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An Artificial Intelligence Perspective
Yunji Liang , Sagar Samtani, Bin Guo , and Zhiwen Yu , Senior Member, IEEE

Abstract—In the Internet-of-Things (IoT) era, user authenti-
cation is essential to ensure the security of connected devices
and the customization of passive services. However, conventional
knowledge-based and physiological biometric-based authentica-
tion systems (e.g., password, face recognition, and fingerprints)
are susceptible to shoulder surfing attacks, smudge attacks, and
heat attacks. The powerful sensing capabilities of IoT devices,
including smartphones, wearables, robots, and autonomous vehi-
cles enable continuous authentication (CA) based on behavioral
biometrics. The artificial intelligence (AI) approaches hold signif-
icant promise in sifting through large volumes of heterogeneous
biometrics data to offer unprecedented user authentication and
user identification capabilities. In this survey article, we outline
the nature of CA in IoT applications, highlight the key behav-
ioral signals, and summarize the extant solutions from an AI
perspective. Based on our systematic and comprehensive analy-
sis, we discuss the challenges and promising future directions to
guide the next generation of AI-based CA research.

Index Terms—Artificial intelligence (AI), behavioral biometric,
body area networks, constrained devices, continuous authentica-
tion (CA), cyber–physical systems data mining, Internet of Things
(IoT).

I. INTRODUCTION

W ITH the flourishing of the Internet of Things (IoT),
our daily life is being transformed by ambient intelli-

gence [1] along with massively connected IoT devices ranging
from smartphones and wearables to robots, autonomous vehi-
cles, and drones [2], [3]. The broad penetration of IoT devices
in the consumer market makes user authentication critically
important to secure users have the appropriate right to access
IoT devices [2] and to avoid the devastating damages caused
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Fig. 1. Overview of credentials for user authentication and identification and
their applications.

by one attack occurring in the local vulnerable spots [4]. Apart
from the security concerns, user authentication is beneficial for
passive and customized services when user switching occurs.
For example, for one autonomous car shared among family
members, the driving habits among family members differ sig-
nificantly. To assist the drivers, different assistance strategies
can be applied based on user identities [3]. Thus, user authenti-
cation can protect crucial information against potential attacks
and offer customized services for improved user experience.
Due to the importance of user authentication, researchers

and industries are increasingly studying the development of
sophisticated methods to verify and recognize user identi-
ties. As shown in Fig. 1, authentication systems can be
divided into three categories: 1) knowledge-based; 2) phys-
iological biometric-based; and 3) behavioral biometric-based
solutions [2], [5]. Knowledge-based authentication explicitly
requests the user to enter credentials, such as password,
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Fig. 2. Mapping relationship between devices and users.

personal identification number (PIN), and graphical PIN to
confirm the identity of an individual. Physiological biometric-
based authentication uses biological traits (e.g., fingerprint,
iris, and facial images) and employs the machine learning
methods to discriminate user identities. Behavioral biometrics,
including walking gait, keystroke, and touchscreen dynam-
ics are used for user authentication as well. Authentication
systems can be classified into two subcategories: 1) user
authentication, to detect whether the user is one unauthorized
visitor or genuine user and 2) user identification, to recognize
whom the current user is.
The essence of authentication systems is to build the map-

ping relationship between users and objectives. According to
the object-user mapping relationship, authentication systems
can be categorized as Fig. 2. Among them, one-to-one map-
ping aims to verify whether the user is a genuine user or
imposter for one privately owned device (such as mobile
phones and laptops) or one mobile application. One-to-
many mapping provides the appropriate access control among
multiple users for one object shared within a group of per-
sons. In IoT systems, numerous smart devices are connected
to provide pervasive services for one user (such as smart home
and vehicle-to-vehicle systems [6]). In the dynamic environ-
ment, participants need to finish one session across shared
IoT devices where complex and robust authentication schemes
are needed [7]. The many-to-one mapping and many-to-many
mapping fit well for the user authentication in the complex
dynamic environment.
Although numerous user authentication and identification

methods are proposed, prior methods have several key draw-
backs as it pertains to their fit with IoT applications.
Vulnerability: Prior systems are prone to a diverse range

of attacks. For knowledge-based authentication, imposters
can capture inputs by shoulder surfing and recording attacks
[8]–[10], thermal attack [11], [12], and smudge attacks
[13], [14]. For facial recognition, an adversary could conquer
the facial detection through legitimate users’ facial photos. The
fingerprint can be conquered by smudge attack [13]–[15] and
forged by deep learning methods [16]. The automated speaker
verification based on the personal characteristics of voices is
subject to replay attacks [17], [18].
Discreteness: In general, user identification and authen-

tication are executed once at the beginning of a session.
If the authentication information is stolen or compromised,
imposters can fully control the hacked accounts or IoT devices,

resulting in devastating damages consequentially. In addition,
one-time user authentication is insecure in some scenarios. For
example, in the ride-sharing platforms, registered drivers may
subcontract ride assignments or share their registration to an
unauthorized person, which could be dangerous for the rid-
ers [3]. Thus, the one-time authentication method is insecure
and cannot provide seamless protection.
Obtrusiveness: Existing solutions require explicit inputs or

actions, which are obtrusive for users by requiring extra user
attention. They also cause a distraction from the undergo-
ing tasks [19], [20]. For example, iris and facial recognition
require users to stare at the camera in specific angles, which
is unnatural and uncomfortable for users.
In recent years, the rapid proliferation of IoT devices, such

as smartphones, wearable devices, and facility cameras has
made it possible to seamlessly sense and track user behaviors.
The analysis and mining of behavior fingerprints offer new
opportunities for continuous authentication (CA) [21], [22].
In this article, we provide a systematic overview of the CA
based on behavioral biometrics from the perspective of artifi-
cial intelligence (AI). Our contributions in this article are as
follows.
1) We provide a systematic overview of the key compo-

nents and differentiators between user authentication and
identification.

2) We summarize the key elements of behavioral
biometrics.

3) We provide a summary of the emerging types of sensing
technologies being integrated into emerging IoT tech-
nologies, with a specific focus on how the data they
generate and common representations of these data.

4) We present a general framework on how future
researchers can develop innovative AI-based approaches
for continuous user authentication and identification.

5) We summarize emerging directions for future AI-based
research in the aforementioned areas.

The remainder of this article is organized as follows. In
Section II, we characterize the nature of behavioral biomet-
rics. In Section III, we propose a general framework for
continuous user authentication from sensing and computing
perspectives. Sections IV and V provide one systematic sur-
vey about data sensing and inference methods, respectively.
Finally, Section VI presents the open issues and challenges in
CA based on behavioral biometrics, and Section VII concludes
this article.

