ lies in H∞, and thus, by Theorem 2(v), limτ→0+ ‖Z(V )fL′ − ιZ(Wτ )Nτ fL′‖L2(μ) =
0. As a result, to prove (42), it is enough to show that

lim lim
+

‖ιZ(Wτ )Nτ fL′ − ιgτ,N,Δt,L,L′‖L2(μ) = 0. (43)

L→∞ Δt→0 ,NΔt→∞
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Next, by Lemma 23(iii), limL→∞ ‖Z(Wτ )Nτ fL′ − Z(W (L)
τ )Nτ fL′‖Hτ

= 0, which implies that (43) holds if 
it can be shown that

lim
Δt→0+,NΔt→∞

‖ιZ(W (L)
τ )Nτ fL′ − ιgτ,N,Δt,L,L′‖L2(μ) = 0. (44)

The latter will follow in turn if it can be established that the vectors gN,Δt = Z(W (L)
τ,N,Δt)Nτ,N ΠN,L′fN,L′ , 

with fN,L′ given by (37), converge to g = Z(W (L)
τ )Nτ ΠL′fL′ in C0(M) norm. This fact follows from argu-

ments similar to the proof of Claim (i). That is, writing gN,Δt =
∑L−1

j=0 cN,Δt,jψτ,N,j and g =
∑L−1

j=0 cjψτ,j , 
one can verify the claimed convergence from the facts that (a) the functions ψτ,N,j converge to ψτ,j in C0(M)
norm; and (b) the expansion coefficients cN,Δt,j and cj are determined from the action of L × L′ matrices 
representing Z(W (L)

τ,N,Δt)Nτ,N ΠN,L′ and Z(W (L)
τ )Nτ ΠL′ on the L′-dimensional vectors representing fN,L′

and fL′ , respectively, all of which converge in the appropriate limit by Lemma 23. The sequence of limits 
in (42)–(44) then leads to (41), proving Claim (iii). This completes the proof of the theorem. �
Approximation errors. As stated above, the convergence results in Theorem 21 and Corollary 22 require 
that the limit of large data has to be taken before the limits involving the spectral truncation (L and L′) 
and RKHS regularization (τ) parameters. Yet, in practical applications, one typically works with a fixed 
number of samples N and sampling interval Δt, and is faced with the question of tuning L, L′, and τ so 
as to achieve optimal performance. In particular, even though from a theoretical standpoint one would like 
to employ arbitrarily large L, L′ and arbitrarily small τ , such a choice would invariably lead to overfits 
of the training data and/or numerical instability. In the context of prediction (i.e., Theorem 21(iii) and 
Corollary 22), appropriate parameter values can be determined using cross-validation, i.e., by setting aside 
a portion of the available training data as verification data, and choosing L, L′, and τ , as well as other 
parameters (e.g., bandwidth parameters of Gaussian kernels as in (46) ahead), so as to maximize prediction 
skill in the verification dataset. In the context of spectral estimation (i.e., in the present work, coherent 
pattern extraction), parameter selection is more challenging, as typically there is no a priori known ground 
truth that can be employed for cross-validation. Instead, one way to proceed is through a posteriori analysis 
of the results, seeking to identify eigenvalues and eigenfunctions of W

(L)
τ,N,Δt with minimal risk of being 

affected by sampling errors.
One such a posteriori metric is the Dirichlet energy of the eigenfunctions, DN(P ∗

N ζ
(L)
τ,N,Δt,j), induced on 

L2(μN ) by the RKHS HN according to (9). On the basis of well known results from statistical learning theory 
[53] (generally established for i.i.d. data, though analogous results hold for equidistributed data in an ergodic 
sense, as in the present work), the functional is a useful proxy for the sensitivity of ζ(L)

τ,N,Δt,j to sampling 
errors. In Corollary 3, we established that the Dirichlet energy is also useful for identifying dynamical 
coherence. As a result, DN (P ∗

N ζ
(L)
τ,N,Δt,j) is a natural quantity to monitor for the purpose of identifying robust, 

data-driven coherent observables. Still, the raw Dirichlet energy does not take into account another source 
of error in our data-driven approximations, namely that we are approximating the unbounded generator 
V by a finite-difference operator VN,Δt of the form in (35). Such operators, and as a result W (L)

τ,N,Δt, have 

L2(μN ) operator norm of at most 1/Δt, placing an effective Nyquist limit on the eigenfrequencies ω(L)
τ,N,Δt,

that can be recovered at a given sampling interval Δt. In particular, eigenfrequencies close to that limit 
are expected to have high sensitivity to Δt. The above suggests assessing the robustness of the data-driven 
eigenfunctions ζ(L)

τ,N,Δt,j using a functional that depends on both the Dirichlet energy and eigenfrequency. 
In the experiments presented in Section 9 ahead, we will employ the frequency-adjusted Dirichlet energy on 
L2(μN ) given by

DN,Δt(f) = DN (f)
(

1 −
(Δt‖VN,Δtf‖L2(μN ))2

‖f‖2
2

)−1

, ∀f ∈ L2(μN ) \ {0}, and DN,Δt(0) = 0. (45)

L (μN )
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By construction, this functional takes small values on functions with low roughness (in the sense of Dirichlet 
energy DN (f)), and thus reduced risk of sensitivity to sampling errors. Moreover, the term ‖VN,Δtf‖2

L2(μN )
can be thought of as a spectral energy in the frequency domain for the time series f(xn) sampled discretely 
at times tn = n Δt. The term (1 − ‖VN,Δtf‖2

L2(μN )/‖f‖2
L2(μN ))−1 then penalizes f whose frequency spectral 

energy is comparable to 1/Δt2. In what follows, we will order by convention all data-driven eigenfunctions 
ζ

(L)
τ,N,Δt,j in order of increasing DN,Δt(P ∗

N ζ
(L)
τ,N,Δt,j). We end this section with a discussion on how to obtain 

the kernel κ on data space.

Choice of kernel. First, note that the injectivity assumption on the observation map F is with minimal loss 
of generality. In particular, according to the theory of delay-coordinate maps of dynamical systems [36], 
under mild assumptions, the map FQ : M → Y Q, Q ∈ N, defined as

FQ(x) =
(

F (x), F (Φ−Δtx), . . . , F (Φ−(Q−1)Δtx)
)

,

is injective for large-enough Q. Moreover, FQ(xn) can be evaluated for all states xn with n ∈ {Q −1, . . . , N}
given the values of F on a finite trajectory x0, x1, . . . xN−1. Thus, delay-coordinate maps are a useful remedy 
when the observation map is non-injective, which is frequently the case with experimental or observational 
data acquired from high-dimensional systems (e.g., engineering or geophysical fluid flows).