II. CHARACTERIZING BEHAVIORAL BIOMETRICS

Behavioral biometrics refer to the unique behavioral traits
that can be used for human authentication. Unlike the
knowledge-based credentials and physiological biometrics
shown in Fig. 1, behavioral biometrics identify people by
how a user conducts the specified activity rather than by
static information or physical characteristics. User authentica-
tion based on behavioral biometrics is characterized as secure,
continuous, transparent, and cost effective.
Secure: In contrast to knowledge-based credentials and

physiological biometrics, behavioral biometrics provide a
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dynamic modality that is completely passive and works in the
background, making it impossible to copy or steal. Behavioral
biometric data are extracted when users are performing one
specified activity. Unlike the static authentication information,
the nature of behavioral biometric data ensures that they cannot
be forgotten, exchanged, and stolen. Moreover, the dynamics
of activities make it very difficult to forge behavioral bio-
metrics. Authentication systems based on knowledge-based
credentials and physiological biometrics are vulnerable to a
variety of cyberattacks, including shoulder surfing attacks,
smudge attacks, replay attacks, thermal attacks, and adver-
sary attacks [8]–[10], [13], [14]. Systems based on behavioral
biometrics are secure and robust to the aforementioned cyber-
attacks.
Continuous: In the IoT era, user authentication is one cru-

cial task to secure the connected devices and it should not
be a one-off event but rather a constant process. Unlike the
one-time authentication that is enforced at the beginning of a
session or login, continuous user authentication is an essen-
tial requirement to verify that users are who they claim to be
on an ongoing basis. In order to achieve this goal, behavioral
biometrics continuously profile a user’s behavior based upon
the natural interactions without having to constantly interrupt
users. The continuity of behavior makes it a natural way for
CA with no distraction for users.
Unobtrusive: Unobtrusive sensing aims to monitor physical

activities and behaviors continuously via sensors embedded
in the ambient environment or wearable sensors [23], and
maximize the user experience to avoid disturbing users from
the undergoing tasks [24]. Behavioral data can be sampled
when users are interacting with IoT devices or ambient envi-
ronments with no explicit input. Moreover, user authentication
can be performed in a transparent and unobtrusive way with
no distraction for users [25]. Previous attempts to continu-
ously authenticate may have been too disruptive (e.g., prompts
mid session), but now by using unobtrusive sensing techniques
users can be continuously authenticated without interruption.
This feature is beneficial for the enhancement of user experi-
ence and provides more secure protection for IoT devices.
Cost Effective: Physiological biometrics usually rely on

customized hardware for information acquisition [26], [27].
This is often expensive in terms of costs and impedes the
widespread adoption of physiological biometrics for user
authentication. In contrast, behavioral biometrics can be
observed and sampled with embedded sensors in IoT devices
(e.g., microphone, touchscreen, accelerometer in smartphone,
and wearable devices) or public facilities (e.g., WiFi access
point and surveillance camera). The widespread availability
of IoT devices makes it possible to sense behaviors without
extra hardware, which improves the acceptance of behavioral
biometrics with low cost and ease of use.

III. OVERVIEW OF CONTINUOUS AUTHENTICATION

To guide the readers to understand the core concepts in
this survey article, we provide an overview of CA systems
to illustrate what components should be included in the
one behavior-based CA system. Specifically, we present an

Fig. 3. Abstract framework of CA and identification based on behavioral
signals.

abstract framework of CA and identification based on behav-
ioral signals to highlight the primary components for user
authentication. As shown in Fig. 3, it consists of four layers:
1) behavioral signals; 2) unobtrusive sensing; 3) continuous
computing; and 4) applications.
Behavioral signals are the collection of distinctive behav-

ioral patterns or traits that can be used by one decision-making
system to decide an individual’s identity. A large number
of pilot studies show that dynamics of a keystroke, walking
gaits, eye movements, and touchscreen dynamics are suitable
for CA.
Unobtrusive sensing summarizes the available sensors and

feasible sensing strategies to capture the behavioral signals.
The sensing modalities for behavioral signals are diverse. In
the IoT era, the unprecedented sensing capability brings oppor-
tunities to sense the behavior in different granularities with
diverse sensors. For example, walking gaits can be captured by
facility cameras, accelerometers built-in wearables, and WiFi
signals that bounceoff the walking individuals. IoT devices,
such as smartphones and wearables are infused into our daily
life and can provide transparent, unobtrusive, and continu-
ous behavior sensing without additional attentions and actions
required.
Continuous computing highlights the workflow for CA. The

goals of CA based on behavioral biometrics are to detect
whether the user has the right to access the IoT device or
not (authentication) and to recognize who the current user is
(identification). Accordingly, CA based on behavioral biomet-
rics can be divided into two categories: 1) anomaly detection
and 2) classification. Anomaly detection methods can deter-
mine the abnormal patterns from the regular ones. For user
identification, one predictive model is trained to maximize the
interclass differences (i.e., legitimate users versus outliers).
Applications are typical scenarios where CA based on

behavioral biometrics is applied. According to the property of
devices, user authentication can be applied in three categories
of IoT devices or scenarios, including private devices, shared
devices, and open application environments. Apart from IoT
device security issues for access control, behavioral biomet-
rics can be applied for customized services in smart space.
For example, for one autonomous car shared among family
members, insurance companies can design tailored insurance
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policies according to individual’s driving patterns, where the
continuous user identification based on driving patterns is the
premise. For smart spaces, understanding the presence of users
in the buildings is significantly important for providing more
responsive and customized services [28].

IV. SENSING OF BEHAVIORAL BIOMETRICS

Numerous behavioral traits have been explored for CA. In
this section, we analyze the commonly used behavioral traits
for use authentication, and conduct comprehensive comparison
from different dimensions, including vulnerability, discretenss,
obtrusiveness, and privacy.

A. Keystroke Dynamics

Keystroke dynamics characterize the typing rhythm, such as
keystroke length, the distance between consecutive strokes, the
pressure exerted on each key when the individual types char-
acters, and others. To date, keystroke-powered authentication
has been broadly explored for devices equipped with physical
keyboards. With the emergence of touchscreens, when users
enter characters via touchscreens, subtle changes of built-in
sensors, including accelerometer and gyroscope occur. Jointly
combined with the status of built-in sensors, the keystroke
timing, touch-typing, and keystroke pressure are distinctive
features for user identification [29], [30]. Similarly, mouse
usage dynamics have also been shown to serve as potential
authentication cues [31], [32].
The advantages of analyzing keystroke dynamics include the

unobtrusive data collection and continuous monitoring of typ-
ing behaviors when users interact with devices simultaneously.
However, the keystroke dynamics vary in different scenarios,
such as walking, holding at hand, and putting on table [33].
As a result, keystroke-based user authentication is scenario
dependent, which requires the understanding of user scenarios
and build the appropriate algorithms accordingly.

B. Touchscreen Dynamics

With the prevalence of touchscreen in IoT devices, sophis-
ticated interaction patterns, including pressure intensity and
sliding dynamics when users interact with touchscreen enable
the detection of user identification in an unobtrusive way [34].
One type of study combines touch patterns with the conven-
tional authentication method, such as PIN codes or shaped-
based drawing when individuals are running the log-in session.
Even though more patterns are extracted to protect the devices
against potential attacks, the authentication method is still
static. For CA, Sitová et al. [22] analyzed the micromovement
and orientation dynamics resulting from how a user grasps,
holds, and taps on the smartphone and leveraged the context
and touchscreen dynamics for user authentication.
The authentication based on touch operations provides one

natural way to collect user interaction data. Moreover, it makes
continuous user identification possible with no extra sen-
sors and low computational load. However, touch operations
vary among applications. Therefore, systematically studying
application-dependent touch patterns can help protect against
unauthorized access of crucial mobile applications. This is

Fig. 4. User authentication and identification based on walking gaits via
different sensors, including cameras, wearables, smart floor, and device-free
sensing.

especially true when individuals are likely to possess more
than one mobile device. When they interact with different
devices, whether the touch dynamics are identical and can be
transferred among different devices are still open questions.

C. Eye Movement

Driven by the internal interaction relationship between mus-
cles and brain neural, eye movements, including gaze and
blinking are significantly different for individuals and are dif-
ficult to be mimicked and duplicated. Authentication based on
eye movements can be divided into two categories in terms of
data signals. Bioelectrical signals caused by eye movements
and blinks are studied and found that the accompanying elec-
trooculogram signals extracted from eye blinking were unique
and rational as the biometrics for identification recognition
tasks [35]. The dynamics of eye movements, including pupil-
lary response to stimuli, pupil size, velocity, acceleration, and
spatial/geometric features are recorded and analyzed from the
video. Several studies that demonstrated those patterns were
intrinsic and could be applied for user identification [36]–[38].
However, eye-movement-based solutions often use expen-

sive and specialized monitor-mounted gaze trackers. Such
explicit authentication methods may cause vigilance of the
imposter and cover the camera of the tracker. These authentica-
tion methods also have high energy consumption for continu-
ous video recording and real-time video analysis. Furthermore,
eye-movement-based user identification can be obtrusive to an
individual’s privacy.

D. Walking Gait

Identifying and authenticating based on walking gaits are an
emerging biometric technology that recognizes users’ identi-
ties by analyzing walking patterns [25]. Based on the strategies
of data acquisition, the sensing strategies of gait signals can
be grouped as: facility cameras, floor sensors, and wearables.
Fig. 4 illustrates the interplay and relationships among the
three components.
Vision-based solutions record an individual’s gait patterns

when walking via facility cameras. Then, background segmen-
tation techniques are used to extract features from recorded
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images to verify user identities [39], [40]. However, the
vision-based solutions are subject to environments, includ-
ing illumination and camera angle [39], [41]. Furthermore,
the high computation consumption and privacy concerns make
vision-based solutions infeasible for CA.
For floor-sensor based solutions, dense press sensors are

deployed under the floor to track the pressure dynamics or
acoustic patterns when walking on the floor [42]. Its advan-
tages include high resolution in terms of performance and
unobtrusiveness for user interaction [43]. However, floor-
sensor-based solutions are ideal for CA for two reasons. First,
they often have sophisticated system design and high costs.
Second, they only work in an enclosed environment with
limited users and do not work in the open space with low
scalability. Taken together, these limitations often result in
floor-based systems being difficult to deploy.
Wearable sensor-based solutions rely on sensors attached

to different spots of the body (such as waist, hip, and
pocket) to capture the accompanying signals when walk-
ing, therefore, enabling continuous verification of user iden-
tity [44]–[48]. However, primary studies are conducted in the
laboratories with cumbersome prototype systems and expen-
sive customized devices. Recently, more studies focus on
user verification based on off-the-shelf devices (e.g., mobile
phones) [49]–[51]. The main advantage of using a wearable
accelerometer sensor for gait recognition is that it provides
unobtrusive verification without requiring user explicit actions.
Especially, the accelerometer sensor has characters of small
volume, low cost, and can be easily integrated into the
hardware of wearable devices.
Lately, walking gait recognition based on WiFi, millime-

ter wave, and radio-frequency identification (RFID) is gaining
attention [52]. These studies assume that the unique walking
gaits and body shapes entail distinctive disturbances in signals
that can be used for user verification [53]. Wang et al. [54] pro-
vided one comprehensive survey about the device-free sensing
based on WiFi signals. Several user verification systems
based on WiFi signals are available, including WiFiID [55],
WiWho [56], WiFiU [57], and FreeSense [58]. Among
them, FreeSense [58] is an unobtrusive system for indoor
human identification based on the disturbed WiFi channel-state
information (CSI) signals when individuals walk through the
line-of-sight (LOS) path between the source and the receiver
of WiFi signals. FreeSense captures the disturbing waveforms
when the user is walking across the LOS path, and applies
the discrete wavelet transform and principal component anal-
ysis to extract shape features. The performance of FreeSense
declines from 94.5% to 75.5% while the number of partici-
pants increases from two to nine. Luo et al. [52] used RFID
for gait recognition by monitoring the interruptions to RFID
signals when one target user is blocking the signals between
transmitters and receivers.
However, CA based on walking gaits has several challenges.

First, prior studies were mainly conducted in a controlled
environment. Robustness should be further evaluated in the
physical world. Second, a person’s walking gaits can be
altered by many factors, i.e., drunkenness, aging, carrying
a load, and shoe type [59]–[61]. The model trained with

the data set collected in one situation may introduce bias
when it is applied to other situations [62]. Third, prior stud-
ies mainly focus on single-person gait detection. However,
vision-based, floor-based, and WiFi-based solutions achieve
suboptimal performances for multiperson scenarios.