Assuming then that the observation map F is injective, one can implement the techniques described in 
this section with any C1 strictly positive-definite kernel on Y . As a concrete example for the case Y = Rm, 
we mention here the radial Gaussian kernels,

κ(y, y) = exp
(

−d2(y, y′)
ε

)
, (46)

where d : Y × Y → R is the standard Euclidean metric on Rm, and ε a positive bandwidth parameter. 
Such kernels are popular in manifold learning techniques [29,42] due to their ability to approximate heat 
kernels and the spectrum of the Laplace-Beltrami operator in the ε → 0+ limit. Here, we do not assume 
that the support X of the invariant measure has manifold structure, so generally we do not have a heat 
kernel interpretation. Nevertheless, radial Gaussian kernels are known to be strictly positive-definite on 
arbitrary subsets of Rm [75], which is sufficient for our purposes. The numerical experiments in Section 9
will be carried out with a variable-bandwidth variant of (46), whose construction and basic properties are 
described in Appendix A.

9. Examples and discussion

In this section, we apply the procedure described in Section 8 to ergodic dynamical systems with different 
types of spectra. The objective is to illustrate the results of Theorems 1, 2, 21 and Corollaries 3, 4, and 
demonstrate that the framework is effective in identifying coherent observables and performing prediction 
in quasiperiodic and mixing systems. We consider the following three examples:

(i) A linear, ergodic flow Φt : T 2 → T 2 on the 2-torus,

Φt(θ1, θ2) = (θ1 + α1t, θ2 + α2t) mod 2π,

where α1 and α2 are rationally independent frequencies, set to 1 and 301/2, respectively. The observation 
map F : T 2 → R3 is given by the standard embedding of the 2-torus into R3,

F (θ1, θ2) = (F1, F2, F3) = ((1 + R cos θ1) cos θ1, (1 + R cos θ2) sin θ1, sin θ2) ,
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where we set R = 1/2.
(ii) The L63 system [31], generated by the C∞ vector field �V on R3, whose components (V1, V2, V3) at 

(x, y, z) ∈ R3 are given by

V1 = σ(y − x), V2 = x(ρ − z) − y, V3 = xy − βz.

We use the standard parameter values β = 8/3, ρ = 28, σ = 10, and take F : R3 → R3 to be the 
identity map.

(iii) The Rössler system [76] on R3, generated by the smooth vector field �V , with components (V1, V2, V3)
at (x, y, z) given by

V1 = −y − z, V2 = x + ay, V3 = b + z(x − c).

We use the standard parameter values a = 0.1, b = 0.1, c = 14, and as in the case of the L63 system, 
set F to the identity map.

Methodology. The following steps describe sequentially the entire numerical procedure carried out for each 
system. Additional algorithmic details, including pseudocode, are included in Appendices A and B.

1. Numerical trajectories x0, x1, . . . , xN−1 of length N , with xn = ΦnΔt(x0), were generated using a sam-
pling interval Δt > 0. In the case of the torus rotation, Δt was set to 2π/500 ≈ 0.013. The sampling 
interval in the L63 and Rössler experiments was 0.01 and 0.04, respectively. In all three experiments, 
the nominal number of samples was N = 64,000. In the torus case, we also show eigenfunction re-
sults for N = 6400 to assess sensitivity to sampling errors. The trajectories for the torus experiments 
were computed analytically. The L63 and Rössler experiments utilize numerical trajectories generated 
in MATLAB, using the ode45 solver. These trajectories start from arbitrary initial conditions in R3, 
followed by a spinup period of N Δt time units before collecting the actual “production” data.

2. The observation map F described for each system was used to generate the respective time series 
F (x0), F (x1), . . . , F (xN−1). For our choices of F , all of these time series take values in R3. In addition, 
we generated time series f(x0), f(x1), . . . , f(xN−1) for various other continuous, real-valued observables 
for use in forecasting experiments (described below).

3. Data-driven eigenpairs (λN,j , φN,j) with j ∈ {0, . . . , L −1} were computed by applying Algorithm 1 to the 
dataset F (x0), . . . , F (xN−1). Throughout, we used the variable-bandwidth Gaussian kernel described 
in Appendix A, in conjunction with the bistochastic normalization procedure from Section 4.1. In 
addition, we tuned the kernel bandwidth ε using an automatic procedure; see Appendix A for further 
details and references. The number of eigenfunctions employed in our experiments ranged from L = 500
to 1000; i.e., L � N in all cases. As described in Appendix A, the eigenpairs (λN,j , φN,j) for the 
bistochastic kernels employed here can be determined from the singular values and left singular vectors 
of a non-symmetric N × N kernel matrix, without explicit formation of the Markov kernel matrix 
itself. We followed that approach here, using MATLAB’s svds iterative solver to perform the singular 
value decomposition (SVD). All pairwise distances in data space required for kernel evaluation were 
computed by brute force (as opposed to using approximate nearest-neighbor search) in MATLAB, 
retaining 5000 � N nearest neighbors per datapoint.

4. Using the eigenpairs (λN,j , φN,j) from Step 3 as inputs, Algorithm 3 was applied to form the L ×L oper-
ator matrices for W (L)

τ,N,Δt, and compute the corresponding eigenfrequencies ω(L)
τ,N,Δt,j and eigenfunctions 

ζ
(L)
τ,N,Δt,j ∈ Hτ,N . Throughout, we used the central finite-difference scheme in (33) (which, in this case, is 

O((Δt)2)-accurate) to compute the matrix elements of W (L)
τ,N,Δ, and MATLAB’s eig solver to compute 

the (ω(L)
, ζ(L) ) eigenpairs. In order to investigate the dependence of the spectra of W (L) on 
τ,N,Δt τ,N,Δt τ,N,Δt
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τ (particularly from the perspective of Corollary 3), we computed eigenfrequencies for logarithmically 
spaced values of τ , and examined the τ �→ ω

(L)
j,τ,N,Δt dependence through scatterplots. Moreover, for 

each eigenfunction, we computed its frequency-adjusted Dirichlet energy DN,Δt(P ∗
N ζ

(L)
τ,N,Δt,j) from (45), 

and ordered the eigenpairs (ω(L)
τ,N,Δt, ζ

(L)
τ,N,Δt) in order of increasing DN,Δt(P ∗

N ζ
(L)
τ,N,Δt,j).

5. Forecasting experiments were performed by constructing the data-driven functions f (tm)
τ,N,Δt,L,L′ via Al-

gorithm 4 for lead times tm := m Δt, m ∈ N0, in an interval [0, mmax Δt]. In all cases, we used L = L′. 
Initial conditions for the forecasts were generated from a time series F (x̂0), . . . , F (x̂N̂−1) of the obser-
vation map, sampled on a dynamical trajectory x̂0, . . . , ̂xN̂+mmax−1 of length N̂ + mmax, independent 
of the training data. The values U tmf(x̂n) = f(x̂n+m) of the forecast observable on this trajectory 
were used as verification data to assess the out-of-sample predictions f (tm)

τ,N,Δt,L,L′(F (x̂n)). The latter, 
were evaluated using Algorithm 2. In all experiments, N̂ was equal to N . Forecast errors were assessed 

through the L2 norm associated with the sampling measure μ̂N̂ =
∑N̂−1

n=0 δx̂n
/N̂ . Specifically, for a given 

lead time tm we compute a normalized root mean square error (RMSE) metric,

ε(tm) = ‖U tmf − f
(tm)
τ,N,Δt,L,L′‖L2(μ̂N̂ )/‖f‖L2(μ̂N̂ ),

such that values ε(tm) � 1 correspond to skillful forecasts, whereas ε(tm) � 1 indicates loss of skill. The 
metric ε(tm) is an empirical estimator of the normalized expected error with respect to the invariant 
measure, ‖U tmf − f

(tm)
τ,N,Δt,L,L′‖L2(μ)/‖f‖L2(μ), to which it converges almost surely as N̂ → ∞.

We now present and discuss the experimental results for each system. Hereafter, for notational simplicity, 
we will drop N , L, and Δt subscripts and superscripts from data-driven eigenfrequencies, eigenfunctions, 
and operators. We will also use Dτ,j as a shorthand notation for the frequency-adjusted Dirichlet energy 
from (45) of the j-th eigenfunction of Wτ .

Linear flow on the 2-torus. For any choice of rationally independent frequencies α1 and α2, the system 
has a unique Borel ergodic invariant probability measure μ, which coincides with the Haar measure on 
T 2. Thus, in the notation of Assumption 1, the state space M, the forward-invariant compact manifold 
M , and the support of the invariant measure X are all equal to T 2. The basin of the invariant measure 
Bμ from Section 8 is also equal to T 2. For this invariant measure, the Koopman group on L2(μ) has 
pure point spectrum, consisting of eigenfrequencies of the form j1α1 + j2α2, j1, j2 ∈ Z, corresponding 
to the eigenfunctions ei(j1θ1+j2θ2). The latter form an orthonormal basis of L2(μ), so that the point and 
continuous spectrum subspaces in the invariant splitting in (3) are Hp = L2(μ) and Hc = {0}, respectively. 
Note that because α1 and α2 are rationally independent, the set of eigenfrequencies is dense in R, which 
implies that the support of the PVM E of this system (in this case, the closure of its set of eigenvalues) 
is equal to the whole real line. This makes the problem of numerically distinguishing eigenfrequencies from 
non-eigenfrequencies non-trivial, despite the simplicity of the underlying dynamics.

Fig. 3(a) shows a scatterplot of the eigenfrequencies ωτ,j and the corresponding Dirichlet energies Dτ,j, 
computed for L = 500 and values of τ logarithmically spaced in the interval [10−5, 1]. There, the behavior 
of the numerically computed eigenfrequencies is broadly consistent with the results in Theorem 2 and 
Corollary 3. In particular, the eigenfrequencies are seen to form continuous curves parameterized by τ

(consistent with Theorem 2(vii) and Proposition 19(iv)), and the Dirichlet energy delineates the curves that 
have numerically converged over the examined values of τ (i.e., as τ approaches 10−5), from those that have 
not (as expected from Corollary 3). Notice, in particular, that the task of visually identifying continuous 
eigenfrequency curves in Fig. 3(a) would be significantly more difficult without color-coding by Dirichlet 
energy.

According to Corollary 3, the eigenfrequency curves of Wτ with bounded Dirichlet energies should ap-
proximate Koopman eigenfrequencies, and the corresponding eigenfunctions should approximate Koopman 



S. Das et al. / Appl. Comput. Harmon. Anal. 54 (2021) 75–136 121
Fig. 3. Eigenfrequencies ωj of the data-driven generators Wτ as a function of τ , for (a) the linear torus flow; (b) the L63 system; and 
(c) the Rössler system. Colors represent the logarithms of the frequency-adjusted Dirichlet energies from (45) of the corresponding 
eigenfunctions. Only positive frequencies are shown, as the ω < 0 parts of the spectra are mirror images of the ω > 0 parts by 
skew-adjointness and reality of Wτ . (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

eigenfunctions. Indeed, as illustrated in Fig. 4, the leading data-driven eigenfrequencies ωτ,j for τ = 10−5

agree with the theoretical eigenfrequencies to two to four significant figures. Moreover, the corresponding 
eigenfunctions agree well with the Koopman eigenfunctions of this system; that is, ζτ,j in Fig. 4 have the 
structure of Fourier functions on the 2-torus, with near-exact sinusoidal time series at the corresponding 
eigenfrequencies.

Next, to assess the significance of RKHS regularization in spectral approximation of the generator, in 
Fig. 5 we compare the real and imaginary parts of numerical eigenfunctions ζτ,j of Wτ with eigenfunctions 
obtained from a “naive” approximation of the generator with τ = 0. In all cases, we select the eigenfunction 
whose corresponding eigenfrequency is closest to the generating eigenfrequency α1 = 1, and plot the real and 
imaginary parts of ζτ,j as a scatterplot in the complex plane. For an exact approximation of a normalized 
Koopman eigenfunction, the plotted points should lie in the unit circle. According to the results in the 
figure, the naive approximation performs comparably to the regularized approximation for the experiment 
with N = 64,000 and L = 500 basis functions, but the quality of the approximation has considerably higher 
sensitivity to the number of samples and/or basis functions employed. Indeed, as is evident from Figs. 5(b) 
and 5(e), decreasing the number of samples to N = 6400 imparts a significant amount of high-frequency 
noise in the eigenfunction obtained from the naive approximation, whereas the eigenfunction based on 
RKHS regularization is comparatively more stable. This can be understood from the fact that the quality 
of the data-driven basis functions φN,j generally decreases with decreasing N , and the amount of quality 
degradation is higher the smaller the corresponding eigenvalue λN,j is. As a result, without regularization 
to suppress the basis functions corresponding to small λN,j, the quality of the naive approximation also 
degrades.



Fig. 4. Representative eigenfunctions ζτ,j of the data-driven generator Wτ with τ = 10−5 for the linear flow on the 2-torus. 
Top row: Scatterplots of Re(ζτ,j) on the training dataset embedded in R3. Bottom row: Time series tn �→ Re(ζτ,j(xn)) of the 
eigenfunctions, sampled along a portion of the dynamical trajectory in the training data. The numerical eigenfrequencies ωτ,j and 
frequency-adjusted Dirichlet energies Dτ,j are also indicated. The eigenfrequencies with j = 1, 5, and 9 shown here agree with 
the theoretical eigenfrequencies α1 = 1, α2 ≈ 5.477, and 2α1 + 1α2 ≈ 7.477 to within four, three, and two significant figures, 
respectively.

Increasing L at fixed N is also expected to adversely affect the naive approximation, in this case not only 
due to the basis function errors just mentioned, but also because the spectrum of V is a dense subset of the 
imaginary line. That is, even with “perfect” basis functions, increasing L without regularization will result 
in the creation of near-degenerate eigenfrequencies around any reference eigenfrequency in the spectrum of 
the approximate generator, leading to high sensitivity to perturbations. Figs. 5(c) and 5(g) demonstrate 
that increasing L from 500 to 1000 in the N = 6400 experiments results in considerable degradation of the 
eigenfunctions obtained from the naive approximation, whereas the eigenfunctions of the RKHS-regularized 
generator behave stably under this parameter change. In the case of the larger, N = 64,000 dataset, a 
similar behavior is observed in Figs. 5(d) and 5(g) by increasing L to 10,000.