E. Body Gesture

With the popularity of wearable sensors, body gestures
especially hand gestures have been widely studied for user
authentication. The majority of user authentication based on
body gestures attempt to verify or recognize the user iden-
tity based on a specified gesture performed. Among them,
Li et al. [66] found that a person’s head movement patterns
are unique when stimulated by music beats, and implemented
the Headbanger, an authentication system that can authenti-
cate uses by sensing head movements when listening to music
beats based on the built-in accelerator in Google glasses. In
addition, hand gesture and in-air handwriting are studied for
user authentication as well. Matsuo et al. [65] designed one
authentication system based on the acceleration signals during
the arm sweep action. Lu et al. [68] proposed a multifactor
user authentication framework using both the motion signal
of a piece of in-air handwriting and the geometry of the hand
skeleton captured by a depth camera. However, user authen-
tication based on body gestures is obtrusive as the users are
required to perform certain movements or actions.

F. Others

Chewing renders the changes of muscle tension with accom-
panying chewing sounds. Zou et al. [69] proposed a human
authentication mechanism that utilized the sounds generated
by dental occlusion (i.e., tooth click) to unlock the mobile
devices. The prototype system, BiLock, relies on the micro-
phone in mobile devices to record the sounds of dental
occlusion and verifies whether the current user is legitimate
or not. Although BiLock is easy to use and requires no
extra sensing unit, its performance is sensitive to the scenario.
Furthermore, BiLock requires users to put the mobile device
5–15 cm away from lips, which is obtrusive for users and does
not support transparent sensing. Similarly, Bodybeat leverages
the nonspeech body sounds caused by food intake, breath,
laughter, and cough for user identification [70].
In addition, breathing is used for user authentication as well

by characterizing the subtle vibration caused by respiratory.
For example, BreathPrint employs deep-learning models to
effectively express the acoustic features caused by breathing
for user authentication on resource-constrained devices [71].
To provide unobtrusive CA, Liu et al. [72] proposed a con-
tinuous user verification system based on unique human
respiratory-biometric characteristics extracted from the off-
the-shelf WiFi signals.

G. Summary of Behavioral Biometrics

As shown in Table I, each behavioral biometric has its pros
and cons, and no single biometric is expected to effectively
meet all the needs of any scenarios and applications [73].
The advantages of most user authentication systems based on
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TABLE I
SUMMARY OF BEHAVIORAL SIGNALS FOR USER AUTHENTICATION

behavioral biometrics include nonobtrusiveness with no extra
user attention required and nonvulnerability against cyberat-
tacks. However, the existing authentication systems do not take
advantage of the nature of behavioral traits to support the CA
and do not consider the issue of privacy protection.

V. AI-BASED SOLUTIONS FOR USER AUTHENTICATION

In this section, we summarize the AI-based methods that
are employed to recognize user identities based on behavioral
fingerprints. In CA, intelligent algorithms, including machine
learning and deep learning are capable of determining the
access control of IoT devices by checking user identities. As
shown in Fig. 5, the pipeline of AI-based methods for CA con-
sists of the following major components: data preprocessing,
feature extraction, and classification algorithms. We further
describe each component in the following sections.

A. Data Preprocessing

Data preprocessing is a critical procedure to distill high-
quality data out of the raw data that are generally incomplete,
noisy, inconsistent, and redundant. As the inputs of continuous
human identification based on behavioral patterns are sequen-
tial data, data filtering and data segmentation are necessary to
reduce the noisy data and align the inputs.
For data filtering, numerous filters are applied to the sequen-

tial data to remove data that can be repetitive, irrelevant, or
even sensitive [55], [69]. For example, a Butterworth filter is
applied to WiFi CSI data to remove the high-frequency noisy

Fig. 5. General workflow of machine learning-based user identification and
authentication.

data [55], [56]. Similarly, BiLock uses a six-order Butterworth
filter to remove the out-of-band interference of dental clicks,
and employs wavelet denoising to improve the signal to noise
radio [69].
For the CA, data segmentation seeks effective regions

from sequential data. The rule-based solutions, including fixed
threshold or fixed-size windows are used over sequential data
for segmentation. In WiFi-ID [55], two frequency bands are
used to separate WiFi signals impacted by walking gaits from
the wavelet domain. The fixed-size window is applied [74],
[75] to segment the dynamic swipe behavior and video records
of walking gaits into fixed-length slices, respectively. However,
rule-based solutions are sensitive to inputs and tightly rely
on prior knowledge. Dynamic segmentation strategies are
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introduced to split the stream data dynamically. For exam-
ple, BehaveSense [76] recognizes four touchscreen operations
to separate the effective samples from stream data and utilizes
the sequential patterns of touchscreen operations for user iden-
tification. In addition, dynamic time warping (DTW) is widely
used to find out the cycle of behaviors [56], [58], [66].

B. Feature Extraction

Feature engineering is to extract features of value that
can represent users’ behavior comprehensively from the train-
ing data set. The extracted features depend on sensors and
applications. Statistical features refer to the measurements of
interpreting both quantitative and qualitative data with stan-
dard statistics, such as the root mean square, mean, standard
deviation, and variance. Statistical features characterize the
overall patterns of the given samples from macroperspectives.
Due to the dynamics of user behaviors over time, frequency-
domain patterns of behaviors are of significance for describing
the dynamics of signals. To obtain frequency-domain patterns,
sampled data are transformed by spectrum analysis to learn the
frequency-domain features. As shown in Table II, DeepAuth
characterizes the frequency-domain representation of motion
sensors [74]. GlassGuard [77] and BiLock [69] employ the
mel-frequency cepstral coefficients (MFCCs) to characterize
the dynamics of vocal signals.
Generally, hand-crafted feature engineering heavily relies

on the knowledge of domain experts and is time consuming
to construct one complete feature set. As a result, it is the
bottleneck of classification-oriented tasks. In addition, as not
all hand-crafted features are preeminently contributive to the
verification of user identity, feature selection is optional to
rebuild one subset of attributes with least data loss. To mitigate
the behavioral variability of mouse dynamics, Cai et al. [81]
proposed a unified framework of employing dimensionality
reduction methods to extract predominant characteristics from
the original feature space for enhanced performance and found
that variability reduction in feature engineering could enhance
the authentication mechanisms. On the other hand, due to these
drawbacks of feature engineering, many researchers in this
field have turned to deep learning-based methods. Unlike con-
ventional machine learning that relies on feature engineering,
deep learning approaches utilize the complex neural network
architecture to learn the representation of behaviors [75].