Turning now to forecasting, in Fig. 6 we show prediction results for the components F1 and F3 of the 
torus embedding into R3, as well as the observable eF1+F3 , which has a non-polynomial dependence on 
the components of the observation map (and in this case, the Koopman eigenfunctions). In all three cases, 
we use τ = 10−5 and L = 500, and examine lead times t in the interval [0, 3000 Δt] ≈ [0, 39], which 
is approximately 26 times longer than the “fast” characteristic timescale 2π/α2 ≈ 1.15 of the system. 
Over that interval, the normalized forecast errors ε(t) exhibit a linear error growth, remaining below 0.1 
in the case of F1, F3, and below 0.2 in the case of eF1+F3 . The somewhat lower forecast skill for eF1+F3

is consistent with the fact that infinitely many Koopman eigenfrequencies are required to fully capture 
the dynamical evolution of this observable. As mentioned in Section 1, an advantageous aspect of the 
RKHS framework presented here over previous forecasting techniques operating on L2 spaces [12,17] is 
that it produces pointwise-evaluatable prediction functions, as opposed to expectation values with respect 
to probability measures with L2 densities (which must be supplied by the user as initial conditions). As 
illustrated in Fig. 6, the forecasts accurately reproduce the dynamical evolution of all three observables 
examined here.
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Fig. 5. Real and imaginary parts of numerical Koopman eigenfunctions for the torus flow obtained from data-driven approximations 
of the generator without regularization (a–d) and the RKHS regularization Wτ (e–h), for different dataset sizes N and values of 
the regularization and spectral resolution parameters τ and L. The eigenfunctions depicted here are those whose corresponding 
eigenfrequency in the data-driven spectrum is closest to the theoretical eigenfrequency α1 = 1. For an exact approximation of a 
normalized Koopman eigenfunction, the numerical eigenfunctions should take values in the unit circle in the complex plane.

Fig. 6. Data-driven prediction of the components F1 and F3 of the embedding F of the 2-torus into R3 (left and center columns), 
and the non-polynomial observable exp(F1 + F3) (right column) for the linear torus flow, using the operator etWτ with τ = 10−5. 
Top row: Comparison of the true and predicted signals as a function of lead time t for a fixed initial condition in the verification 
dataset. Bottom row: Normalized RMSE ε(t) as a function of lead time.
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Lorenz 63 system. For our standard choice of parameters, the L63 system is known to have a compact 
attractor X ⊂ M in the state space M = R3 [55] with fractal dimension ≈ 2.06 [77], supporting a physical 
invariant measure μ, which has a single positive Lyapunov exponent Λ ≈ 0.91 [78]. Due to dissipative 
dynamics, the attractor is contained within absorbing balls [79], playing here the role of the forward-invariant 
compact manifold M ⊃ X. The system is also rigorously known to be mixing [80], which implies that its 
associated Koopman unitary group on L2(μ) has no nonzero eigenfrequencies. Thus, the Hp subspace for 
this system is the one-dimensional space consisting of constant functions, while Hc contains all non-constant 
f ∈ L2(μ) with 

∫
M

f dμ = 0.
Fig. 3(b) shows the dependence of the eigenfrequencies of Wτ for the L63 system, as well as the cor-

responding Dirichlet energies, on τ ∈ [10−5, 1], computed using L = 750 basis functions. As one might 
expect, the behavior of this spectrum is qualitatively different from that of the quasiperiodic torus flow 
in Fig. 3(a). That is, instead of the eigenfrequency curves of low Dirichlet energy interleaved with higher-
Dirichlet-energy curves in Fig. 3(a), the eigenfrequencies in Fig. 3(b) exhibit an apparent continual growth 
in Dirichlet energy as τ decreases to 0. This behavior is consistent with Corollary 3, according to which if the 
Dirichlet energy were to saturate along a sequence of eigenfrequencies of Wτ as τ → 0+, and that sequence 
had a nonzero limit, then that limit would necessarily be a nonzero Koopman eigenfrequency. As stated 
above, the latter is not possible for the L63 system. Nevertheless, upon visual inspection, one can identify in 
Fig. 3(b) frequency bands characterized by smaller Dirichlet energy than the surrounding frequencies; e.g., 
frequency bands centered at ω � 8, 10, 20, 27, as well as higher frequencies. According to Corollary 3, the 
corresponding eigenfunctions of Wτ are good candidates for coherent observables, evolving as approximate 
Koopman eigenfunctions, as we now verify.

Representative eigenfunctions ζτ,j chosen from these frequency bands for τ = 10−4, and visualized as 
scatterplots on the L63 attractor, as well as time series on the sampled dynamical trajectory, are displayed in 
Fig. 7. At least at the level of time series, the qualitative features of these eigenfunctions can be interpreted 
as generalizations of the Koopman eigenfunctions associated with the point spectra of measure-preserving 
ergodic dynamical systems. That is, similarly to Koopman eigenfunctions, the eigenfunctions of Wτ in Fig. 7
are narrowband signals, evolving at a characteristic frequency determined from the corresponding eigenvalue 
ωτ,j , and with � 90◦ phase difference between their real and imaginary (not shown) parts. However, unlike 
true Koopman eigenfunctions, the oscillatory signals associated with ζτ,j exhibit pronounced amplitude 
modulations, giving them the appearance of wavepackets. If single-frequency, constant-amplitude, sinusoidal 
time series are to be thought of as hallmark features of Koopman eigenfunctions in measure-preserving 
systems, it appears that the eigenfunction time series of Wτ shown in Fig. 7 lose the constancy of the 
amplitude, while maintaining a narrowband frequency character with high phase coherence between real 
and imaginary parts. In other words, these eigenfunctions reveal observables of the L63 system with an 
approximately cyclical behavior, despite mixing dynamics.

Despite the qualitative similarities of the corresponding time series, it is evident from Fig. 7 that the 
geometrical structure of the eigenfunctions of Wτ on the L63 attractor may exhibit significantly different 
characteristics. For example, eigenfunction ζτ,3 shown there (which corresponds to fairly high eigenfrequency, 
ωτ,3 ≈ 46) appears to be strongly localized on one of the two lobes of the L63 attractor, whereas eigenfunc-
tions ζτ,1 and ζτ,19 (corresponding to lower eigenfrequencies, ωτ,1 ≈ 8.2 and ωτ,19 ≈ 16, respectively) are 
supported on both lobes. Moreover, the level sets of ζτ,3 are arranged in predominantly transverse direc-
tions to the dynamical flow, whereas those of ζτ,1 and ζτ,19 appear to be more aligned with the orbits of 
the dynamics. These differences are consistent with the fact that ωτ,3 is appreciably larger than ωτ,1, as a 
more transverse arrangement of level sets relative to the orbits of the dynamics means that more contour 
crossings per unit time take place. It should be noted that an analogous eigenfunction to ζτ,3, but sup-
ported in the opposite lobe of the L63 attractor is also present in the spectrum of Wτ (not shown here). It is 
also worthwhile noting that eigenfunction ζτ,1 bears some qualitative similarities with the pattern depicted 
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Fig. 7. As in Fig. 4, but for eigenfunctions of the data-driven generator Wτ with τ = 10−4 for the L63 system. The eigenfunction 
time series in the lower panels have been scaled by their maximum absolute values so as to fit within the same axis limits. 
Observe the qualitatively different geometrical structure of the eigenfunctions on the Lorenz attractor. Despite these differences, 
the corresponding eigenfunction time series have the structure of amplitude-modulated wavetrains with a fairly distinct carrier 
frequency and lower-frequency modulating envelopes.

in [21, Figure 13]. Based on its corresponding eigenfrequency and level-set structure, eigenfunction ζτ,19
resembles a second harmonic of ζτ,1.