C. Anomaly-Based User Authentication

For the privately owned IoT devices, a large number of
positive examples from the legitimate users are available
while negative examples from imposters are rare. Therefore,
supervised classification algorithms do not fit well to train
predictive models when few negative examples are avail-
able [82]. To secure the privately owned devices, anomaly
detection solutions are applied to check whether the current
user is one authorized user or one imposter. Behavioral exam-
ples from imposters are referred as anomalies or outliers,
and the behavioral examples from genuine users are normal.
Identifying outliers or anomaly detection is referred as one-
class classification. For the user authentication task, one-class

Fig. 6. General workflow of machine learning-based user identification and
authentication [87].

classification algorithms, including one-class support vector
machines (SVMs) [83] and isolated forest (iForest) [84] are
widely adopted for imbalanced data sets with severely skewed
class distributions.
One-class SVM [83] is a semisupervised classification algo-

rithm, and aims to find a hyperplane to enclose the majority
of positive examples from the origin with the maximum mar-
gin [85]. Given the training vectors xi ∈ �n, the problem is
formulated as follows [82]:

min
w,ξ,ρ

1

2
wTw + 1

v�

∑

i

ξi − ρ

subject to wT · φ(xi) ≥ ρ − ξi, ξi ≥ 0 (1)

where w is the normal vector of the separating hyperplane
and ξi are slack variables. The parameter v ∈ (0, 1] con-
trols the tradeoff between w and slack variables ξi. When
w and ρ are solved by solving (1), the decision function
f (x) = sgn(

∑
i αik(xi, x) − ρ) will be positive for majority

examples, where k(xi, x) is a kernel function [86]. In the con-
text of behavior-based user authentication, the workflow of
one-class SVM is shown in Fig. 6 to highlight how the outliers
are separated from the origin. An outlier is any data instance
that lies outside the support of the training data. The original
high-dimensional data can be projected into one feature space
via one kernel function, where the hyperplane w separates the
training data from the origin by a maximal margin ρ/‖w‖
(Fig. 6). Data mapped to the same side of the origin will be
given a negative one-class SVM value, whereas those mapped
to the side of the training data will have positive values [87].
iForest [84], [88] is one unsupervised algorithm for anomaly

detection. Its main idea is based on the observation that anoma-
lies are few in number and much different from the rest
of the data [84]. Specifically, iForest constructs an ensem-
ble of binary search trees (named iTrees) in which anomaly
points are isolated closer to the root of the tree. Each node
in iTree has either two children or a leaf node with no
child. For one p-dimensional sample xi ∈ �p from data set
D = {x1, x2, . . . , xi, . . . , xn}, one feature ai ∈ [1, p] and its
split value V ′ are randomly selected. According to feature Vai,k

for each input data Xk, Vai,k, which is less than V ′, is classi-
fied into left children set and the rest is classified into right
children set. This process is repeated for the instances of left
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TABLE II
SUMMARY OF WORKS IN CONTINUOUS BEHAVIORAL AUTHENTICATION AND IDENTIFICATION

and right children nodes until: 1) the incoming data set D has
only one record or all data in D have the same value and 2) the
tree reaches the height limit l [84], [88].
iForest is applied for user authentication due to the follow-

ing reasons. First, the feature values extracted corresponding to
the anomalies in original data are few and different. Second,
iForest works well when handling extremely large data size
and high-dimensional problems and in situations where the
training set does not contain any anomalies. Finally, since
iForest has linear time complexity, fast anomaly detection on
resource-constrained IoT devices is crucial to report unautho-
rized access immediately.

D. Classification Algorithms for User Identification

User identification aims to recognize who the current user
is and further determine whether the current user has the
legitimate right to access the IoT devices or applications.

Formally, behavior-based user identification can be formulated
as follows. Given a data set {(x1, y1), . . . , (xn, yn)}, where
xi = [x1i , . . . , x

m
i ] is the m-dimensional feature vector of sam-

ples; yi ∈ C is the corresponding class of one specific user; and
C refers to the set of classes. The goal of the user identifica-
tion task is to learn a mapping function that predicts the label
information for one given behavior sequence with least biases.
According to the adopted classification algorithms, the extant
behavior-based user identification systems can be divided into
two categories: 1) conventional and 2) deep learning-based
solutions.
1) Conventional Classification: As shown in Table II,

numerous hand-crafted features, such as statistical features of
mouse dynamics, keystroke dynamics of touch-typing timing,
and even frequency domain signals are proposed and a variety
of supervised classification algorithms, including SVM [69],
random forest [63], naïve Bayes [29], and artificial neural
network [80] are employed to bridge the mapping between
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feature sets and labels. However, user identification based on
conventional classification algorithms relies on feature engi-
neering, which involves computing explicit features specified
by experts, resulting in algorithms designed to detect spe-
cific indictors. The hand-crafting feature is time consuming,
labor intensive, and not suitable for rapidly evolving domains.
Moreover, supervised learning algorithms are sensitive to the
training data set. Usually, the features used in those approaches
are based on samples made from the existing data set. Due
to the intrauser variation of behavioral biometrics [89], these
solutions are not robust when faced with the changes in user
behaviors and cannot adjust the parameters accordingly.
2) Deep Learning-Based Classification: To improve the

performance of identification systems, deep learning solutions
are gaining popularity. Deep learning-based solutions can be
divided into three categories according to the types of neural
networks: 1) convolutional neural network (CNN); 2) recur-
rent neural network (RNN); and 3) generative adversarial
network (GAN).
As shown in Fig. 7(a), a typical CNN consists of convolu-

tional layer, pooling layer, fully connected layer, and softmax
layer. In the convolutional layer, convolution is a linear oper-
ation that involves the multiplication of a set of weights (also
referred as filter) with the input. The convolutional layer cre-
ates one feature map by applying the same filter on the input
repetitively to summarize the presence of a specific type of
features in the input. The pooling layer operates upon each
feature map and provides an approach to downsampling fea-
ture maps by summarizing the presence of features in patches
of the feature map. Two common pooling methods are average
pooling and max pooling. For the fully connected layer, all the
neurons in this layer are connected to every activation unit of
the next layer operates on a flattened input where each input
is connected to all the neurons. For one classification task, a
softmax layer follows the final fully connected layer immedi-
ately to limit the output of the function into the range 0–1,
which can be interpreted directly as a probability of multiple
classes.
CNN is widely adopted in user authentication and identifica-

tion systems to detect personal patterns from fingerprints [90]
and eyes [91], [92]. CNN is also commonly applied to
detect the liveness of biometrics against presentation attacks
[93]–[98]. For the security of smart vehicles, Xun et al.
designed one driver fingerprinting device for the continuous
user authentication of automobiles. The driver fingerprinting
device is deployed in automobiles to collect the real-time driv-
ing data from the onboard diagnostic port and uses the CNN
model to extract driver behavioral characteristics from the driv-
ing data. Finally, the extracted driving features are fed to SVM
for illegal driver detection [99]. To secure the smart home,
Qin et al. [100] extracted the time and frequency features of
sensors via CNN for each time slot, and fed the deep represen-
tation to RNN for user identification. Batchuluun et al. [75]
applied CNN to identify human identity based on the walk-
ing gaits extracted from videos. Unlike gait recognition in the
controlled environment, Zou et al. studied the user identifi-
cation based on the waling gait in the wild, and proposed a
hybrid model of CNN and RNN to learn robust gait feature

representation, including space and time-domain features [101]

ht = tanh
(
Whht−1 + Wyxt

)

yt = Wyht. (2)

RNN is a typical neural network to handle with sequence
data, and the output of the prior state is forwarded as the input
to the current state. This process can be formulated as (2),
where xt is the input at time t; ht and ht−1 are the current state
and previous state, respectively; and Wh and Wx are feedfor-
ward and recurrent weight matrices, respectively. The output
yt at time t is produced by combining the hidden state ht with
the weight matrix Wy. However, RNNs are subject to gradi-
ent vanishing and exploding problems [102]. In addition, the
training of RNN is time consuming and energy intensive [103].
To address those problems, long short-term memory (LSTM)
is proposed. The architecture of one cell in LSTM is shown
in Fig. 7(b). One LSTM cell consists of forget gate, input
gate, and output gate. The forget layer, denoted as ft, controls
whether the previous hide state ht−1 is forwarded to the cur-
rent state ht, where σ is a sigmoid activation function. The
input gate it determines to what extent new memory is added
into the cells state, and an output gate ot regulates how gates
at the next step will be affected by the previous cell state ht−1
and current input xt

ft = σ
(
Wf · [

ht−1, xt
] + bf

)

it = σ
(
Wi ·

[
ht−1, xt

] + bi
)

c̃t = tanh
(
Wc · [

ht−1, xt
] + bc

)

ct = ft ∗ ct−1 + it ∗ c̃t
ot = σ

(
Wo

[
ht−1, xt

] + bo
)

ht = ot ∗ tanh(ct). (3)

Numerous user authentication and identification studies
based on behavioral biometrics show that RNN and its variants
are promising to process the sequential behavior data with an
overwhelming performance. For example, Zhang et al. [104]
extracted discriminate features from walking gaits monitored
by smartphones and the LSTM-based model for user identifi-
cation. Due to the limitation of resource-constrained devices
in memory and computation, Chauhan et al. proposed one effi-
cient authentication system based on breathing acoustics. They
introduced model compression solutions, including weight
quantization and fully connected layer factorization to reduce
the complexity of LSTM, and found that compressed LSTM
outperformed other baselines with smaller model size, lower
inference time, and more accurate [105]. Luo et al. [52]
used RFID for gait recognition by monitoring interruptions to
RFID signals and introduced attention mechanisms in LSTM
for robust user identification. Amini et al. [74] proposed an
LSTM-based authentication framework that leveraged a user’s
behavior captured by motion sensors while shopping online
to continuously reauthenticate the user, providing security
without compromising usability. DeepAuth [106] uses unique
motion patterns when users entering passwords as behavioral
biometrics and learns the deep representation of motion pat-
terns via an RNN-based model. Extensive experiments show
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Fig. 7. Diagram of selected prevailing deep neural networks. (a) Architecture of CNN. (b) Architecture of an LSTM cell. (c) Diagram of GAN.

that DeepAuth performs well for the security of resource-
constrained devices within both authentication performance
and cost [106].
GAN is an unsupervised algorithm to train two competitive

neural networks via a cooperative zero-sum game frame-
work [107]. The GAN model consists of two submodels: 1) a
generator model to generate new examples and 2) a discrimina-
tor model to classify whether generated examples are real data
or generated examples. As shown in Fig. 7(c), the generator
network G(z) takes an random input z with probability distri-
bution p(z) and generates a sample of synthetical examples.
The discriminator network D(x) takes input either the real
examples x from pdata(x) or synthetical examples generated
by G(z), and attempts to predict whether the input is real or
generated. The adversary learning of G(z) and D(x) can be rep-
resented mathematically as min max Ex∼pdata(x)[ logD(x)] +
Ez∼pz(z)[ log(1 − D(G(z)))] [108]. GAN has been widely
adopted by the adversary to generate high fidelity human
biometrics, including fingerprints [109] and facial and vocal
biometrics [16], [110] to bypass the authentication systems.
For example, DeepMasterPrints [109] employed GAN to gen-
erate synthetic image-level fingerprints. In DeepMasterPrints,
two generator networks are trained via the Wasserstein GAN
algorithm based on fingerprints scanned with a capacitive
sensor and a data set of inked and rolled fingerprints. The
experimental results show that DeepMasterPrints is able
to generate fingerprints that can easily bypass the popular
commercial fingerprint matching systems.

E. Evaluation

For the evaluation of a verification system, the false accep-
tance rate (FAR) and the false rejection rate (FRR) are two
types of errors. FAR refers the likelihood that an unautho-
rized user is mistakenly accepted as a legitimate user; while
FRR indicates the probability that a legitimate user is incor-
rectly rejected as an imposter. Verification systems should
avoid those two error types. To balance the two error types in
a verification system, an equal error rate (EER) is introduced
to predetermine the threshold value where FAR is equal to
FRR. EER is a commonly accepted overall measure of system

performance. The lower the EER, the higher the accuracy of
the verification system.

VI. OPPORTUNITIES AND CHALLENGES

CA-based behavioral traits are an emerging paradigm fac-
ing several challenges. In this section, we enumerate the
opportunities and challenges from the AI-perspective.

A. Evolution of Behavioral Biometrics

The performance of CA-based behavioral biometrics could
be impacted by scenarios and applications. For instance, alco-
hol, mood, and carrying a backpack may affect the person’s
gaits [111], [112]. Pupil size and eye movement dynam-
ics vary with individuals’ physical status, such as stress or
fatigue [113]. In addition, touch patterns are sensitive to screen
size and target applications. Obviously, user behaviors can be
impaired by many facets, including mood, health, and alcohol.
How to rule out the impacts of situations on user behaviors in
the CA systems is crucial for the robustness of behavior-based
authentication systems.
User behaviors also change over time. For example,

Galbally et al. analyzed the effects of age and aging on fin-
gerprints, and found that fingerprint quality decreased linearly
with age for elders [114]. The touchscreen typing patterns are
dynamic and impacted by health status [115]. However, what
kinds of behavioral patterns can be used as behavioral biomet-
rics for CA have not been studied yet. In addition, the extant
behavior-based systems are static and cannot adjust themselves
with the evolution of user behaviors. Therefore, fundamental
studies should be conducted to evaluate the impacts of dynam-
ics of behavioral traits on CA and propose dynamic solutions
that fit well with the changes in behavior evolution.