Next, we consider forecasting experiments for the three components (F1, F2, F3) of the observation map F , 
which coincide with the components of the L63 state vector in R3. We evaluate data-driven forecast functions 
for these observables at lead times in the interval [0, 500 Δt] = [0, 5], using the regularization parameter 
τ = 10−5 and L = 750 basis functions. Representative forecast trajectories and the corresponding normalized 
L2 errors are displayed in Fig. 8. Unlike the linear error growth seen in Fig. 6 for the torus experiments, 
the L63 forecasts exhibit an exponential-like initial error growth, lasting for lead times up to t � 0.7, 
and followed by a more gradual increase. The initial error growth period is somewhat shorter, though of 
the same order of magnitude, than the e-folding timescale associated with the system’s positive Lyapunov 
exponent, i.e., 1/Λ ≈ 1.1. In the case of observables F1 and F2, the normalized L2 error ε(t) is seen to 
saturate around 1.4 as t approaches 5. Observable F3 exhibits a somewhat slower error growth than F1
and F2, which may be a manifestation of dynamical symmetry of the L63 system under the transformation 
(x, y, z) ∈ R3 �→ (−x, −y, z), making F3 a more predictable observable.

To interpret the long-time behavior of the error ε(t), note that the Koopman operator of a mixing 
dynamical system such as L63 has the property that, as t → ∞, 〈g, U tf〉μ converges to 〈g, 1〉μ〈1, f〉μ. Based 
on this, it is possible to verify that, in this limit, the normalized L2 error ‖(U t − etṼτ )f‖L2(μ)/‖f‖L2(μ)
associated with the quasiperiodic, unitary evolution group generated by Ṽτ := U∗

τ Wτ Uτ converges to 
√

2. 
Now, our RKHS-based prediction scheme does not employ Ṽτ directly, and as follows from Corollary 4, 
its error is governed by the non-unitary group generated by Bτ , viz., ‖U tf − etBτ P ∗

τ fε‖L2(μ)/‖f‖L2(μ). 
Nevertheless, for sufficiently small τ and ε, etBτ P ∗

τ fε can be made arbitrarily close to etṼτ f , uniformly over 
compact time intervals. In that case, ε(t) would saturate close to 

√
2, as observed in Fig. 8. It is worthwhile 

noting that, in the presence of mixing, the forecast functions derived from expectation values must necessarily 
converge to a constant equal to the mean with respect to the invariant measure of the dynamics. For instance, 
as t → ∞, a forecast of the form EρU tf = 〈ρ, U tf〉μ [12,17], where ρ is a probability density in L2(μ), 
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Fig. 8. As in Fig. 6, but for data-driven prediction of the components F1, F2, and F3 of the L63 state vector.

satisfies EρU tf → 〈ρ, 1〉μ〈1, U tf〉μ =
∫

M
f dμ. Such forecasts have asymptotic relative error ε(t) equal to 1, 

i.e., smaller relative error than the quasiperiodic unitary evolution models constructed here, but arguably 
a constant prediction does not provide a realistic representation of the underlying dynamics. Indeed, as 
illustrated by the forecast trajectories in Fig. 8, the RKHS-based framework produces non-trivial, L63-like 
dynamics even at late times, when initial-value predictability has been lost. In that regard, the data-driven 
forecasts presented here are more akin to a “simulation” of L63 dynamics, as opposed to estimation of 
expectation values and/or other statistics.

Rössler system. The Rössler system is sometimes viewed as a simplified analog of the L63 system, as it only 
has a single quadratic nonlinearity, as opposed to two nonlinearities in the L63 system. Yet, despite the 
simplicity of its governing equations, it exhibits complex dynamical characteristics, some of which are not 
seen in the L63 system. For the standard choice of parameters listed above, one well known such feature is 
an outward spiraling motion in the z = 0 plane about an unstable fixed point at (x, y, z) = (0, 0, 0) ∈ R3, 
which undergoes intermittent bursts to large positive z values when the radial coordinate r =

√
x2 + y2

has become sufficiently large. This behavior produces a stiff signal in the z coordinate, as well as banding 
of trajectories in state space, which are challenging to model with data-driven approaches. Another notable 
aspect of the Rössler system is that chaotic behavior predominantly takes place in the (r, z) coordinates, 
whereas the evolution of the azimuthal angle in the z = 0 plane proceeds at a near-constant angular 
frequency, approximately equal to 1 in natural time units. The Rössler system is also known to possess a 
single positive Lyapunov exponent, approximately equal to 0.071 [78]. While, to our knowledge, theorems 
on the existence and measure-theoretic mixing properties of the Rössler system analogous to [77,80] for 
the L63 system have not been established, the system has been studied extensively through analytical and 
numerical techniques, supporting the hypothesis that the Rössler system is indeed mixing, albeit at a slow 
rate [81].

In light of the above, it is perhaps not too surprising that the dependence of the eigenfrequencies of Wτ

for this system, depicted in Fig. 3(c) for L = 750, exhibits features reminiscent of both the torus and L63 
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Fig. 9. As in Fig. 4, but for eigenfunctions of Wτ , τ = 10−5, for the Rössler system.

spectra in Figs. 3(a) and 3(b), respectively. That is, the spectrum of Wτ for the Rössler system exhibits 
bands of eigenfrequency curves with an apparent continual increase of Dirichlet energy with decreasing τ , 
as in L63, but superposed to these curves is a set of eigenfrequencies at approximately integer multiples 
of a base frequency α � 1, and with near-constant corresponding Dirichlet energies, as in the linear torus 
flow. A visualization of corresponding eigenfunctions from the latter group, e.g., eigenfunctions ζτ,1 and ζτ,3

in Fig. 9 computed for τ = 10−5, reveals that these frequencies are indeed associated with highly coherent 
observables, which are predominantly functions of the azimuthal phase angle, and evolve near-periodically 
at integer multiples of the base frequency α. Meanwhile, another group of eigenfrequencies of Wτ , whose 
corresponding Dirichlet energies undergo a moderate increase with decreasing τ , exhibit manifestly radial 
variability in state space and amplitude-modulated time series, reminiscent of the eigenfunctions recovered 
in the L63 system. Such an eigenfunction is ζτ,39 shown in Fig. 9, whose corresponding eigenfrequency, 
ωτ,39 ≈ 0.36, is smaller than the base frequency α. On the basis of the eigenfrequency ωτ,39, we can identify 
a characteristic timescale 2π/ωτ,39 ≈ 17.5 of coherent radial oscillations of the Rössler system.