B. Sparsity of Behavioral Biometrics

The success of machine learning roots in tapping into the
large-scale training data set to learn the comprehensive repre-
sentation of the rapid advances of AI-based methods. A large
number of users are becoming multidevice users by interacting
with more than one IoT devices [116]. The one-to-many map-
ping relationship between users and IoT devices poses great
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challenges for CA-based on behavioral biometrics. In addition,
the sufficient training data set is not readily available, and the
trained models based on the skewed distribution data sets are
not robust [117].
To address the sparsity of behavioral biometrics, one/zero-

shot learning aims to build one classifier from one or only
a few training samples [118]. The nature of one/zero-shot
learning is suitable for handling the sparsity problem of behav-
ioral biometrics. Meanwhile, as user preferences of multiple
IoT devices are significantly different, the interaction records
collected from different IoT devices are different. For exam-
ple, the keystroke rhythm can be captured when interacting
with PC; and the touchscreen dynamics are collected via the
mobile phone or tablets. To handle the imbalanced classifica-
tion problem and smoothly conduct the user authentication on
heterogeneous IoT devices, transfer learning [119], [120] is
promising to transfer the trained model based on behavioral
records collected on one source device to the target device.
In addition, to address the sparsity of labeled data, AutoTune
uses the wireless identifier as a supervisory label and learns the
association between facial images and wireless identifier [121].

C. Deep Learning on Resource-Constrained IoT Devices

In general, IoT devices, including smartphones and wear-
ables are resource-constrained with limited memory, power
supply, and computing capability [122]. Although deep learn-
ing algorithms achieved state-of-the-art performance, deep
learning models are becoming extremely complex with mil-
lions of hyperparameters [123], time-consuming training, sig-
nificant energy strains [103], [124], and do not work well
on resource-constrained IoT devices by debilitating levels of
system overhead [122]. To execute deep learning-based mod-
els on resource-constrained devices, the following two types
of solutions are proposed.
Model compression of deep learning has become a sig-

nificant problem. Methods to reduce the complexity of deep
neural networks include tensor decomposition [125], [126],
pruning [124], [127], and parameter sharing [128]–[130].
Tensor decomposition reduces model complexity by express-
ing a higher order tensor with a sequence of linear operations
on the matrix singular value decomposition [126]. Neural
pruning eliminates the less important connections in one pre-
trained model to reduce the computational cost by compressing
hyperparameters [131] or multiobjective optimization based on
accuracy, latency, and energy [132]. Parameter sharing [133]
is mainly applied in convolutional layers to reduce the size
of parameters by the assumption that the input going to be
processed by the network is decomposable into a set of local
regions with the same nature and thus each of them can be
processed with the same set of transformations [130], [133].
Edge computing is shedding lights on mobile devices-

oriented deep learning [134], [135]. Via edge intelligence, the
complex and energy-intensive deep neural networks can be
partitioned into tiny subtasks, and be distributively executed
on neighboring devices or edges [136]–[138]. For example,
Kang et al. [136] designed a lightweight scheduler to auto-
matically balance the computational offload between mobile

devices and servers by partitioning the neural network layers.
Xu et al. [138] proposed DeepWear to optimize the energy
consumption of wearables by offloading the deep learning
tasks among mobile devices.
Although there are many pilot studies about deep learn-

ing on resource-constrained IoT devices, they are evaluated in
the laboratory environments. As a result, the performance is
not generalizable to other contexts (e.g., smart home) due to
the extreme heterogeneity of IoT environments [139]. In addi-
tion, CA on resource-constrained IoT devices is very sensitive
to latency. A novel framework is essential to understand the
tradeoff among accuracy, critical latency, and efficiency [140].

D. Emerging Malicious Attacks

CA based on behavioral biometrics cannot be easily attacked
by a random attacker. However, the nature of CA based on
behavioral biometrics does not imply that the CA systems are
secure.
First, most authentication systems-based behavioral biomet-

rics are prototypes evaluated in a constrained laboratory envi-
ronment with limited participants. Comprehensive evaluations
with a large number of participants are needed to investi-
gate the performance of existing behavior-based authentication
systems when faced with potential attacks.
Second, IoT systems are faced with numerous security

threats on physical, protocol, communication, and application
layers [27]. For example, in the low-power wireless network,
the energy depletion attack can drain the batteries of devices
rapidly by forcing sensors or actuators to execute energy-
intensive tasks. Consequently, the entire network could fail due
to battery exhaustion [141]. For the electrical vehicles, batter-
ies could be attacked (e.g., draining energy) to reduce driving
range and increase driving range anxiety. Kang and Shen [142]
proposed a battery authentication method based on user habits
to identify users that share a vehicle. In addition, the thermal
attacks rely on the heat transferred from users to interactive
devices, and exploit heat traces in the wake of user interaction
with devices to uncover the entered credentials [11]. On the
communication layer, the heterogeneous communication pro-
tocols are subject to attacks, such as eavesdropping, sinkhole,
hello flood, and collision [143], [144]. Voice assistants, such as
Google Assistant, Amazon Alexa, Facebook Portal, and Apple
Siri are vulnerable to signal injection attacks on microphones
based on the photoacoustic effect across large distances and
through glass windows.1

Third, AI is widely applied by imposters to hack the authen-
tication and identification systems. For example, AI has been
maliciously used by the imposters to infer the password.
Snoopy demonstrates that it is possible to infer password
entered on mobile devices by monitoring both accelerome-
ters and gyroscopes [145]. Snoopy may fool the potential
users as a harmless app to continuously monitor the motion
sensors when users are taping the passwords, and uses bidirec-
tional RNN for most commonly used password inference and
encoder–decoder architecture with RNN models for universal
password interference [145]. Another prevailing example is

1https://lightcommands.com/
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the usage of AI by the adversary to reconstruct the biometrics
(i.e., replay attack). Deep generative models (DGMs), such as
GANs and variational autoencoder (VAE) have been widely
adopted to generate high fidelity human biometrics, including
fingerprints [109] and facial and vocal biometrics [16], [110]
to bypass the authentication systems.

E. Fusion of Behavioral Biometrics

Since prior solutions are insufficient to effectively provide
secure protection in a broad range of IoT scenarios, multifactor
authentication (MFA) provides multiple layers of security to
protect IoT devices against potential attacks through the fusion
of behavioral biometrics [2].
The early form of MFA integrated multiple authentication

schemes sequentially. For example, Hu et al. [146] proposed
a secure data backup scheme by integrating password and
biometrics to overcome the potential attacks. Multiview rep-
resentation learning for user authentication has emerged as
a viable approach to process such data. This paradigm of
machine learning aims to fuse multiple views (i.e., feature
sets) to improve the performance [147], [148]. Multiview
representation learning can be categorized into two groups:
1) multimodal methods and 2) multiview methods.
Multimodal solutions extract features from heterogeneous

biometrics to build one classifier based on the ensembled fea-
tures. Kim et al. [149] designed one multimodal authentication
system by fusing features obtained from face, teeth, and voice
modalities to secure mobile devices. Crawford et al. utilized
the keystroke dynamics and speaker verification to enhance
the authentication performance on mobile devices with a 67%
reduction of explicit authentication [150]. EchoPrint emits
nearly inaudible sound signals from the earpiece speaker
to illuminate the user’s face. The extracted acoustic fea-
tures from the echoes are combined with visual facial land-
marks from the frontal camera to authenticate the user [151].
Gomi et al. [152] integrated physiological biometrics, behav-
ioral traits, and online activities, including search, shopping,
and Web browsing for user authentication. Kumar et al. uti-
lized LSTM to model the motion sensors and adopted CNN to
extract gait patterns from video, respectively, and a Gray wolf
optimizer has been used to optimize the parameters during
fusion [153]. VAuth collects the body vibrations of the user
and matches it with the speech signal received by the voice
assistant’s microphone. By fusing multimodal data, VAuth
shows robust performance against potential attacks, includ-
ing replay attacks, mangled voice attacks, or impersonation
attacks [154]. To against the replay attacks, REVOLT exploits
the spectral differences between original and replayed voice
signals, and combines the breathing rate extracted from the
WiFi signal while speaking to detect the liveness [155].
Multiview-based solutions for user authentication mainly

extracted fine-grained feature maps from multiview images.
For example, Li et al. [156] employed the multiview deep rep-
resentation learning to recognize one million celebrities from
their face images captured in the real world. On the other
hand, multiview learning can be applied for user authentication
to address the incompletion of obtained biometrics by fusing
multiple views [157].

In addition, contextual information can enhance the
performance of user authentication. Hintze et al. [158] intro-
duced dynamic factors, such as day and time, and location
together with multimodal biometrics to adjust the authenti-
cation scheme accordingly. Wójtowicz and Joachimiak [159]
presented one context-based biometric authentication model,
which chooses the appropriate authentication method dynam-
ically according to the interaction form.

F. Cross-Device Continuous Authentication

Increasingly, a large number of users are becoming mul-
tidevice users by interacting with multiple smart devices
[116], [160]. For instance, more than 70% of online users
access the Internet across multiple devices. 90% use multiple
screens sequentially to accomplish a task over time.2 The
complexity of multidevice–multiuser interaction presents sig-
nificant challenges for cross-device CA. Prior studies assume
the one-to-one mapping between user and device and mainly
focus on the user authentication in the single-device sce-
nario. However, the relationships between users and devices
in multiuser–multidevice scenarios are many to many. Due
to the heterogeneity of devices, transferring one pretrained
user identification model from the source domain to the tar-
get domain is rarely studied. There are significant differences
in interaction modality among heterogeneous devices. For
devices with similar interaction modalities, transfer learning
is one promising solution [116]. In addition, the co-location
information of devices is useful for cross-device authenti-
cation. Hintze et al. [160] proposed one multimodal and
cross-device authentication system based on behavioral and
physiological biometrics (e.g., gait, voice, face, and keystroke
dynamics) to reduce the manual burden of user verification
according to the context, such as location, time of day, and
nearby devices.

G. Privacy Concerns

Behavior-based authentication systems are subject to pri-
vacy concerns, especially when they are adopted for person-
alized services. To address privacy concerns, many privacy
protection solutions are proposed to secure crucial information
in different authentication systems [161].
For the standalone authentication systems, although users

are able to control the standalone client, they are likely to
subject to exposing data to unauthorized third parties [161].
To secure the sensitive data in standalone systems, privacy
impact assessment and surveillance impact assessment should
be enforced to ensure conformance with legal and regulatory
requirements [161]. Moreover, anonymity and encryption are
promising to protect against data exposure in privately owned
devices. For the centralized authentication systems, they may
suffer from data exposure in transit and adversary attacks
in computation models by carefully crafted adversarial sam-
ples [162]. Blockchain keeps the sensitive data private such
that others cannot trace and infer sensitive data stored in the
block [163]. However, the centralized authentication systems

2https://www.readinbrief.com/multi-device-content-consumption-statistics-
trends/
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may suffer from the bottle problem due to the limitation of a
single centralized server [7].
For the distributed authentication systems, blockchain and

federated learning [164], [165] show a great potential to
provide privacy-preserving authentication in collaborative
applications. Federated learning is a machine learning tech-
nique that trains an algorithm across multiple decentralized
edge devices or servers holding local data samples, with-
out exchanging their data samples. This approach contrasts
with traditional centralized machine learning techniques where
all data samples are uploaded to one server, as well as to
more classical decentralized approaches which assume that
local data samples are identically distributed [164]–[166]. The
nature of federated learning not only can prevent data sharing
among devices but also avoid the enormous communication
costs. In addition, other privacy-preserving machine learning
approaches, such as multiparty computation (MPC) and homo-
morphic encryption are getting more attraction recently. For
intrusted participants, the MPC is able to calculate a joint
function in a decentralized network on the premise of ensuring
privacy and independence of input [167].

VII. CONCLUSION

In the IoT era, user authentication and identification are
critical to ensure the security of connected things and the cus-
tomization of passive services. However, conventional identi-
fication methods suffer from several key drawbacks, including
discreteness, obtrusiveness, and vulnerability. In this article,
we propose the CA based on behavioral biometrics, charac-
terize the key features of CA based on user behaviors (e.g.,
invulnerability, continuity, unobtrusiveness, and convenience),
and summarize the existing CA solutions from sensing and
computing. Based on this taxonomy, we discuss the challenges
and open issues from the perspective of AI.
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