Next, Fig. 10 shows forecasting results for the components (F1, F2, F3) of the Rössler state vector over 
lead times t ∈ [0, 2000 Δt] = [0, 80], computed for τ = 10−5 and L = 1000. Due to the dynamical behavior 
of the Rössler system outlined above, one would expect that predicting F3 is significantly more challenging 
than predicting F1 or F2, and this is indeed reflected in the results in Fig. 10. In particular, consistent with 
the near-linear evolution of the azimuthal phase angle in the z = 0 plane, prediction of the observation map 
components F1 and F2 remains skillful for the entire forecast interval examined, with the normalized error 
ε(t) exhibiting a gradual increase to 0.25 by t � 80. An inspection of the individual forecast trajectories 
shown in Fig. 10 indicates that the errors in these forecasts are predominantly amplitude errors (as opposed 
to phase errors), likely caused by chaotic dynamics of the radial coordinate r. On the other hand, forecasts 
of the F3 component exhibit a significantly more rapid error growth, reaching ε(t) � 1.15 as t approaches 80. 
This error can be understood from the highly stiff, intermittent nature of F3, exhibiting infrequent excursions 
to large positive values and virtually no negative values. As is evident from the forecast trajectory in Fig. 10, 
the data-driven forecasts are generally successful in capturing the timing of the F3 bursts (likely aided by 
the high coherence of the azimuthal phase angle), but for lead times t � 20, they struggle to reproduce the 
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Fig. 10. As in Fig. 8 but for forecasts of the state-vector components of the Rössler system, using τ = 10−5 and L = 7000.

amplitude of the bursts and the non-negativity of the F3 signal. In separate calculations, we have verified 
that the non-negativity of the forecast signal over a given time interval can be improved by increasing the 
number of basis functions L.

10. Concluding remarks

In this paper, we have developed a data-driven framework for spectral analysis of measure-preserving, 
ergodic dynamical systems, using ideas from RKHS theory. A central element of our approach has been to 
regularize the unbounded, skew-adjoint generator of the unitary Koopman group of the system by pre- and 
post-composing it with integral operators associated with reproducing kernels of RKHSs, rendering it into a 
compact operator. We showed that if this procedure is carried out using a one-parameter family of Markov 
kernels of appropriate (C1) regularity, the resulting regularized generators form a one-parameter family of 
trace-class, skew-adjoint integral operators Wτ on RKHS, converging to the Koopman generator in strong 
resolvent sense in a limit of vanishing regularization parameter τ . As a result, at every τ > 0, Wτ can be 
spectrally decomposed in terms of a purely atomic projection-valued measure (PVM), with an associated 
discrete set of eigenfrequencies and an orthonormal basis of eigenfunctions, converging to the PVM of the 
Koopman generator as τ → 0+ in an appropriate sense. Notably, this result holds for measure-preserving 
ergodic systems of arbitrary spectral characteristics (pure point, continuous, mixed), and further allows 
consistent approximation of the functional calculus of the Koopman generator for bounded continuous func-
tions. In particular, exponentiation of the regularized generator leads to a unitary, quasiperiodic evolution 
group, etWτ , which can be used as an approximation of the Koopman group of the system to perform fore-
casting of observables with convergence guarantees. We also showed that the eigenfunctions associated with 
this group form coherent observables lying in the approximate point spectrum of the Koopman operator, 
generalizing the coherent patterns associated with Koopman eigenfunctions and the point spectrum of the 
system.
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Another advantageous aspect of the RKHS framework is that it naturally lends itself to data-driven 
approximation from time-ordered measurements of the system state taken through injective observation 
maps, requiring little structural modification of the continuous formulation. In particular, the data-driven 
approximation schemes employ properties of physical measures to consistently approximate integrals with 
respect to the invariant measure by time averages, and take advantage of RKHS regularity to approximate 
the action of the generator on functions by temporal finite differences. Coupled with the ability afforded by 
RKHSs to perform interpolation and out-of-sample evaluation, this approach leads to data-driven forecast 
functions for the evolution of observables, as well as coherent eigenfunctions, whose robustness can be 
assessed a posteriori through a Dirichlet energy criterion.

We demonstrated the efficacy of this approach through a suite of coherent pattern extraction and forecast-
ing experiments in the setting of a quasiperiodic flow on the 2-torus and the chaotic L63 and Rössler systems. 
In the case of the torus rotation, the eigenfrequencies of the RKHS-regularized operator Wτ correctly iden-
tify generating eigenfrequencies of the system, as well as integer combinations of such eigenfrequencies. 
Meanwhile, in the L63 and Rössler settings, eigenfunctions of Wτ identified via the Dirichlet energy crite-
rion exhibit an approximately cyclical evolution, behaving as approximate Koopman eigenfunctions. These 
eigenfunctions reveal coherent oscillatory observables of these systems with characteristic timescales de-
termined from the corresponding eigenvalues, despite potentially mixing dynamics. Forecasting using the 
evolution group generated by Wτ was found to perform well in these systems, with skill likely aided by the 
presence of approximately periodic eigenfunctions in the respective spectra.

Areas of future research stemming from this work include improved representations of the generator 
through alternative schemes to finite differences, as well as extensions to partially observed systems (i.e., 
non-injective observation maps). In addition, the fact that the spectral convergence results in Theorem 2
require pointwise convergence of the approximating operators only on a core of the generator V , yet in 
Proposition 19 we were able to establish pointwise convergence on the full domain D(V ), suggests that 
it may be possible to weaken the C1 regularity assumptions on the kernels and their associated RKHSs 
underlying Theorem 2. It would also be fruitful to explore formulations of the framework presented here 
utilizing methods for kernel learning [82,83] to optimize prediction skill of prescribed observables. Meanwhile, 
the approximately cyclical nature of the identified eigenfunctions in the L63 and Rössler systems suggests 
possible connections between the spectral properties of Wτ and periodic orbits of the underlying flow in 
state space expected for non-uniformly hyperbolic dynamics. Finally, a topic of significant interest in both 
the Koopman and transfer operator literature is spectral analysis and forecasting of dissipative and/or 
non-ergodic systems [4,10,84,85]. While some of the spectral approximation techniques employed in this 
work make use of the skew-adjoint structure of the generator of measure-preserving systems (e.g., strong 
convergence in a core in Lemma 14), and we have also made use of ergodicity to establish correspondences 
between the spectra of various types of regularized generators (e.g., Lemma 18), it would nevertheless be 
fruitful to explore applications of RKHS theory to spectral analysis of such “open dynamical systems”, 
extending the framework developed here beyond the measure-preserving, ergodic setting.
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Appendix A. Variable-bandwidth kernels

The numerical experiments in Section 9 were performed using variable-bandwidth Gaussian kernels κN :
Y × Y → R of the form

κN (y, y′) = exp
(

− d2(y, y′)
εσN (y)σN (y′)

)
. (A.1)

Here, σN : Y → R is a strictly-positive, C1 function on Y , which generally depends on the training dataset 
{y0, . . . , yN−1}. We indicate this dependence with N subscripts. Intuitively, the role of the bandwidth 
function σN is to correct for variations in the “sampling density” of the data. In particular, for a well 
conditioned kernel integral operator GN , the number of datapoints lying within radius O(ε1/2) balls centered 
at each datapoint should not exhibit significant variations across the dataset, yet, the standard radial 
Gaussian kernel from (46) has no mechanism for preventing this from happening. For appropriately chosen 
σN , the variable-bandwidth kernel in (A.1) can, in effect, vary the radii of these balls to help improve 
conditioning. The different bandwidth functions proposed in the literature include near-neighbor distances 
[86] and kernel density estimates [43]. In the numerical experiments of Section 9, we will employ the latter 
approach, defining

σN (y) = ρ
−1/m̃
N (y), ρN (y) = 1

(πε̃)m̃/2

∫
Y

e−d2(y,y′)/ε̃ dμ̃N (y). (A.2)

Here, μ̃N =
∑N−1

n=0 δyn
/N is the sampling measure in data space, ε̃ a positive bandwidth parameter (differ-

ent from ε in (A.1)), and m̃ a positive parameter approximating the dimension of F (X). The parameters 
ε, ε̃, and m̃ are all determined from the data automatically; see [12,17] for descriptions of this proce-
dure.

If F (X) has the structure of a Riemannian submanifold of Y , and the pushforward μ̃ on of the invariant 
measure on Y has a smooth density, the functions ρN from (A.2) are estimates of the sampling density 
ρ = dμ̃/d vol, which converge in the limit of N → ∞ followed by ε̃ → 0. Thus, with this choice of bandwidth 
function, the bandwidth of the kernel κN from (A.1) will be large (small) when the sampling density is small 
(large), achieving the desired balancing of the kernel. More quantitatively, with this choice of bandwidth 
functions and after suitable normalization, κN approximates the heat kernel of a conformally transformed 
Riemannian metric on F (X), whose volume form has uniform density relative to μ̃ [17]. Of course, if F (X)
does not have manifold structure, or ρ is not smooth, this Riemannian geometric interpretation is not 
applicable, but the balancing effect of the bandwidth functions on local balls still holds. It should be noted 
that one can prove spectral convergence results analogous to Lemma 23(i) for the class of N -dependent 
kernels on M induced by κN ; see [87] for such a result. Here, we will omit a proof of spectral convergence 
for the integral operators associated with κN in the interest of brevity. It is also important to note that, to 
our knowledge, it has not been established whether the kernels on M induced by κN , and the kernel that 
they converge to as N → ∞, are L2(μN )- and L2(μ)-strictly-positive, respectively. That being said, we did 
not find evidence of zero eigenvalues of GN in the experiments of Section 9.

Appendix B. Pseudocode

In this appendix, we provide pseudocode listings for the techniques described in Section 8. We have split 
the entire process into four algorithms, the first two of which describe the construction of the data-driven 
eigenpairs (λN,j , φN,j) from Lemma 23 and pointwise evaluation of the corresponding basis functions ψN,j

of HN , respectively. Algorithm 3 describes the construction of the data-driven generator W
(L) from 
τ,N,Δt
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Theorem 21(i) and computation of its associated eigenvalues and eigenfunctions. Algorithm 4 describes the 
construction and pointwise (out-of-sample) evaluation of the data-driven forecast function f (t)

τ,N,Δt,L,L′ from 

Corollary 22. In what follows, �1 will denote the N -dimensional column vector whose elements are all equal 
to 1. Moreover, the indexing of all vector and matrix elements will start from 0.

We begin by listing Algorithm 1 for a general kernel κ on data space Y of the form in (34), evaluated 
on a time series of the values of the observation map F on a dynamical trajectory x0, . . . , xN−1 in M . As 
stated in Sections 8 and 9, we work with the variable-bandwidth Gaussian kernel described in Appendix A. 
Evaluation of this kernel requires a kernel density estimation step, summarized in [17, Algorithm 1]. The 
variable-bandwidth Gaussian kernel also requires specification of the bandwidth parameter ε, as well as the 
bandwidth and dimension parameters ε̃ and m̃, respectively, in (A.2). We set these parameters automatically 
via the procedure described in [12, Appendix A] and [17, Algorithm 1]. The main outputs of Algorithm 1 are 
the eigenpairs (λN,j , φN,j) of the Markov operator GN associated with the Markov kernel pN , obtained via 
the bistochastic normalization procedure from Section 4.1. Due to the L2(μN ) � CN isomorphism, GN can 
be represented by an N × N bistochastic matrix G with elements Gij = pN (xi, xj)/N , and the eigenvectors 
φN,j (of unit L2(μN ) norm) by N -dimensional column vectors �φj = (φN,j(x0), . . . , φN,j(xN−1))
 with 2-
norm ‖�φj‖2 =

√
N . We will abbreviate λN,j by λj . The eigenpairs (λj , �φj) can be computed without explicit 

formation of G, owing to the fact that G = K̃K̃

, where K̃ is a non-symmetric N × N kernel matrix 

to be defined in Algorithm 1. In particular, the λj are equal to the squared singular values of K̃, and the 
�φj are equal to the corresponding left singular vectors. Algorithm 1 also outputs as auxiliary outputs the 
corresponding right singular vectors �γj ∈ RN of K̃ and a degree vector �q ∈ RN associated with that matrix; 
these outputs will be used for pointwise evaluation in Algorithm 2.

Algorithm 1 (Data-driven basis).

• Inputs
– Time series F (x0), . . . , F (xN−1) in data space Y .
– Number L ≤ N of eigenpairs to be computed.

• Outputs
– Leading L eigenvalues λ0, . . . , λL−1 of G and the corresponding eigenvectors �φ0, . . . , �φL−1 ∈ RN .
– Degree vector �q ∈ RN .
– Right singular vectors �γ0, . . . , �γL−1 ∈ RN .

• Steps
1. Compute the N × N kernel matrix K with Kij = κ (F (xi), F (xj)).
2. Compute the N -dimensional degree vectors �d = K�1 and �q = KD−1�1, where D = diag �d.
3. Form the N × N kernel matrix K̃ = D−1KQ−1/2, with Q = diag �q.
4. Compute the L largest singular values σ0, . . . , σL−1 of K̃, and set λj = σ2

j . Set �φj and �γj to the 

corresponding left and right singular vectors, respectively, normalized such that ‖�φj‖2 =
√

N .

Next, Algorithm 2 carries out the task of evaluating the RKHS functions ψN,j ∈ HN at an arbitrary 
collection x̂0, ̂x1, . . . , ̂xN̂−1 of points in M , given the corresponding values F (x̂0), F (x̂1), . . . , F (x̂N̂−1) of the 
observation map F . As with Algorithm 1, this computation can be performed without explicit formation 
of a kernel matrix associated with pN , using instead the singular vectors �φ0, . . . , �φL−1 and �γ0, . . . , �γL−1. In 
what follows, we use the column vectors �ψj = (ψN,j(x̂0), . . . ψN,j(x̂N−1))
 ∈ RN̂ to represent the values 
of the ψN,j at the desired points. Note that in the case of the variable-bandwidth Gaussian kernels from 
Appendix A, the computation of the �ψj requires an additional density estimation step for the out-of-sample 
data F (x̂n), which is carried out analogously to [17, Algorithm 1]. Moreover, all kernel parameters ε, ε̃, and 
m̃ are the same as those used in Algorithm 1.
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Algorithm 2 (Pointwise evaluation in RKHS).

• Inputs
– Values F (x̂0), . . . , F (x̂N̂−1) of the observation map at the evaluation points.
– Eigenvalues λ0, . . . , λL−1, eigenvectors �φ0, . . . , �φL−1, right singular vectors �γ0, . . . , �γL−1, and degree 

vector �q from Algorithm 1.
• Outputs

– Vectors �ψ0, . . . , �ψL−1 ∈ RN̂ with the values of the RKHS functions ψN,0, . . . , ψN,j at the evaluation 
points.

• Steps
1. Compute the N̂ × N kernel matrix K̂ with K̂ij = κ (F (x̂i), F (xj)).
2. Compute the N̂ -dimensional degree vector d̂ = K̂�1.
3. Form the N̂ × N kernel matrix K̄ = D̂

−1
K̂Q−1/2, where D̂ = diag d̂ and Q = diag �q.

4. Output �ψj = K̄�γj .

Note that when working with Gaussian kernels, as done throughout this paper, we approximate the kernel 
matrices K, K̃, K̂ and K̄ in Algorithms 1 and 2 by sparse matrices (as is common practice), retaining in 
each case the knn largest entries per row. In the numerical experiments of Section 9, knn was approximately 
8% of N .

We now describe how to construct an L × L matrix W representing the data-driven generator W (L)
τ,N,Δt

in the ψτ,N,j basis of Hτ,N , and use that matrix to compute the (ω(L)
τ,N,Δt,j , ζ(L)

τ,N,Δt,j) eigenpairs. We 

represent each eigenvector ζ
(L)
τ,N,Δt,j ∈ Hτ,N by a column vector �ξj = (ξ0,j , . . . , ξL−1,j)
 ∈ CL storing 

the expansion coefficients of ζ
(L)
τ,N,Δt,j in the ψτ,N,j basis, i.e., ζ

(L)
τ,N,Δt,j =

∑L−1
i=0 ξi,jψτ,N,j . Given a set 

{x̂0, . . . , ̂xN̂−1} of evaluation points in M , the values ζ(L)
τ,N,Δt,j(x̂n) will be represented by the column vec-

tors �ζj = (ζ(L)
τ,N,Δt,j(x̂0), . . . , ζ(L)

τ,N,Δt,j(x̂N̂−1))
 ∈ CN̂ . In Algorithm 3 below, we describe the construction 

of W and the computation of the ωj, �ξj , and �ζj , using the central finite-difference scheme from (35) to 
approximate the action of the generator. The algorithm can also be implemented using any skew-adjoint 
finite-difference scheme of appropriate regularity. Moreover, we employ the basis functions and pointwise 
evaluation procedures from Algorithms 1 and 2, associated with the bistochastic kernel normalization in 
Section 4.1, but Algorithm 3 can be implemented using any other Markov operator meeting the conditions 
of Theorem 21. Algorithm 3 also returns the frequency-adjusted Dirichlet energies DN,Δt(ζ(L)

τ,N,Δ,t,j) of the 

eigenfunctions from (45), abbreviated Dj . We also abbreviate ω(L)
τ,N,Δt,j by ωj .

Algorithm 3 (Data-driven generator and its eigendecomposition).

• Inputs
– RKHS regularization parameter τ > 0.
– Time step Δt > 0.
– Eigenvalues λ0, . . . , λL−1, eigenvectors �φ0, . . . , �φL−1, right singular vectors �γ0, . . . , �γL−1, and degree 

vector �q from Algorithm 1.
– Pointwise-evaluated RKHS functions �ψ0, . . . , �ψL−1 from Algorithm 2.

• Outputs
– Eigenfrequencies ω0, . . . , ωL−1 ∈ R, the corresponding eigenvectors �ξ0, . . . , �ξL−1 ∈ CL, and the Dirich-

let energies D0, . . . , DL−1 ≥ 0.
– Vectors �ζ0, . . . , �ζL−1 ∈ CN̂ with the values of the eigenfunctions ζ(L)

τ,N,Δt,j at the evaluation points.
• Steps
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1. Construct the L × L diagonal matrix Λ̃, with Λ̃jj = eτ(1−λ−1
j ), and the N × L matrix Φ, whose j-th 

column is equal to �φj .
2. Form the skew-symmetric, tridiagonal, N × N finite-difference matrix V with

2 Δt V =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1
2

−1
2 0 1

−1 0 1
. . . . . . . . .

−1 0 1
−1

2 0 1
2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

3. Compute the L × L skew-symmetric matrix W = Λ̃1/2Φ
V ΦΛ̃1/2.
4. Set the eigenfrequencies ω0, . . . , ωL−1 to the imaginary parts of the eigenvalues of W . Set �ξj to the 

corresponding eigenvectors, normalized such that ‖�ξj‖2 =
√

N .
5. For each eigenvector �ξj, compute the Dirichlet energy

Dj =
(

‖Λ̃1/2Λ−1/2�ξj‖2
2

‖Λ̃1/2�ξj‖2
2

− 1
)

(1 − (ωj Δt)2)−1, Λ = diag(λ0, . . . , λL−1).

6. Form the N̂ × L matrix Ψ, whose j-th column is equal to �ψj , and set �ζj = Ψ�ξj .

Finally, Algorithm 4 computes the values of the data-driven forecast function f (t)
τ,N,Δt,L,L′ from Corol-

lary 22 for lead time t ≥ 0 at a set of evaluation points {x̂0, . . . , ̂xN̂ } ⊂ M , using the output of Algorithm 3
and the values f(x0), . . . , f(xN−1) of the prediction observable f on the dynamical trajectory x0, . . . , xN−1. 
The forecast values are output as a column vector f̂ = (f (t)

τ,N,Δt,L,L′(x̂0), . . . , f (t)
τ,N,Δt,L,L′(x̂N̂−1))
 ∈ CN̂ . 

Note that a similar approach can be employed to evaluate the approximations in Theorem 21(iii) for general 
bounded continuous functions Z : iR → C.

Algorithm 4 (Data-driven prediction).

• Inputs
– Lead time t ≥ 0.
– Number of basis functions L′ ≤ L.
– Time series f(x0), . . . , f(xN−1) ∈ C of the prediction observable.
– Eigenvalues λ0, . . . , λL−1 and eigenvectors �φ0, . . . , �φL−1 from Algorithm 1.
– Eigenfrequencies ω0, . . . , ωL−1, eigenvectors �ξ0, . . . , �ξL−1, and pointwise-evaluated eigenfunctions 

�ζ0, . . . , �ζL−1 from Algorithm 3.
• Outputs

– Column vector f̂ ∈ CN̂ with the values of the forecast function for U tf at the evaluation points.
• Steps

1. Form the column vector of observable values �f = (f(x0), . . . , f(xN−1))
 ∈ CN .
2. Compute the column vector of expansion coefficients �c = (c0, . . . , cL−1)
 ∈ CL, where

cj =
{

�φ

j

�f/(Nλ
1/2
j ), j ≤ L′,

0, otherwise.

3. Form the L × L diagonal matrix U = diag(1, eiω1t, . . . , eiωL−1t), the N̂ × L eigenfunction matrix Z
whose j-th column is equal to �ζj , and set f̂ = ZU�c.
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